JP2004307949A - High pressure hydrogen storage tank - Google Patents

High pressure hydrogen storage tank Download PDF

Info

Publication number
JP2004307949A
JP2004307949A JP2003104156A JP2003104156A JP2004307949A JP 2004307949 A JP2004307949 A JP 2004307949A JP 2003104156 A JP2003104156 A JP 2003104156A JP 2003104156 A JP2003104156 A JP 2003104156A JP 2004307949 A JP2004307949 A JP 2004307949A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
hydrogen
storage alloy
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003104156A
Other languages
Japanese (ja)
Other versions
JP4128479B2 (en
Inventor
Yasuaki Kawai
泰明 河合
Yoshitsugu Kojima
由継 小島
Takehiro Nitou
丈裕 仁藤
Tamio Shinosawa
民夫 篠沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2003104156A priority Critical patent/JP4128479B2/en
Publication of JP2004307949A publication Critical patent/JP2004307949A/en
Application granted granted Critical
Publication of JP4128479B2 publication Critical patent/JP4128479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure hydrogen storage tank large in hydrogen storage capacity. <P>SOLUTION: The high pressure hydrogen storage tank 1 is provided with a tank 2 and hydrogen storage alloys 3a and 3b stored in the tank 2. The hydrogen storage alloys 3a and 34b comprise a Ti-Mn based primary hydrogen storage alloy having a high dissociation pressure and consisting of a Laves phase, and a second hydrogen storage alloy having a high dissociation pressure, consisting of a Laves phase or a BCC (body-centered cubic) structure and having a hydrogen hoard content of ≥0.6 wt% at an ordinary temperature under 0.1 MPa. Since the second hydrogen storage alloy having a high hydrogen hoard content is included, even in the case the hydrogen storage alloy is exposed to the air, the oxidation reaction of the Ti-Mn based alloy can be suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池等の水素利用装置に水素を供給するための高圧水素貯蔵タンクに関する。
【0002】
【従来の技術】
近年、二酸化炭素の排出による地球の温暖化等の環境問題や、石油資源の枯渇等のエネルギー問題から、化石燃料の代替燃料として水素が注目されている。例えば、水素と酸素との電気化学的により発電する燃料電池は、発電効率が高く、排出されるガスがクリーンで環境に対する影響が極めて少ない。そのため、燃料電池は、発電用、低公害の電気自動車用電源等、種々の用途への使用が期待されている。
【0003】
燃料電池等の水素利用装置に水素を供給する装置として、例えば、耐圧容器に水素吸蔵合金を収容した水素貯蔵タンクが提案されている。水素吸蔵合金は、所定の条件下で可逆的に水素を吸蔵・放出することができ、水素を金属水素化物という安全な固体の形で貯蔵することができる。水素吸蔵合金のなかでも、Ti−Mn系合金は、水素吸蔵量が大きく、水素との反応速度も大きい。また、組成にもよるが、15MPa以上の高圧下での水素吸蔵量が大きく、かつ低温から常温までの広い温度範囲で水素を吸蔵・放出できる。そのため、高圧で使用される水素貯蔵タンクには、特に有用である。
【0004】
しかし、Ti−Mn系合金は、水素との反応速度が大きいため、例えば、水素の吸蔵・放出に伴う微粉化により活性面が表出した状態では、非常に活性が高くなる。したがって、そのような活性な状態で、Ti−Mn系合金が大気に曝された場合には、合金の表面が急激に酸化され、酸化反応に伴う発熱によって合金の温度が上昇するおそれがある。そのため、Ti−Mn系合金を使用する場合には、同合金が大気へ曝された場合を想定した何らかの対策を講じることが望ましい。
【0005】
水素吸蔵合金粉末の酸化反応を抑制する手段として、例えば、粉末化した水素吸蔵合金に酸素を供給し、混合、攪拌することにより、予め水素吸蔵合金粉末の表面に酸化膜を生成させておく方法がある(例えば、特許文献1参照。)。
【0006】
【特許文献1】
特開平8−157904号公報
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載された方法では、Ti−Mn系合金の水素吸蔵・放出能を損なわずに、上述した酸化反応を抑制することは困難である。したがって、Ti−Mn系合金に対して、有効な手法とはいえない。
【0008】
本発明は、このような実状を鑑みてなされたものであり、Ti−Mn系合金の優れた水素吸蔵・放出能を生かし、水素貯蔵量が大きい高圧水素貯蔵タンクを提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明の高圧水素貯蔵タンクは、タンクと、該タンクに収容された水素吸蔵合金とを備える高圧水素貯蔵タンクであって、前記水素吸蔵合金は、高解離圧であってラーベス相からなるTi−Mn系の第一水素吸蔵合金と、高解離圧であってラーベス相あるいはBCC構造からなり、常温、0.1MPaにおける死蔵水素量が0.6wt%以上である第二水素吸蔵合金とを含むことを特徴とする。
【0010】
本発明者は、水素吸蔵合金について鋭意研究を重ねた結果、死蔵水素量が大きい水素吸蔵合金は、微粉化して大気に曝された場合であっても、合金表面の酸化反応がほとんど進行せず、温度も上昇しないという知見を得た。したがって、活性の高いTi−Mn系合金と、上記死蔵水素量の大きな水素吸蔵合金とを併用することによって、Ti−Mn系合金の酸化反応を抑制することができると考えた。
【0011】
ここで、「死蔵水素量」の定義を説明する。まず、水素吸蔵合金に対して、所定の圧力で水素を吸蔵させる。同合金に最初に吸蔵された水素量を「一回目水素吸蔵量(wt%)」とする。その後、常温下、0.1MPaまで圧力を下げて水素を放出させた後、再び最初と同じ条件で、同合金に対して水素を吸蔵させる。その際に吸蔵された水素量を「二回目水素吸蔵量(wt%)」とする。そして、一回目水素吸蔵量と二回目水素吸蔵量との差を死蔵水素量とする。つまり、「死蔵水素量」(wt%)=「一回目水素吸蔵量(wt%)」−「二回目水素吸蔵量(wt%)」となる。なお、水素の吸蔵・放出を二回以上繰り返した場合、二回目以降に吸蔵される水素量は、二回目水素吸蔵量とほぼ同じ値となる。そのため、常温、0.1MPaにおける死蔵水素量とは、常温下、0.1MPaでは放出されずに水素吸蔵合金に残存している水素量を意味するものとなる。
【0012】
本発明の高圧水素貯蔵タンクは、上記知見に基づいてなされたものであり、二種類の水素吸蔵合金を含む。一つは、高解離圧であってラーベス相からなるTi−Mn系の第一水素吸蔵合金である。もう一つは、高解離圧であってラーベス相あるいはBCC構造からなり、常温、0.1MPaにおける死蔵水素量が0.6wt%以上である第二水素吸蔵合金である。以下、本発明の高圧水素貯蔵タンクに収容された水素貯蔵合金が大気に曝された場合に、第一水素吸蔵合金であるTi−Mn系合金の酸化反応が、どのようにして抑制されるかを説明する。
【0013】
第二水素吸蔵合金の死蔵水素量は、0.6wt%以上と大きい。そのため、第二水素吸蔵合金では、大気中でも合金表面の酸化反応がほとんど進行せず、温度の上昇もない。一方、第一水素吸蔵合金では、大気中の酸素により合金表面が酸化され、合金の温度が上昇すると考えられる。ここで、第一水素吸蔵合金で発生した熱は、第二水素吸蔵合金へ伝達する。その結果、第二水素吸蔵合金の温度が上昇する。すると、常温では放出されずに第二水素吸蔵合金に残存していた水素が、放出され易くなる。第二水素吸蔵合金から水素が放出されると、その水素は大気中の酸素と反応して水となる。生成された水により、第二水素吸蔵合金の表面は冷却される。水による冷却と第二水素吸蔵合金自身の冷却とにより、第一水素吸蔵合金も冷却される。その結果、第一水素吸蔵合金の酸化反応は抑制され、温度上昇が緩和されると考えられる。
【0014】
このように、本発明の高圧水素貯蔵タンクは、水素吸蔵合金の一つとして、死蔵水素量の大きい第二水素吸蔵合金を含むため、仮に収容された水素吸蔵合金が大気に曝された場合であっても、高活性なTi−Mn系合金の酸化反応が抑制される。
【0015】
また、第一水素吸蔵合金および第二水素吸蔵合金は、ともに高解離圧である。ここで、「高解離圧」とは、合金の圧力−組成等温線(以下、「PCT曲線」と称す。)を常温にて測定した場合において、等温線の水平部分(以下、「プラトー領域」と称す。)が、1MPa以下の圧力で現れないことを意味する。つまり「高解離圧」な合金では、常温下では、1MPaを超えた圧力でプラトー領域が現れることになる。このように、本明細書では、常温における解離圧(平衡水素圧力)が1MPaを超えている合金を「高解離圧」な合金とする。本発明の高圧水素貯蔵タンクには、高解離圧な二種類の水素吸蔵合金が収容されている。これら第一および第二水素吸蔵合金は、高圧下における水素吸蔵量が大きい。したがって、例えば、本発明の高圧水素貯蔵タンクを、35MPa等の極めて高圧として使用する場合には、上記水素吸蔵合金における優れた水素吸蔵能がより発揮される。
【0016】
【発明の実施の形態】
以下、本発明の高圧水素貯蔵タンクについて詳細に説明する。なお、本発明の高圧水素貯蔵タンクは、下記の実施形態に限定されるものではない。本発明の高圧水素貯蔵タンクは、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
【0017】
本発明の高圧水素貯蔵タンクは、タンクと、該タンクに収容された水素吸蔵合金とを備える。本発明の高圧水素貯蔵タンクを構成するタンクの材質は、高圧かつ低温等の広い温度範囲で使用できるものであれば、特に限定されるものではない。例えば、耐圧性および熱伝導性の高いアルミニウム合金、ステンレス鋼、繊維強化プラスチック等からなるタンクを使用すればよい。また、タンクの強度を確保するため、タンクの外側にカーボンファイバーを巻き、さらにその上から樹脂等で被覆してもよい。タンクの形状は特に限定されるものではなく、円筒型、直方体型等、種々の形状を採用することができる。また、タンクの内部構造は、特に限定されるものではない。タンク内部を空洞にする他、仕切壁により複数の部屋に区画してもよい。例えば、タンク内部にハニカム構造体を収容し、タンク内部をハニカム構造に区画してもよい。
【0018】
本発明の高圧水素貯蔵タンクに収容される水素吸蔵合金は、高解離圧であってラーベス相からなるTi−Mn系の第一水素吸蔵合金と、高解離圧であってラーベス相あるいはBCC構造からなり、常温、0.1MPaにおける死蔵水素量が0.6wt%以上である第二水素吸蔵合金とを含む。
【0019】
第一水素吸蔵合金であるTi−Mn系合金は、高解離圧であって、結晶構造がラーベス相であれば、その組成が特に限定されるものではない。例えば、−40℃程度の低温下であっても水素の吸蔵・放出が可能であるという理由から、第一水素吸蔵合金を、Crを含むTi−Cr−Mn系合金とすることが望ましい。具体的には、組成式TiCr2−yMn(1.0<x<1.2、1.0<y<1.4)、TiCrMn、TiZrMnCrV、Ti0.98Zr0.020.43Fe0.09Cr0.05Mn1.5、Ti1.2Cr1.3Mn0.6Ni0.1、Ti1.2Cr1.3Mn0.6Al0.1、Ti1.15Cr1.4Mn0.6La0.05、Ti1.15Cr1.4Mn0.6Mm0.05、TiCr1.35Mn0.6Zn0.05等で表される合金が挙げられる。
【0020】
また、ラーベス相には、六方晶系C14型構造、立方晶系C15型構造、二重六方晶系C36型構造が知られている。特に、六方晶系C14型構造を有するラーベス相からなるTi−Cr−Mn系合金は、水素を吸蔵・放出する際の結晶の相転移がなく、水素の吸蔵・放出速度が大きい。なかでも、組成式TiCr2−yMn(1.0<x<1.2、1.0<y<1.4)で表される合金は、高圧下での水素吸蔵量が大きく、低温から常温までの広い温度範囲で水素を吸蔵・放出でき、さらに低温下でも水素吸蔵・放出速度が大きい。そのため、組成式TiCr2−yMn(1.0<x<1.2、1.0<y<1.4)で表される合金を第一水素吸蔵合金とすると、本発明の高圧水素貯蔵タンクは、15MPa以上の高圧で多量に水素を貯蔵でき、低温から常温までの広い温度範囲で多量の水素を利用できる水素貯蔵タンクとなる。
【0021】
第二水素吸蔵合金は、高解離圧であって、結晶構造がラーベス相あるいはBCC構造であり、さらに常温、0.1MPaにおける死蔵水素量が0.6wt%以上であれば、その組成が特に限定されるものではない。例えば、ラーベス相の水素吸蔵合金として、Ti1.2Cr1.4Mn0.6、Ti1.3Cr1.2Mn0.8等が挙げられる。また、BCC(体心立方格子)構造の水素吸蔵合金として、TiCrVNi、TiCrVMo等のTi−Cr−V系合金、あるいは、TiCrW、TiCrMo等が挙げられる。これらの合金の死蔵水素量は、いずれも同合金の質量を100wt%とした場合の0.6wt%以上となる。なお、上記第一水素吸蔵合金は、死蔵水素量が0.6wt%よりも少ない合金となる。
【0022】
第一水素吸蔵合金と第二水素吸蔵合金との含有比は、特に限定されるものではない。特に、第一水素吸蔵合金の酸化反応を抑制する効果をより高くするという観点から、第一水素吸蔵合金と第二水素吸蔵合金との合計質量を100wt%とした場合に、第二水素吸蔵合金の含有割合を10wt%以上とすることが望ましい。一方、水素吸蔵・放出量を考慮した場合には、第二水素吸蔵合金の含有割合を50wt%以下とすることが望ましい。第二水素吸蔵合金の含有割合を30wt%以下とするとより好適である。
【0023】
また、同様に、第一水素吸蔵合金の酸化反応を抑制する効果をより高くするという観点から、本発明の高圧水素貯蔵タンクに収容された水素吸蔵合金全体の、常温、0.1MPaにおける死蔵水素量は、該水素吸蔵合金全体の質量を100wt%とした場合の0.5wt%以上であることが望ましい。
【0024】
本発明の高圧水素貯蔵タンクは、第一水素吸蔵合金と第二水素吸蔵合金とを含むものであればよい。例えば、塊状の両合金を所定の大きさに粉砕し、それら粉砕片を混合してタンクに収容すればよい。また、両合金の粉末を混合し、その混合粉末を成形した成形体をタンクに収容してもよい。成形体とする場合には、タンクへの収容が容易となる利点がある。成形は、既に公知の方法で行えばよい。例えば、混合粉末を所定の加圧、加熱下で焼結する方法や、非水系のバインダーを利用した方法等で成形することができる。なお、成形体の形状、大きさ等は、タンクの大きさや内部構造等に応じて適宜決定すればよい。さらに、両合金の粒子を複合化した複合化粒子をタンクに収容してもよい。この場合、例えば、所定の温度、不活性雰囲気下にて、メカニカルアロイング、メカノヒュージョン等の機械的剪断力により、両合金の個々の粒子を結合させればよい。第一水素吸蔵合金の酸化反応をより有効に抑制するという観点から、複合化粒子は、第一水素吸蔵合金の粒子の表面を第二水素吸蔵合金の粒子が覆うような態様が好適である。複合化粒子の大きさは、特に限定されるものではない。例えば、粒子の長軸径を500μm程度とすればよい。
【0025】
また、第一水素吸蔵合金と第二水素吸蔵合金とを混合せず別々に収容しても構わない。この場合は、両合金を粉砕した粉砕片を、それぞれタンクに収容すればよい。また、両合金の粉末からそれぞれ成形された成形体をタンクに収容してもよい。但し、第一水素吸蔵合金の酸化反応をより有効に抑制するという観点から、第二水素吸蔵合金は、少なくともタンクの側壁内周面近傍に配置されることが望ましい。タンクの側壁内周面近傍は、タンク内において最も外側となる部位である。したがって、その部位に第二水素吸蔵合金を配置し、それよりも内側に第一水素吸蔵合金を配置することで、第一水素吸蔵合金は大気に曝され難くなる。その結果、第一水素吸蔵合金の酸化反応が有効に抑制される。ここで、第二水素吸蔵合金は、タンクの側壁内周面近傍の全域に満遍なく配置されてもよく、また、適宜分散して配置されてもよい。なお、第二水素吸蔵合金は、タンクの側壁内周面近傍の他、さらにタンク内の他の部位に配置されていてもよい。
【0026】
さらに、上述した混合粉末の成形体や複合化粒子と、第一水素吸蔵合金とを組み合わせて収容してもよい。この場合、第一水素吸蔵合金と第二水素吸蔵合金との混合粉末から成形された成形体、および第一水素吸蔵合金の粒子と第二水素吸蔵合金の粒子とが複合化された複合化粒子のうち少なくとも一方が、タンクの側壁内周面近傍に配置された態様を採用することが望ましい。すなわち、本態様では、混合粉末の成形体や複合化粒子を構成する第二水素吸蔵合金が、タンクの側壁内周面近傍に配置されていることになる。したがって、混合粉末の成形体や複合化粒子よりも内側に第一水素吸蔵合金を配置することで、第一水素吸蔵合金の酸化反応を有効に抑制することができる。なお、この場合も、混合粉末の成形体や複合化粒子は、タンクの側壁内周面近傍の全域に満遍なく配置されてもよく、また、適宜分散して配置されてもよい。
【0027】
本発明の高圧水素貯蔵タンクは、上記第一および第二水素吸蔵合金に加え、他の水素吸蔵合金を含んでいても構わない。また、水素吸蔵合金の他に、さらに炭素系水素吸蔵材料を含む態様を採用することが望ましい。炭素系水素吸蔵材料は、熱伝導率が大きい。このため、例えば、第一水素吸蔵合金の酸化反応が進行した場合には、炭素系水素吸蔵材料により、生じた熱の拡散が促される。また、炭素系水素吸蔵材料を含むことにより、水素の吸蔵・放出に伴う水素吸蔵合金の微粉化が抑制される。このため、大気に曝された場合であっっても、第一水素吸蔵合金の酸化反応が進行し難くなる。さらに、軽量な炭素系水素吸蔵材料を含むことにより、水素貯蔵量を確保しつつタンクの軽量化を図ることが可能となる。
【0028】
炭素系水素吸蔵材料は、特に限定されるものではない。例えば、比表面積が大きく水素吸蔵量が大きいという理由から、活性炭、カーボンナノチューブ、グラファイトナノファイバー等の多孔質の炭素材料を用いると好適である。
【0029】
炭素系水素吸蔵材料は、例えば、水素吸蔵合金が粉砕片や粉末で収容される場合には、それらと混合してタンク内に収容すればよい。また、水素吸蔵合金が成形体にて収容される場合には、成形体が収容された隙間に炭素系水素吸蔵材料を充填すればよい。
【0030】
以下、本発明の一実施形態である高圧水素貯蔵タンクの構成等を、図を用いて説明する。図1に、本実施形態の高圧水素貯蔵タンクの透過図を示す。なお、図1中、一点鎖線は、高圧水素貯蔵タンクの外形を示す。また、図2に、ハニカム構造体の一部におけるペレットの充填状態を示す。図1に示すように、高圧水素貯蔵タンク1は、タンク2と、ペレット3a、3bとを備える。
【0031】
タンク2は、アルミニウム合金製であり、直径400mm、長さ900mmの円筒形状を呈している。タンク2は、第一分割体2aと第二分割体2bとからなる。第一分割体2aおよび第二分割体2bは、半円筒状を呈しており、両者が溶接されてタンク2を形成している。タンク2の長手方向の一端には、水素ガスが導入される導入口21、および水素ガスが放出される放出口22が設けられている。導入口21は、水素供給装置に連結される。放出口22は、燃料電池へ連結される。放出口22の開口部には、燒結金属製のフィルタが設置されている(図示せず。)。一方、タンク2の長手方向の他端は、閉塞されている。タンク2の内部には、リング状のハニカム構造体4が収容されている。ハニカム構造体4は、タンク2の側壁内周面に沿って収容されている。ハニカム構造体4の長手方向の両端部には、焼結金属製の円板状のフィルタが設置されている(図示せず。)。すなわち、ハニカム構造体4は、フィルタを介してタンク2の長手方向両端面により支持されている。タンク2の内部におけるハニカム構造体4のさらに内周側は空洞となっており、水素が充填される。
【0032】
ハニカム構造体4は、アルミニウム合金製の複数のハニカムチューブ4a、4bから構成されている。ハニカムチューブ4a、4bは、断面が六角形の筒状をなす。ハニカムチューブ4a、4bは、タンク2の長手方向に伸びる流路を持つ。ハニカムチューブ4a、4bは、タンク2の側壁内周面に沿って外側と内側の二重に配置されている。すなわち、ハニカムチューブ4aは、タンク2の側壁内周面に近い側、つまり外側に配置されている。一方、ハニカムチューブ4bは、タンク2の側壁内周面から遠い側、つまり内側に配置されている。ハニカムチューブ4a、4bの中には、それぞれペレット3a、3bが収容されている。
【0033】
ペレット3aは、Ti1.02Cr0.99Mn1.01(第一水素吸蔵合金)とTiCrVNi(第二水素吸蔵合金)との混合粉末から成形された成形体である。ペレット3aは、直径50mm、長さ50mmの円柱状を呈する。ペレット3aは、外側のハニカムチューブ4aの中に、複数個収容されている。
【0034】
ペレット3bは、Ti1.02Cr0.99Mn1.01(第一水素吸蔵合金)の粉末から成形された成形体である。ペレット3bは、ペレット3aと同様、直径50mm、長さ50mmの円柱状を呈する。ペレット3bは、内側のハニカムチューブ4bの中に、複数個収容されている。なお、ペレット3a、3bは、本発明の高圧水素貯蔵タンクにおける水素吸蔵合金に含まれる。
【0035】
水素ガスは、水素供給装置から導入口21を介してタンク2内へ供給される。この時、放出口22は閉じた状態となっている。タンク2内に水素ガスが充填されるとともに、所定の条件下でペレット3aおよびペレット3bに水素が吸蔵される。水素ガスが充分吸蔵および充填され、タンク2内が高圧になった後、導入口21が閉じられる。その後、放出口22が開かれ、所定の条件下で水素が放出される。放出口22から放出された水素ガスは、燃料電池へ供給される。
【0036】
本実施形態の高圧水素貯蔵タンクは、以下の手順で製造される。まず、ハニカムチューブ4a、4bに所定のペレット3a、3bを入れる。次いで、第一分割体2aおよび第二分割体2bの中に、ペレット3a、3bが収容されたハニカムチューブ4a、4bを並べる。ここで、ハニカムチューブ4aは、タンク側壁内周面に沿って並べられる。また、ハニカムチューブ4bは、ハニカムチューブ4aの内側に並べられる。さらに、第一分割体2aには、円板状のフィルタをハニカムチューブ4a、4bの長手方向の両端部に設置する。最後に、第一分割体2aと第二分割体2bとを溶接してタンク2を形成する。
【0037】
なお、上記実施形態では、タンク2に、水素ガスを導入する導入口21と水素ガスを放出する放出口22とを設けた。しかし、水素ガスの導入・放出を兼ねた導入放出口を一つ設けた態様としても構わない。
【0038】
【実施例】
上記実施の形態に基づいて、第一水素吸蔵合金または第二水素吸蔵合金となる四種類の水素吸蔵合金の粉末を準備した。それらの粉末について、死蔵水素量や大気中での酸化反応の有無等を予備的に調査した。その後、準備した粉末から適宜二種類選択し、それらを所定の割合で混合して混合粉末を調製した。調製した混合粉末に対して、水素を吸蔵・放出させた後、大気曝露試験を行った。以下、順に説明する。
【0039】
〈水素吸蔵合金粉末の準備と予備的調査〉
第一水素吸蔵合金として、ラーベス相のTiCrMn、およびラーベス相のTiZrMnCrVの二種類の合金を準備した。第二水素吸蔵合金として、ラーベス相のTi1.2Cr1.4Mn0.6、およびBCC構造のTiCrVNiの二種類の合金を準備した。
【0040】
まず、上記各々の合金を、ローラーミルで約2〜3mmの大きさに粉砕し、粉末とした。そして、TiCrMnの粉末を#1、TiZrMnCrVの粉末を#2、Ti1.2Cr1.4Mn0.6の粉末を#3、TiCrVNiの粉末を#4と番号付けした。次いで、#1〜#4の各合金粉末に、温度20℃、圧力0.1〜25MPaにて水素を吸蔵・放出させ、各合金粉末の水素吸蔵・放出量をPCT特性測定装置(鈴木商館社製)を用いて測定した。測定は2回行った。そして、一回目の測定において、各々の合金粉末から放出された水素の質量を、その合金粉末の質量で除した値を有効水素量(wt%)とした。また、一回目の測定における水素吸蔵量(wt%)と二回目の測定における水素吸蔵量(wt%)との差を死蔵水素量(wt%)とした。上記測定後、各々の合金粉末を、内径4mm、高さ28mmの円筒容器に収容した。そして、容器上部を開放した状態で大気中に3分間放置し、各合金粉末における酸化反応の有無を観察した。表1に、#1〜#4の各合金粉末の有効水素量、死蔵水素量、および酸化反応の有無を示す。
【0041】
【表1】

Figure 2004307949
【0042】
表1に示すように、第一水素吸蔵合金である#1、#2の合金粉末の死蔵水素量は、それぞれ0.2wt%、0.1wt%と少ない。そして、#1、#2の合金粉末では、大気中にて酸化反応の進行が観察された。これに対して、第二水素吸蔵合金である#3、#4の合金粉末の死蔵水素量は、それぞれ0.6wt%、1.5wt%と多い。そして、#3、#4の合金粉末では、大気中にて酸化反応の進行が観察されなかった。これらの結果より、常温、0.1MPaにおける死蔵水素量が0.6wt%以上あるTi1.2Cr1.4Mn0.6、TiCrVNi(第二水素吸蔵合金)は、水素の吸蔵・放出後に大気に曝されても、酸化され難いことがわかった。
【0043】
〈水素吸蔵合金の混合粉末の大気曝露試験〉
上記#1〜#4の合金粉末から、適宜二種類選択し、それらを種々の割合で混合して七種類の混合粉末を調製した。調製した混合粉末に、上記予備的調査と同様の方法で、水素を吸蔵・放出させ、各混合粉末の水素吸蔵・放出量を測定した。そして、上記予備的調査の場合と同様に、各混合粉末の有効水素量(wt%)および死蔵水素量(wt%)を算出した。その後、各々の混合粉末に対して、以下の手順で大気曝露試験を行った。まず、各々の混合粉末を、内径4mm、高さ28mmの円筒容器に収容した。そして、容器上部を開放した状態で大気中に3分間放置し、各混合粉末における酸化反応の有無を観察した。表2に、各混合粉末の有効水素量、死蔵水素量、および酸化反応の有無を示す。
【0044】
【表2】
Figure 2004307949
【0045】
表2において、#11〜#14、#16、#17の混合粉末は、第一水素吸蔵合金と第二水素吸蔵合金とを混合した混合粉末である。一方、#15の混合粉末は、第一水素吸蔵合金どうしを混合した混合粉末である。表2に示すように、#15の混合粉末の死蔵水素量は、0.2wt%と少ない。そして、#15の混合粉末では、大気中にて酸化反応の進行が観察された。これに対して、#15以外の混合粉末では、すべて死蔵水素量が0.5wt%以上となっている。また、#11〜#13の混合粉末からわかるように、第二水素吸蔵合金の含有比が大きくなるとともに、死蔵水素量も増加した。そして、これら#11〜#14、#16、#17の混合粉末では、酸化反応がほとんど進行しなかった。これらの結果より、第一水素吸蔵合金と第二水素吸蔵合金とを含む混合粉末は、水素の吸蔵・放出後に大気に曝されても、酸化され難いことが確認できた。したがって、第一水素吸蔵合金と第二水素吸蔵合金とを含む本発明の高圧水素貯蔵タンクでは、仮に収容された水素吸蔵合金が大気に曝された場合であっても、水素吸蔵合金の酸化反応が抑制される。
【0046】
【発明の効果】
本発明の高圧水素貯蔵タンクは、収容される水素吸蔵合金として、高活性なTi−Mn系の第一水素吸蔵合金と、死蔵水素量の大きい第二水素吸蔵合金を含む。第二水素吸蔵合金を含むため、仮に収容された水素吸蔵合金が大気に曝された場合であっても、高活性なTi−Mn系合金の酸化反応が抑制される。また、第一水素吸蔵合金および第二水素吸蔵合金は、ともに高解離圧である。よって、両合金は、高圧下における水素吸蔵量が大きい。したがって、本発明の高圧水素貯蔵タンクは、高圧下で多量の水素を貯蔵できるタンクとなる。
【図面の簡単な説明】
【図1】本実施形態の高圧水素貯蔵タンクの透過図を示す。
【図2】ハニカム構造体の一部におけるペレットの充填状態を示す。
【符号の説明】
1:高圧水素貯蔵タンク
2:タンク
2a:第一分割体 2b:第二分割体 21:導入口 22:放出口
3a:ペレット(第一水素吸蔵合金+第二水素吸蔵合金)
3b:ペレット(第一水素吸蔵合金)
4:ハニカム構造体
4a:ハニカムチューブ(外側) 4b:ハニカムチューブ(内側)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-pressure hydrogen storage tank for supplying hydrogen to a hydrogen utilization device such as a fuel cell.
[0002]
[Prior art]
In recent years, hydrogen has attracted attention as an alternative fuel to fossil fuels due to environmental problems such as global warming due to carbon dioxide emission and energy problems such as depletion of petroleum resources. For example, a fuel cell that generates power electrochemically of hydrogen and oxygen has a high power generation efficiency, emits clean gas, and has very little effect on the environment. Therefore, fuel cells are expected to be used for various purposes such as power generation and power supplies for low-pollution electric vehicles.
[0003]
As a device for supplying hydrogen to a hydrogen utilization device such as a fuel cell, for example, a hydrogen storage tank in which a hydrogen storage alloy is accommodated in a pressure-resistant container has been proposed. Hydrogen storage alloys can reversibly store and release hydrogen under predetermined conditions, and can store hydrogen in a safe solid form called metal hydride. Among the hydrogen storage alloys, Ti-Mn alloys have a large hydrogen storage amount and a high reaction rate with hydrogen. Further, although depending on the composition, the hydrogen storage amount under a high pressure of 15 MPa or more is large, and hydrogen can be stored and released in a wide temperature range from low temperature to normal temperature. Therefore, it is particularly useful for a hydrogen storage tank used at high pressure.
[0004]
However, since the Ti-Mn alloy has a high reaction rate with hydrogen, the activity becomes extremely high, for example, in a state where an active surface is exposed due to pulverization accompanying occlusion and release of hydrogen. Therefore, when the Ti-Mn alloy is exposed to the air in such an active state, the surface of the alloy is rapidly oxidized, and the temperature of the alloy may increase due to heat generated by the oxidation reaction. Therefore, when using a Ti—Mn alloy, it is desirable to take some measures assuming that the alloy is exposed to the atmosphere.
[0005]
As a means for suppressing the oxidation reaction of the hydrogen storage alloy powder, for example, a method in which an oxide film is previously formed on the surface of the hydrogen storage alloy powder by supplying oxygen to the powdered hydrogen storage alloy, mixing and stirring the mixture. (For example, see Patent Document 1).
[0006]
[Patent Document 1]
JP-A-8-157904
[0007]
[Problems to be solved by the invention]
However, in the method described in Patent Document 1, it is difficult to suppress the above-described oxidation reaction without impairing the hydrogen storage / release capability of the Ti—Mn-based alloy. Therefore, it cannot be said to be an effective method for a Ti-Mn alloy.
[0008]
The present invention has been made in view of such circumstances, and has as its object to provide a high-pressure hydrogen storage tank having a large amount of hydrogen storage by utilizing the excellent hydrogen storage / release capability of a Ti-Mn-based alloy. .
[0009]
[Means for Solving the Problems]
The high-pressure hydrogen storage tank according to the present invention is a high-pressure hydrogen storage tank including a tank and a hydrogen storage alloy housed in the tank, wherein the hydrogen storage alloy has a high dissociation pressure and is composed of a Laves phase. Mn-based first hydrogen storage alloy and a second hydrogen storage alloy having a high dissociation pressure and having a Laves phase or a BCC structure and having a dead hydrogen amount of 0.6 wt% or more at room temperature and 0.1 MPa. It is characterized by.
[0010]
The present inventor has conducted extensive studies on the hydrogen storage alloy.As a result, the hydrogen storage alloy having a large amount of dead hydrogen hardly undergoes oxidation reaction on the alloy surface even when it is pulverized and exposed to the atmosphere. , The temperature did not rise. Therefore, it was considered that the oxidation reaction of the Ti-Mn-based alloy can be suppressed by using the Ti-Mn-based alloy having a high activity and the hydrogen storage alloy having a large dead hydrogen amount in combination.
[0011]
Here, the definition of “dead hydrogen amount” will be described. First, hydrogen is stored in the hydrogen storage alloy at a predetermined pressure. The amount of hydrogen initially stored in the alloy is referred to as “first hydrogen storage amount (wt%)”. Thereafter, the pressure is reduced to 0.1 MPa at room temperature to release hydrogen, and then, the hydrogen is absorbed into the alloy again under the same conditions as at the beginning. The amount of hydrogen absorbed at this time is referred to as “second hydrogen storage amount (wt%)”. The difference between the first hydrogen storage amount and the second hydrogen storage amount is defined as the dead hydrogen amount. That is, “dead hydrogen amount” (wt%) = “first hydrogen storage amount (wt%)” − “second hydrogen storage amount (wt%)”. Note that, when the storage and release of hydrogen are repeated twice or more, the amount of hydrogen stored after the second time is substantially the same as the second hydrogen storage amount. Therefore, the amount of dead hydrogen at room temperature and 0.1 MPa means the amount of hydrogen remaining in the hydrogen storage alloy without being released at 0.1 MPa at room temperature.
[0012]
The high-pressure hydrogen storage tank of the present invention has been made based on the above findings, and includes two types of hydrogen storage alloys. One is a Ti-Mn-based first hydrogen storage alloy having a high dissociation pressure and a Laves phase. The other is a second hydrogen storage alloy having a high dissociation pressure, a Laves phase or a BCC structure, and having a dead hydrogen content of 0.6 wt% or more at room temperature and 0.1 MPa. Hereinafter, when the hydrogen storage alloy contained in the high-pressure hydrogen storage tank of the present invention is exposed to the atmosphere, how the oxidation reaction of the Ti-Mn-based alloy as the first hydrogen storage alloy is suppressed Will be described.
[0013]
The dead hydrogen amount of the second hydrogen storage alloy is as large as 0.6 wt% or more. Therefore, in the second hydrogen storage alloy, the oxidation reaction on the alloy surface hardly proceeds even in the air, and there is no increase in temperature. On the other hand, in the first hydrogen storage alloy, it is considered that the surface of the alloy is oxidized by oxygen in the atmosphere, and the temperature of the alloy increases. Here, the heat generated in the first hydrogen storage alloy is transmitted to the second hydrogen storage alloy. As a result, the temperature of the second hydrogen storage alloy increases. Then, hydrogen remaining in the second hydrogen storage alloy without being released at normal temperature is easily released. When hydrogen is released from the second hydrogen storage alloy, the hydrogen reacts with oxygen in the atmosphere to form water. The surface of the second hydrogen storage alloy is cooled by the generated water. The cooling with water and the cooling of the second hydrogen storage alloy itself also cools the first hydrogen storage alloy. As a result, it is considered that the oxidation reaction of the first hydrogen storage alloy is suppressed, and the temperature rise is eased.
[0014]
As described above, the high-pressure hydrogen storage tank of the present invention includes the second hydrogen storage alloy having a large dead hydrogen amount as one of the hydrogen storage alloys, so that the temporarily stored hydrogen storage alloy is exposed to the atmosphere. Even if it does, the oxidation reaction of the highly active Ti-Mn-based alloy is suppressed.
[0015]
Further, both the first hydrogen storage alloy and the second hydrogen storage alloy have a high dissociation pressure. Here, the “high dissociation pressure” refers to a horizontal portion of the isotherm (hereinafter, “plateau region”) when a pressure-composition isotherm (hereinafter, referred to as a “PCT curve”) of the alloy is measured at room temperature. Does not appear at a pressure of 1 MPa or less. That is, in an alloy having a "high dissociation pressure", a plateau region appears at a pressure exceeding 1 MPa at room temperature. As described above, in this specification, an alloy having a dissociation pressure (equilibrium hydrogen pressure) at room temperature exceeding 1 MPa is referred to as a “high dissociation pressure” alloy. The high-pressure hydrogen storage tank of the present invention contains two types of hydrogen storage alloys having a high dissociation pressure. These first and second hydrogen storage alloys have a large hydrogen storage amount under high pressure. Therefore, for example, when the high-pressure hydrogen storage tank of the present invention is used at an extremely high pressure such as 35 MPa, the excellent hydrogen storage ability of the hydrogen storage alloy is further exhibited.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the high-pressure hydrogen storage tank of the present invention will be described in detail. The high-pressure hydrogen storage tank of the present invention is not limited to the following embodiment. The high-pressure hydrogen storage tank of the present invention can be embodied in various forms with modifications, improvements, and the like that can be made by those skilled in the art without departing from the gist of the present invention.
[0017]
The high-pressure hydrogen storage tank of the present invention includes a tank and a hydrogen storage alloy housed in the tank. The material of the tank constituting the high-pressure hydrogen storage tank of the present invention is not particularly limited as long as it can be used in a wide temperature range such as high pressure and low temperature. For example, a tank made of aluminum alloy, stainless steel, fiber reinforced plastic, or the like having high pressure resistance and heat conductivity may be used. Further, in order to secure the strength of the tank, carbon fiber may be wound around the outside of the tank, and further covered with a resin or the like. The shape of the tank is not particularly limited, and various shapes such as a cylindrical shape and a rectangular parallelepiped shape can be adopted. Further, the internal structure of the tank is not particularly limited. In addition to hollowing the inside of the tank, the tank may be divided into a plurality of rooms by partition walls. For example, a honeycomb structure may be housed inside the tank, and the inside of the tank may be partitioned into a honeycomb structure.
[0018]
The hydrogen storage alloy contained in the high-pressure hydrogen storage tank of the present invention has a high dissociation pressure and a Laves phase Ti-Mn-based first hydrogen storage alloy, and a high dissociation pressure and a Laves phase or BCC structure. And a second hydrogen storage alloy having an amount of dead hydrogen at room temperature and 0.1 MPa of 0.6 wt% or more.
[0019]
The composition of the Ti—Mn alloy as the first hydrogen storage alloy is not particularly limited as long as it has a high dissociation pressure and a Laves phase crystal structure. For example, it is desirable that the first hydrogen storage alloy is a Ti-Cr-Mn-based alloy containing Cr because it can store and release hydrogen even at a low temperature of about -40 ° C. Specifically, the composition formula Ti x Cr 2-y Mn y (1.0 <x <1.2, 1.0 <y <1.4), TiCrMn, TiZrMnCrV, Ti 0.98 Zr 0.02 V 0.43 Fe 0.09 Cr 0.05 Mn 1.5 , Ti 1.2 Cr 1.3 Mn 0.6 Ni 0.1 , Ti 1.2 Cr 1.3 Mn 0.6 Al 0.1 , Ti 1.15 Cr 1.4 Mn 0.6 La 0.05 , Ti 1.15 Cr 1.4 Mn 0.6 Mm 0.05 , TiCr 1.35 Mn 0.6 Zn 0.05 And the like.
[0020]
As the Laves phase, a hexagonal C14 type structure, a cubic C15 type structure, and a double hexagonal C36 type structure are known. In particular, a Ti-Cr-Mn-based alloy composed of a Laves phase having a hexagonal C14 type structure has no crystal phase transition when occluding and releasing hydrogen, and has a high hydrogen occluding and releasing speed. In particular, the composition formula Ti x Cr 2-y Mn y The alloy represented by (1.0 <x <1.2, 1.0 <y <1.4) has a large amount of hydrogen storage under high pressure, and stores hydrogen in a wide temperature range from low temperature to normal temperature.・ Can release, and has a high hydrogen storage / release rate even at low temperatures. Therefore, the composition formula Ti x Cr 2-y Mn y Assuming that the alloy represented by (1.0 <x <1.2, 1.0 <y <1.4) is the first hydrogen storage alloy, the high-pressure hydrogen storage tank of the present invention has a high pressure of 15 MPa or more. And a hydrogen storage tank that can use a large amount of hydrogen in a wide temperature range from a low temperature to a normal temperature.
[0021]
The composition of the second hydrogen storage alloy is particularly limited as long as it has a high dissociation pressure, a Laves phase or BCC crystal structure, and a hydrogen storage amount of 0.6 wt% or more at room temperature and 0.1 MPa. It is not something to be done. For example, as a Laves phase hydrogen storage alloy, Ti 1.2 Cr 1.4 Mn 0.6 , Ti 1.3 Cr 1.2 Mn 0.8 And the like. Examples of the hydrogen storage alloy having a BCC (body-centered cubic lattice) structure include Ti-Cr-V-based alloys such as TiCrVNi and TiCrVMo, or TiCrW and TiCrMo. The dead hydrogen amount of each of these alloys is 0.6 wt% or more when the mass of the alloy is 100 wt%. The first hydrogen storage alloy is an alloy having a dead hydrogen amount of less than 0.6 wt%.
[0022]
The content ratio between the first hydrogen storage alloy and the second hydrogen storage alloy is not particularly limited. In particular, from the viewpoint of further enhancing the effect of suppressing the oxidation reaction of the first hydrogen storage alloy, when the total mass of the first hydrogen storage alloy and the second hydrogen storage alloy is 100 wt%, the second hydrogen storage alloy Is desirably 10 wt% or more. On the other hand, in consideration of the amount of hydrogen storage and release, the content ratio of the second hydrogen storage alloy is desirably 50 wt% or less. It is more preferable that the content ratio of the second hydrogen storage alloy is 30 wt% or less.
[0023]
Similarly, from the viewpoint of increasing the effect of suppressing the oxidation reaction of the first hydrogen storage alloy, the dead hydrogen at room temperature and 0.1 MPa of the entire hydrogen storage alloy housed in the high-pressure hydrogen storage tank of the present invention. The amount is desirably 0.5 wt% or more when the mass of the entire hydrogen storage alloy is 100 wt%.
[0024]
The high-pressure hydrogen storage tank of the present invention only needs to include the first hydrogen storage alloy and the second hydrogen storage alloy. For example, both bulk alloys may be ground to a predetermined size, and the ground pieces may be mixed and stored in a tank. Alternatively, powders of both alloys may be mixed, and a compact formed from the mixed powder may be stored in a tank. In the case of forming a molded body, there is an advantage that it can be easily stored in a tank. The molding may be performed by a known method. For example, the mixed powder can be molded by a method of sintering under predetermined pressure and heating, a method of using a non-aqueous binder, and the like. Note that the shape, size, and the like of the molded body may be appropriately determined according to the size, internal structure, and the like of the tank. Further, compounded particles obtained by compounding particles of both alloys may be stored in the tank. In this case, for example, the individual particles of both alloys may be combined by a mechanical shearing force such as mechanical alloying or mechanofusion at a predetermined temperature and in an inert atmosphere. From the viewpoint of more effectively suppressing the oxidation reaction of the first hydrogen storage alloy, it is preferable that the composite particles have an aspect in which the surfaces of the particles of the first hydrogen storage alloy are covered with the particles of the second hydrogen storage alloy. The size of the composite particles is not particularly limited. For example, the major axis diameter of the particles may be about 500 μm.
[0025]
Further, the first hydrogen storage alloy and the second hydrogen storage alloy may be housed separately without mixing. In this case, the crushed pieces obtained by crushing both alloys may be stored in the respective tanks. Further, the compacts formed from the powders of both alloys may be stored in the tank. However, from the viewpoint of more effectively suppressing the oxidation reaction of the first hydrogen storage alloy, it is desirable that the second hydrogen storage alloy is disposed at least near the inner peripheral surface of the side wall of the tank. The vicinity of the inner peripheral surface of the side wall of the tank is an outermost portion in the tank. Therefore, by arranging the second hydrogen storage alloy at that position and arranging the first hydrogen storage alloy inside the second hydrogen storage alloy, the first hydrogen storage alloy is less likely to be exposed to the atmosphere. As a result, the oxidation reaction of the first hydrogen storage alloy is effectively suppressed. Here, the second hydrogen storage alloy may be disposed evenly over the entire area near the inner peripheral surface of the side wall of the tank, or may be disposed in an appropriately dispersed manner. In addition, the second hydrogen storage alloy may be arranged in the vicinity of the inner peripheral surface of the side wall of the tank or in another part of the tank.
[0026]
Further, the above-described molded product of the mixed powder or the composite particles and the first hydrogen storage alloy may be combined and accommodated. In this case, a compact formed from a mixed powder of the first hydrogen storage alloy and the second hydrogen storage alloy, and composite particles in which particles of the first hydrogen storage alloy and particles of the second hydrogen storage alloy are composited It is desirable to adopt a mode in which at least one of them is arranged near the inner peripheral surface of the side wall of the tank. That is, in the present embodiment, the second hydrogen storage alloy constituting the compact and the composite particles of the mixed powder is disposed near the inner peripheral surface of the side wall of the tank. Therefore, the oxidation reaction of the first hydrogen storage alloy can be effectively suppressed by arranging the first hydrogen storage alloy inside the compact or the composite particles of the mixed powder. In this case as well, the molded product of the mixed powder and the composite particles may be uniformly arranged over the entire area near the inner peripheral surface of the side wall of the tank, or may be appropriately dispersed and arranged.
[0027]
The high-pressure hydrogen storage tank of the present invention may include another hydrogen storage alloy in addition to the first and second hydrogen storage alloys. In addition, it is desirable to adopt an embodiment further including a carbon-based hydrogen storage material in addition to the hydrogen storage alloy. Carbon-based hydrogen storage materials have high thermal conductivity. Therefore, for example, when the oxidation reaction of the first hydrogen storage alloy proceeds, the diffusion of the generated heat is promoted by the carbon-based hydrogen storage material. In addition, by containing the carbon-based hydrogen storage material, pulverization of the hydrogen storage alloy due to storage and release of hydrogen is suppressed. Therefore, even when exposed to the atmosphere, the oxidation reaction of the first hydrogen storage alloy hardly proceeds. Further, by including a lightweight carbon-based hydrogen storage material, it is possible to reduce the weight of the tank while securing the hydrogen storage amount.
[0028]
The carbon-based hydrogen storage material is not particularly limited. For example, it is preferable to use a porous carbon material such as activated carbon, carbon nanotube, and graphite nanofiber because the specific surface area is large and the hydrogen storage amount is large.
[0029]
For example, when the hydrogen-absorbing alloy is contained in a crushed piece or powder, the carbon-based hydrogen-absorbing material may be mixed with them and then contained in the tank. When the hydrogen storage alloy is accommodated in a compact, the gap in which the compact is accommodated may be filled with a carbon-based hydrogen storage material.
[0030]
Hereinafter, the configuration and the like of a high-pressure hydrogen storage tank according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a transmission diagram of the high-pressure hydrogen storage tank of the present embodiment. In FIG. 1, the dashed line indicates the outer shape of the high-pressure hydrogen storage tank. FIG. 2 shows a state in which pellets are filled in a part of the honeycomb structure. As shown in FIG. 1, the high-pressure hydrogen storage tank 1 includes a tank 2 and pellets 3a and 3b.
[0031]
The tank 2 is made of an aluminum alloy and has a cylindrical shape with a diameter of 400 mm and a length of 900 mm. The tank 2 includes a first divided body 2a and a second divided body 2b. The first divided body 2a and the second divided body 2b have a semi-cylindrical shape, and are welded to form the tank 2. At one end in the longitudinal direction of the tank 2, an inlet 21 for introducing hydrogen gas and an outlet 22 for releasing hydrogen gas are provided. The inlet 21 is connected to a hydrogen supply device. The outlet 22 is connected to the fuel cell. A sintered metal filter is installed in the opening of the discharge port 22 (not shown). On the other hand, the other end in the longitudinal direction of the tank 2 is closed. A ring-shaped honeycomb structure 4 is housed inside the tank 2. The honeycomb structure 4 is accommodated along the inner peripheral surface of the side wall of the tank 2. Disc filters made of sintered metal are installed at both ends in the longitudinal direction of the honeycomb structure 4 (not shown). That is, the honeycomb structure 4 is supported by both longitudinal end surfaces of the tank 2 via the filter. The inner peripheral side of the honeycomb structure 4 inside the tank 2 is hollow, and is filled with hydrogen.
[0032]
The honeycomb structure 4 includes a plurality of aluminum alloy honeycomb tubes 4a and 4b. The honeycomb tubes 4a and 4b have a hexagonal cylindrical cross section. The honeycomb tubes 4a and 4b have flow paths extending in the longitudinal direction of the tank 2. The honeycomb tubes 4 a and 4 b are arranged outside and inside along the inner peripheral surface of the side wall of the tank 2. That is, the honeycomb tube 4a is arranged on the side closer to the inner peripheral surface of the side wall of the tank 2, that is, on the outer side. On the other hand, the honeycomb tube 4b is disposed farther from the inner peripheral surface of the side wall of the tank 2, that is, on the inner side. The pellets 3a and 3b are accommodated in the honeycomb tubes 4a and 4b, respectively.
[0033]
The pellet 3a is made of Ti 1.02 Cr 0.99 Mn 1.01 It is a compact formed from a mixed powder of (first hydrogen storage alloy) and TiCrVNi (second hydrogen storage alloy). The pellet 3a has a cylindrical shape with a diameter of 50 mm and a length of 50 mm. A plurality of pellets 3a are accommodated in the outer honeycomb tube 4a.
[0034]
The pellet 3b is made of Ti 1.02 Cr 0.99 Mn 1.01 It is a compact formed from (first hydrogen storage alloy) powder. Like the pellet 3a, the pellet 3b has a columnar shape with a diameter of 50 mm and a length of 50 mm. A plurality of pellets 3b are accommodated in the inner honeycomb tube 4b. The pellets 3a and 3b are included in the hydrogen storage alloy in the high-pressure hydrogen storage tank according to the present invention.
[0035]
Hydrogen gas is supplied from the hydrogen supply device into the tank 2 via the inlet 21. At this time, the discharge port 22 is in a closed state. The tank 2 is filled with hydrogen gas, and hydrogen is stored in the pellets 3a and 3b under predetermined conditions. After the hydrogen gas is sufficiently stored and filled, and the pressure in the tank 2 becomes high, the inlet 21 is closed. Thereafter, the outlet 22 is opened, and hydrogen is released under predetermined conditions. The hydrogen gas released from the discharge port 22 is supplied to the fuel cell.
[0036]
The high-pressure hydrogen storage tank of the present embodiment is manufactured by the following procedure. First, predetermined pellets 3a and 3b are put in the honeycomb tubes 4a and 4b. Next, the honeycomb tubes 4a and 4b containing the pellets 3a and 3b are arranged in the first divided body 2a and the second divided body 2b. Here, the honeycomb tubes 4a are arranged along the inner peripheral surface of the tank side wall. The honeycomb tubes 4b are arranged inside the honeycomb tubes 4a. Further, in the first divided body 2a, disk-shaped filters are installed at both ends in the longitudinal direction of the honeycomb tubes 4a and 4b. Finally, the tank 2 is formed by welding the first divided body 2a and the second divided body 2b.
[0037]
In the above embodiment, the tank 2 is provided with the inlet 21 for introducing the hydrogen gas and the outlet 22 for discharging the hydrogen gas. However, a mode in which a single inlet / outlet that also serves as introduction / release of hydrogen gas may be provided.
[0038]
【Example】
Based on the above embodiment, powders of four kinds of hydrogen storage alloys to be the first hydrogen storage alloy or the second hydrogen storage alloy were prepared. For these powders, preliminary investigations were made on the amount of dead hydrogen and the presence or absence of an oxidation reaction in the atmosphere. Thereafter, two types were appropriately selected from the prepared powders, and they were mixed at a predetermined ratio to prepare a mixed powder. After absorbing and releasing hydrogen, the prepared mixed powder was subjected to an atmospheric exposure test. Hereinafter, description will be made in order.
[0039]
<Preparation and preliminary investigation of hydrogen storage alloy powder>
Two kinds of alloys, Laves phase TiCrMn and Laves phase TiZrMnCrV, were prepared as first hydrogen storage alloys. Laves phase Ti as the second hydrogen storage alloy 1.2 Cr 1.4 Mn 0.6 , And BCC-structure TiCrVNi.
[0040]
First, each of the above alloys was pulverized with a roller mill to a size of about 2 to 3 mm to obtain powder. The powder of TiCrMn is # 1, the powder of TiZrMnCrV is # 2, 1.2 Cr 1.4 Mn 0.6 Powder was # 3, and TiCrVNi powder was # 4. Next, hydrogen is occluded and released from each of the alloy powders # 1 to # 4 at a temperature of 20 ° C. and a pressure of 0.1 to 25 MPa. Was used for the measurement. The measurement was performed twice. Then, in the first measurement, the value obtained by dividing the mass of hydrogen released from each alloy powder by the mass of the alloy powder was defined as an effective hydrogen amount (wt%). The difference between the hydrogen storage amount (wt%) in the first measurement and the hydrogen storage amount (wt%) in the second measurement was defined as the dead hydrogen amount (wt%). After the above measurement, each alloy powder was accommodated in a cylindrical container having an inner diameter of 4 mm and a height of 28 mm. Then, the container was left in the air for 3 minutes with the upper part of the container opened, and the presence or absence of an oxidation reaction in each alloy powder was observed. Table 1 shows the effective hydrogen content, the dead hydrogen content, and the presence or absence of an oxidation reaction of each of the alloy powders # 1 to # 4.
[0041]
[Table 1]
Figure 2004307949
[0042]
As shown in Table 1, the dead hydrogen amounts of the alloy powders of the first hydrogen storage alloys # 1 and # 2 are as small as 0.2 wt% and 0.1 wt%, respectively. Then, with the alloy powders # 1 and # 2, the progress of the oxidation reaction was observed in the atmosphere. On the other hand, the dead hydrogen amounts of the alloy powders # 3 and # 4, which are the second hydrogen storage alloys, are as large as 0.6 wt% and 1.5 wt%, respectively. With the alloy powders # 3 and # 4, the progress of the oxidation reaction was not observed in the atmosphere. From these results, it can be seen that Ti having a dead hydrogen amount of 0.6 wt% or more at ordinary temperature and 0.1 MPa is used. 1.2 Cr 1.4 Mn 0.6 It has been found that TiCrVNi (second hydrogen storage alloy) is hardly oxidized even when exposed to the atmosphere after storing and releasing hydrogen.
[0043]
<Atmospheric exposure test of mixed powder of hydrogen storage alloy>
From the alloy powders # 1 to # 4, two types were appropriately selected and mixed at various ratios to prepare seven types of mixed powder. Hydrogen was absorbed and released into the prepared mixed powder in the same manner as in the above preliminary investigation, and the amount of hydrogen absorbed and released by each mixed powder was measured. Then, as in the case of the above preliminary investigation, the effective hydrogen amount (wt%) and the dead hydrogen amount (wt%) of each mixed powder were calculated. Thereafter, an air exposure test was performed on each of the mixed powders according to the following procedure. First, each mixed powder was accommodated in a cylindrical container having an inner diameter of 4 mm and a height of 28 mm. Then, the container was left in the air for 3 minutes with the container upper part opened, and the presence or absence of an oxidation reaction in each mixed powder was observed. Table 2 shows the amount of effective hydrogen, the amount of dead hydrogen, and the presence or absence of an oxidation reaction of each mixed powder.
[0044]
[Table 2]
Figure 2004307949
[0045]
In Table 2, the mixed powder of # 11 to # 14, # 16, and # 17 is a mixed powder obtained by mixing a first hydrogen storage alloy and a second hydrogen storage alloy. On the other hand, the mixed powder of # 15 is a mixed powder obtained by mixing the first hydrogen storage alloys. As shown in Table 2, the dead hydrogen content of the mixed powder of # 15 is as small as 0.2 wt%. Then, with the mixed powder of # 15, the progress of the oxidation reaction was observed in the atmosphere. On the other hand, in all of the mixed powders other than # 15, the dead hydrogen amount is 0.5 wt% or more. Further, as can be seen from the mixed powders of # 11 to # 13, the content ratio of the second hydrogen storage alloy was increased, and the amount of dead hydrogen was also increased. In the mixed powders of # 11 to # 14, # 16, and # 17, the oxidation reaction hardly proceeded. From these results, it was confirmed that the mixed powder containing the first hydrogen storage alloy and the second hydrogen storage alloy was hardly oxidized even when exposed to the atmosphere after hydrogen storage and release. Therefore, in the high-pressure hydrogen storage tank of the present invention including the first hydrogen storage alloy and the second hydrogen storage alloy, even when the stored hydrogen storage alloy is exposed to the atmosphere, the oxidation reaction of the hydrogen storage alloy is performed. Is suppressed.
[0046]
【The invention's effect】
The high-pressure hydrogen storage tank of the present invention includes, as contained hydrogen storage alloys, a highly active Ti-Mn-based first hydrogen storage alloy and a second hydrogen storage alloy having a large dead hydrogen amount. Since the second hydrogen storage alloy is included, even when the stored hydrogen storage alloy is exposed to the atmosphere, the oxidation reaction of the highly active Ti—Mn-based alloy is suppressed. Further, both the first hydrogen storage alloy and the second hydrogen storage alloy have a high dissociation pressure. Therefore, both alloys have a large hydrogen storage capacity under high pressure. Therefore, the high-pressure hydrogen storage tank of the present invention can store a large amount of hydrogen under high pressure.
[Brief description of the drawings]
FIG. 1 shows a permeation diagram of a high-pressure hydrogen storage tank of the present embodiment.
FIG. 2 shows a filling state of pellets in a part of the honeycomb structure.
[Explanation of symbols]
1: High pressure hydrogen storage tank
2: tank
2a: First divided body 2b: Second divided body 21: Inlet 22: Outlet
3a: pellet (first hydrogen storage alloy + second hydrogen storage alloy)
3b: pellet (first hydrogen storage alloy)
4: Honeycomb structure
4a: honeycomb tube (outside) 4b: honeycomb tube (inside)

Claims (8)

タンクと、該タンクに収容された水素吸蔵合金とを備える高圧水素貯蔵タンクであって、
前記水素吸蔵合金は、
高解離圧であってラーベス相からなるTi−Mn系の第一水素吸蔵合金と、
高解離圧であってラーベス相あるいはBCC構造からなり、常温、0.1MPaにおける死蔵水素量が0.6wt%以上である第二水素吸蔵合金と、
を含む高圧水素貯蔵タンク。
A high-pressure hydrogen storage tank comprising a tank and a hydrogen storage alloy stored in the tank,
The hydrogen storage alloy,
A Ti-Mn-based first hydrogen storage alloy having a high dissociation pressure and a Laves phase,
A second hydrogen storage alloy having a high dissociation pressure, having a Laves phase or a BCC structure, and having a dead hydrogen amount of 0.6 wt% or more at room temperature and 0.1 MPa;
Including high pressure hydrogen storage tank.
前記第二水素吸蔵合金の含有割合は、該第二水素吸蔵合金と前記第一水素吸蔵合金との合計質量を100wt%とした場合に、10wt%以上50wt%以下である請求項1に記載の高圧水素貯蔵タンク。2. The content ratio of the second hydrogen storage alloy according to claim 1, wherein the total mass of the second hydrogen storage alloy and the first hydrogen storage alloy is 100 wt% or more and 50 wt% or less. 3. High pressure hydrogen storage tank. 前記水素吸蔵合金全体の、常温、0.1MPaにおける死蔵水素量は、該水素吸蔵合金全体の質量を100wt%とした場合の0.5wt%以上である請求項1に記載の高圧水素貯蔵タンク。The high-pressure hydrogen storage tank according to claim 1, wherein the dead hydrogen amount of the whole hydrogen storage alloy at room temperature and 0.1 MPa is 0.5 wt% or more when the mass of the whole hydrogen storage alloy is 100 wt%. 前記第二水素吸蔵合金は、少なくとも前記タンクの側壁内周面近傍に配置されている請求項1に記載の高圧水素貯蔵タンク。2. The high-pressure hydrogen storage tank according to claim 1, wherein the second hydrogen storage alloy is arranged at least near an inner peripheral surface of a side wall of the tank. 3. 前記第一水素吸蔵合金と前記第二水素吸蔵合金との混合粉末から成形された成形体、および該第一水素吸蔵合金の粒子と該第二水素吸蔵合金の粒子とが複合化された複合化粒子のうち少なくとも一方が、前記タンクの側壁内周面近傍に配置された請求項1に記載の高圧水素貯蔵タンク。A compact formed from a mixed powder of the first hydrogen storage alloy and the second hydrogen storage alloy; and a composite in which particles of the first hydrogen storage alloy and particles of the second hydrogen storage alloy are composited. The high-pressure hydrogen storage tank according to claim 1, wherein at least one of the particles is disposed near an inner peripheral surface of a side wall of the tank. 前記第一水素吸蔵合金は、Ti−Cr−Mn系合金である請求項1に記載の高圧水素貯蔵タンク。The high-pressure hydrogen storage tank according to claim 1, wherein the first hydrogen storage alloy is a Ti-Cr-Mn-based alloy. 前記第一水素吸蔵合金は、組成式TiCr2−yMn(1.0<x<1.2、1.0<y<1.4)で表される合金である請求項1に記載の高圧水素貯蔵タンク。The first hydrogen-absorbing alloy, to claim 1 which is an alloy represented by a composition formula Ti x Cr 2-y Mn y (1.0 <x <1.2,1.0 <y <1.4) A high-pressure hydrogen storage tank as described. さらに炭素系水素吸蔵材料を含む請求項1に記載の高圧水素貯蔵タンク。The high-pressure hydrogen storage tank according to claim 1, further comprising a carbon-based hydrogen storage material.
JP2003104156A 2003-04-08 2003-04-08 High pressure hydrogen storage tank Expired - Fee Related JP4128479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104156A JP4128479B2 (en) 2003-04-08 2003-04-08 High pressure hydrogen storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104156A JP4128479B2 (en) 2003-04-08 2003-04-08 High pressure hydrogen storage tank

Publications (2)

Publication Number Publication Date
JP2004307949A true JP2004307949A (en) 2004-11-04
JP4128479B2 JP4128479B2 (en) 2008-07-30

Family

ID=33467064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104156A Expired - Fee Related JP4128479B2 (en) 2003-04-08 2003-04-08 High pressure hydrogen storage tank

Country Status (1)

Country Link
JP (1) JP4128479B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889103A1 (en) * 2020-04-01 2021-10-06 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Hydrogen storage container
DE102020116457A1 (en) 2020-06-23 2021-12-23 Audi Aktiengesellschaft Gas pressure accumulator, fuel cell device and fuel cell vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889103A1 (en) * 2020-04-01 2021-10-06 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Hydrogen storage container
DE102020116457A1 (en) 2020-06-23 2021-12-23 Audi Aktiengesellschaft Gas pressure accumulator, fuel cell device and fuel cell vehicle

Also Published As

Publication number Publication date
JP4128479B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
KR100476631B1 (en) High storage capacity alloys enabling a hydrogen-based ecosystem
AU2009334709B2 (en) Adiabatic tank for metal hydride
JP5529752B2 (en) Hydrogen storage tank
JP2005518514A (en) Feather-type heat conduction device
JP2004108570A (en) Hydrogen storage container
US6627340B1 (en) Fuel cell hydrogen supply systems using secondary fuel to release stored hydrogen
US6491866B1 (en) High storage capacity, fast kinetics, long cycle-life, hydrogen storage alloys
JP4128479B2 (en) High pressure hydrogen storage tank
US6726783B1 (en) High storage capacity alloys having excellent kinetics and a long cycle life
JP2007069184A (en) Hydrogen adsorbing material for adsorbing/desorbing hydrogen at low temperature and low-temperature hydrogen storage vessel
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
JP2004026623A (en) Composite material for hydrogen absorption, its using method and manufacturing method, and hydrogen absorbing material and its using method
JP2005186058A (en) Magnesium-based hydrogen occluding material and lithium-based hydrogen occluding material
TWI825865B (en) Non-pyrophoric hydrogen storage alloys and hydrogen storage systems using the alloys
JP2007309457A (en) Hydrogen storage tank
JP2004011003A (en) Hydrogen storage material and hydrogen storage vessel using the same
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JP2003172499A (en) Hydrogen storage device
JP2007229588A (en) Hydrogen storage material, its manufacturing method, hydrogen absorber, hydrogen storage apparatus and fuel cell-powered vehicle
JP2007000856A (en) Hydrogen storage material, its producing method, hydrogen storage body, hydrogen storage apparatus and fuel cell-powered car
JP2009018292A (en) Hydrogen storage material and method for manufacturing the same
TW202409308A (en) Non-pyrophoric hydrogen storage alloys and hydrogen storage systems using the alloys
JP4322647B2 (en) Hydrogen storage complex and method for producing the same
JP2004360037A (en) Hydrogen storage alloy, and hydrogen storage material
JPH11181536A (en) Composition for hydrogen storage material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees