JP2007229588A - Hydrogen storage material, its manufacturing method, hydrogen absorber, hydrogen storage apparatus and fuel cell-powered vehicle - Google Patents
Hydrogen storage material, its manufacturing method, hydrogen absorber, hydrogen storage apparatus and fuel cell-powered vehicle Download PDFInfo
- Publication number
- JP2007229588A JP2007229588A JP2006053013A JP2006053013A JP2007229588A JP 2007229588 A JP2007229588 A JP 2007229588A JP 2006053013 A JP2006053013 A JP 2006053013A JP 2006053013 A JP2006053013 A JP 2006053013A JP 2007229588 A JP2007229588 A JP 2007229588A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- inorganic material
- hydrogen
- storage material
- inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
この発明は、水素貯蔵材料、水素貯蔵材料の製造方法、水素吸蔵体、水素貯蔵装置及び燃料電池車両に関する。 The present invention relates to a hydrogen storage material, a method for producing the hydrogen storage material, a hydrogen storage body, a hydrogen storage device, and a fuel cell vehicle.
近年、燃料電池車両に搭載するための固体高分子型燃料電池の開発競争が活発に繰り広げられている。このような燃料電池車両の実用化のために、低コスト、軽量で、かつ吸蔵密度の高い水素貯蔵材料を用いる効率的な水素吸蔵方法の開発が望まれている。特に近年、100[℃]以上の高温に加熱することにより水素を放出又は吸収することが可能な加熱水素放出型の水素貯蔵材料の利用に関する研究が注目を集めている。加熱水素放出型の水素貯蔵材料としては、錯イオンである4水素化アルミニウムイオン(AlH4−)とアルカリ金属との塩であるアラネート系材料(特許文献1及び2参照)、金属アミドと金属水素化物を反応させて水素を放出させるアミド系材料(特許文献3及び4参照)が知られている。
しかしながら、加熱水素放出型の水素貯蔵材料を使用する場合には、水素を放出させるために室温以上に加熱する必要があるが、この場合、短時間に材料を均一に加熱することが困難である。特に車載用の水素貯蔵材料として適用した場合、加熱に伴う水素放出量の追随が著しく困難であり、車両加速時に十分な水素を供給することができなくなるという課題がある。 However, in the case of using a heated hydrogen-releasing hydrogen storage material, it is necessary to heat to room temperature or higher in order to release hydrogen. In this case, it is difficult to uniformly heat the material in a short time. . In particular, when applied as an in-vehicle hydrogen storage material, it is extremely difficult to follow the amount of hydrogen released by heating, and there is a problem that sufficient hydrogen cannot be supplied during vehicle acceleration.
さらに、加熱水素放出型の材料は、水素吸放出時に室温以上の温度を必要とする特性のため、繰り返し使用すると材料粒子のシンタリングが発生して材料表面積の低下を招く。このような材料表面積の低下は水素吸放出能及び水素吸放出速度を著しく低下させ、車両適用時には水素吸放出に対する耐久性の低下及び水素放出速度の低下を引き起こすという課題がある。 Furthermore, since the heated hydrogen release type material requires a temperature higher than room temperature when hydrogen is absorbed and released, repeated use of the material causes sintering of the material particles, leading to a reduction in the surface area of the material. Such a decrease in the surface area of the material significantly reduces the hydrogen absorption / release capability and the rate of hydrogen absorption / release, and there is a problem that when applied to a vehicle, the durability against hydrogen absorption / release is reduced and the hydrogen release rate is reduced.
本発明は上記課題を解決するためになされたものであり、本発明に係る水素貯蔵材料は、室温以上に加熱されて水素を放出する粒子状の第1の無機材料と、この第1の無機材料よりも熱伝導性が高い線状の第2の無機材料との混合組成物を含むことを特徴とする。 The present invention has been made to solve the above problems, and a hydrogen storage material according to the present invention includes a particulate first inorganic material that is heated to room temperature or higher to release hydrogen, and the first inorganic material. It contains a mixed composition with a linear second inorganic material having higher thermal conductivity than the material.
本発明に係る水素貯蔵材料の製造方法は、室温以上に加熱して水素を放出する粒子状の第1の無機材料を調製し、第1の無機材料よりも熱伝導性が高い線状の第2の無機材料を調製し、第1の無機材料と第2の無機材料との混合物を得ることを特徴とする。 In the method for producing a hydrogen storage material according to the present invention, a particulate first inorganic material that releases hydrogen by heating to room temperature or higher is prepared, and a linear first material having higher thermal conductivity than the first inorganic material is prepared. The second inorganic material is prepared, and a mixture of the first inorganic material and the second inorganic material is obtained.
本発明に係る水素貯蔵体は、本発明に係る水素貯蔵材料を含むことを特徴とする。 The hydrogen storage body according to the present invention includes the hydrogen storage material according to the present invention.
本発明に係る水素貯蔵装置は、本発明に係る水素吸蔵体を備えることを特徴とする。 The hydrogen storage device according to the present invention includes the hydrogen storage body according to the present invention.
本発明に係る燃料電池車両は、本発明に係る水素貯蔵装置を搭載することを特徴とする。 A fuel cell vehicle according to the present invention is equipped with the hydrogen storage device according to the present invention.
本発明によれば、加熱に伴う水素放出速度の応答性が高く、繰返し性能が向上した水素貯蔵材料が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the hydrogen storage material with the high responsiveness of the hydrogen release rate accompanying a heating and the improvement in repetition performance is obtained.
本発明によれば、加熱に伴う水素放出速度の応答性が高く、繰返し性能が向上した水素吸蔵能材料を簡便な手法で確実に製造することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture reliably the hydrogen occlusion material with the high responsiveness of the hydrogen discharge | release rate accompanying heating, and the improvement in repetition performance with a simple method.
本発明によれば、加熱に伴う水素放出速度の応答性が高く、繰返し性能が高い水素吸蔵体及び水素貯蔵装置を実現することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to implement | achieve the hydrogen occlusion body and the hydrogen storage apparatus with high responsiveness of the hydrogen discharge | release speed | rate accompanying heating, and high repetition performance.
本発明によれば、加速性能に優れ、長期に渡り使用可能な燃料電池車両が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the fuel cell vehicle which is excellent in acceleration performance and can be used for a long term is obtained.
以下、本発明の最良の実施の形態に係る水素貯蔵材料、水素貯蔵材料の製造方法、水素吸蔵体、水素貯蔵装置及び燃料電池車両を添付図面に基づいて説明する。同じ部材又は要素は同じ参照符号で示し、説明を省略する。 Hereinafter, a hydrogen storage material, a method for producing a hydrogen storage material, a hydrogen storage body, a hydrogen storage device, and a fuel cell vehicle according to the best embodiment of the present invention will be described with reference to the accompanying drawings. The same members or elements are denoted by the same reference numerals, and description thereof is omitted.
まず、図1〜図5を参照して、本発明の実施の形態に係る水素貯蔵材料、水素吸蔵体及び水素貯蔵装置の説明を行う。 First, with reference to FIGS. 1-5, the hydrogen storage material, hydrogen storage body, and hydrogen storage apparatus which concern on embodiment of this invention are demonstrated.
図1は本発明の実施の形態に係る車載用の水素吸蔵体2及び水素貯蔵装置3を示す断面図、図2は本発明の実施の形態に係る水素貯蔵材料1の模式図、図3は本発明の実施の形態に係る水素貯蔵材料11の模式図、図4は本発明の実施の形態に係る水素貯蔵材料21の模式図、図5は本発明の実施の形態に係る水素貯蔵材料31の模式図である。
FIG. 1 is a sectional view showing an in-vehicle hydrogen storage body 2 and a
本発明の実施の形態に係る水素貯蔵材料1は、加圧成型により固形化又は薄膜化して水素吸蔵体2として利用される。水素吸蔵体2は、図1に示す水素流出口4と、水素流出口4から挿入された発熱体5を備えた耐圧容器6内部に封入され、車載用の水素貯蔵装置2として利用できる。発熱体5は、電気又は熱媒体によって加熱されるものであり、耐圧容器6の外部に配置した図示しない熱源に接続されており、水素貯蔵材料1を加熱する。発熱体5は抵抗発熱体であってもよく、この場合には、耐圧容器6の外部に配置した図示しない電源に接続されている。この発熱体は、熱伝性能を高めるため、フィンなどを付加したものであっても良く、または表面に凹凸をつけた形状であっても良い。 The hydrogen storage material 1 according to the embodiment of the present invention is solidified or thinned by pressure molding and used as the hydrogen storage body 2. The hydrogen occlusion body 2 is enclosed in a pressure-resistant container 6 having a hydrogen outlet 4 shown in FIG. 1 and a heating element 5 inserted from the hydrogen outlet 4, and can be used as an in-vehicle hydrogen storage device 2. The heating element 5 is heated by electricity or a heat medium, and is connected to a heat source (not shown) disposed outside the pressure vessel 6 to heat the hydrogen storage material 1. The heating element 5 may be a resistance heating element. In this case, the heating element 5 is connected to a power source (not shown) arranged outside the pressure vessel 6. This heating element may be provided with fins or the like in order to improve the heat transfer performance, or may have a shape with irregularities on the surface.
このような水素貯蔵装置3は、車両に搭載して燃料電池システム又は水素エンジンシステムに組み込んで用いることができる。耐圧容器6の形状は単純な閉空間を有する形状の他に、内部にリブや柱を設けたものであっても良い。また、耐圧容器6の素材は、アルミニウム、ステンレス及びカーボン構造材料等、水素の吸蔵放出に耐え得る強度と化学的安定性を有する素材の中から選び出すことが好ましい。水素貯蔵材料1の加圧成型は、耐圧容器6内に水素貯蔵材料1を充填する前に行っても良く、水素貯蔵材料1を充填しながら同時に行っても良い。
Such a
本発明の実施の形態に係る水素貯蔵材料1について詳細に説明する。本発明の実施の形態に係る水素貯蔵材料1は、図2に示すように、室温以上に加熱されて水素を放出する粒子状の無機材料7と、粒子状の無機材料7よりも熱伝導性が高い線状の無機材料8との混合組成物を含む。この水素貯蔵材料1は、水素吸蔵体2として耐圧容器6内部に封入され、一部が耐圧容器6内で電熱材5の壁面5aに接触し、電熱材5により加熱される。
The hydrogen storage material 1 which concerns on embodiment of this invention is demonstrated in detail. As shown in FIG. 2, the hydrogen storage material 1 according to the embodiment of the present invention has a particulate
粒子状の無機材料7は、アルカリ金属及びアルカリ土類金属元素から選ばれる金属と、水素とを含有するアルカリ金属アルミニウム水素化物を含むことが好ましい。また、アルカリ金属及びアルカリ土類金属元素から選ばれる金属と、水素と、ホウ素又は窒素のいずれかとを含有するアルカリ金属ホウ素水素化物又はアルカリ金属窒素水素化物であってもよい。さらに、アルカリ金属アルミニウム水素化物、アルカリ金属ホウ素水素化物及びアルカリ金属窒素水素化物から選択されるいずれか一つ以上を含有する混合組成物であっても良い。また、より好ましくは、3、4もしくは5族の遷移金属の化合物と、希土類化合物と水素吸蔵合金とを含む金属化合物群のいずれかの金属化合物が混合されていることが、高水素吸放出能、及び吸放出温度の低下の点で好ましい。
The particulate
線状の無機材料8は、粒子状の無機材料7と他の粒子状の無機材料7とを接続する。線状の無機材料8のうちの一部は、その一端8aが電熱材5の壁面5aに接触している。また、線状の無機材料8は粒子状の無機材料7よりも熱伝導性が高いため、線状の無機材料8は粒子状の無機材料7に電熱材5の熱を伝える媒体として作用し、粒子状の無機材料7表面近傍から粒子状の無機材料7内部への熱伝達を容易にする。このため、加熱による温度変化に対して応答性の高い水素貯蔵材料を実現できる。この効果を得るため、線状の無機材料8は少なくとも二つの粒子状の無機材料7と接触していることが好ましい。また、線状の無機材料8の熱伝導率は、十分な熱伝達速度と熱伝達量が得られるという理由より粒子状の無機材料7の熱伝導率の2倍以上であることが好ましい。
The linear inorganic material 8 connects the particulate
線状の無機材料8は、線状の無機材料8の長手方向に沿って共有結合、イオン結合もしくは金属結合を有していることが熱伝導性の点から好ましく、線状の無機材料8は主に炭素を含むことが好ましい。線状の無機材料8が主に炭素を含む場合、線状の無機材料8の熱伝導率が高いほど加熱温度変化に伴う水素放出速度の応答性が向上するため、線状の無機材料8は良好な結晶性を有し、sp2又はsp3結合を主体とする結合からなることが好ましい。例えば、線状の無機材料8としては、結晶性の高い単層カーボンナノチューブ又は多層カーボンナノチューブ等があげられる。これらの線状の無機材料8を添加する場合には、添加する量を増やすにつれて熱伝導性が向上するが、過剰に添加すると水素貯蔵材料全体としての貯蔵量の低下がみられる。このため、添加量は水素貯蔵材料全体の貯蔵量を考慮して調節することが好ましい。 The linear inorganic material 8 preferably has a covalent bond, an ionic bond or a metal bond along the longitudinal direction of the linear inorganic material 8 from the viewpoint of thermal conductivity. It preferably contains mainly carbon. When the linear inorganic material 8 mainly contains carbon, the higher the thermal conductivity of the linear inorganic material 8 is, the higher the response of the hydrogen release rate with the change in heating temperature. It preferably has a good crystallinity and consists of a bond mainly composed of sp 2 or sp 3 bonds. For example, examples of the linear inorganic material 8 include single-walled carbon nanotubes or multi-walled carbon nanotubes with high crystallinity. When these linear inorganic materials 8 are added, the thermal conductivity is improved as the amount added is increased, but when the amount is excessively added, the storage amount of the entire hydrogen storage material is reduced. For this reason, it is preferable to adjust the addition amount in consideration of the storage amount of the entire hydrogen storage material.
線状の無機材料8は、主として物理吸着あるいは化学吸着により水素を貯蔵可能なことが好ましい。これにより、線状の無機材料8が熱伝導媒体として働く他に水素を貯蔵する役割を有し、さらに水素貯蔵材料1全体の水素貯蔵能の低下を抑制すると共に熱伝導性が高く、加熱に伴う水素放出速度の応答性が高い水素貯蔵材料が得られる。このとき、線状の無機材料8そのものが発熱あるいは吸熱することを避けるために、線状の無機材料8が水素を吸放出するのに必要な発熱もしくは吸熱量が小さいことが望ましい。 It is preferable that the linear inorganic material 8 can store hydrogen mainly by physical adsorption or chemical adsorption. As a result, the linear inorganic material 8 has a role of storing hydrogen in addition to functioning as a heat conduction medium, and further suppresses a decrease in the hydrogen storage capacity of the entire hydrogen storage material 1 and has high thermal conductivity for heating. A hydrogen storage material having high responsiveness of the hydrogen release rate is obtained. At this time, in order to avoid that the linear inorganic material 8 itself generates heat or absorbs heat, it is desirable that the linear inorganic material 8 has a small amount of heat generation or heat absorption necessary for absorbing and releasing hydrogen.
線状の無機材料8は、水素雰囲気下において、室温〜400[℃]の温度で安定なことが必要である。これにより、室温より高い温度に加熱しても粒子状の無機材料7と線状の無機材料8が互いに反応を起こさないため、繰り返し水素の吸放出が可能となる。
The linear inorganic material 8 needs to be stable at a temperature of room temperature to 400 [° C.] in a hydrogen atmosphere. Thereby, even if it heats to temperature higher than room temperature, since the particulate
また、粒子状の無機材料7の表面近傍から粒子状の無機材料7内部への熱伝達を容易にするために、線状の無機材料8の少なくとも一方向での長さが粒子状の無機材料7の平均粒子直径よりも大きいことが好ましい。線状の無機材料8の余弦成分、つまり、直射での射影長さを線状の無機材料8の長さとし、その平均長さをdt、軸線と直交する平面の余弦成分を半径と、その平均半径をrtとする。この場合において、線状の無機材料8の平均半径に対する長さの比はdt/rtと表すことができる。また、粒子状の無機材料7の平均粒子半径をrとした場合、線状の無機材料8が隣接する粒子状の無機材料7の粒子間を締結して粒子間の熱伝導を促進するためには、dt≧rであることが必要となる。
Further, in order to facilitate heat transfer from the vicinity of the surface of the particulate
線状の無機材料8が粒子状の無機材料7と接触し、水素貯蔵材料1全体が良好な熱伝導性を有するためには、水素貯蔵材料1は、粒子状の無機材料7が2粒子に対して線状の無機材料8を1粒子以上含有していることが好ましい。より好ましくは、粒子状の無機材料7が1粒子に対して線状の無機材料8が12粒子以上の割合で含まれていることが、充分な熱伝導を生じさせるために望ましい。つまり、線状の無機材料8が粒子状の無機材料7に対して12・π・rt 2・dt・μt/((4/3)・π・r3・μMH)以上、すなわち(9rt 2・dt/r3)・(μt/μMH)以上の質量比率で混入されることが好ましい。ここで、μtとμMHはそれぞれ線状の無機材料8と粒子状の無機材料7の材料密度を示す。例えば、r=30[μm]、rt=1[μm]、μt=0.5[g/cm3]、μMH=1.0[g/cm3]の場合には、粒子状の無機材料7に対して約0.5[wt%]以上の質量比率で混合されていることが好ましい。
In order for the linear inorganic material 8 to come into contact with the particulate
なお、粒子状の無機材料を水素貯蔵材料として単独で用いた場合には、粒子状の無機材料の水素貯蔵反応が比較的高温で行われるため粒子状の無機材料7が凝集(シンタリング)する。このため、水素貯蔵能が低下し、繰り返し使用に耐えない。これに対し、本発明の実施の形態に係る水素貯蔵材料1では、粒子状の無機材料7と線状の無機材料8との混合組成物からなるため、線状の無機材料8が粒子状の無機材料7の凝集を抑制する。このため、水素貯蔵材料1の繰返し性能が向上する。
When the particulate inorganic material is used alone as the hydrogen storage material, the particulate
線状の無機材料は、水素貯蔵材料の表面からの熱を効率的に水素貯蔵材料内部に伝達するためのものであり、図2に示した線状の無機材料8に限らず1次元多様体状の無機材料であれば他の形状でもよい。例えば図3に示す水素貯蔵材料11のように、無機材料18は発熱体5の壁面5aに接触した一端18aから樹状に枝分かれした樹状形状であってもよい。また、図3に示す水素貯蔵材料21のように、一端28aが発熱体5の壁面5aに接触した二次元もしくは三次元の網状のネットワークであってもよく、図5に示す水素貯蔵材料31のように、無機材料38の一端38aが発熱体5の壁面5aに接触したらせん状の形状を有しているものでもよい。
The linear inorganic material is for efficiently transferring heat from the surface of the hydrogen storage material to the inside of the hydrogen storage material, and is not limited to the linear inorganic material 8 shown in FIG. Other shapes may be used as long as the shape is an inorganic material. For example, like the
このように本発明の実施の形態に係る水素貯蔵材料は、室温以上に加熱されて水素を放出する粒子状の無機材料と、粒子状の無機材料よりも熱伝導性が高い線状の無機材料との混合組成物を含むことにより、加熱に伴う水素放出速度の応答性が高く、繰返し性能が向上した水素貯蔵材料が得られる。 As described above, the hydrogen storage material according to the embodiment of the present invention includes a particulate inorganic material that is heated to room temperature or more to release hydrogen, and a linear inorganic material that has higher thermal conductivity than the particulate inorganic material. The hydrogen storage material with high responsiveness of the hydrogen release rate accompanying heating and improved repeatability can be obtained.
また、本発明の実施の形態に係る水素吸蔵体は、水素貯蔵材料内部まで熱伝達が容易であり、加熱に伴う水素放出速度の応答性が高く、繰返し性能が向上した水素貯蔵材料を使用しているため、熱交換器もしくはヒータへの熱付与に伴う応答性が高く、繰返し性能が高い水素吸蔵体が得られる。また、この水素吸蔵体を備えるため、本発明の実施の形態に係る水素貯蔵装置は、熱交換器もしくはヒータへの熱付与に伴う応答性が高く、繰返し性能が高い水素貯蔵装置を実現することが可能となる。 Further, the hydrogen storage body according to the embodiment of the present invention uses a hydrogen storage material that is easy to transfer heat to the inside of the hydrogen storage material, has a high responsiveness of the hydrogen release rate accompanying heating, and has improved repeatability. Therefore, a hydrogen occlusion body having high responsiveness with heat application to the heat exchanger or the heater and high repeatability can be obtained. In addition, since the hydrogen storage device includes the hydrogen storage device, the hydrogen storage device according to the embodiment of the present invention realizes a hydrogen storage device that has high responsiveness with heat application to the heat exchanger or the heater and high repetition performance. Is possible.
次に、本発明の実施の形態に係る水素貯蔵材料の製造方法について説明する。この水素貯蔵材料の製造方法は、室温以上に加熱して水素を放出する粒子状の無機材料を調製し、粒子状の無機材料よりも熱伝導性が高い線状の無機材料を調製し、粒子状の無機材料と線状の無機材料との混合物を得ることを特徴とする。この水素貯蔵材料の製造方法により、室温以上に加熱されて水素を放出する粒子状の無機材料と、粒子状の無機材料よりも熱伝導性が高い線状の無機材料との混合組成物を含む水素貯蔵材料を、簡便な手法で確実に製造することが可能となる。 Next, the manufacturing method of the hydrogen storage material which concerns on embodiment of this invention is demonstrated. This method for producing a hydrogen storage material is prepared by preparing a particulate inorganic material that releases hydrogen when heated to room temperature or higher, preparing a linear inorganic material having higher thermal conductivity than the particulate inorganic material, A mixture of a linear inorganic material and a linear inorganic material is obtained. This method for producing a hydrogen storage material includes a mixed composition of a particulate inorganic material that releases hydrogen when heated to room temperature or higher and a linear inorganic material that has higher thermal conductivity than the particulate inorganic material. It becomes possible to reliably manufacture the hydrogen storage material by a simple method.
混合物を得る場合には、2種以上の粒子状の無機材料と線状の無機材料とを同時に物理混合することが好ましい。この物理混合は、粉砕メディアによるボールミリングを含み、急激な反応を防止するために、ボールミリングは不活性雰囲気下又は水素雰囲気下で行われることが好ましい。 When obtaining a mixture, it is preferable to physically mix two or more kinds of particulate inorganic materials and linear inorganic materials simultaneously. This physical mixing includes ball milling with a grinding medium, and ball milling is preferably performed in an inert atmosphere or a hydrogen atmosphere in order to prevent a rapid reaction.
このように、本発明の実施の形態に係る水素吸蔵材料の製造方法よれば、室温以上に加熱されて水素を放出する粒子状の無機材料と、粒子状の無機材料よりも熱伝導性が高い線状の無機材料との混合組成物を含むことにより、加熱に伴う水素放出速度の応答性が高く、繰返し性能が向上した水素貯蔵材料を、簡便な手法で確実に製造することが可能となる。 As described above, according to the method for producing a hydrogen storage material according to the embodiment of the present invention, the particulate inorganic material that is heated to room temperature or more to release hydrogen and the thermal conductivity is higher than that of the particulate inorganic material. By including a mixed composition with a linear inorganic material, it is possible to reliably produce a hydrogen storage material with high responsiveness of the hydrogen release rate upon heating and improved repeatability by a simple method. .
次に、本発明の実施の形態に係る燃料電池車両について説明する。図6に、本発明の実施の形態に係る水素貯蔵装置3を搭載する燃料電池車両40を示す。このとき、燃料電池車両40に設置搭載する水素貯蔵装置3は一つ又は二つ以上に分割しても良く、複数の水素貯蔵装置の形状はそれぞれ異なったものでも良い。また、エンジンルームやトランクルーム内部、あるいはシート下のフロア部等の車室内部の他に、ルーフ上部等の車室外に水素貯蔵装置3を設置することも可能である。
Next, a fuel cell vehicle according to an embodiment of the present invention will be described. FIG. 6 shows a fuel cell vehicle 40 equipped with the
本実施の形態の係る燃料電池車両では、熱交換器もしくはヒータへの熱付与に伴う応答性が高く、繰返し性能が高い水素貯蔵装置を搭載しているため、加速時に水素を迅速に発生させることが可能となり、車両加速に必要な水素を十分に燃料電池に供給することが可能となり、加速性能に優れ、長期に渡り使用可能な燃料電池車両が得られる。 The fuel cell vehicle according to the present embodiment is equipped with a hydrogen storage device that is highly responsive to heat application to the heat exchanger or heater and has high repeatability, so that hydrogen can be generated quickly during acceleration. This makes it possible to sufficiently supply the hydrogen necessary for vehicle acceleration to the fuel cell, thereby obtaining a fuel cell vehicle that has excellent acceleration performance and can be used for a long time.
以下、実施例1〜実施例6及び比較例1〜比較例2により本発明について更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。実施例1〜実施例6及び比較例1〜比較例2では、高熱伝導性を有する線状の無機材料の添加比率を変えたものである。 Hereinafter, the present invention will be described more specifically with reference to Examples 1 to 6 and Comparative Examples 1 to 2, but the scope of the present invention is not limited thereto. In Examples 1 to 6 and Comparative Examples 1 to 2, the addition ratio of the linear inorganic material having high thermal conductivity is changed.
1.試料の調製
実施例1
粒子状の無機材料としてNaAlH4を用いた。Ar雰囲気下、エーテル溶液中に塩化チタンとNaAlH4を懸濁し、エーテルを除去した。Tiイオンの添加量は2[mol%]とした。得られたTi添加NaAlH4と線状の無機材料である単層カーボンナノチューブとを、Ar雰囲気下、メノウ乳鉢で物理混合した。単層カーボンナノチューブの添加量は3[wt%]とした。
1. Sample Preparation Example 1
NaAlH 4 was used as the particulate inorganic material. Under an Ar atmosphere, titanium chloride and NaAlH 4 were suspended in an ether solution to remove the ether. The addition amount of Ti ions was 2 [mol%]. The obtained Ti-added NaAlH 4 and single-walled carbon nanotubes, which are linear inorganic materials, were physically mixed in an agate mortar under an Ar atmosphere. The amount of single-walled carbon nanotube added was 3 [wt%].
実施例2
粒子状の無機材料としてNaAlH4を用いた。Ar雰囲気下、エーテル溶液中に塩化チタンとNaAlH4を懸濁し、エーテルを除去した。Tiイオンの添加量は2[mol%]とした。得られたTi添加NaAlH4と線状の無機材料である単層カーボンナノチューブを、Ar雰囲気下、メノウ乳鉢で物理混合した。単層カーボンナノチューブの添加量は5[wt%]とした。
Example 2
NaAlH 4 was used as the particulate inorganic material. Under an Ar atmosphere, titanium chloride and NaAlH 4 were suspended in an ether solution to remove the ether. The addition amount of Ti ions was 2 [mol%]. The obtained Ti-added NaAlH 4 and single-walled carbon nanotubes, which are linear inorganic materials, were physically mixed in an agate mortar under an Ar atmosphere. The addition amount of the single-walled carbon nanotube was 5 [wt%].
実施例3
粒子状の無機材料としてNaAlH4を用いた。Ar雰囲気下、エーテル溶液中に塩化チタンとNaAlH4を懸濁し、エーテルを除去した。Tiイオンの添加量は2[mol%]とした。得られたTi添加NaAlH4と線状の無機材料である単層カーボンナノチューブを、Ar雰囲気下、メノウ乳鉢で物理混合した。単層カーボンナノチューブの添加量は10[wt%]とした。
Example 3
NaAlH 4 was used as the particulate inorganic material. Under an Ar atmosphere, titanium chloride and NaAlH 4 were suspended in an ether solution to remove the ether. The addition amount of Ti ions was 2 [mol%]. The obtained Ti-added NaAlH 4 and single-walled carbon nanotubes, which are linear inorganic materials, were physically mixed in an agate mortar under an Ar atmosphere. The addition amount of the single-walled carbon nanotube was 10 [wt%].
実施例4
粒子状の無機材料としてLiNH2及びLiHを用いた。LiNH2とLiHの混合比が2:1になるように配合し、線状の無機材料である単層カーボンナノチューブを3[wt%]添加した後にボールミルにより5[時間]物理混合した。
Example 4
LiNH 2 and LiH were used as particulate inorganic materials. The mixture was mixed so that the mixing ratio of LiNH 2 and LiH was 2: 1, and single-walled carbon nanotubes, which are linear inorganic materials, were added by 3 [wt%] and then physically mixed by a ball mill for 5 [hours].
実施例5
粒子状の無機材料としてLiNH2及びLiHを用いた。LiNH2とLiHの混合比が2:1になるように配合し、線状の無機材料である単層カーボンナノチューブを5[wt%]添加した後にボールミルにより5[時間]物理混合した。
Example 5
LiNH 2 and LiH were used as particulate inorganic materials. The mixture was mixed so that the mixing ratio of LiNH 2 and LiH was 2: 1, and single-walled carbon nanotubes, which are linear inorganic materials, were added 5 wt%, and then physically mixed by a ball mill for 5 hours.
実施例6
粒子状の無機材料としてLiNH2及びLiHを用いた。LiNH2とLiHの混合比が2:1になるように配合し、線状の無機材料である単層カーボンナノチューブを10[wt%]添加した後にボールミルにより5[時間]物理混合した。
Example 6
LiNH 2 and LiH were used as particulate inorganic materials. The mixture was mixed so that the mixing ratio of LiNH 2 and LiH was 2: 1, and single-walled carbon nanotubes, which are linear inorganic materials, were added by 10 [wt%], and then physically mixed by a ball mill for 5 [hours].
比較例1
粒子状の無機材料としてNaAlH4を用いた。Ar雰囲気下、エーテル溶液中に塩化チタンとNaAlH4を懸濁し、エーテルを除去した。Tiイオンの添加量は2[mol%]とした。得られたTi添加NaAlH4を、Ar雰囲気下、メノウ乳鉢で物理粉砕した。
Comparative Example 1
NaAlH 4 was used as the particulate inorganic material. Under an Ar atmosphere, titanium chloride and NaAlH 4 were suspended in an ether solution to remove the ether. The addition amount of Ti ions was 2 [mol%]. The obtained Ti-added NaAlH 4 was physically pulverized in an agate mortar under an Ar atmosphere.
比較例2
粒子状の無機材料としてLiNH2及びLiHを用いた。LiNH2とLiHの混合比が2:1になるように配合しボールミルにより5[時間]物理混合を行なった。
Comparative Example 2
LiNH 2 and LiH were used as particulate inorganic materials. The mixture was mixed so that the mixing ratio of LiNH 2 and LiH was 2: 1, and physical mixing was performed by a ball mill for 5 hours.
2.水素貯蔵材料の水素貯蔵能測定
実施例1〜実施例6及び比較例1〜比較例2で得られた試料について、水素放出性能を測定した。始めに水素貯蔵材料に対して、PCT法(JIS H 7201)にて吸放出処理を行なった。水素放出反応は100[℃]、水素貯蔵反応は300[℃]とした。水素放出−貯蔵反応を1サイクルとして3サイクル繰り返した後に室温に保持し、示差熱重量法にて水素放出速度の測定を行なった。示差熱重量法はAr雰囲気中で行い、昇温速度は1[℃/min]〜50[℃/min]とし、最高温度300[℃]まで測定した。測定には、試料20[mg]を用いた。
2. Measurement of hydrogen storage capacity of hydrogen storage materials
Hydrogen release performance was measured for the samples obtained in Examples 1 to 6 and Comparative Examples 1 to 2. First, the hydrogen storage material was subjected to absorption / release treatment by the PCT method (JIS H 7201). The hydrogen releasing reaction was 100 [° C.], and the hydrogen storage reaction was 300 [° C.]. The hydrogen release-storage reaction was repeated for 3 cycles, and then kept at room temperature, and the hydrogen release rate was measured by differential thermogravimetry. The differential thermogravimetry was performed in an Ar atmosphere, and the rate of temperature increase was set to 1 [° C./min] to 50 [° C./min], and the maximum temperature was 300 [° C.]. Sample 20 [mg] was used for the measurement.
表1は、粒子状無機材料としてNaAlH4を用いた実施例1〜実施例3及び比較例1の昇温速度と、300[℃]到達時の水素放出能との関係を示したものである。
比較例1では昇温速度が増加するに伴い急速に水素放出量が低下する傾向にあるが、実施例1〜実施例3では昇温速度が増加した場合であっても水素放出量が急激に低下せず、水素放出能の低下が抑制されていることがわかった。また、線状の無機材料として添加した単層カーボンナノチューブの量が多い方が水素放出能の低下が抑制されていた。このことから、単層カーボンナノチューブが高い熱伝導性を有し、NaAlH4の熱伝達を容易にするため、水素貯蔵材料の加熱による温度変化に対して応答性が高くなったと考えられる。 In Comparative Example 1, the hydrogen release amount tends to decrease rapidly as the temperature increase rate increases, but in Examples 1 to 3, the hydrogen release amount increases rapidly even when the temperature increase rate increases. It was found that the decrease in hydrogen releasing ability was suppressed without decreasing. In addition, a decrease in hydrogen releasing ability was suppressed when the amount of single-walled carbon nanotubes added as a linear inorganic material was large. From this, it is considered that the single-walled carbon nanotube has high thermal conductivity and facilitates heat transfer of NaAlH 4 , so that the responsiveness to the temperature change due to heating of the hydrogen storage material is increased.
表2は、実施例4〜実施例6及び比較例2の昇温速度と300[℃]到達時の水素放出能との関係を示したものである。
粒子状の無機材料としてLiNH2及びLiHを用いた場合にも、粒子状の無機材料としてNaAlH4を用いたときと同様の結果が得られた。つまり、比較例2では昇温速度が増加するに伴い急速に水素放出量が低下する傾向にあるが、実施例4〜実施例6では昇温速度が増加した場合であっても水素放出量が急激に低下せず、水素放出能の低下が抑制されていることがわかった。また、線状の無機材料として添加した単層カーボンナノチューブの量が多い方が水素放出能の低下が抑制されていた。 Even when LiNH 2 and LiH were used as the particulate inorganic material, the same result as that obtained when NaAlH 4 was used as the particulate inorganic material was obtained. That is, in Comparative Example 2, the hydrogen release amount tends to decrease rapidly as the temperature increase rate increases, but in Examples 4 to 6, the hydrogen release amount is increased even when the temperature increase rate increases. It turned out that it did not fall rapidly and the fall of hydrogen releasing ability was suppressed. In addition, a decrease in hydrogen releasing ability was suppressed when the amount of single-walled carbon nanotubes added as a linear inorganic material was large.
以上の結果より、実施例1〜実施例6で得られた水素貯蔵材料は、水素放出の応答性能が向上したことがわかった。 From the above results, it was found that the hydrogen storage materials obtained in Examples 1 to 6 had improved hydrogen release response performance.
以上、本発明の実施の形態について説明したが、上記実施の形態の開示の一部をなす論述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。 Although the embodiment of the present invention has been described above, it should not be understood that the description and drawings that constitute part of the disclosure of the embodiment limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
1 水素貯蔵材料
7 粒子状の無機材料(第1の無機材料)
8 線状の無機材料(第2の無機材料)
1
8 Linear inorganic material (second inorganic material)
Claims (20)
前記第1の無機材料よりも熱伝導性が高い線状の第2の無機材料との混合組成物を含むことを特徴とする水素貯蔵材料。 A particulate first inorganic material that is heated above room temperature and releases hydrogen;
A hydrogen storage material comprising a mixed composition with a linear second inorganic material having higher thermal conductivity than the first inorganic material.
前記第1の無機材料よりも熱伝導性が高い線状の第2の無機材料を調製し、
前記第1の無機材料と前記第2の無機材料との混合物を得ることを特徴とする水素貯蔵材料の製造方法。 Preparing a particulate first inorganic material that releases hydrogen by heating above room temperature;
Preparing a linear second inorganic material having higher thermal conductivity than the first inorganic material;
A method for producing a hydrogen storage material, wherein a mixture of the first inorganic material and the second inorganic material is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006053013A JP2007229588A (en) | 2006-02-28 | 2006-02-28 | Hydrogen storage material, its manufacturing method, hydrogen absorber, hydrogen storage apparatus and fuel cell-powered vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006053013A JP2007229588A (en) | 2006-02-28 | 2006-02-28 | Hydrogen storage material, its manufacturing method, hydrogen absorber, hydrogen storage apparatus and fuel cell-powered vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007229588A true JP2007229588A (en) | 2007-09-13 |
Family
ID=38550718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006053013A Pending JP2007229588A (en) | 2006-02-28 | 2006-02-28 | Hydrogen storage material, its manufacturing method, hydrogen absorber, hydrogen storage apparatus and fuel cell-powered vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007229588A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011255314A (en) * | 2010-06-09 | 2011-12-22 | Hiroshima Univ | Hydrogen storage material and method for producing the same |
JP2018147730A (en) * | 2017-03-06 | 2018-09-20 | 株式会社豊田中央研究所 | Fuel cell system |
-
2006
- 2006-02-28 JP JP2006053013A patent/JP2007229588A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011255314A (en) * | 2010-06-09 | 2011-12-22 | Hiroshima Univ | Hydrogen storage material and method for producing the same |
JP2018147730A (en) * | 2017-03-06 | 2018-09-20 | 株式会社豊田中央研究所 | Fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Luo et al. | Enhanced hydrogen storage/sensing of metal hydrides by nanomodification | |
Ren et al. | Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications | |
Ren et al. | Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review | |
Zhang et al. | Recent progress in magnesium hydride modified through catalysis and nanoconfinement | |
Ma et al. | Facile synthesis of carbon supported nano-Ni particles with superior catalytic effect on hydrogen storage kinetics of MgH2 | |
Khafidz et al. | The kinetics of lightweight solid-state hydrogen storage materials: A review | |
Wu et al. | Effects of carbon on hydrogen storage performances of hydrides | |
Luo et al. | Improved hydrogen storage of LiBH 4 and NH 3 BH 3 by catalysts | |
Huang et al. | Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride | |
Adelhelm et al. | The impact of carbon materials on the hydrogen storage properties of light metal hydrides | |
de Jongh et al. | Nanoconfined light metal hydrides for reversible hydrogen storage | |
JP5010791B2 (en) | Finely divided metal catalyst and method for producing the same | |
US20150191357A1 (en) | High-density and high-hardness graphene-based porous carbon material, method for making the same, and applications using the same | |
Liu et al. | A review on thermal properties improvement of phase change materials and its combination with solar thermal energy storage | |
Li et al. | Sodium alanate system for efficient hydrogen storage | |
Zhang et al. | Core-shell Ni3N@ Nitrogen-doped carbon: synthesis and application in MgH2 | |
Duan et al. | Novel core–shell structured MgH 2/AlH 3@ CNT nanocomposites with extremely high dehydriding–rehydriding properties derived from nanoconfinement | |
CA2631624A1 (en) | Carbon-based foam nanocomposite hydrogen storage material | |
JP2014080329A (en) | Hydrogen storage/release apparatus | |
CN105734323A (en) | Nanometer magnesium base reversible hydrogen storage composite material and preparation method thereof | |
CN1271733C (en) | Metal hydride bands and use thereof for storing hydrogen | |
Gao et al. | Enhanced reversibility of H 2 sorption in nanoconfined complex metal hydrides by alkali metal addition | |
Xia et al. | High-performance hydrogen storage nanoparticles inside hierarchical porous carbon nanofibers with stable cycling | |
CN110788329A (en) | Carbon-containing composite hydrogen storage alloy and preparation method thereof, composite solid hydrogen storage tank and hydrogen storage performance testing method | |
JP2007229588A (en) | Hydrogen storage material, its manufacturing method, hydrogen absorber, hydrogen storage apparatus and fuel cell-powered vehicle |