JP2004307919A - High-strength hot-rolled steel sheet superior in formability - Google Patents

High-strength hot-rolled steel sheet superior in formability Download PDF

Info

Publication number
JP2004307919A
JP2004307919A JP2003102002A JP2003102002A JP2004307919A JP 2004307919 A JP2004307919 A JP 2004307919A JP 2003102002 A JP2003102002 A JP 2003102002A JP 2003102002 A JP2003102002 A JP 2003102002A JP 2004307919 A JP2004307919 A JP 2004307919A
Authority
JP
Japan
Prior art keywords
less
excluding
steel sheet
precipitates
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003102002A
Other languages
Japanese (ja)
Other versions
JP4411005B2 (en
Inventor
Yoichi Mukai
陽一 向井
Tetsuo Toyoda
哲夫 十代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003102002A priority Critical patent/JP4411005B2/en
Publication of JP2004307919A publication Critical patent/JP2004307919A/en
Application granted granted Critical
Publication of JP4411005B2 publication Critical patent/JP4411005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-rolled steel sheet superior in formability, which has high strength and simultaneously shows superior elongation and formability for extension flange. <P>SOLUTION: The high-strength hot-rolled steel sheet superior in formability has a composition satisfying, by mass% (hereafter the same), 0.015-0.10% C, 2% or less Si (excluding 0%), 2% or less Mn (excluding 0%) and 0.08-0.2% Ti; and has a structure of granular bainitic ferrite, which contains precipitates with a circle-equivalent diameter of less than 0.03 μm, in an amount of 5×10<SP>6</SP>/mm<SP>2</SP>or more, and precipitates with a circle-equivalent diameter of 0.03 μm or more in an amount of 2×10<SP>6</SP>/mm<SP>2</SP>or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、卓越した伸びと伸びフランジ性を発揮する成形性に優れた高強度熱延鋼板に関するものであり、様々な産業分野の鋼部材に使用できるが、特にその優れた成形性を活かして自動車部品、例えばメンバー類やアーム類などの足周り部品やシャーシなどの材料として有効に活用できる。
【0002】
【従来の技術】
近年、自動車や産業機械等の分野では部材軽量化の要望が強く、それに伴い高強度熱延鋼板の要望が増大している。特に、自動車用として使用される鋼板には、最終部品としての高強度が求められるとともに、複雑形状に容易に加工できる高い成形性が必要とされ、特に高レベルの伸びおよび伸びフランジ性(穴拡げ性)を発揮することが要求される。
【0003】
従来より高強度鋼板として、金属組織を複合組織とし、フェライト組織中にマルテンサイト組織を導入したDual Phase鋼板や、ベイナイト組織の導入されたフェライト−ベイナイト鋼板が一般に知られている。また近年では、その組織中に残留オーステナイトを導入することによって、伸びを高める方法も提案されている。
【0004】
伸びフランジ性向上の観点からは、組織において母相と強度の異なる第2相(ベイナイトやマルテンサイト)を存在させないことや、加工成形中に亀裂発生の起点となる介在物を極力存在させないことが好ましい。しかし、上記フェライト−ベイナイト複合組織は、低強度のポリゴナルフェライトと比較的強度の高いベイナイトといった強度の異なる2相が混在するものであり、優れた伸びフランジ性を期待できない。また、上記複合組織で高強度化を図るべくベイナイト相を硬質化すると、該ベイナイト相中に存在する介在物が亀裂発生の起点となり易く、結果として伸びフランジ性を高めることができない。
【0005】
伸びフランジ性を改善するその他の技術として、特許文献1には、成分組成を規定するとともに、組織をベイニティック・フェライト組織、またはフェライトとベイニティック・フェライト組織からなる組織とすることが提案されている。
【0006】
前記ベイニティック・フェライト組織は、ベイナイト組織が転位密度の高いラス状組織を持った下部組織を有するものであり、該組織中に介在物が存在する場合でも、前記フェライト−ベイナイト鋼(ベイニティック・フェライト組織と強度が同程度のもの)のベイナイト相中に介在物が存在する場合より亀裂が生じ難い。従って、前記フェライト−ベイナイト鋼より伸びフランジ性を幾分高めることが可能である。
【0007】
また特許文献2には、組織をアシキュラー・フェライトとし、かつ微細なTiCやNbCを析出させる方法が提案されている。
【0008】
これらの技術では、強度と伸びフランジ性の両特性について一応の改善効果が得られている。しかし伸びについては、引張強度800MPaレベルの鋼板で約18%程度までが限界であり、今後の需要者の要望を満足させるには、伸びおよび伸びフランジ性がともに良好で、一段と優れた成形性を発揮し得る高強度熱延鋼板を開発する必要がある。
【0009】
【特許文献1】
特開平6−172924号公報 (第1頁)
【特許文献2】
特開平7−11382号公報 (第1頁)
【0010】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、優れた伸びおよび伸びフランジ性を発揮する成形性に優れた高強度熱延鋼板を提供することにある。
【0011】
【課題を解決するための手段】
本発明に係る成形性に優れた高強度熱延鋼板とは、質量%で(以下同じ)、
C :0.015〜0.10%、
Si:2%以下(0%を含まない)、
Mn:2%以下(0%を含まない)、
Ti:0.08〜0.2%
を満たし、組織がグラニュラー・ベイニティック・フェライトであり、かつ
円相当直径0.03μm未満の析出物が5×10個/mm以上で、
円相当直径0.03μm以上の析出物が2×10個/mm以下であるところに特徴を有する。本発明の高強度熱延鋼板は、更に他の元素として、
Nb:0.1%以下(0%を含まない)、
Cu:0.3%以下(0%を含まない)、
Ni:0.3%以下(0%を含まない)、
Cr:1%以下(0%を含まない)、
Mo:1%以下(0%を含まない)
B :0.003%以下(0%を含まない)の1種以上を含んでいてもよく、また更に他の元素として、
Ca:0.003%以下(0%を含まない)および/または
REM:0.1%以下(0%を含まない)
を含んでいてもよい。尚、本発明の鋼板は、組織が前記グラニュラー・ベイニティック・フェライトからなるものであるが、該組織中には、不可避的に生成することのある微量の他相が含まれていてもよい。
【0012】
【発明の実施の形態】
本発明者らは、前述した様な状況の下で様々な角度から検討を行った。その結果、ミクロ組織(以下、単に「組織」という)および化学成分を規定するとともに、特に析出物のサイズと個数を制御すれば、伸びフランジ性および伸びを共に高めて成形性に優れた高強度熱延鋼板が得られることを見出し、上記本発明に想到した。以下、本発明で析出物のサイズ・個数、組織および化学成分を規定した理由について詳述する。
【0013】
本発明は、鋼板の組織をグラニュラー・ベイニティック・フェライトの単相組織とすることを要件とする。上述の通り複合組織よりも単相組織とすることで、伸びおよび伸びフランジ性を飛躍的に向上できるからである。また組織をグラニュラー・ベイニティック・フェライトとしたのは、その他のベイニティック・フェライト等と比較して、母材強度も確保しつつ、優れた伸びを確保するのに大変有効だからである。
【0014】
尚、本発明のグラニュラー・ベイニティック・フェライト組織は、光学顕微鏡やSEM観察ではアシキュラー状を呈しており、明確な違いを判定するにはTEM観察による下部組織の同定が必要となる。
【0015】
グラニュラー・ベイニティック・フェライト組織は、ベイニティック・フェライト組織と比較して転位密度がやや低い下部組織を有している。またグラニュラー・ベイニティック・フェライト組織は、その内部に炭化物を有していない点で、ベイナイト組織とは明らかに異なり、転位密度がないか或いは極めて少ない下部組織を有するポリゴナルフェライト、または細かいサブグレイン等の下部組織を有する準ポリゴナルフェライト組織とも異なっている(日本鉄鋼協会 基礎研究会 発行 『鋼のベイナイト写真集−1』参照)。
【0016】
グラニュラー・ベイニティック・フェライト組織は、ベイニティック・フェライト組織に比べて転位密度がやや低いため、上述の通り伸びの向上には有効である。しかし800MPa以上の高強度を確実に達成するには、組織をグラニュラー・ベイニティック・フェライトとするだけでは十分でないことがわかった。そこで更に改良研究を進めた結果、グラニュラー・ベイニティック・フェライト組織の粒内または粒界に、析出物を特定量析出させることで、高レベルの伸びフランジ性と伸びを確保しつつ強度を飛躍的に高めることに成功した。
【0017】
即ち本発明では、上記組織の粒内または粒界に、円相当直径0.03μm未満の析出物を5×10個/mm以上存在させると共に、円相当直径0.03μm以上の析出物を2×10個/mm以下に抑えることを必須とする。
【0018】
前記円相当直径0.03μm未満の微細な析出物を、上記規定量存在させることによって、伸びや伸びフランジ性を低下させることなく析出硬化を十分に図ることができ、800MPa以上の高強度を達成できる。前記円相当直径0.03μm未満の析出物は、6×10個/mm以上存在させると、良好な伸びおよび伸びフランジ性を維持したまま強度を更に向上できるので望ましい。
【0019】
尚、本発明では、後述する実施例に示す通り画像解析法で上記析出物のサイズを求めるが、該画像解析で測定された析出物の最小面積は0.0002μm程度であるので、対象とする析出物は、円相当直径が約0.015μm以上のものとなる。
【0020】
一方、円相当直径0.03μm以上の析出物は、上記の通り2×10個/mm以下に抑える。粗大な析出物が存在すると、伸びおよび伸びフランジ性が劣化し、加工時に該介在物を起点とする割れ等が生じるおそれがあるからである。上記単相組織とすることで得られる優れた伸びを維持するには、この円相当直径0.03μm以上の析出物を1.8×10個/mm以下に抑えることが好ましい。
【0021】
尚、本発明は上記析出物の種類について特に限定するものでなく、例えばTiC、(Ti,Nb)C、Ti(C,N)、Al、TiS、BN等の炭化物、窒化物、炭・窒化物、酸化物、硫化物、ほう化物等の析出物を対象に、そのサイズ・個数を制御すればよい。
【0022】
次に本発明で成分組成を規定した理由について説明する。
【0023】
C:0.015〜0.10%
Cは、強度向上に必須の元素であり、またグラニュラー・ベイニティック・フェライト組織の形成にも必要な元素である。これらの効果を発揮させるには、Cを0.015%以上含有させるのがよく、好ましくは0.03%以上である。一方、C量が過剰になると、マルテンサイト組織が生成して延性が低下しやすくなるので、0.10%以下、好ましくは0.09%以下に抑える。
【0024】
Si:2%以下(0%を含まない)
Siは、伸びフランジ性を劣化させることなく強度を向上させるのに有効な元素であり、0.5%以上含有させることが好ましい。しかし過剰に含有させると、ポリゴナルフェライトが生成しやすくなり、意図するレベルの強度を確保できなくなる。また、表面性状を劣化させる原因ともなるので、Si量は2%以下、好ましくは1%以下に抑える。
【0025】
Mn:2%以下(0%を含まない)
Mnは、固溶強化元素として作用し、またグラニュラー・ベイニティック・フェライトへの変態を促進させるのに有効な元素である。この様な観点から、Mnは1%以上含有させるのが好ましいが、過剰になると、必要以上に焼入れ性が高くなり、変態生成物が多量に生じて伸びフランジ性が劣化する。従って、Mnは2%以下に抑える必要があり、好ましくは1.8%以下に抑える。
【0026】
Ti:0.08〜0.2%
Tiは、熱延終了後の冷却時にポリゴナルフェライトが生成するのを抑制し、グラニュラー・ベイニティック・フェライトの生成を促進する有効な元素である。また、炭化物や窒化物等の析出物を形成して析出硬化による強度向上にも寄与する。この様な効果を発揮させるには0.08%以上(好ましくは0.12%以上)のTiを含有させる必要がある。一方、Ti量が過剰になると、熱間加工組織が残り易くなり、また、析出物が過剰に析出して伸びフランジ性の劣化を招くおそれもあるので0.2%以下に抑える。好ましくは0.16%以下である。
【0027】
本発明で規定する元素は、上記の通りであり、残部成分は実質的にFeであるが、微量の不可避不純物の含有が許容されるのは勿論のこと、前記本発明の作用に悪影響を与えない範囲で、更に下記の元素を積極的に含有させることも可能である。
【0028】
Nb:0.1%以下(0%を含まない)
Nbは、熱延終了後の急冷時におけるポリゴナル・フェライトの形成を抑え、かつ微細組織を形成するのに有効な元素である。この様な効果を発現させるには、Nbを0.02%以上含有させることが好ましい。しかし過剰に含有させると、析出物が過剰に析出して伸びフランジ性が劣化するので、0.1%以下に抑えるのがよい。より好ましくは0.08%以下である。
【0029】
Cu:0.3%以下(0%を含まない)
Cuは、固溶強化作用を有するとともに、疲労特性の向上にも寄与する元素である。この様な効果を発揮させるには、Cu含有量を0.1%以上とするのがよい。しかしCu量が多過ぎると、へげ疵等の表面欠陥を生ずる原因となるので、0.3%以下に抑えるのがよい。より好ましくは0.25%以下である。
【0030】
Ni:0.3%以下(0%を含まない)
Niは、上記Cu含有によるへげ疵等の表面欠陥の発生を抑制するのに有効な元素である。この様な効果を発現させるには、Cu含有量にもよるが0.1%以上(より好ましくは0.15%以上)のNiを含有させればよい。しかしNiが過剰になると、コストが高くつくといった問題が生ずるため、0.3%以下に抑えるのが好ましい。より好ましくは0.2%以下である。
【0031】
Cr:1%以下(0%を含まない)
Crは、固溶強化元素として有効に作用し、またグラニュラー・ベイニティック・フェライトへの変態を促進させる元素でもある。この様な効果を発揮させるには、Crを0.1%以上含有させてもよいが、過剰になると、マルテンサイト組織等の低温変態生成物が多量に生成し、伸びを劣化させるので、1%以下に抑えるのがよい。より好ましくはCrを0.5%以下に抑える。
【0032】
Mo:1%以下(0%を含まない)
Moは、焼入れ性を向上させるのに有効な元素であり、0.2%以上含有させてもよいが、過剰になると、伸びが劣化するので1%以下に抑えるのがよい。より好ましくは0.8%以下に抑える。
【0033】
B:0.003%以下(0%を含まない)
Bは、焼入れ性を向上させてグラニュラー・ベイニティック・フェライト組織を確保するのに有効な元素である。この様な効果を発揮させるには、Bを0.001%以上含有させるのがよい。しかし、Bを過剰に含有させてもその効果は飽和するので、0.003%を超える添加は無駄である。
【0034】
Ca:0.003%以下(0%を含まない)、および/または
REM:0.1%以下(0%を含まない)
CaやREM(希土類元素)は、硫化物を球状化させて伸びフランジ性を向上させるのに有効な元素である。この様な効果を発揮させるには、Caを0.001%以上、REMを0.01%以上含有させるのが好ましい。しかし、これらの元素を過剰に含有させても効果は飽和するので、Ca量の上限を0.003%、REM量の上限を0.1%と定めた。
【0035】
本発明の高張力熱延鋼板は、この様に析出物のサイズ・個数、成分組成および組織を規定したところに特徴を有するものであり、その製造方法については特に限定されない。従って本発明の鋼板は、通常行われている方法で鋼を溶製し、例えば以下の条件で熱間圧延等を行って得ることができる。
【0036】
<熱間圧延時の条件>
最終パス圧延率:12%以上
最終パス終了温度:900℃以上
開始温度と終了温度との差:100℃以下
<圧延後の冷却条件(2段冷却を行う場合)>
圧延終了時から1次冷却開始までの所要時間:2秒以内
一次冷却速度:50℃/秒以上
一次冷却停止温度:610〜680℃
中間空冷時間:4〜13秒
中間空冷温度:610〜680℃
二次冷却速度:50℃/秒以上
巻き取り温度:320〜520℃
尚、本発明で規定する析出物のサイズ・個数となるよう制御するには、最終パス圧延率、熱間圧延の開始温度と終了温度との差、一次冷却速度、中間空冷速度、巻き取り温度等を制御することが推奨され、例えば上記製造条件において、最終パス圧延率を12%以上、開始温度と終了温度との差を100℃以下、一次冷却速度を50℃/秒以上、中間空冷温度を610〜680℃、巻き取り温度を320〜520℃等とするのがよい。
【0037】
また、本発明で規定するグラニュラー・ベイニティック・フェライト組織がほぼ全量を占める組織とするには、最終パス圧延率、圧延終了時から1次冷却開始までの所要時間、一次冷却速度、巻き取り温度等を制御することが推奨され、例えば上記製造条件において、最終パス圧延率を12%以上、圧延終了時から1次冷却開始までの所要時間を2秒以内、一次冷却速度を50℃/秒以上、巻き取り温度を320〜520℃等とすることが推奨される。
【0038】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0039】
表1に示す化学成分の鋼スラブを使用し、各鋼スラブを、表2に示す条件で熱間圧延を行って熱延鋼板を得た。析出物のサイズ・個数は、最終パス圧延率、一次冷却速度、中間空冷速度、巻き取り温度を変えることによって変化させた。また組織は、最終パス圧延率、一次冷却速度、巻き取り温度を変えることによって変化させた。
【0040】
得られた熱延鋼板について、JIS5号に準じて圧延方向の引張試験を行い引張強度および伸びを測定した。また下記の穴拡げ試験を行って伸びフランジ性を評価した。更に、TEMにて倍率15000倍で4視野分の写真を撮影し、該写真で組織を判断した。組織中に存在する析出物のサイズと個数については、抽出レプリカ法で処理したサンプルをTEMで観察し、画像解析法でそのサイズと個数を求めた。抽出レプリカ法は、下記▲1▼〜▲6▼の手順に添って行った。
【0041】
▲1▼鋼板の板厚×(1/4)の部位から採取したサンプル(観察面のサイズ:20mm×20mm)に電解研磨処理を施し、鏡面に仕上げる。
▲2▼化学エッチングを行ってミクロ組織を浮上させる。
▲3▼カーボンを蒸着させる。
▲4▼サンプル平面上に2〜3mm角の碁盤目状の切れ目を入れる。
▲5▼上記▲2▼と同様のエッチング液で再度腐食させてカーボンを浮上させる。
▲6▼アルコール中に保存して観察に用いる。
【0042】
この様に処理したサンプルを用いてTEMにて、倍率30000倍で10視野分の写真(13cm×11cm)を撮影し、画像解析で析出物の面積と個数を測定し、該面積を円相当直径に換算して1mmあたりの個数を求めた。
【0043】
前記穴拡げ試験は、直径10mmの打ち抜き穴を60°円錐ポンチで押し拡げ、割れが鋼板板厚を貫通した時点での穴径dを測定し、次式により穴拡げ率λを求めた。これらの結果を表3に示す。
【0044】
λ=〔(d−d)/10〕×100(%)(d=10mm)
【0045】
【表1】

Figure 2004307919
【0046】
【表2】
Figure 2004307919
【0047】
【表3】
Figure 2004307919
【0048】
表1〜3から次のように考察することができる。尚、以下のNo.は表1〜3における実験No.を示す。
【0049】
No.1〜5,8,9および11〜13は、本発明の要件を満たすものであることから、いずれも高強度であるとともに、伸びおよび伸びフランジ性に優れていることがわかる。これに対し、No.6,7,10,14〜20は、本発明で規定するいずれかの要件を外れており、強度が十分でないか、伸びフランジ性および/または伸びに劣っている。
【0050】
即ち、No.6はC量が過剰であり、組織が(フェライト+マルテンサイト)の2相組織であるので、λ値が低く伸びフランジ性に劣っている。
【0051】
No.7は、Ti量が少なく微細な析出物の量が不足しており、また組織が(フェライト+ベイナイト)であるため、強度、伸びおよび伸びフランジ性のいずれも低くなっている。
【0052】
No.10、18〜20は、化学成分および組織は本発明の要件を満たしているが、析出物が本発明の規定要件を外れており、円相当直径0.03μm未満の析出物が少なく、円相当直径0.03μm以上の析出物が多いため、伸びおよび伸びフランジ性が劣っている。
【0053】
No.14は、転位密度の非常に高いベイニティック・フェライトとグラニュラー・ベイニティック・フェライトが混在する組織となっているため、伸びがやや低めとなった。No.15、16は組織が(フェライト+ベイナイト)であるため、強度が低く、伸びおよび伸びフランジ性も劣る結果となった。
【0054】
No.17は、組織がポリゴナルフェライト単相組織であり、かつ粗大な析出物が多いので、伸びおよび伸びフランジ性に劣る結果となった。
【0055】
【発明の効果】
本発明は上記のように構成されており、高強度で且つ卓越した伸びおよび伸びフランジ性を示し、例えば自動車の複雑な形状の各種部品の製造に最適な鋼板を提供し得ることになった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength hot-rolled steel sheet having excellent formability that exhibits excellent elongation and stretch flangeability, and can be used for steel members in various industrial fields. It can be effectively used as materials for automobile parts, for example, leg parts such as members and arms, and chassis.
[0002]
[Prior art]
In recent years, there has been a strong demand for reducing the weight of members in the fields of automobiles, industrial machines, and the like. In particular, steel sheets used for automobiles are required to have high strength as final parts and high formability that can be easily processed into complex shapes. Especially, high level of elongation and stretch flangeability (hole expansion) ) Is required.
[0003]
Conventionally, as a high-strength steel sheet, a dual phase steel sheet in which a metal structure is a composite structure and a martensite structure is introduced into a ferrite structure, and a ferrite-bainite steel sheet in which a bainite structure is introduced are generally known. In recent years, a method for increasing elongation by introducing retained austenite into the structure has also been proposed.
[0004]
From the standpoint of improving stretch flangeability, the structure should not have a second phase (bainite or martensite) that differs in strength from the parent phase, and should not contain inclusions that would cause cracks during processing as much as possible. preferable. However, the ferrite-bainite composite structure includes two phases having different strengths such as low-strength polygonal ferrite and relatively high-strength bainite, and excellent stretch flangeability cannot be expected. Further, when the bainite phase is hardened to increase the strength in the composite structure, inclusions present in the bainite phase are likely to become the starting point of crack generation, and as a result, stretch flangeability cannot be improved.
[0005]
As another technique for improving stretch flangeability, Patent Document 1 proposes that the composition of the components be specified and that the structure be a bainitic ferrite structure or a structure composed of ferrite and bainitic ferrite structure. Has been.
[0006]
The bainitic ferrite structure has a substructure with a lath-like structure having a high dislocation density. Even when inclusions are present in the structure, the ferritic-bainite steel (bainitic ferrite structure). Cracks are less likely to occur when inclusions are present in the bainite phase of the same strength as the tick ferrite structure). Therefore, it is possible to increase the stretch flangeability somewhat compared with the ferrite-bainite steel.
[0007]
Patent Document 2 proposes a method in which the structure is acicular ferrite and fine TiC or NbC is precipitated.
[0008]
In these techniques, a temporary improvement effect is obtained with respect to both properties of strength and stretch flangeability. However, with regard to elongation, the limit is about 18% for steel sheets with a tensile strength of 800 MPa, and in order to satisfy the demands of future users, both elongation and stretch flangeability are good, and even better formability is achieved. It is necessary to develop a high-strength hot-rolled steel sheet that can be used.
[0009]
[Patent Document 1]
JP-A-6-172924 (first page)
[Patent Document 2]
JP 7-11382 A (first page)
[0010]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-described circumstances, and an object thereof is to provide a high-strength hot-rolled steel sheet excellent in formability that exhibits excellent elongation and stretch flangeability.
[0011]
[Means for Solving the Problems]
The high-strength hot-rolled steel sheet having excellent formability according to the present invention is expressed in mass% (the same applies hereinafter)
C: 0.015-0.10%,
Si: 2% or less (excluding 0%),
Mn: 2% or less (excluding 0%),
Ti: 0.08 to 0.2%
And the structure is granular bainitic ferrite and the equivalent circle diameter of less than 0.03 μm is 5 × 10 6 pieces / mm 2 or more,
It is characterized in that precipitates having an equivalent circle diameter of 0.03 μm or more are 2 × 10 6 pieces / mm 2 or less. The high-strength hot-rolled steel sheet of the present invention is further added as another element,
Nb: 0.1% or less (excluding 0%),
Cu: 0.3% or less (excluding 0%),
Ni: 0.3% or less (not including 0%),
Cr: 1% or less (excluding 0%),
Mo: 1% or less (excluding 0%)
B: One or more of 0.003% or less (not including 0%) may be included, and further, as other elements,
Ca: 0.003% or less (not including 0%) and / or REM: 0.1% or less (not including 0%)
May be included. The steel sheet of the present invention has a structure composed of the granular bainitic ferrite, but the structure may contain a trace amount of other phases that may inevitably be generated. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have studied from various angles under the situation as described above. As a result, the microstructure (hereinafter simply referred to as “structure”) and chemical composition are specified, and if the size and number of the precipitates are controlled, both the stretch flangeability and elongation are enhanced, and the formability is excellent. The inventors have found that a hot-rolled steel sheet can be obtained, and have arrived at the present invention. Hereinafter, the reason why the size / number of precipitates, the structure and the chemical composition are defined in the present invention will be described in detail.
[0013]
The present invention requires that the steel sheet has a single-phase structure of granular bainitic ferrite. This is because the elongation and stretch flangeability can be remarkably improved by using a single phase structure rather than a composite structure as described above. The reason why the structure is granular bainitic ferrite is that it is very effective in securing excellent elongation while securing the base material strength as compared with other bainitic ferrites.
[0014]
The granular bainitic ferrite structure of the present invention has an acicular shape in an optical microscope or SEM observation, and the substructure must be identified by TEM observation to determine a clear difference.
[0015]
The granular bainitic ferrite structure has a substructure whose dislocation density is slightly lower than that of the bainitic ferrite structure. The granular bainitic ferrite structure is clearly different from the bainite structure in that it does not have carbides in its interior, and is a polygonal ferrite having a substructure with little or no dislocation density, or a fine sub-structure. It is also different from the quasi-polygonal ferrite structure with substructures such as grains (see “Steel Bainite Photobook-1” published by the Japan Iron and Steel Institute Basic Research Group).
[0016]
Since the granular bainitic ferrite structure has a slightly lower dislocation density than the bainitic ferrite structure, it is effective in improving the elongation as described above. However, it has been found that it is not sufficient to use granular bainitic ferrite as a structure in order to reliably achieve a high strength of 800 MPa or more. Therefore, as a result of further improvement studies, a certain amount of precipitates were deposited in the grain, grain boundary, or grain boundary of the granular, bainitic, and ferrite structures, thereby increasing strength while ensuring a high level of stretch flangeability and elongation. I succeeded in raising it.
[0017]
That is, in the present invention, in grains or grain boundaries of the tissues, with the presence of precipitates of less than the circle equivalent diameter 0.03 .mu.m 5 × 10 6 cells / mm 2 or more, the equivalent circle diameter 0.03 .mu.m or more precipitates It is essential to suppress it to 2 × 10 6 pieces / mm 2 or less.
[0018]
Precipitation hardening can be sufficiently achieved without deteriorating elongation and stretch flangeability by the presence of the specified amount of fine precipitates having an equivalent circle diameter of less than 0.03 μm, and a high strength of 800 MPa or more is achieved. it can. Precipitation with an equivalent circle diameter of less than 0.03 μm is desirably 6 × 10 6 pieces / mm 2 or more, since the strength can be further improved while maintaining good elongation and stretch flangeability.
[0019]
In the present invention, the size of the precipitate is determined by an image analysis method as shown in the examples described later. Since the minimum area of the precipitate measured by the image analysis is about 0.0002 μm 2 , The deposited precipitate has an equivalent circle diameter of about 0.015 μm or more.
[0020]
On the other hand, precipitates having an equivalent circle diameter of 0.03 μm or more are suppressed to 2 × 10 6 pieces / mm 2 or less as described above. If coarse precipitates are present, the elongation and stretch flangeability deteriorate, and there is a risk that cracks or the like starting from the inclusions may occur during processing. In order to maintain the excellent elongation obtained by forming the single phase structure, it is preferable to suppress the precipitates having an equivalent circle diameter of 0.03 μm or more to 1.8 × 10 6 pieces / mm 2 or less.
[0021]
The present invention is not particularly limited with respect to the type of the precipitate, and for example, TiC, (Ti, Nb) C, Ti (C, N), Al 2 O 3 , TiS, BN and other carbides, nitrides, What is necessary is just to control the size and number of precipitates such as charcoal / nitrides, oxides, sulfides and borides.
[0022]
Next, the reason for defining the component composition in the present invention will be described.
[0023]
C: 0.015-0.10%
C is an element essential for improving the strength, and is also an element necessary for forming a granular bainitic ferrite structure. In order to exert these effects, it is preferable to contain 0.015% or more of C, and preferably 0.03% or more. On the other hand, when the amount of C is excessive, a martensite structure is formed and the ductility is liable to be lowered.
[0024]
Si: 2% or less (excluding 0%)
Si is an element effective for improving the strength without deteriorating stretch flangeability, and is preferably contained in an amount of 0.5% or more. However, if excessively contained, polygonal ferrite is likely to be generated, and the intended strength cannot be ensured. Moreover, since it also causes the surface properties to deteriorate, the Si amount is suppressed to 2% or less, preferably 1% or less.
[0025]
Mn: 2% or less (excluding 0%)
Mn acts as a solid solution strengthening element and is an effective element for promoting the transformation to granular bainitic ferrite. From this point of view, it is preferable to contain 1% or more of Mn. However, if it is excessive, the hardenability becomes higher than necessary, a large amount of transformation products are generated, and stretch flangeability deteriorates. Therefore, it is necessary to keep Mn to 2% or less, preferably 1.8% or less.
[0026]
Ti: 0.08 to 0.2%
Ti is an effective element that suppresses the formation of polygonal ferrite during cooling after the end of hot rolling and promotes the generation of granular bainitic ferrite. In addition, precipitates such as carbides and nitrides are formed, which contributes to improvement in strength by precipitation hardening. In order to exert such an effect, it is necessary to contain 0.08% or more (preferably 0.12% or more) Ti. On the other hand, if the amount of Ti is excessive, the hot-worked structure tends to remain, and excessive precipitates may be deposited, leading to deterioration of stretch flangeability. Preferably it is 0.16% or less.
[0027]
The elements defined in the present invention are as described above, and the remaining component is substantially Fe. However, the inclusion of a trace amount of inevitable impurities is allowed, and it adversely affects the function of the present invention. It is also possible to positively contain the following elements as long as they are not present.
[0028]
Nb: 0.1% or less (excluding 0%)
Nb is an element effective in suppressing the formation of polygonal ferrite at the time of rapid cooling after the end of hot rolling and forming a fine structure. In order to exhibit such an effect, it is preferable to contain Nb by 0.02% or more. However, if excessively contained, precipitates are excessively deposited and the stretch flangeability deteriorates. More preferably, it is 0.08% or less.
[0029]
Cu: 0.3% or less (excluding 0%)
Cu is an element that has a solid solution strengthening action and contributes to improvement of fatigue characteristics. In order to exert such effects, the Cu content is preferably set to 0.1% or more. However, if the amount of Cu is too large, it may cause surface defects such as ridges, so it should be suppressed to 0.3% or less. More preferably, it is 0.25% or less.
[0030]
Ni: 0.3% or less (excluding 0%)
Ni is an element effective for suppressing the occurrence of surface defects such as ridges due to the Cu content. In order to express such an effect, although depending on the Cu content, 0.1% or more (more preferably 0.15% or more) Ni may be contained. However, when Ni is excessive, there is a problem that the cost is high. Therefore, it is preferable to keep it at 0.3% or less. More preferably, it is 0.2% or less.
[0031]
Cr: 1% or less (excluding 0%)
Cr is an element that effectively acts as a solid solution strengthening element and promotes transformation to granular bainitic ferrite. In order to exert such an effect, Cr may be contained in an amount of 0.1% or more. However, if it is excessive, a low-temperature transformation product such as a martensite structure is generated in a large amount and the elongation is deteriorated. It is good to keep it below%. More preferably, Cr is suppressed to 0.5% or less.
[0032]
Mo: 1% or less (excluding 0%)
Mo is an element effective for improving the hardenability, and may be contained in an amount of 0.2% or more. However, if excessive, the elongation deteriorates, so it is preferable to keep it to 1% or less. More preferably, it is suppressed to 0.8% or less.
[0033]
B: 0.003% or less (excluding 0%)
B is an element effective for improving the hardenability and securing a granular bainitic ferrite structure. In order to exert such an effect, it is preferable to contain 0.001% or more of B. However, since the effect is saturated even if B is contained excessively, the addition exceeding 0.003% is useless.
[0034]
Ca: 0.003% or less (excluding 0%), and / or
REM: 0.1% or less (excluding 0%)
Ca and REM (rare earth elements) are effective elements for improving the stretch flangeability by spheroidizing sulfides. In order to exhibit such an effect, it is preferable to contain 0.001% or more of Ca and 0.01% or more of REM. However, even if these elements are contained excessively, the effect is saturated, so the upper limit of Ca content is set to 0.003% and the upper limit of REM content is set to 0.1%.
[0035]
The high-tensile hot-rolled steel sheet of the present invention is characterized in that the size and number of precipitates, the component composition, and the structure are defined as described above, and the manufacturing method is not particularly limited. Therefore, the steel plate of the present invention can be obtained by melting steel by a conventional method and performing, for example, hot rolling under the following conditions.
[0036]
<Conditions during hot rolling>
Final pass rolling rate: 12% or more Final pass end temperature: 900 ° C. or more Difference between start temperature and end temperature: 100 ° C. or less <Cooling condition after rolling (when performing two-stage cooling)>
Time required from the end of rolling to the start of primary cooling: within 2 seconds Primary cooling rate: 50 ° C / second or more Primary cooling stop temperature: 610-680 ° C
Intermediate air cooling time: 4 to 13 seconds Intermediate air cooling temperature: 610 to 680 ° C
Secondary cooling rate: 50 ° C./second or more Winding temperature: 320 to 520 ° C.
In order to control the size and number of precipitates specified in the present invention, the final pass rolling rate, the difference between the hot rolling start temperature and the end temperature, the primary cooling rate, the intermediate air cooling rate, the winding temperature For example, in the above manufacturing conditions, the final pass rolling rate is 12% or more, the difference between the start temperature and the end temperature is 100 ° C. or less, the primary cooling rate is 50 ° C./second or more, the intermediate air cooling temperature Is preferably 610 to 680 ° C., and the winding temperature is 320 to 520 ° C.
[0037]
In order to obtain a structure in which the granular bainitic ferrite structure stipulated in the present invention occupies almost the entire amount, the final pass rolling rate, the time required from the end of rolling to the start of primary cooling, the primary cooling rate, the winding It is recommended to control the temperature and the like. For example, in the above production conditions, the final pass rolling rate is 12% or more, the required time from the end of rolling to the start of primary cooling is within 2 seconds, and the primary cooling rate is 50 ° C./second. As described above, it is recommended that the winding temperature be 320 to 520 ° C.
[0038]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
[0039]
Steel slabs having chemical components shown in Table 1 were used, and each steel slab was hot-rolled under the conditions shown in Table 2 to obtain hot-rolled steel sheets. The size and number of precipitates were changed by changing the final pass rolling rate, primary cooling rate, intermediate air cooling rate, and coiling temperature. The structure was changed by changing the final pass rolling rate, the primary cooling rate, and the winding temperature.
[0040]
The obtained hot-rolled steel sheet was subjected to a tensile test in the rolling direction according to JIS No. 5, and the tensile strength and elongation were measured. In addition, the following hole expansion test was performed to evaluate stretch flangeability. Furthermore, photographs of 4 fields of view were taken with a TEM at a magnification of 15000 times, and the structure was judged from the photographs. Regarding the size and number of precipitates present in the structure, the sample treated by the extraction replica method was observed by TEM, and the size and number were determined by image analysis. The extraction replica method was performed according to the following procedures (1) to (6).
[0041]
(1) Electrolytic polishing treatment is applied to a sample (observation surface size: 20 mm × 20 mm) collected from a portion of the thickness of the steel plate × (1/4), and finished to a mirror surface.
(2) Chemical etching is performed to raise the microstructure.
(3) Carbon is deposited.
(4) Make a grid pattern of 2 to 3 mm square on the sample plane.
{Circle around (5)} Carbon is levitated by re-corrosion with the same etching solution as in {circle over (2)} above.
(6) Store in alcohol and use for observation.
[0042]
Using the sample thus processed, a TEM was used to photograph 10 fields of view (13 cm × 11 cm) at a magnification of 30000 times, and the area and number of precipitates were measured by image analysis. In number, the number per 1 mm 2 was obtained.
[0043]
In the hole expansion test, a punched hole having a diameter of 10 mm was expanded with a 60 ° conical punch, the hole diameter d was measured when the crack penetrated the steel plate thickness, and the hole expansion ratio λ was obtained by the following equation. These results are shown in Table 3.
[0044]
λ = [(d−d 0 ) / 10] × 100 (%) (d 0 = 10 mm)
[0045]
[Table 1]
Figure 2004307919
[0046]
[Table 2]
Figure 2004307919
[0047]
[Table 3]
Figure 2004307919
[0048]
It can consider as follows from Tables 1-3. The following No. Is the experiment No. in Tables 1-3. Indicates.
[0049]
No. Since 1-5,8,9 and 11-13 satisfy the requirements of the present invention, it can be seen that all of them have high strength and are excellent in elongation and stretch flangeability. In contrast, no. 6,7,10,14-20 are outside any of the requirements defined in the present invention, and the strength is insufficient, or the stretch flangeability and / or the elongation is poor.
[0050]
That is, no. No. 6 has an excessive amount of C, and has a two-phase structure of (ferrite + martensite), so the λ value is low and the flangeability is poor.
[0051]
No. No. 7 has a small amount of Ti and an insufficient amount of fine precipitates, and because the structure is (ferrite + bainite), all of strength, elongation and stretch flangeability are low.
[0052]
No. Nos. 10 and 18 to 20 have chemical components and structures that satisfy the requirements of the present invention, but the precipitates do not satisfy the requirements of the present invention, and there are few precipitates with a circle-equivalent diameter of less than 0.03 μm, equivalent to circles. Since there are many precipitates having a diameter of 0.03 μm or more, elongation and stretch flangeability are inferior.
[0053]
No. No. 14 had a structure in which bainitic ferrite and granular bainitic ferrite having a very high dislocation density were mixed, and thus the elongation was slightly lower. No. Since the structures of Nos. 15 and 16 were (ferrite + bainite), the strength was low, and the elongation and stretch flangeability were inferior.
[0054]
No. In No. 17, the structure was a polygonal ferrite single-phase structure and there were many coarse precipitates, resulting in poor elongation and stretch flangeability.
[0055]
【The invention's effect】
The present invention is configured as described above, and has high strength and excellent elongation and stretch flangeability. For example, it is possible to provide a steel plate that is optimal for manufacturing various parts of complex shapes of automobiles.

Claims (3)

質量%で(以下同じ)、
C :0.015〜0.10%、
Si:2%以下(0%を含まない)、
Mn:2%以下(0%を含まない)、
Ti:0.08〜0.2%
を満たし、組織がグラニュラー・ベイニティック・フェライトであり、かつ
円相当直径0.03μm未満の析出物が5×10個/mm以上で、
円相当直径0.03μm以上の析出物が2×10個/mm以下
であることを特徴とする成形性に優れた高強度熱延鋼板。
% By mass (the same applies below)
C: 0.015-0.10%,
Si: 2% or less (excluding 0%),
Mn: 2% or less (excluding 0%),
Ti: 0.08 to 0.2%
And the structure is granular bainitic ferrite and the equivalent circle diameter of less than 0.03 μm is 5 × 10 6 pieces / mm 2 or more,
A high-strength hot-rolled steel sheet having excellent formability, wherein precipitates having an equivalent circle diameter of 0.03 μm or more are 2 × 10 6 pieces / mm 2 or less.
更に他の元素として、
Nb:0.1%以下(0%を含まない)、
Cu:0.3%以下(0%を含まない)、
Ni:0.3%以下(0%を含まない)、
Cr:1%以下(0%を含まない)、
Mo:1%以下(0%を含まない)
B :0.003%以下(0%を含まない)の1種以上を含む請求項1に記載の高強度熱延鋼板。
As other elements,
Nb: 0.1% or less (excluding 0%),
Cu: 0.3% or less (excluding 0%),
Ni: 0.3% or less (not including 0%),
Cr: 1% or less (excluding 0%),
Mo: 1% or less (excluding 0%)
The high-strength hot-rolled steel sheet according to claim 1, comprising at least one of B: 0.003% or less (excluding 0%).
更に他の元素として、
Ca:0.003%以下(0%を含まない)および/または
REM:0.1%以下(0%を含まない)
を含む請求項1または2に記載の高強度熱延鋼板。
As other elements,
Ca: 0.003% or less (not including 0%) and / or REM: 0.1% or less (not including 0%)
The high-strength hot-rolled steel sheet according to claim 1 or 2, comprising:
JP2003102002A 2003-04-04 2003-04-04 High-strength hot-rolled steel sheet with excellent formability Expired - Fee Related JP4411005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102002A JP4411005B2 (en) 2003-04-04 2003-04-04 High-strength hot-rolled steel sheet with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102002A JP4411005B2 (en) 2003-04-04 2003-04-04 High-strength hot-rolled steel sheet with excellent formability

Publications (2)

Publication Number Publication Date
JP2004307919A true JP2004307919A (en) 2004-11-04
JP4411005B2 JP4411005B2 (en) 2010-02-10

Family

ID=33465624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102002A Expired - Fee Related JP4411005B2 (en) 2003-04-04 2003-04-04 High-strength hot-rolled steel sheet with excellent formability

Country Status (1)

Country Link
JP (1) JP4411005B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009322A (en) * 2005-05-30 2007-01-18 Jfe Steel Kk High strength hot rolled sheet having excellent elongation property, stretch flange formability and tensile fatigue property, and method for producing the same
WO2007132548A1 (en) * 2006-05-16 2007-11-22 Jfe Steel Corporation High-strength hot-rolled steel plate having excellent stretch properties, stretch flanging properties and tension fatigue properties, and method for production thereof
JP2013133534A (en) * 2011-12-27 2013-07-08 Nippon Steel & Sumitomo Metal Corp High strength hot rolled steel sheet and method of manufacturing the same
KR101344620B1 (en) * 2012-02-28 2013-12-26 현대제철 주식회사 High strength steel sheet
JP2014514443A (en) * 2011-03-24 2014-06-19 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Hot rolled steel sheet and related manufacturing method
JP2017526812A (en) * 2014-07-11 2017-09-14 アルセロールミタル Hot rolled steel sheet and related manufacturing method
KR20180019736A (en) 2015-07-31 2018-02-26 신닛테츠스미킨 카부시키카이샤 High-strength hot-rolled steel sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009322A (en) * 2005-05-30 2007-01-18 Jfe Steel Kk High strength hot rolled sheet having excellent elongation property, stretch flange formability and tensile fatigue property, and method for producing the same
WO2007132548A1 (en) * 2006-05-16 2007-11-22 Jfe Steel Corporation High-strength hot-rolled steel plate having excellent stretch properties, stretch flanging properties and tension fatigue properties, and method for production thereof
US8075711B2 (en) 2006-05-16 2011-12-13 Jfe Steel Corporation Hot-rolled high strength steel sheet having excellent ductility, and tensile fatigue properties and method for producing the same
JP2014514443A (en) * 2011-03-24 2014-06-19 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Hot rolled steel sheet and related manufacturing method
JP2016047963A (en) * 2011-03-24 2016-04-07 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Hot rolled steel sheet and related manufacturing method
US9540719B2 (en) 2011-03-24 2017-01-10 Arcelormittal Investigacion Y Desarrollo Sl Hot-rolled steel sheet and associated production method
JP2013133534A (en) * 2011-12-27 2013-07-08 Nippon Steel & Sumitomo Metal Corp High strength hot rolled steel sheet and method of manufacturing the same
KR101344620B1 (en) * 2012-02-28 2013-12-26 현대제철 주식회사 High strength steel sheet
JP2017526812A (en) * 2014-07-11 2017-09-14 アルセロールミタル Hot rolled steel sheet and related manufacturing method
US10858716B2 (en) 2014-07-11 2020-12-08 Arcelormittal Hot rolled steel sheet and associated manufacturing method
US11447844B2 (en) 2014-07-11 2022-09-20 Arcelormittal Manufacturing method for hot rolled steel sheet
KR20180019736A (en) 2015-07-31 2018-02-26 신닛테츠스미킨 카부시키카이샤 High-strength hot-rolled steel sheet

Also Published As

Publication number Publication date
JP4411005B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4068950B2 (en) High-strength steel sheet, warm-working method, and warm-worked high-strength member or parts
KR100942087B1 (en) High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
KR100368529B1 (en) High Strength Hot Rolled Steel Sheet Excellent in Formability
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
KR101624439B1 (en) High-strength steel sheet and method for producing the same
WO2012036309A1 (en) High-strength hot-rolled steel sheet having excellent bending workability and method for producing same
JP2007254857A (en) High-strength hot rolled steel sheet having excellent composite moldability
JP5870955B2 (en) High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
EP1176217B1 (en) High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof
JP3790135B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP2020020033A (en) Steel and method for producing the same
JP4005517B2 (en) High-strength composite steel sheet with excellent elongation and stretch flangeability
JP2003073773A (en) High-strength steel sheet superior in workability and fatigue characteristic, and manufacturing method therefor
JP3945367B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP2011080106A (en) High strength cold-rolled steel sheet excellent in balance of extension and formability for extending flange
JP4411005B2 (en) High-strength hot-rolled steel sheet with excellent formability
JP4059050B2 (en) Cold rolled steel plate manufacturing base plate, high strength and high ductility cold rolled steel plate and methods for producing them
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6901417B2 (en) High-strength steel sheet and high-strength galvanized steel sheet, and their manufacturing method
JP2021102794A (en) Steel and method for producing the same
JP2005002404A (en) High strength cold rolled steel sheet, and its production method
JP5644234B2 (en) Manufacturing method of structural members with excellent punching fatigue characteristics
JP7092265B2 (en) Steel plate
JP7403658B2 (en) High-strength steel plate with excellent workability and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091116

R150 Certificate of patent or registration of utility model

Ref document number: 4411005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees