JP2004307737A - Method for producing sulfonic acid group-containing organic polymer siloxane - Google Patents

Method for producing sulfonic acid group-containing organic polymer siloxane Download PDF

Info

Publication number
JP2004307737A
JP2004307737A JP2003106167A JP2003106167A JP2004307737A JP 2004307737 A JP2004307737 A JP 2004307737A JP 2003106167 A JP2003106167 A JP 2003106167A JP 2003106167 A JP2003106167 A JP 2003106167A JP 2004307737 A JP2004307737 A JP 2004307737A
Authority
JP
Japan
Prior art keywords
acid group
sulfonic acid
organic polymer
containing organic
polymer siloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003106167A
Other languages
Japanese (ja)
Inventor
Hidekazu Ookubo
英主 大久保
Tsukasa Haganuma
司 芳賀沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003106167A priority Critical patent/JP2004307737A/en
Publication of JP2004307737A publication Critical patent/JP2004307737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a phenylsulfonic acid group-containing organic polymer siloxane having a high sulfonation yield. <P>SOLUTION: This method for producing the sulfonic acid group-containing organic polymer siloxane comprises bringing an organosilicon compound having a phenyl group into contact with sulfur trioxide so that number of moles of the organosilicon compound to number of moles of the sulfur trioxide becomes 1:2 to 1:3 and using the sulfonated organosilicon compound as a raw material. According to the method, the organic polymer siloxane having a phenylsulfonic acid group can be obtained in high sulfonation yield and production of the sulfonic acid group-containing organic polymer siloxane can be industrially extremely advantageously carried out. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、イオン交換体及び固体酸触媒として有用なスルホン酸基含有有機高分子シロキサンの製造方法に関する。
【0002】
【従来の技術】
スルホン酸基を有する強酸性イオン交換体は、例えば、水及び水溶液の脱塩、化学合成における固体酸触媒等として広く利用されている。ほとんどの場合使用されるカチオン交換体はポリスチレン骨格を有し、フェニルスルホン酸基を有する一般的に陽イオン交換樹脂と呼ばれるものである。陽イオン交換樹脂は耐熱性が低く、一般的に100〜130℃が使用の上限とされている。また、著しい膨潤性による破壊、機械的強度の脆さ等の不利な点を有している。
【0003】
これに対し、無機ポリマー系イオン交換体の例として、有機高分子シロキサンが挙げられる。有機高分子シロキサンについては特開昭59−20325号、特開昭61−272237号公報にスルホン酸基が有機スペーサー基によってシリカマトリックスに結合しているスルホン酸基含有有機高分子シロキサンが開示されている。上記スルホン酸基含有有機高分子シロキサンは多硫化物ポリマーの酸化処理及び固体有機高分子シロキサンのスルホン化処理等によるもので、スルホン化工程が固体との反応である為、スルホン化の反応効率が悪く、また溶媒によってはスルホン化中に有機高分子シロキサンが溶出するため、製造法としては問題が多かった。また、特開平6−207021号公報にはスルホン酸基含有シロキサン水溶液を合成し、他のアルコキシシランとの加水分解、脱水縮合によりスルホン酸基含有有機高分子シロキサンを製造する方法が開示されている。しかしながら本方法ではスルホン酸基を有するシロキサン水溶液は明らかにポリマーであり、スルホン酸基濃度の高いポリマーが単に固定化されているため、耐水性に問題があることは明白である。
【0004】
これに対し、特開平11−209472号公報にはスルホン酸基含有アルコキシシランを用いたスルホン酸基含有有機高分子シロキサン製造法が開示されている。この方法ではアルコキシシラン分子同士を均一に混合し、同時に加水分解、共縮合しているので、スルホン酸基が均一に分散していると考えられ、耐水性が飛躍的に向上することが記述されている。スルホン酸基含有アルコキシシランの合成法としては、フェニル基含有有機珪素化合物をスルホン化剤と接触させることで合成している。フェニル基のスルホン化剤としては、一般的に硫酸、発煙硫酸、クロロ硫酸、三酸化硫黄等が知られているが、高分子シロキサンマトリックスを形成しうる有機珪素化合物は加水分解性を有しているため、非水性のクロロ硫酸、三酸化硫黄等が用いられる。実施例中には塩化メチレン溶媒中でフェニルトリクロロシランに1当量の三酸化硫黄の塩化メチレン溶液を滴下し、常温で数時間攪拌することによりスルホン化を行う方法が記載されている。フェニルスルホン酸基を有する有機珪素化合物は単離が困難である為、そのままテトラエトキシシラン等のシリカマトリックスを形成しうる母剤と混合し、加水分解、重縮合により有機高分子シロキサンを得ている。その固体酸量を測定することで、フェニルスルホン酸基の量を定量し、スルホン化の収率を算出することができる。
【0005】
しかしながら、前記特許では、仕込みのフェニル基の量に対し、40〜45%と低い収率でしかスルホン酸量を得ることができないという問題を有していた。スルホン化を高収率化するためには、スルホン化の反応温度の高温化、スルホン化剤量の過剰な添加により、反応効率を増大させる方法が当然考えられるが、J.Org.Chem.,20,455(1955年)に記載されているように、スルホン化反応では過剰なスルホン化剤は逆にスルホンの副生等、スルホン酸の収率上好ましくない事が良く知られており、またスルホン化剤は通常、有機物の分解に用いられるような反応性の激しい試薬なので、実際にスルホン化剤を過剰に用いたりすることは試みられてはいなかった。
【0006】
【本発明が解決しようとする課題】
本発明は、フェニルスルホン酸基を有する有機珪素化合物を用いたスルホン酸基含有高分子シロキサンの製造において、フェニル基含有有機珪素化合物をスルホン化する際の反応温度を制御し、三酸化硫黄量を過剰に用いることにより、スルホン化収率の高いフェニルスルホン酸基含有有機高分子シロキサンを得ることを特徴としている。
【0007】
【課題を解決するための手段】
本発明者らは、かかる問題を解決するため鋭意研究を行い、フェニル基含有有機珪素化合物を、「フェニル基含有有機珪素化合物のモル量」:「三酸化硫黄のモル量」=1:2〜3となる過剰量の三酸化硫黄と接触させることにより、スルホン化収率の高いフェニルスルホン酸基含有有機高分子シロキサンが得られることを見出し、本発明を完成するに至ったものである。
【0008】
【発明の実施の形態】
本発明におけるフェニルスルホン酸基を有する有機珪素化合物の製造は特開平11−209472に記載されているようにフェニル基含有有機珪素化合物を無溶媒、もしくは不活性溶媒の存在下で三酸化硫黄と接触させることにより得ることができる。スルホン化の反応温度は30〜90℃が好ましく、特に30〜45℃が好ましい。
フェニル基含有有機珪素化合物とは、一般式
【0009】
【化2】

Figure 2004307737
Figure 2004307737
(式中nは0以上3以下の整数であり、Xはハロゲンよりなる群から選ばれた少なくとも1種を表す)で表される、ケイ素にフェニル基含有炭化水素基が直接結合した有機珪素化合物である。
【0010】
ここで本発明におけるフェニルスルホン酸基を有する有機珪素化合物合成法について具体的に説明する。溶媒存在下でフェニル基含有有機珪素化合物[1]に対し過剰量の三酸化硫黄を加える。スルホン化は発熱反応であるが、反応温度を好ましくは30〜90℃、特に好ましくは30〜45℃に制御し、数時間攪拌することで、フェニルスルホン酸基含有有機珪素化合物を得ることができる。次いで、ハロゲン基に対して過剰量のアルコールを加え、発生する塩化水素を除きながらアルコキシ化を行い、フェニルスルホン酸基を有するアルコキシシラン化合物を含有するアルコール溶液を得る。この溶液をシリカマトリックスを形成しうるテトラアルコキシシランと任意の割合で混合し、ゾル−ゲル調製によりフェニルスルホン酸基含有有機高分子シロキサンを調製する。ゾル−ゲル調製とは高分子シロキサンマトリックスを形成しうるスルホン酸基含有アルコキシシラン化合物と、シリカマトリックスを形成しうるテトラアルコキシシラン化合物を混合し、同時に加水分解することにより得られる混合ゾルの脱水縮合によるゲル化により、高分子シロキサンマトリックスを形成したスルホン酸基含有有機高分子シロキサンを製造する調製法である。
【0011】
ここにおいて本発明における混合ゲル化について述べる。本発明における混合ゲル化は通常の異種アルコキシシランの混合ゾル−ゲル反応により充分達成される。実施し易い混合ゲル化方法として具体的に例示すれば、触媒の酸成分となる上記したスルホン酸基を有するアルコキシシラン化合物を目的とする量を仕込み、テトラエトキシシラン等、テトラアルコキシシラン化合物とを混合し、必要であるならばエタノール等の溶媒を用いて均一な混合溶液とする。これにアルコキシ基の加水分解に必要な量の水を加えた後、攪拌しながら、通常、温度10〜200℃、好ましくは、30〜100℃で、1時間〜3週間、酸性条件下で反応させる。得られた高粘度の液体は一般にシリカゾルと呼ばれるものである。上記したゾルに対してアルコキシ基の加水分解に必要な量の水に対して過剰の水とアンモニア水等を加え、塩基性条件下で、通常、温度10〜200℃、好ましくは、30〜100℃で、1時間〜3週間の条件でゲル化させる。またこの時必要であるならば加熱攪拌し、長時間熟成させることもできる。
【0012】
これらゲル化を実施するに際して、ゾルに対して不活性であるアルコール、または脂肪族飽和炭化水素(ヘキサン、ヘプタン等)等の媒体に希釈させてゲル化させることも可能である。得られたゲルは濾過または溶媒を留去する等により単離できる。このゲルはスルホン酸がアンモニウム塩型であるため、イオン交換体及び固体酸触媒として用いるためには塩酸等による酸処理により酸型にもどす必要がある。この有機高分子シロキサンは陽イオン交換樹脂の酸量測定等で一般的に用いられる処方、すなはち予想される酸量に対して過剰の塩化ナトリウム水溶液でイオン交換し、遊離した塩酸を定量する事でそのスルホン酸量を求めることが可能である。
【0013】
【実施例】
以下、本発明を実施例、および比較例により具体的に説明する。しかしながら、この実施例は単なる例示であって、本発明はこれらに限定されるものではない。また、実施例において、得られたスルホン化の収率をスルホン化収率(仕込みのフェニルトリクロロシランに対し、調製した有機高分子シロキサンのフェニルスルホン酸基の量)で表した。
【0014】
【実施例1】
滴下ロートを取り付けた2口の300mlの丸底フラスコに塩化メチレンを100ml入れ、これにフェニルトリクロロシラン39.1g(0.19mol)を加え、氷冷した。これに三酸化硫黄37.3g(0.47mol)の塩化メチレン溶液20mlを、1時間かけて滴下した。滴下後、還流下、45℃で2時間反応を行った。さらに還流下、エタノール46.0gを、窒素気流下で塩化水素を除きながら1時間かけて滴下した後、塩化メチレンを留去した。さらに、これにエタノール46.0gを滴下し、2時間還流し、フェニルスルホン酸基含有エトキシシランのエタノール溶液146.0gを得た。このエタノール溶液22.0gを冷却管及び攪拌棒を取り付けた3口の500mlの丸底フラスコにテトラエトキシシラン83.2g(0.40mol)、エタノール100mlを加え混合する。これに水14.4gを30分間で滴下した。次いでオイルバス中で加熱し、60℃で3時間攪拌した。放冷後、水72.0gを混合し、28%アンモニア水10mlを加えたところ、反応液は固化した。室温で4時間放置し、減圧下溶媒を留去した。得られた固体を500mlのビーカーに入れ、2N塩酸200mlを加え、攪拌機を用いて30分間攪拌し、濾別した。この酸処理の操作を再度繰り返した後、漏斗上で純水300mlで洗浄する操作を2回繰り返した。固体を減圧乾燥器に入れ、10mmHgの減圧下、100℃で6時間乾燥させ、スルホン酸基含有有機高分子シロキサンを30.0g得た。この有機高分子シロキサンの固体酸量を上記した処方により、測定した結果、0.65mmol/gであった。従って、得られたスルホン酸の量は19.5mmolとなり、原料のトリクロロフェニルシランに対するスルホン化の収率は70%とスルホン化剤を過剰に用い、スルホン化の反応温度を45℃とすることで、高い収率が得られた。
【0015】
【実施例2】
滴下ロートを取り付けた2口の300mlの丸底フラスコに1,2−ジクロロエタンを100ml入れ、これにフェニルトリクロロシラン43.0g(0.20mol)を加え、氷冷した。これに三酸化硫黄41.0g(0.51mol)の1,2−ジクロロエタン溶液20mlを、1時間かけて滴下した。滴下後、還流下、85℃で2時間反応を行った。更に還流下、エタノール51.0gを窒素気流下、塩化水素を除きながら1時間かけて滴下し、ついで1,2−ジクロロエタンを留去した。さらに、エタノール51.0gを滴下し、2時間還流し、スルホン酸基含有エトキシシランのエタノール溶液158.0gを得た。このエタノール溶液19.3gを冷却管及び攪拌棒を取り付けた3口の500mlの丸底フラスコにテトラエトキシシラン87.7g(0.42mol)、エタノール100mlを加え混合する。これに水15.1gを30分間で滴下した。次いでオイルバス中で過熱し、60℃で3時間攪拌した。放冷後、水76.0gを混合し、28%アンモニア水10mlを加えたところ、反応液は固化した。室温で4時間放置し、減圧下溶媒を留去した。得られた固体を500mlのビーカーに入れ、2N塩酸200mlを加え、攪拌機を用いて30分間攪拌し、濾別した。この酸処理の操作を再度繰り返した後、漏斗上で純水300mlで洗浄する操作を2回繰り返した。固体を減圧乾燥器に入れ、10mmHgの減圧下、100℃で6時間乾燥させ、スルホン酸基含有有機高分子シロキサンを31.0g得た。この有機高分子シロキサンの固体酸量を上記した処方により、測定した結果、0.48mmol/gであった。従って、得られたスルホン酸の量は15.0mmolとなり、原料のトリクロロフェニルシランに対するスルホン化の収率は60%であった。
【0016】
【比較例1】
特開平11−209472号公報実施例1に記載の方法に従い、スルホン酸基含有エトキシシランのエタノール溶液の合成を行った。 滴下ロートを取り付けた2口の500mlの丸底フラスコにトリクロロフェニルシラン124.0g(0.59mol)、塩化メチレンを200ml入れ、氷冷する。これに三酸化硫黄46.8g(0.59mol)を塩化メチレン100mlに溶解させた溶液を30分かけて滴下した。室温で5時間攪拌した後、オイルバスを用いて加熱し、塩化メチレンを留去した。さらにエタノール161.5gを滴下し、次いで窒素をバブリングし、発生する塩化水素を取り除きながら、50時間還流した。これを放冷し、スルホン酸基含有エトキシシランのエタノール溶液236.0gを得た。このエタノール溶液15.6gを冷却管及び攪拌棒を取り付けた3口の500mlの丸底フラスコにテトラエトキシシラン87.0g(0.42mol)、エタノール100mlを加え混合する。これに水15.0gを30分間で滴下した。次いでオイルバス中で過熱し、60℃で3時間攪拌した。放冷後、水76.0gを混合し、28%アンモニア水10mlを加えたところ、反応液は固化した。室温で4時間放置し、減圧下溶媒を留去した。得られた固体を500mlのビーカーに入れ、2N塩酸200mlを加え、攪拌機を用いて30分間攪拌し、濾別した。この酸処理の操作を再度繰り返した後、漏斗上で純水300mlで洗浄する操作を2回繰り返した。固体を減圧乾燥器に入れ、10mmHgの減圧下、100℃で6時間乾燥させ、スルホン酸基含有有機高分子シロキサンを30.5g得た。この有機高分子シロキサンの固体酸量を上記した処方により、測定した結果、0.52mmol/gであった。従って、得られたスルホン酸の量は15.6mmolとなり、原料のトリクロロフェニルシランに対するスルホン化の収率は40%であった。
【0017】
【比較例2】
滴下ロートを取り付けた2口の300mlの丸底フラスコに1,2−ジクロロエタンを100ml入れ、これにフェニルトリクロロシラン43.0g(0.20mol)を加え、氷冷した。これに三酸化硫黄16.0g(0.20mol)の1,2−ジクロロエタン溶液20mlを、1時間かけて滴下した。滴下後、還流下、85℃で2時間反応を行った。さらにエタノール51.0gを窒素気流下、塩化水素を除きながら1時間かけて滴下し、ついで1,2−ジクロロエタンを留去した。さらに、エタノール51.0gを滴下し、2時間還流し、スルホン酸基含有エトキシシランのエタノール溶液133.0gを得た。このエタノール溶液19.5gを冷却管及び攪拌棒を取り付けた3口の500mlの丸底フラスコにテトラエトキシシラン87.7g(0.42mol)、エタノール100mlを加え混合する。これに水15.1gを30分間で滴下した。次いでオイルバス中で過熱し、60℃で3時間攪拌した。放冷後、水76.0gを混合し、28%アンモニア水10mlを加えたところ、反応液は固化した。室温で4時間放置し、減圧下溶媒を留去した。得られた固体を500mlのビーカーに入れ、2N塩酸200mlを加え、攪拌機を用いて30分間攪拌し、濾別した。この酸処理の操作を再度繰り返した後、漏斗上で純水300mlで洗浄する操作を2回繰り返した。固体を減圧乾燥器に入れ、10mmHgの減圧下、100℃で6時間乾燥させ、スルホン酸基含有有機高分子シロキサンを30.0g得た。この有機高分子シロキサンの固体酸量を上記した処方により、測定した結果、0.50mmol/gであった。従って、得られたスルホン酸の量は15.0mmolとなり、原料のトリクロロフェニルシランに対するスルホン化の収率は50%であった。
【0018】
【発明の効果】
本発明の方法により、高いスルホン化収率でフェニルスルホン酸基を有する有機高分子シロキサンを得ることができ、工業的に極めて有利にスルホン酸基含有有機高分子シロキサンの製造を行うことができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a sulfonic acid group-containing organic high molecular siloxane useful as an ion exchanger and a solid acid catalyst.
[0002]
[Prior art]
Strongly acidic ion exchangers having a sulfonic acid group are widely used, for example, as desalination of water and aqueous solutions, solid acid catalysts in chemical synthesis, and the like. The cation exchangers used in most cases have a polystyrene skeleton and have phenylsulfonic acid groups, commonly referred to as cation exchange resins. Cation exchange resins have low heat resistance, and the upper limit of use is generally 100 to 130 ° C. In addition, it has disadvantages such as breakage due to remarkable swelling property and brittleness of mechanical strength.
[0003]
On the other hand, examples of the inorganic polymer-based ion exchanger include an organic polymer siloxane. JP-A-59-20325 and JP-A-61-272237 disclose sulfonic acid group-containing organic high molecular siloxanes in which sulfonic acid groups are bonded to a silica matrix by an organic spacer group. I have. The sulfonic acid group-containing organic high molecular siloxane is obtained by oxidizing a polysulfide polymer and sulfonating a solid organic high molecular siloxane. Since the sulfonation step is a reaction with a solid, the sulfonation reaction efficiency is low. However, the organic polymer siloxane is eluted during sulfonation depending on the solvent, so that there are many problems in the production method. JP-A-6-207022 discloses a method of synthesizing an aqueous solution of a sulfonic acid group-containing siloxane and hydrolyzing it with another alkoxysilane to produce a sulfonic acid group-containing organic polymer siloxane. . However, in this method, the siloxane aqueous solution having a sulfonic acid group is obviously a polymer, and it is clear that there is a problem in water resistance because the polymer having a high sulfonic acid group concentration is simply immobilized.
[0004]
On the other hand, JP-A-11-209472 discloses a method for producing a sulfonic acid group-containing organic polymer siloxane using a sulfonic acid group-containing alkoxysilane. In this method, the alkoxysilane molecules are uniformly mixed and simultaneously hydrolyzed and co-condensed, so the sulfonic acid groups are considered to be uniformly dispersed, and the water resistance is dramatically improved. ing. As a method for synthesizing a sulfonic acid group-containing alkoxysilane, a phenyl group-containing organosilicon compound is contacted with a sulfonating agent. As sulfonating agents for phenyl groups, sulfuric acid, fuming sulfuric acid, chlorosulfuric acid, sulfur trioxide and the like are generally known, but organosilicon compounds capable of forming a polymeric siloxane matrix have hydrolytic properties. Therefore, non-aqueous chlorosulfuric acid, sulfur trioxide and the like are used. The examples describe a method in which a solution of 1 equivalent of sulfur trioxide in methylene chloride is added dropwise to phenyltrichlorosilane in a methylene chloride solvent, and the mixture is stirred at room temperature for several hours to perform sulfonation. Since it is difficult to isolate an organosilicon compound having a phenylsulfonic acid group, it is mixed with a parent agent capable of forming a silica matrix such as tetraethoxysilane, and an organic polymer siloxane is obtained by hydrolysis and polycondensation. . By measuring the amount of the solid acid, the amount of the phenylsulfonic acid group can be quantified, and the sulfonation yield can be calculated.
[0005]
However, the patent has a problem that the amount of sulfonic acid can be obtained only in a low yield of 40 to 45% with respect to the amount of phenyl group charged. In order to increase the yield of sulfonation, a method of increasing the reaction efficiency by increasing the reaction temperature of sulfonation and excessively adding the amount of the sulfonating agent is naturally considered. Org. Chem. , 20, 455 (1955), it is well known that excess sulfonating agent is not preferable in the yield of sulfonic acid, such as by-product of sulfone, in the sulfonation reaction. Further, since the sulfonating agent is generally a highly reactive reagent used for decomposing organic substances, no attempt has been made to actually use the sulfonating agent in excess.
[0006]
[Problems to be solved by the present invention]
The present invention provides a method for producing a sulfonic acid group-containing polymer siloxane using an organic silicon compound having a phenylsulfonic acid group, by controlling the reaction temperature when sulfonating the phenyl group-containing organic silicon compound to reduce the amount of sulfur trioxide. By using it in excess, a phenylsulfonic acid group-containing organic polymer siloxane having a high sulfonation yield is obtained.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve such a problem, and determined that the phenyl group-containing organosilicon compound was converted into “molar amount of phenyl group-containing organic silicon compound”: “molar amount of sulfur trioxide” = 1: 2 to 2 The present inventors have found that a phenylsulfonic acid group-containing organic high molecular siloxane having a high sulfonation yield can be obtained by contacting with an excessive amount of sulfur trioxide, which is 3, and the present invention has been completed.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The production of an organosilicon compound having a phenylsulfonic acid group in the present invention is carried out by contacting a phenyl group-containing organosilicon compound with sulfur trioxide in the absence of a solvent or in the presence of an inert solvent as described in JP-A-11-209472. Can be obtained. The reaction temperature of the sulfonation is preferably from 30 to 90 ° C, particularly preferably from 30 to 45 ° C.
The phenyl group-containing organosilicon compound has the general formula:
Embedded image
Figure 2004307737
Figure 2004307737
(Wherein n is an integer of 0 or more and 3 or less, and X represents at least one selected from the group consisting of halogen), an organosilicon compound in which a phenyl group-containing hydrocarbon group is directly bonded to silicon. It is.
[0010]
Here, the method for synthesizing an organosilicon compound having a phenylsulfonic acid group in the present invention will be specifically described. An excess amount of sulfur trioxide is added to the phenyl group-containing organosilicon compound [1] in the presence of a solvent. Sulfonation is an exothermic reaction, but the reaction temperature is preferably controlled at 30 to 90 ° C., particularly preferably 30 to 45 ° C., and the mixture is stirred for several hours to obtain a phenylsulfonic acid group-containing organosilicon compound. . Next, an excess amount of alcohol is added to the halogen group, and alkoxylation is performed while removing generated hydrogen chloride, to obtain an alcohol solution containing an alkoxysilane compound having a phenylsulfonic acid group. This solution is mixed with a tetraalkoxysilane capable of forming a silica matrix at an arbitrary ratio, and a phenylsulfonic acid group-containing organic high molecular siloxane is prepared by sol-gel preparation. Sol-gel preparation is a dehydration condensation of a mixed sol obtained by mixing a sulfonic acid group-containing alkoxysilane compound capable of forming a polymer siloxane matrix and a tetraalkoxysilane compound capable of forming a silica matrix and simultaneously hydrolyzing the mixture. This is a preparation method for producing a sulfonic acid group-containing organic high molecular siloxane in which a high molecular siloxane matrix is formed by gelation by the method.
[0011]
Here, the mixed gelation in the present invention will be described. The mixed gelation in the present invention is sufficiently achieved by a general mixed sol-gel reaction of different alkoxysilanes. As a specific example of a mixed gelation method which is easy to carry out, a desired amount of the above-mentioned alkoxysilane compound having a sulfonic acid group as an acid component of the catalyst is charged, and a tetraalkoxysilane compound such as tetraethoxysilane is added. Mix, and if necessary, make a uniform mixed solution using a solvent such as ethanol. After adding an amount of water necessary for hydrolysis of the alkoxy group thereto, the mixture is reacted under acidic conditions at a temperature of usually 10 to 200 ° C., preferably 30 to 100 ° C. for 1 hour to 3 weeks with stirring. Let it. The obtained high-viscosity liquid is generally called silica sol. Excess water and aqueous ammonia are added to the above sol with respect to the amount of water necessary for hydrolysis of the alkoxy group, and under basic conditions, the temperature is usually 10 to 200 ° C, preferably 30 to 100 ° C. Gel at 1 ° C for 1 hour to 3 weeks. In this case, if necessary, the mixture may be heated and stirred to ripen it for a long time.
[0012]
In carrying out the gelation, the gelation may be carried out by diluting in a medium such as an alcohol or an aliphatic saturated hydrocarbon (hexane, heptane, etc.) which is inert to the sol. The obtained gel can be isolated by filtration or distilling off the solvent. Since the sulfonic acid in this gel is an ammonium salt type, it must be returned to the acid form by an acid treatment with hydrochloric acid or the like in order to use it as an ion exchanger and a solid acid catalyst. This organic high molecular siloxane is a formula generally used for measuring the acid content of cation exchange resin, that is, the amount of hydrochloric acid released is determined by ion-exchange with an excess sodium chloride aqueous solution with respect to the expected acid content. It is possible to obtain the amount of the sulfonic acid.
[0013]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, this embodiment is merely an example, and the present invention is not limited thereto. In the examples, the obtained sulfonation yield was represented by the sulfonation yield (the amount of phenylsulfonic acid groups of the prepared organic polymer siloxane with respect to the charged phenyltrichlorosilane).
[0014]
Embodiment 1
100 ml of methylene chloride was placed in a 300 ml round bottom flask equipped with a dropping funnel and 39.1 g (0.19 mol) of phenyltrichlorosilane was added thereto, followed by cooling with ice. 20 ml of a methylene chloride solution containing 37.3 g (0.47 mol) of sulfur trioxide was added dropwise thereto over 1 hour. After the addition, the reaction was carried out at 45 ° C. for 2 hours under reflux. Under reflux, 46.0 g of ethanol was added dropwise over 1 hour while removing hydrogen chloride under a nitrogen stream, and then methylene chloride was distilled off. Further, 46.0 g of ethanol was added dropwise thereto and refluxed for 2 hours to obtain 146.0 g of an ethanol solution of ethoxysilane containing a phenylsulfonic acid group. Into a three-necked 500 ml round bottom flask equipped with a cooling tube and a stirring rod, 83.2 g (0.40 mol) of tetraethoxysilane and 100 ml of ethanol were added and mixed with 22.0 g of the ethanol solution. To this was added 14.4 g of water dropwise over 30 minutes. Then, the mixture was heated in an oil bath and stirred at 60 ° C. for 3 hours. After cooling, 72.0 g of water was mixed and 10 ml of 28% aqueous ammonia was added, and the reaction solution was solidified. After leaving at room temperature for 4 hours, the solvent was distilled off under reduced pressure. The obtained solid was placed in a 500 ml beaker, 200 ml of 2N hydrochloric acid was added, the mixture was stirred for 30 minutes using a stirrer, and filtered. After repeating the operation of the acid treatment, the operation of washing with 300 ml of pure water on the funnel was repeated twice. The solid was placed in a vacuum dryer and dried at 100 ° C. for 6 hours under a reduced pressure of 10 mmHg to obtain 30.0 g of a sulfonic acid group-containing organic high molecular siloxane. As a result of measuring the solid acid amount of this organic polymer siloxane by the above-mentioned recipe, it was 0.65 mmol / g. Accordingly, the amount of the obtained sulfonic acid was 19.5 mmol, the sulfonation yield relative to the raw material trichlorophenylsilane was 70%, and the sulfonating agent was used in excess and the sulfonation reaction temperature was set to 45 ° C. , High yields were obtained.
[0015]
Embodiment 2
100 ml of 1,2-dichloroethane was put into a two-necked 300 ml round bottom flask equipped with a dropping funnel, and 43.0 g (0.20 mol) of phenyltrichlorosilane was added thereto, followed by cooling with ice. To this, 20 ml of a solution of 41.0 g (0.51 mol) of sulfur trioxide in 1,2-dichloroethane was added dropwise over 1 hour. After the addition, the reaction was carried out at 85 ° C. for 2 hours under reflux. Further, under reflux, 51.0 g of ethanol was added dropwise over 1 hour while removing hydrogen chloride under a nitrogen stream, and then 1,2-dichloroethane was distilled off. Further, 51.0 g of ethanol was added dropwise, and the mixture was refluxed for 2 hours to obtain 158.0 g of an ethanol solution of sulfonic acid group-containing ethoxysilane. Into a three-necked 500 ml round bottom flask equipped with a cooling tube and a stirring rod, 87.3 g (0.42 mol) of tetraethoxysilane and 100 ml of ethanol are mixed with 19.3 g of the ethanol solution. To this, 15.1 g of water was added dropwise over 30 minutes. Then, the mixture was heated in an oil bath and stirred at 60 ° C. for 3 hours. After cooling, 76.0 g of water was mixed, and 10 ml of 28% aqueous ammonia was added, whereby the reaction solution was solidified. After leaving at room temperature for 4 hours, the solvent was distilled off under reduced pressure. The obtained solid was placed in a 500 ml beaker, 200 ml of 2N hydrochloric acid was added, the mixture was stirred for 30 minutes using a stirrer, and filtered. After repeating the operation of the acid treatment, the operation of washing with 300 ml of pure water on the funnel was repeated twice. The solid was placed in a vacuum drier and dried at 100 ° C. for 6 hours under a reduced pressure of 10 mmHg to obtain 31.0 g of a sulfonic acid group-containing organic high molecular siloxane. As a result of measuring the amount of solid acid of this organic polymer siloxane by the above-mentioned recipe, it was 0.48 mmol / g. Therefore, the amount of the obtained sulfonic acid was 15.0 mmol, and the yield of sulfonation based on the starting material trichlorophenylsilane was 60%.
[0016]
[Comparative Example 1]
According to the method described in Example 1 of JP-A-11-209472, an ethanol solution of sulfonic acid group-containing ethoxysilane was synthesized. 124.0 g (0.59 mol) of trichlorophenylsilane and 200 ml of methylene chloride are placed in a two-necked 500 ml round bottom flask equipped with a dropping funnel, and cooled with ice. To this, a solution in which 46.8 g (0.59 mol) of sulfur trioxide was dissolved in 100 ml of methylene chloride was added dropwise over 30 minutes. After stirring at room temperature for 5 hours, the mixture was heated using an oil bath to distill off methylene chloride. Further, 161.5 g of ethanol was added dropwise, and the mixture was refluxed for 50 hours while bubbling nitrogen to remove generated hydrogen chloride. This was allowed to cool, and 236.0 g of an ethanol solution of sulfonic acid group-containing ethoxysilane was obtained. Into a three-necked 500 ml round bottom flask equipped with a condenser and a stirring rod, 15.6 g of this ethanol solution was mixed with 87.0 g (0.42 mol) of tetraethoxysilane and 100 ml of ethanol and mixed. To this, 15.0 g of water was added dropwise over 30 minutes. Then, the mixture was heated in an oil bath and stirred at 60 ° C. for 3 hours. After cooling, 76.0 g of water was mixed, and 10 ml of 28% aqueous ammonia was added, whereby the reaction solution was solidified. After leaving at room temperature for 4 hours, the solvent was distilled off under reduced pressure. The obtained solid was placed in a 500 ml beaker, 200 ml of 2N hydrochloric acid was added, the mixture was stirred for 30 minutes using a stirrer, and filtered. After repeating the operation of the acid treatment, the operation of washing with 300 ml of pure water on the funnel was repeated twice. The solid was placed in a vacuum dryer and dried at 100 ° C. for 6 hours under a reduced pressure of 10 mmHg to obtain 30.5 g of a sulfonic acid group-containing organic polymer siloxane. As a result of measuring the solid acid amount of this organic polymer siloxane by the above-mentioned recipe, it was 0.52 mmol / g. Therefore, the amount of the obtained sulfonic acid was 15.6 mmol, and the yield of sulfonation based on the raw material trichlorophenylsilane was 40%.
[0017]
[Comparative Example 2]
100 ml of 1,2-dichloroethane was put into a two-necked 300 ml round bottom flask equipped with a dropping funnel, and 43.0 g (0.20 mol) of phenyltrichlorosilane was added thereto, followed by cooling with ice. To this, 20 ml of a solution of 16.0 g (0.20 mol) of sulfur trioxide in 1,2-dichloroethane was added dropwise over 1 hour. After the addition, the reaction was carried out at 85 ° C. for 2 hours under reflux. Further, 51.0 g of ethanol was added dropwise over 1 hour while removing hydrogen chloride under a nitrogen stream, and then 1,2-dichloroethane was distilled off. Further, 51.0 g of ethanol was added dropwise and refluxed for 2 hours to obtain 133.0 g of an ethanol solution of sulfonic acid group-containing ethoxysilane. To a three-necked 500 ml round-bottomed flask equipped with a cooling tube and a stirring rod, 19.7 g of this ethanol solution was mixed with 87.7 g (0.42 mol) of tetraethoxysilane and 100 ml of ethanol, and mixed. To this, 15.1 g of water was added dropwise over 30 minutes. Then, the mixture was heated in an oil bath and stirred at 60 ° C. for 3 hours. After cooling, 76.0 g of water was mixed, and 10 ml of 28% aqueous ammonia was added, whereby the reaction solution was solidified. After leaving at room temperature for 4 hours, the solvent was distilled off under reduced pressure. The obtained solid was placed in a 500 ml beaker, 200 ml of 2N hydrochloric acid was added, the mixture was stirred for 30 minutes using a stirrer, and filtered. After repeating this acid treatment operation, the operation of washing with 300 ml of pure water on the funnel was repeated twice. The solid was placed in a vacuum dryer and dried at 100 ° C. for 6 hours under a reduced pressure of 10 mmHg to obtain 30.0 g of a sulfonic acid group-containing organic high molecular siloxane. As a result of measuring the solid acid amount of this organic polymer siloxane by the above-mentioned recipe, it was 0.50 mmol / g. Therefore, the amount of the obtained sulfonic acid was 15.0 mmol, and the yield of sulfonation based on the raw material trichlorophenylsilane was 50%.
[0018]
【The invention's effect】
According to the method of the present invention, an organic high molecular siloxane having a phenylsulfonic acid group can be obtained with a high sulfonation yield, and the production of an organic high molecular siloxane containing a sulfonic acid group can be extremely advantageously performed industrially.

Claims (1)

高分子シロキサンマトリックスを形成しうる一般式[1]
Figure 2004307737
Figure 2004307737
(式中nは0以上3以下の整数であり、Xはハロゲンよりなる群から選ばれた少なくとも1種を表す)で表されるフェニル基を有する有機珪素化合物と三酸化硫黄を、[有機珪素化合物のモル数]:[三酸化硫黄のモル数]=1:2〜3の範囲で接触させ、スルホン化した有機珪素化合物を原料として用いることを特徴とするスルホン酸基含有有機高分子シロキサンの製造方法。
General formula [1] capable of forming a polymer siloxane matrix
Figure 2004307737
Figure 2004307737
(Wherein n is an integer of 0 or more and 3 or less, and X represents at least one selected from the group consisting of halogen), and an organic silicon compound having a phenyl group and sulfur trioxide represented by [organic silicon The number of moles of the compound]: [the number of moles of sulfur trioxide] = 1: 2 to 3, and the sulfonated organic silicon compound is used as a raw material. Production method.
JP2003106167A 2003-04-10 2003-04-10 Method for producing sulfonic acid group-containing organic polymer siloxane Pending JP2004307737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106167A JP2004307737A (en) 2003-04-10 2003-04-10 Method for producing sulfonic acid group-containing organic polymer siloxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106167A JP2004307737A (en) 2003-04-10 2003-04-10 Method for producing sulfonic acid group-containing organic polymer siloxane

Publications (1)

Publication Number Publication Date
JP2004307737A true JP2004307737A (en) 2004-11-04

Family

ID=33468435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106167A Pending JP2004307737A (en) 2003-04-10 2003-04-10 Method for producing sulfonic acid group-containing organic polymer siloxane

Country Status (1)

Country Link
JP (1) JP2004307737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224299A (en) * 2006-02-21 2007-09-06 Samsung Sdi Co Ltd Polysiloxane compound, its preparation process, polymer electrolyte membrane, membrane electrode assembly and fuel cell
EP2283064A1 (en) * 2008-05-23 2011-02-16 University Of Ontario Institute Of Technology Sulfonated poly 2-(phenyl ethyl) siloxane polymer electrolyte membranes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224299A (en) * 2006-02-21 2007-09-06 Samsung Sdi Co Ltd Polysiloxane compound, its preparation process, polymer electrolyte membrane, membrane electrode assembly and fuel cell
US7833665B2 (en) 2006-02-21 2010-11-16 Samsung Sdi Co., Ltd. Polysiloxane compound containing sulfonic acid groups, method of preparing the same and fuel cell including the same
EP2283064A1 (en) * 2008-05-23 2011-02-16 University Of Ontario Institute Of Technology Sulfonated poly 2-(phenyl ethyl) siloxane polymer electrolyte membranes
EP2283064A4 (en) * 2008-05-23 2012-02-01 Univ Ontario Inst Of Technology Sulfonated poly 2-(phenyl ethyl) siloxane polymer electrolyte membranes

Similar Documents

Publication Publication Date Title
US6100417A (en) Functionalizing olefin bearing silsesquioxanes
US9982095B2 (en) Substituted organopolysiloxanes and use thereof
JP5449782B2 (en) Substituted organopolysiloxane and use thereof
US20030055193A1 (en) Process for the functionalization of polyhedral oligomeric silsesquioxanes
ES2272711T3 (en) ORGANOPOLISILOXANOS CONTAINING PHOSPHONIC GROUPS, PROCEDURES FOR THE PRODUCTION AND USE OF THE SAME.
US8148562B2 (en) Substituted organopolysiloxanes and use thereof
KR19980080458A (en) Method for producing SiOH-functional carbosilane dendrimer
JP3285976B2 (en) Process for producing aqueous solution of sulfonated organosilicon compound and insoluble acidic catalyst and ion exchanger comprising the solution and starting material for inorganic surface modifier
JP2001233812A (en) Method for producing bisphenol a
CN109153691A (en) Polymerism silane compound
JP2004307737A (en) Method for producing sulfonic acid group-containing organic polymer siloxane
JPH09110989A (en) Formed organopolysiloxane containing sulfonate and mercapto groups, production thereof, and condensation catalyst and bisphenol a synthesis catalyst which comprise the oranosiloxane or contain it
JPH08113649A (en) Production of low-molecular-weight silanolated organosiloxane
JP2006282725A (en) Silicon-containing new optically active compound
JP2011246363A (en) Method for producing low-molecular weight straight-chain organopolysiloxane having silanol groups at both terminals
JPH0940681A (en) Production of alkoxysiloxane
JP4371388B2 (en) Organopolymer siloxane catalyst
JPH11209472A (en) Preparation of sulfonic group-containing organic macromolecular siloxane
JP6583050B2 (en) Method for producing organopolysiloxane
JP3252642B2 (en) Method for producing low molecular weight organosilane or siloxane having silanol group
JP2004346133A (en) Method for producing sulfonic group-containing organic polymer siloxane
JP2013185071A (en) Nano composite particle and method for manufacturing the same
JP2668496B2 (en) Novel method for producing silicon-based powder material
JP4571393B2 (en) Organopolymer siloxane and its use
JP3761342B2 (en) Method for regenerating catalyst for bisphenol A production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106