JP3761342B2 - Method for regenerating catalyst for bisphenol A production - Google Patents

Method for regenerating catalyst for bisphenol A production Download PDF

Info

Publication number
JP3761342B2
JP3761342B2 JP32540298A JP32540298A JP3761342B2 JP 3761342 B2 JP3761342 B2 JP 3761342B2 JP 32540298 A JP32540298 A JP 32540298A JP 32540298 A JP32540298 A JP 32540298A JP 3761342 B2 JP3761342 B2 JP 3761342B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrocarbon group
group
containing hydrocarbon
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32540298A
Other languages
Japanese (ja)
Other versions
JP2000140645A (en
Inventor
英 主 大久保
井 和 明 松
村 一 夫 高
井 敏 浩 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP32540298A priority Critical patent/JP3761342B2/en
Publication of JP2000140645A publication Critical patent/JP2000140645A/en
Application granted granted Critical
Publication of JP3761342B2 publication Critical patent/JP3761342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は2,2‘−ビス(4−ヒドロキシフェニル)プロパン(以下ビスフェノールAと呼称する)製造用触媒であるスルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を有する有機高分子シロキサンを反応に使用するに際し、活性劣化した触媒の再生方法に関するものである。
【0002】
【従来の技術】
ビスフェノールAは通常、陽イオン交換樹脂もしくはメルカプトアルキルアミンを部分的に中和し、メルカプト基を固定化したメルカプト変性陽イオン交換樹脂等の固体触媒にアセトンとモル比にして8〜15倍の過剰のフェノールを通液するいわゆる固定床流通反応の形態で連続的に製造されている。また、イオン交換樹脂触媒以外の固体触媒として、特開平8−208545号、DE19536363号にスルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を有する有機高分子シロキサン触媒が記載されている。有機高分子シロキサン触媒はイオン交換樹脂触媒と比較して耐熱性が高く、触媒活性及び選択性も非常に高い固体触媒であることが知られている。固体触媒を用いる不均一触媒による製造法は、その使用に際して徐々に触媒活性が劣化し、ある期間使用した後には新しい触媒と交換しなければならない。そのような触媒交換は多くの手間を要し、また長期間製造を停止しなければならず、経済的ではない。従って活性劣化した触媒を工業的に有利に再生する方法の開発が強く望まれていた。
【0003】
そのような触媒再生法として、特開平10−174880号明細書には活性劣化したイオン交換樹脂触媒を水/フェノール混合液で洗浄処理することで触媒活性が完全に再生したことが記載されている。筆者らは活性劣化の原因を副生する重質物と考えており、水/フェノール混合液でそれら重質物を除去することで触媒活性が回復したと記述している。またこの時、水もしくはフェノールを単独で用いた場合では、触媒活性は回復せず、水/フェノール混合液でなければ、完全に触媒活性を回復させることはできないとも記述してある。
【0004】
しかしながら、酸触媒において、水は酸点に付加して酸強度を低下させ、触媒活性を著しく低下させる被毒物質であり、水/フェノール混合液による洗浄作業後、ビスフェノールA製造を再開するためには酸点に付加した多量の水を取り除かなければならない。特に本反応で通常用いられる芳香族スルホン酸の場合、酸強度が非常に強いため、水は強く付加しており、取り除くためには多大な労力を必要とする。また、芳香族スルホン酸は水により加水分解を受け、スルホン酸が脱離することが良く知られている。したがって、再生処理に用いるものとして水は不都合な物質であり、水/フェノール混合液で洗浄処理する方法は工業的な触媒再生方法とはいえない。工業的には原料の一つでもあるフェノールのみを用いることが最も有利であるが、イオン交換樹脂は耐熱性が低く、80〜120℃といったその耐熱温度以下でのフェノールによる洗浄の効果はほとんどなく、触媒活性を完全に回復させることは困難であった。
【0005】
【発明が解決しようとする課題】
本発明は、スルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を共に有する有機高分子シロキサン触媒の存在下、アセトンとフェノールの脱水縮合によりビスフェノールAを製造するに際し、活性劣化した有機高分子シロキサン触媒を水を用いることなく、工業的に有利に再生する方法を提供する。
【0006】
【課題を解決するための手段】
本発明者らは、スルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を共に有する有機高分子シロキサンの存在下、アセトンとフェノールの脱水縮合によりビスフェノールAを製造するに際し、活性劣化した有機高分子シロキサン触媒を工業的に有利に再生する方法を鋭意検討した結果、有機高分子シロキサン触媒の耐熱性の高さに着目し、活性劣化した有機高分子シロキサン触媒を、120〜250℃で原料の一つであるフェノールで洗浄することを特徴とする触媒の再生方法を見出し、本発明を完成するに至った。
【0007】
【発明の実施の形態】
本発明で用いるスルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を有する有機高分子シロキサン触媒とは、特開平8−208545号、DE19536363号に記載してある、シロキサン結合からなるシリカマトリックス中に部分的にスルホン酸基を有する炭化水素基とメルカプト基を有する炭化水素基が直接シリカマトリックス中のケイ素原子と炭素−ケイ素結合により結合した構造を有する有機高分子シロキサンである。
このような有機高分子シロキサン触媒の調製方法としては例えば以下の方法で調製することが可能である。しかしながら、本発明で用いるスルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を有する有機高分子シロキサン触媒はこれら調製法のみに限定されることはない。
【0008】
実施しやすい調製方法としては、例えば、
(1)スルホン酸基含有炭化水素基を有するアルコキシシランとメルカプト基含有炭化水素基を有するアルコキシシランとテトラアルコキシシランとを任意の割合で混合し、加水分解させて共縮合する調製法、
(2)水溶性のスルホン酸基含有炭化水素基を有するアルコキシシランの加水分解物とメルカプト基含有炭化水素基を有するアルコキシシランと希釈剤としてテトラアルコキシシランとを任意の割合で混合し、加水分解させて共縮合する調製法
といった、いわゆるアルコキシシランのゾル−ゲル法による調製法(1)(2)と、
(3)スルホン酸基含有炭化水素基を有する有機高分子シロキサンに存在するシラノール基にメルカプト基含有炭化水素基を有するアルコキシシランをシリル化し、メルカプト基を固定化する、いわゆるシリル化による調製法(3)が知られている。
本発明はこれらの調製法によって得られたスルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を有する有機高分子シロキサン触媒をビスフェノールA製造反応に使用する。
【0009】
本発明を実施するには、ビスフェノールA製造用反応器である有機高分子シロキサン触媒を充填した固定床流通反応装置をそのまま用いて行う。
活性劣化した有機高分子シロキサン触媒に原料の一つであるフェノールのみを通液し、昇温する。この場合の滞留時間は特に限定されないが、通常0.1秒〜30時間、好ましくは0.5秒〜15時間である。またその温度は120℃〜250℃、好ましくは140℃から250℃、更に好ましくは150℃〜230℃で行う。処理温度が極端に低すぎると触媒活性を反応開始初期レベルまで回復させるには極端に長い処理時間を必要とし、経済的でない。
また一方、処理温度が極端に高すぎるとメルカプト基の分解等が起こるために触媒が失活する危険がある。本再生処理に用いるフェノールの総量は触媒重量に対し1〜20倍、好ましくは2〜10倍である。再生処理後、本反応器はそのまま再びビスフェノールA製造用として用いることができる。
【0010】
【実施例】
以下、本発明を実施例により、具体的に説明する。しかしながら、本発明はこれら実施例のみに限定されるものではない。
(a)スルホン酸基含有アルコキシシランの合成。
滴下ロートを取り付けた2口の500mlの丸底フラスコに塩化メチレンを200ml入れ、これにフェニルトリクロロシラン124.02g(0.585mol)を加え、氷冷した。これに無水硫酸46.80g(0.585mol)を塩化メチレン100mlに溶解させた溶液を窒素気流下30分かけて滴下した後、氷浴を取り外し室温で数時間攪拌し、スルホン化を行った。滴下ロートを取り外し、窒素気流下、油浴を用いて120℃に加熱し、塩化メチレン、及び未反応の無水硫酸を留去した。放冷後、室温でエタノール161.50gを30分かけて滴下し、次いで窒素でバブリングしながら数時間還流して発生する塩化水素を取り除きながらエトキシ化反応を行った。得られた不純物を含むフェニルスルホン酸基含有エトキシシランのエタノール溶液238.60gを以下のスルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を有する有機高分子シロキサン触媒のゾルゲル調製におけるスルホン酸成分の原料として用いた。
(b)スルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を有する有機高分子シロキサンの調製。
【0011】
攪拌棒を取り付けた2口の500mlの丸底フラスコに上記したスルホン酸基含有エトキシシランのエタノール溶液26.00g、テトラエトキシシラン35.50g(170.67mmol)、メルカプトプロピルトリメトキシシラン6.72g(34.28mmol)、エタノール30mlを入れて混合した。これに水7.53g(0.418mol)を30分かけて滴下した。ついでこれを加熱し、65℃で4時間攪拌した。放冷後、28%アンモニア水と水75mlを混合した水溶液を滴下し、室温で4時間攪拌した。さらに65℃で3日間攪拌し、熟成させた。これをエバポレーターで減圧留去し、白色の固体を得た。ついで2Nの塩酸200mlを加え、室温で30分間攪拌し、プロトン型に戻した。濾別後、イオン交換水500mlで洗浄する操作を10回繰り返して塩酸を取り除いた。最後に減圧下、100℃で6時間乾燥した。以上の操作によりスルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を有する有機高分子シロキサン30.00gを得た。本触媒の固体酸量を測定したところ、1.01meq/gであった。
【0012】
実施例1
上記した有機高分子シロキサン触媒10.0g(20cc)を円筒形反応器(直径16mm、長さ100mm)に充填した。この反応器の下側からモル比が12:1のフェノール/アセトン混合物を20.00g/hrの速度で触媒中を通過させた。反応温度は75℃とし、20時間後に得られた反応生成物を分析した結果、アセトンの転化率は100%であり、ビスフェノールAの選択率は95%であった。さらに反応を継続し、1000時間後に得られた反応液を分析した結果、アセトンの転化率は80%に低下し、触媒活性の低下が認められた。次に反応を停止し、反応器の下側からフェノールを10.00g/hの速度で触媒中を通過させた。処理温度は150℃とし、総フェノール量400gを通液した。
(フェノール滞留時間: 2時間)
次に反応を再開するために反応器の温度を下げ、再び反応器の下側からモル比が12:1のフェノール/アセトン混合物を20.00g/hrの速度で触媒中を通過させた。反応温度は75℃とし、反応再開後20時間後に得られた反応液を分析した結果、アセトンの転化率は100%、ビスフェノールAの選択率は95%であった。上記した触媒再生法により触媒活性は完全に回復したことが示された。
【0013】
比較例1
実施例1においてフェノールによる触媒再生の処理温度を100℃にした。反応再開後20時間後に得られた反応液を分析した結果、アセトンの転化率は85%であり、触媒活性を完全に回復させることはできなかった。
【0014】
【発明の効果】
本発明によれば、ビスフェノールA製造用触媒を充填した反応器に120〜250℃で原料の一つであるフェノールのみを通液することにより、活性劣化した有機高分子シロキサン触媒を容易に再生することができる。したがって、触媒交換に見られるような多くの手間は必要とされず、経済的に触媒再生を行うことができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group, which is a catalyst for producing 2,2′-bis (4-hydroxyphenyl) propane (hereinafter referred to as bisphenol A). The present invention relates to a method for regenerating a catalyst whose activity has deteriorated when used in a reaction.
[0002]
[Prior art]
Bisphenol A is usually an excess of 8 to 15 times in a molar ratio with acetone in a solid catalyst such as a mercapto-modified cation exchange resin in which a cation exchange resin or a mercaptoalkylamine is partially neutralized and a mercapto group is immobilized. In the form of a so-called fixed bed flow reaction in which phenol is passed through. Moreover, as a solid catalyst other than an ion exchange resin catalyst, JP-A-8-208545 and DE195536363 describe an organic polymer siloxane catalyst having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group. It is known that the organic polymer siloxane catalyst is a solid catalyst having high heat resistance and very high catalytic activity and selectivity as compared with the ion exchange resin catalyst. In the production method using a heterogeneous catalyst using a solid catalyst, the catalytic activity gradually deteriorates during its use, and after a certain period of use, it must be replaced with a new catalyst. Such a catalyst exchange requires a lot of labor and must be stopped for a long time, which is not economical. Accordingly, there has been a strong demand for the development of a method for industrially regenerating an activated catalyst.
[0003]
As such a catalyst regeneration method, Japanese Patent Application Laid-Open No. 10-174880 describes that the catalytic activity is completely regenerated by washing the ion-exchange resin catalyst whose activity has deteriorated with a water / phenol mixture. . The authors consider that the cause of the activity degradation is a heavy product that is a by-product, and that the catalytic activity has been recovered by removing the heavy product with a water / phenol mixture. At this time, it is also described that when water or phenol is used alone, the catalytic activity is not recovered, and the catalytic activity cannot be completely recovered unless it is a water / phenol mixture.
[0004]
However, in an acid catalyst, water is a poisonous substance that adds to the acid sites to reduce the acid strength and significantly lowers the catalytic activity. In order to resume production of bisphenol A after washing with a water / phenol mixture, Must remove the large amount of water added to the acid sites. In particular, in the case of the aromatic sulfonic acid usually used in this reaction, since the acid strength is very strong, water is strongly added, and much labor is required to remove it. In addition, it is well known that aromatic sulfonic acid is hydrolyzed by water and sulfonic acid is eliminated. Accordingly, water is an inconvenient substance for use in the regeneration treatment, and the method of washing with a water / phenol mixture is not an industrial catalyst regeneration method. Industrially, it is most advantageous to use only phenol, which is one of the raw materials, but ion-exchange resins have low heat resistance, and there is almost no effect of washing with phenol below the heat-resistant temperature such as 80 to 120 ° C. It was difficult to completely recover the catalytic activity.
[0005]
[Problems to be solved by the invention]
The present invention relates to an organic polymer whose activity has deteriorated in producing bisphenol A by dehydration condensation of acetone and phenol in the presence of an organic polymer siloxane catalyst having both a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group. Provided is a method for industrially regenerating a siloxane catalyst without using water.
[0006]
[Means for Solving the Problems]
In the production of bisphenol A by dehydration condensation of acetone and phenol in the presence of an organic polymer siloxane having both a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group, the present inventors As a result of intensive studies on a method for industrially regenerating the molecular siloxane catalyst, attention was paid to the high heat resistance of the organic polymer siloxane catalyst. The present inventors have found a catalyst regeneration method characterized by washing with one phenol, and have completed the present invention.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The organic polymer siloxane catalyst having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group to be used in the present invention is described in JP-A-8-208545 and DE195536363 in a silica matrix comprising a siloxane bond. An organic polymer siloxane having a structure in which a hydrocarbon group having a sulfonic acid group and a hydrocarbon group having a mercapto group are directly bonded to a silicon atom in a silica matrix by a carbon-silicon bond.
Such an organic polymer siloxane catalyst can be prepared, for example, by the following method. However, the organic polymer siloxane catalyst having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group used in the present invention is not limited to these preparation methods.
[0008]
Examples of easy preparation methods include:
(1) A preparation method in which an alkoxysilane having a sulfonic acid group-containing hydrocarbon group, an alkoxysilane having a mercapto group-containing hydrocarbon group, and a tetraalkoxysilane are mixed at an arbitrary ratio, hydrolyzed, and co-condensed.
(2) Hydrolysis of an alkoxysilane having a water-soluble sulfonic acid group-containing hydrocarbon group, an alkoxysilane having a mercapto group-containing hydrocarbon group, and tetraalkoxysilane as a diluent at an arbitrary ratio, and hydrolysis A preparation method (1) (2) of a so-called alkoxysilane sol-gel method, such as a preparation method for co-condensation by
(3) Preparation method by so-called silylation, in which an alkoxysilane having a mercapto group-containing hydrocarbon group is silylated to a silanol group present in an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group, and the mercapto group is immobilized ( 3) is known.
In the present invention, an organic polymer siloxane catalyst having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group obtained by these preparation methods is used in a bisphenol A production reaction.
[0009]
In order to carry out the present invention, a fixed bed flow reactor filled with an organic polymer siloxane catalyst which is a reactor for producing bisphenol A is used as it is.
Only phenol, which is one of the raw materials, is passed through the activated organic polymer siloxane catalyst and the temperature is raised. The residence time in this case is not particularly limited, but is usually 0.1 second to 30 hours, preferably 0.5 second to 15 hours. The temperature is 120 ° C to 250 ° C, preferably 140 ° C to 250 ° C, more preferably 150 ° C to 230 ° C. If the treatment temperature is too low, an extremely long treatment time is required to restore the catalyst activity to the initial reaction start level, which is not economical.
On the other hand, if the treatment temperature is too high, the decomposition of the mercapto group occurs and the catalyst may be deactivated. The total amount of phenol used in the regeneration treatment is 1 to 20 times, preferably 2 to 10 times the catalyst weight. After the regeneration treatment, the reactor can be used again for producing bisphenol A as it is.
[0010]
【Example】
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
(A) Synthesis of sulfonic acid group-containing alkoxysilane.
200 ml of methylene chloride was placed in a two-necked 500 ml round bottom flask equipped with a dropping funnel, and 124.02 g (0.585 mol) of phenyltrichlorosilane was added to the flask and ice-cooled. A solution prepared by dissolving 46.80 g (0.585 mol) of anhydrous sulfuric acid in 100 ml of methylene chloride was dropped into this over 30 minutes under a nitrogen stream, and then the ice bath was removed and the mixture was stirred at room temperature for several hours for sulfonation. The dropping funnel was removed, and the mixture was heated to 120 ° C. using an oil bath under a nitrogen stream to distill off methylene chloride and unreacted anhydrous sulfuric acid. After allowing to cool, 161.50 g of ethanol was added dropwise at room temperature over 30 minutes, followed by ethoxylation while removing hydrogen chloride generated by refluxing for several hours while bubbling with nitrogen. The sulfonic acid component in the sol-gel preparation of the organic polymer siloxane catalyst having the following sulfonic acid group-containing hydrocarbon group and mercapto group-containing hydrocarbon group was obtained by using 238.60 g of the obtained phenylsulfonic acid group-containing ethoxysilane ethanol solution. Used as a raw material.
(B) Preparation of an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group.
[0011]
In a two-necked 500 ml round bottom flask equipped with a stir bar, 26.00 g of the sulfonic acid group-containing ethoxysilane ethanol solution, 35.50 g (170.67 mmol) of tetraethoxysilane, 6.72 g of mercaptopropyltrimethoxysilane ( 34.28 mmol) and 30 ml of ethanol were mixed. 7.53 g (0.418 mol) of water was added dropwise thereto over 30 minutes. This was then heated and stirred at 65 ° C. for 4 hours. After allowing to cool, an aqueous solution in which 28% ammonia water and 75 ml of water were mixed was added dropwise and stirred at room temperature for 4 hours. Further, the mixture was stirred at 65 ° C. for 3 days and aged. This was distilled off under reduced pressure with an evaporator to obtain a white solid. Next, 200 ml of 2N hydrochloric acid was added, and the mixture was stirred at room temperature for 30 minutes to return to the proton type. After separation by filtration, the operation of washing with 500 ml of ion exchange water was repeated 10 times to remove hydrochloric acid. Finally, it was dried at 100 ° C. under reduced pressure for 6 hours. By the above operation, 30.00 g of an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group was obtained. It was 1.01 meq / g when the solid acid amount of this catalyst was measured.
[0012]
Example 1
A cylindrical reactor (diameter: 16 mm, length: 100 mm) was charged with 10.0 g (20 cc) of the organic polymer siloxane catalyst described above. From the bottom of the reactor, a phenol / acetone mixture having a molar ratio of 12: 1 was passed through the catalyst at a rate of 20.00 g / hr. The reaction temperature was 75 ° C., and the reaction product obtained after 20 hours was analyzed. As a result, the conversion of acetone was 100% and the selectivity for bisphenol A was 95%. Further, the reaction was continued, and the reaction solution obtained after 1000 hours was analyzed. As a result, the conversion of acetone was reduced to 80%, and a decrease in catalytic activity was observed. The reaction was then stopped and phenol was passed through the catalyst from the bottom of the reactor at a rate of 10.00 g / h. The treatment temperature was 150 ° C. and 400 g of total phenol was passed through.
(Phenol residence time: 2 hours)
Next, the temperature of the reactor was lowered to restart the reaction, and a phenol / acetone mixture having a molar ratio of 12: 1 was again passed through the catalyst from the lower side of the reactor at a rate of 20.00 g / hr. The reaction temperature was 75 ° C., and the reaction solution obtained 20 hours after the resumption of the reaction was analyzed. As a result, the conversion of acetone was 100% and the selectivity for bisphenol A was 95%. It was shown that the catalyst activity was completely recovered by the catalyst regeneration method described above.
[0013]
Comparative Example 1
In Example 1, the treatment temperature for catalyst regeneration with phenol was set to 100 ° C. As a result of analyzing the reaction solution obtained 20 hours after the reaction was resumed, the conversion rate of acetone was 85%, and the catalyst activity could not be completely recovered.
[0014]
【The invention's effect】
According to the present invention, only the phenol, which is one of the raw materials, is passed through a reactor filled with a catalyst for producing bisphenol A at 120 to 250 ° C., thereby easily regenerating the organic polymer siloxane catalyst whose activity has deteriorated. be able to. Therefore, a lot of labor as seen in catalyst exchange is not required, and catalyst regeneration can be performed economically.

Claims (1)

スルホン酸基含有炭化水素基とメルカプト基含有炭化水素基を共に有する有機高分子シロキサン触媒の存在下、アセトンとフェノールとの脱水縮合によりビスフェノールAを製造するに際し、活性劣化した有機高分子シロキサン触媒を120℃〜250℃でフェノールで洗浄することを特徴とするビスフェノールA製造用触媒の再生方法。When producing bisphenol A by dehydration condensation of acetone and phenol in the presence of an organic polymer siloxane catalyst having both a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group, A method for regenerating a catalyst for producing bisphenol A, comprising washing with phenol at 120 ° C to 250 ° C.
JP32540298A 1998-11-16 1998-11-16 Method for regenerating catalyst for bisphenol A production Expired - Fee Related JP3761342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32540298A JP3761342B2 (en) 1998-11-16 1998-11-16 Method for regenerating catalyst for bisphenol A production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32540298A JP3761342B2 (en) 1998-11-16 1998-11-16 Method for regenerating catalyst for bisphenol A production

Publications (2)

Publication Number Publication Date
JP2000140645A JP2000140645A (en) 2000-05-23
JP3761342B2 true JP3761342B2 (en) 2006-03-29

Family

ID=18176453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32540298A Expired - Fee Related JP3761342B2 (en) 1998-11-16 1998-11-16 Method for regenerating catalyst for bisphenol A production

Country Status (1)

Country Link
JP (1) JP3761342B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689059B2 (en) * 2001-02-28 2011-05-25 出光興産株式会社 Method for producing bisphenol A

Also Published As

Publication number Publication date
JP2000140645A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
JP2001513694A (en) Regeneration method of heterogeneous catalyst
JP3888799B2 (en) Method for producing bisphenol A
JP2001233812A (en) Method for producing bisphenol a
US6229037B1 (en) Polyorganosiloxane catalyst
JP3761342B2 (en) Method for regenerating catalyst for bisphenol A production
JP2000281607A (en) Production of bisphenol a
JPH08113649A (en) Production of low-molecular-weight silanolated organosiloxane
JP3542440B2 (en) A method for cleaving by-products of the direct synthesis of alkylchlorosilanes
JP4357393B2 (en) Method for producing aromatic polyamine
JP3206384B2 (en) Method for producing alkoxysiloxane
JPH09165449A (en) Production of diorganopolysiloxane
JP3888936B2 (en) Bisphenol A production method
JP3770634B2 (en) Method for producing bisphenol A
JP3788547B2 (en) Catalyst for producing bisphenol, method for preparing the same, and method for producing bisphenol
JP3891726B2 (en) Filling method of organopolymer siloxane catalyst
JP2000290208A (en) Production of bisphenol a
JP4371388B2 (en) Organopolymer siloxane catalyst
JP3888937B2 (en) Production method of bisphenol A
JP3606613B2 (en) Low polymerization degree organopolysiloxane production method
JP2000297056A (en) Production of bisphenol a
JP2000327611A (en) Production of bisphenol a
JP2001104794A (en) Organic polymer siloxane carrying catalyst
JP4321839B2 (en) Production method of bisphenol A
JP4254009B2 (en) Method for producing aromatic hydroxy compound
JP2005060289A (en) Method for producing phenolic compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees