JP2004304995A - Exciter, field unit, and motor using same - Google Patents
Exciter, field unit, and motor using same Download PDFInfo
- Publication number
- JP2004304995A JP2004304995A JP2003425704A JP2003425704A JP2004304995A JP 2004304995 A JP2004304995 A JP 2004304995A JP 2003425704 A JP2003425704 A JP 2003425704A JP 2003425704 A JP2003425704 A JP 2003425704A JP 2004304995 A JP2004304995 A JP 2004304995A
- Authority
- JP
- Japan
- Prior art keywords
- exciter
- yoke
- teeth
- electric motor
- field machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 31
- 239000010959 steel Substances 0.000 claims abstract description 31
- 230000005415 magnetization Effects 0.000 claims abstract description 17
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 11
- 238000004804 winding Methods 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 239000013078 crystal Substances 0.000 claims description 7
- 238000010030 laminating Methods 0.000 claims description 7
- 239000000696 magnetic material Substances 0.000 claims description 7
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 6
- 229910001209 Low-carbon steel Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 3
- 230000004907 flux Effects 0.000 abstract description 38
- 229910052742 iron Inorganic materials 0.000 abstract description 19
- 238000010586 diagram Methods 0.000 description 7
- 230000035699 permeability Effects 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 5
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 3
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Images
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Description
本発明は、電流を通じることにより移動磁界を発生させる励磁機およびそれを用いた電動機に関する。
具体的には、励磁機の内側および外側に界磁機を配置した電動機に用いる励磁機およびそれを用いた永久磁石電動機に関する
The present invention relates to an exciter that generates a moving magnetic field by passing a current and an electric motor using the same.
More specifically, the present invention relates to an exciter used for an electric motor having a field machine arranged inside and outside the exciter, and a permanent magnet electric motor using the same.
永久磁石電動機は、励磁機(ステータ)に電流を流すことにより発生する磁場が、界磁機(ロータ)に埋め込まれた永久磁石に働いて、界磁機が回転する電動機であって、保守性、制御性、耐環境性に優れ、高効率、高力率運転が可能な電動機として産業・民生家電分野を問わず広く用いられている。 A permanent magnet motor is a motor in which a magnetic field generated by passing a current through an exciter (stator) acts on a permanent magnet embedded in a field machine (rotor) to rotate the field machine. It is widely used as an electric motor having excellent controllability and environmental resistance, and capable of high efficiency and high power factor operation regardless of the industrial and consumer electronics fields.
図10および図11は、従来の電動機の断面を示しており、図10が平断面図、図11が縦断面図である。
この従来の電動機は、円環状の励磁機コア21に内外周に沿って環状にコイル23が巻装されており、励磁機コア21を含む励磁機30は、軸受29を介してシャフト28に軸支される非磁性体ベース25に固着されている。22は界磁機構成体であり一対の円環状永久磁石26が上記コイル構成体21と適当間隔をおいて両側に同軸配置されるよう、シャフト28に固着する界磁機ヨーク24に固
定されている。
しかし、この従来の電動機では、励磁機コア内部に十分な鎖交磁界を得ることができないため、種々の提案がなされている。
10 and 11 show cross sections of a conventional electric motor. FIG. 10 is a plan sectional view, and FIG. 11 is a longitudinal sectional view.
In this conventional motor, an
However, in this conventional motor, various proposals have been made because a sufficient interlinking magnetic field cannot be obtained inside the exciter core.
例えば、特許文献1には、励磁機コアをティース部とヨーク部が一対毎になるように分割し、かつ、ティース部を励磁機コアの内周と外周の両側に形成することによって、励磁機コア内部に十分な鎖交磁界を得る方法が開示されている。 しかし、従来の電動機の励磁機は、鉄損を低減するために無方向性電磁鋼板(NO)を積層することにより作られていた。
無方向性電磁鋼板は、鋼板表面のどの方向にも一様な比透磁率を有する鋼板であって、比較的鉄損の小さい材料として広く用いられているが、長時間連続運転する電動機の励磁機に用いる材料としては十分な磁気特性が得られていなかった。
また、特許文献1に開示されている電動機のヨークとティースとの接合部は鉤型形状であり、接合部が長い構造となっているため、この接合部を磁束が通過する際の磁気抵抗および鉄損が大きいという問題点があった。
A non-oriented electrical steel sheet is a steel sheet having a uniform relative magnetic permeability in any direction on the steel sheet surface, and is widely used as a material having relatively small iron loss. Sufficient magnetic properties have not been obtained for the material used for the machine.
In addition, the joint between the yoke and the teeth of the electric motor disclosed in
本発明は、前記のような従来技術の問題点を解決し、励磁機の内側および外側に界磁機を配置した電動機に用いる励磁機であって、ヨークが周方向に分割されている励磁機の磁気抵抗と鉄損を低減し磁束密度(B)を増大することができる励磁機およびそれを用いた電動機を提供することを課題とする。 The present invention solves the above-mentioned problems of the prior art, and is an exciter used for an electric motor in which a field machine is arranged inside and outside the exciter, wherein the yoke is divided in a circumferential direction. It is an object of the present invention to provide an exciter capable of reducing the magnetic resistance and iron loss of the above and increasing the magnetic flux density (B), and an electric motor using the same.
本発明は、励磁機の内側および外側に界磁機を配置した電動機に用いる励磁機であって、ティースまたはヨークの少なくとも一部が分割されており、かつ、ティースまたはヨークの少なくとも一部が一方向性電磁鋼板または二方向性電磁鋼板とし、ヨークとティースとを構成する鋼板の磁化容易方向をそれぞれ励磁機の周方向および径方向とし、好ましくは、ヨークとティースとの接合部を直線状に段差を設けて重ね合わせることにより、ヨークが周方向に分割されている励磁機の磁気抵抗と鉄損を低減し磁束密度(B)を増大することができる励磁機およびそれを用いた電動機を提供するものであり、その要旨は特許請求の範囲に記載した通りの下記内容である。 The present invention relates to an exciter used for an electric motor in which a field machine is arranged inside and outside of an exciter, wherein at least a part of a tooth or a yoke is divided, and at least a part of the tooth or the yoke is one part. Oriented magnetic steel sheet or bidirectional electromagnetic steel sheet, the easy magnetization direction of the steel sheet constituting the yoke and the teeth are respectively the circumferential direction and the radial direction of the exciter, preferably, the joint between the yoke and the teeth is linear. Provided are an exciter capable of reducing magnetic resistance and iron loss and increasing magnetic flux density (B) of an exciter in which a yoke is divided in a circumferential direction and superimposing magnetic flux density (B) by providing a step and superposing the electric motor, and an electric motor using the exciter. The gist is as follows as described in the claims.
(1) 励磁機の内側および外側に界磁機を配置した電動機に用いる励磁機であって、該励磁機は、ヨークおよびティースを有しており、該ヨークまたは該ティースの少なくとも一部が分割されており、
該ヨークまたは、該ティースの少なくとも一部が一方向性電磁鋼板または、二方向性電磁鋼板であり、
該ヨークの磁化容易軸を前記励磁機の周方向に配置して積層し、前記ティースの磁化容易軸を前記励磁機の径方向に配置して積層することを特徴とする励磁機。
(2) 前記ヨークに、移動磁界を発生させる励磁コイルを巻き付けることを特徴とする(1)に記載の励磁機。
(3)前記ティースに移動磁界を発生させる励磁コイルを巻き付けることを特徴とする(1)に記載の励磁機。
(4)前記ティースの励磁コイルの巻線方法が集中巻または分布巻であることを特徴とする(3)に記載の励磁機。
(5) 前記ヨークとティースとの接合部が直線状であり、かつ、該接合部を積層方向に段差を設けて重ね合わせることを特徴とする(1)乃至(4)に記載の励磁機。
(6)該ヨークと該ティースの積層方向(各積層体板面の法線方向をいう)が同一方向でないことを特徴とする(1)乃至(4)に記載の励磁機。
(7)前記ヨークは、前記励磁機の軸方向に配置して積層し、前記ティースは、前記励磁機の周方向に配置して積層することを特徴とする(6)に記載の励磁機。
(8)前記ヨークは、前記励磁機の径方向に配置して積層し、前記ティースは、前記励磁機の軸方向に配置して積層することを特徴とする(6)に記載の励磁機。
(9)前記ヨークは、前記励磁機の径方向に配置して積層し、前記ティースは、前記励磁機の周方向に配置して積層することを特徴とする(6)に記載の励磁機。
(10) (1)乃至(9)の何れか1項に記載の励磁機を有することを特徴とする電動機。
(11)前記界磁機が鋼板からなることを特徴とする(10)に記載の電動機。
(12)前記界磁機が電磁鋼板、焼結磁性材料、または薄手極低炭素鋼の何れか一つまたは二つ以上からなることを特徴とする(10)に記載の電動機。
(13)前記界磁機が単結晶鉄粉を絶縁材料でコーティングした材料からなることを特徴とする(10)に記載の電動機。
(14) 前記電動機が外周に界磁機を有し、前記界磁機の内壁に沿う形状の永久磁石が貼付されていることを特徴とする(10)乃至請(13)の何れか1項に記載の電動機。
(15)前記電動機の外周側の界磁機の径方向を固定する部材が磁性体であることを特徴とする(10)乃至(14)に記載の電動機。
(16)前記電動機の励磁機が固定子でありかつ、界磁機が回転子であることを特徴とする(10)乃至(15)に記載の電動機。
(17)前記電動機の励磁機が回転子でありかつ、界磁機が固定子であることを特徴とする(10)乃至(15)に記載の電動機。
(1) An exciter used for an electric motor having a field machine disposed inside and outside of an exciter, the exciter having a yoke and teeth, and at least a part of the yoke or the teeth is divided. Has been
The yoke or at least a part of the teeth is a unidirectional magnetic steel sheet or a bidirectional magnetic steel sheet,
An exciter wherein the axes of easy magnetization of the yokes are arranged in a circumferential direction of the exciter and stacked, and the axes of easy magnetization of the teeth are arranged in a radial direction of the exciter and stacked.
(2) The exciter according to (1), wherein an exciting coil for generating a moving magnetic field is wound around the yoke.
(3) The exciter according to (1), wherein an exciting coil for generating a moving magnetic field is wound around the teeth.
(4) The exciter according to (3), wherein a winding method of the excitation coil of the teeth is a concentrated winding or a distributed winding.
(5) The exciter according to any one of (1) to (4), wherein a joining portion between the yoke and the tooth is linear, and the joining portion is overlapped by providing a step in a laminating direction.
(6) The exciter according to any one of (1) to (4), wherein the lamination direction of the yoke and the teeth (the normal direction of the surface of each laminated plate) is not the same.
(7) The exciter according to (6), wherein the yoke is arranged and laminated in an axial direction of the exciter, and the teeth are arranged and laminated in a circumferential direction of the exciter.
(8) The exciter according to (6), wherein the yoke is arranged and laminated in a radial direction of the exciter, and the teeth are arranged and laminated in an axial direction of the exciter.
(9) The exciter according to (6), wherein the yoke is arranged and laminated in a radial direction of the exciter, and the teeth are arranged and laminated in a circumferential direction of the exciter.
(10) An electric motor comprising the exciter according to any one of (1) to (9).
(11) The electric motor according to (10), wherein the field machine is made of a steel plate.
(12) The electric motor according to (10), wherein the field machine is made of one or more of an electromagnetic steel sheet, a sintered magnetic material, and a thin ultra-low carbon steel.
(13) The electric motor according to (10), wherein the field machine is made of a material obtained by coating single crystal iron powder with an insulating material.
(14) The motor according to any one of (10) to (13), wherein the electric motor has a field machine on an outer periphery, and a permanent magnet shaped along an inner wall of the field machine is attached. An electric motor according to
(15) The electric motor according to (10) to (14), wherein the member for fixing the radial direction of the field machine on the outer peripheral side of the electric motor is a magnetic material.
(16) The electric motor according to (10) to (15), wherein the exciter of the electric motor is a stator, and the field machine is a rotor.
(17) The electric motor according to (10) to (15), wherein the exciter of the electric motor is a rotor, and the field machine is a stator.
本発明によれば、励磁機の内側および外側に界磁機を配置した電動機に用いる励磁機であって、ヨークとティースとを構成する方向性電磁鋼板の磁化容易方向をそれぞれ励磁機の周方向および径方向とし、好ましくは、ヨークとティースとの接合部を直線状に段差を設けて重ね合わせることにより、ヨークが周方向に分割されている励磁機の磁気抵抗と鉄損を低減し磁束密度(B)を増大することが
できる励磁機およびそれを用いた電動機を提供することができ、産業上有用な著しい効果を奏する。
According to the present invention, there is provided an exciter used for an electric motor in which a field machine is arranged inside and outside the exciter, wherein the direction of easy magnetization of the grain-oriented electromagnetic steel sheet forming the yoke and the teeth is set in the circumferential direction of the exciter. And radially, and preferably, by superimposing the joint portion between the yoke and the teeth with a linear step, and superposing the yoke, the magnetic resistance and iron loss of the exciter whose yoke is divided in the circumferential direction are reduced, and the magnetic flux density is reduced. An exciter that can increase (B) and an electric motor using the same can be provided, and a remarkable industrially useful effect is achieved.
本発明の実施の形態を、図1乃至図9を用いて詳細に説明する。 An embodiment of the present invention will be described in detail with reference to FIGS.
<第1の実施形態>
図1は、本発明の第1の実施形態である励磁機の構造を示す図である。
図1において、1は外側の界磁機、2は内側の界磁機、3は励磁機、4はヨーク、5はティース、6は励磁コイルを示す。
励磁機3は、周方向に配置されたヨーク4と、ティース5とから主に構成されており、ヨーク4とティース5とが外側の界磁機1と内側の界磁機2との間に配置され、ヨーク4は励磁機3の周方向に分割されている。
図1において、本発明は、励磁機3の内側および外側に、内側の界磁機2および外側の界磁機1を配置した電動機に用いる励磁機およびそれを用いた電動機を対象とする。
界磁機を内側と外側の二重構造とすることによって、洩れ磁束を最少化することができるので、結果として電動機のトルクを大きくすることができる。
図1に示すように、本発明においては、ヨーク4は励磁機3の周方向に分割されており、ヨーク4を構成する方向性電磁鋼板の磁化容易軸を励磁機3の周方向(ヨークの矢印方向)に配置して積層し、ティース5を構成する方向性電磁鋼板の磁化容易軸を励磁機3の径方向(ティースの矢印方向)に配置して構成する。
<First embodiment>
FIG. 1 is a diagram showing a structure of an exciter according to a first embodiment of the present invention.
In FIG. 1, 1 is an outer field machine, 2 is an inner field machine, 3 is an exciter, 4 is a yoke, 5 is a tooth, and 6 is an exciting coil.
The
In FIG. 1, the present invention is directed to an exciter used for an electric motor having an
By making the field machine a double structure of the inside and the outside, the leakage magnetic flux can be minimized, and as a result, the torque of the electric motor can be increased.
As shown in FIG. 1, in the present invention, the
ここに、方向性電磁鋼板は、磁化容易方向が特定の方向である電磁鋼板であり、磁化容易方向については無方向性電磁鋼板より優れた磁気特性を有する。
例えば、図2に示すように、方向性電磁鋼板は、圧延方向の比透磁率μRが、非圧延方向の比透磁率μTに比べて著しく大きくなっており、圧延方向に磁束を流し易い性質を持っている。
そこで、ヨーク内を磁束の流れる方向と方向性電磁鋼板の磁化容易方向とを合わせることにより、磁束の流れをスムーズにし、その結果、磁束密度(B)を強化することができるうえ、磁束が交差する部分に生じる磁気抵抗の大きい回転磁界の発生を防止することができ、励磁機における鉄損を低減することができる。
一方、二方向性電磁鋼板は、磁化容易方向が二方向である電磁鋼板であり、磁化容易方向については無方向性電磁鋼板より優れた磁気特性を有する。図13に示すように、二方向性電磁鋼板は、圧延方向の比透磁率μRおよび圧延方向と垂直方向の比透磁率μTが、その他の方向に比べて著しく大きくなっており、圧延方向およびその垂直方向に磁束を流し易い性質を持っている。
そこで、ヨーク内を流れる磁束の流れる方向と二方向性電磁鋼板の何れかの磁化容易方向を合わせることにより、磁束の流れをスムーズにすることができる。その結果、磁束密度(B)を強化することができるうえ、磁束が交差する部分に生じる磁気抵抗の大きい回転磁界の発生を防止することができ、励磁機の鉄損を低減することができる。
Here, the grain-oriented electrical steel sheet is an electrical steel sheet in which the direction of easy magnetization is a specific direction, and has a magnetic property superior to that of the non-oriented electrical steel sheet in the direction of easy magnetization.
For example, as shown in FIG. 2, in the grain-oriented electrical steel sheet, the relative magnetic permeability μ R in the rolling direction is significantly larger than the relative magnetic permeability μ T in the non-rolling direction, and the magnetic flux easily flows in the rolling direction. Has nature.
Therefore, by matching the direction of the magnetic flux flowing in the yoke with the direction of easy magnetization of the grain-oriented electrical steel sheet, the flow of the magnetic flux is smoothed, and as a result, the magnetic flux density (B) can be strengthened and the magnetic flux crosses. In this case, it is possible to prevent the occurrence of a rotating magnetic field having a large magnetic resistance at a portion where the magnetic field is lost, and to reduce iron loss in the exciter.
On the other hand, a bidirectional magnetic steel sheet is an electromagnetic steel sheet having two directions of easy magnetization, and has better magnetic properties in the direction of easy magnetization than a non-oriented magnetic steel sheet. As shown in FIG. 13, in the bidirectional electrical steel sheet, the relative magnetic permeability μ R in the rolling direction and the relative magnetic permeability μ T in the direction perpendicular to the rolling direction are significantly larger than those in other directions. And it has the property of easily flowing magnetic flux in the vertical direction.
Therefore, the flow of the magnetic flux can be made smooth by matching the direction of the magnetic flux flowing in the yoke with the direction of easy magnetization of one of the two-directional magnetic steel sheets. As a result, the magnetic flux density (B) can be strengthened, and the occurrence of a rotating magnetic field having a large magnetic resistance at a portion where the magnetic flux intersects can be prevented, so that the iron loss of the exciter can be reduced.
従来は図16に示すように、ヨークとティースが同じ方向に積層されていたため、磁束がヨークとティースとの境界部を通過するときに、同じ平面内で磁束の向きが変る。そのために、この部分に磁気抵抗の大きい回転磁界が発生し、鉄損が著しく増加していた。
上記で、回転磁界とは、図14に示すように、例えば、X―Y平面内の位置によって磁気特性が曲線的に変化する磁界をいい、図15に示すような、直線的に変化する交番磁界とは異なる磁界である。
本願発明者らは、種々の形態のステータについて鉄損を測定したところ、この回転磁界が、鋼板面と同一平面内で磁束の方向が変化する場所で発生しやすいことを見出した。そして、この回転磁界の発生を防止するためには、磁束の方向を鋼板面と同一同一平面内で変化させなければよいことに想到した。ヨーク1とティース2の積層方向を異なる方向とすることによって、平面内での磁束の方向転換を少なくしたところ、回転磁界の発生が抑制され、鉄損を著しく低減することができた。
具体的には、図17に示すように、ヨーク1は、前記励磁機の径方向に配置して積層し、ティース2は、前記励磁機の軸方向に配置して積層すればよい。また、図18に示すように、ヨーク1は、前記励磁機の径方向に配置して積層し、ティース2は、前記励磁機の周方向に配置して積層してもよいし、図19に示すように、ヨーク1は、前記励磁機の軸方向に配置して積層し、ティース2は、前記励磁機の周方向に配置して積層してもよい。
ところで、ティース5は、励磁機3の径方向に配置され、励磁機3の外周側の方が内周側より幅広にすることが好ましい。ティース5の外周側を幅広にすることによって、外側の界磁機1に流れる磁束を多くすることができ、より大きなトルクを得ることができるからである。
さらに、本発明においては、励磁コイル6の巻き方は問わず、従来のようにティース5に巻き付けてもよいが、図1に示すように、励磁コイル6をヨーク4に集中して巻き付けることが好ましい。
励磁コイル6をヨーク4に巻き付けることによって、従来に比べてティース5の長さを短くすることができ、その結果、電動機の径を小さく、小型化することができる。
また、励磁コイル6をヨーク4に集中して巻くことによって、例えば、一つ置きのヨークに巻き付ける分布巻きに比べて、コイルエンドをコンパクト化することができるので励磁機周辺のスペースを有効活用することができ、その分電動機を小型化することができる。
Conventionally, as shown in FIG. 16, since the yoke and the teeth are stacked in the same direction, when the magnetic flux passes through the boundary between the yoke and the teeth, the direction of the magnetic flux changes in the same plane. For this reason, a rotating magnetic field having a large magnetic resistance was generated in this portion, and the iron loss was significantly increased.
In the above description, the rotating magnetic field refers to a magnetic field whose magnetic characteristics change in a curved manner depending on the position in the XY plane, as shown in FIG. 14, and a linearly changing alternating magnetic field as shown in FIG. The magnetic field is different from the magnetic field.
The inventors of the present application have measured the iron loss of various types of stators, and have found that this rotating magnetic field is easily generated in a place where the direction of the magnetic flux changes in the same plane as the steel plate surface. Then, in order to prevent the generation of the rotating magnetic field, it has been conceived that the direction of the magnetic flux need not be changed in the same plane as the steel plate surface. By changing the lamination direction of the
Specifically, as shown in FIG. 17, the
Incidentally, the
Further, in the present invention, the winding of the
By winding the
Also, since the
<第2の実施形態>
図3および図4は、本発明の第2の実施形態である励磁機の構造を示す図である。
図3および図4において、4はヨーク、5はティースを示す。
図3に示すように、ヨーク4とティース5との接合部を山形の直線状にすることによって、前述の特開平10−271782号公報に開示されているような鉤型に比べて、接合部の長さを短くすることができるので、接合部による鉄損を著しく低減することができる。
鋼板の切断面は、塑性加工による応力集中の影響で、磁気抵抗が著しく大きくなるため、できる限り切断長を短くすることが好ましく、本発明のように切断部(接合部)を直線状にすることにより、磁気抵抗および鉄損を著しく低減することができる。
<Second embodiment>
FIGS. 3 and 4 are views showing the structure of an exciter according to a second embodiment of the present invention.
3 and 4,
As shown in FIG. 3, the joint between the
The cut surface of the steel plate has a remarkably large magnetic resistance under the influence of stress concentration due to plastic working. Therefore, it is preferable to shorten the cut length as much as possible. As in the present invention, the cut portion (joined portion) is made straight. Thereby, magnetic resistance and iron loss can be significantly reduced.
また、本実施形態のように、ヨーク4とティース5との接合部の形状を山形状にすることによって、ヨーク4からティース5に流れる磁束がティース5の軸方向に曲がり易くなるので、磁束の流れをさらにスムーズにすることができる。 図4は、ヨーク4とティース5との接合部を示し、図3のA部の詳細図である。
本実施形態においては、図4の上側の図に示すように、ヨーク4とティース5との接合部を積層方向に2段階の段差を設けて重ね合わせている。
このように、ヨーク4とティース5との接合部を積層方向に2段階の段差を設けて重ね合わせることによって、接合部の機械的強度を増加させることができるうえ、接合部の磁気特性を滑らかに変化させることができるので、結果として固定子の磁気抵抗を低減することができる。
図4の下側の図は、ヨーク4とティース5との接合部を積層方向に3段階の段差を設けて重ね合わせている。このように段差の数を増加させることによって、さらに接合部の機械的強度を増加させ、励磁機の磁気抵抗を低減することができる。
Further, as in the present embodiment, by making the shape of the joint between the
In the present embodiment, as shown in the upper part of FIG. 4, the joint between the
In this way, by superposing the joint between the
In the lower view of FIG. 4, the joining portions of the
<第3の実施形態>
図5は、本発明の第3の実施形態である励磁機の構造を示す図である。
図5において、4はヨーク、5はティースを示す。
図5に示すように、本実施形態においては、ヨーク4とティース5との接合部を矩形状にしている。
ヨーク4とティース5との接合部を矩形状にすることによって、第2の実施形態の山形状に比べて、接合部の長さを短くできるので、その分、磁気抵抗を低減することができる一方、磁束の流れの円滑化という観点では、第2の実施形態より若干劣る。
なお、ヨーク4とティース5との接合部に段差を設けて重ね合わせる点は、第2の実施形態と同様なので、省略する。
<Third embodiment>
FIG. 5 is a diagram showing a structure of an exciter according to a third embodiment of the present invention.
In FIG. 5,
As shown in FIG. 5, in the present embodiment, the joint between the
By making the joint between the
In addition, the point of providing a step at the joint portion between the
<第4の実施形態>
図6および図7は、本発明の第4の実施形態である励磁機の構造を示す図である。
図6および図7において、4はヨーク、5はティースを示す。
図6および図7に示すように、本実施形態においては、ヨーク4とティース5
との接合部の形状を、ティース側を斜辺とする台形状にしている。 ヨーク4とティース5との接合部を台形状にすることによって、第2の実施形態の山形状に比べて、接合部の長さを短くできるので、その分、励磁機の磁気抵抗を低減することができるうえ、励磁機の外周側または内周側のいずれかの方向に磁束を流れ易くすることができる。
<Fourth embodiment>
6 and 7 are views showing the structure of an exciter according to a fourth embodiment of the present invention.
6 and 7,
As shown in FIGS. 6 and 7, in the present embodiment, the
Is formed in a trapezoidal shape with the teeth side as the oblique side. By making the junction between the
具体的には、図6は台形の斜辺が励磁機の外周側に向いているので、外周側に磁束が流れ易く、また、図7は台形の斜辺が励磁機の外内周側に向いているので、内周側に磁束が流れ易い。
図6および図7の選択は、外周または内周のうち磁束を多く流す側によって決めることが好ましく、例えば、外周側に多くの磁束を流す場合には図6の実施形態を選択することが好ましい。
なお、ヨーク4とティース5との接合部に段差を設けて重ね合わせる点は、第2の実施形態と同様なので、省略する。
Specifically, FIG. 6 shows that the trapezoidal oblique side is directed to the outer peripheral side of the exciter, so that magnetic flux easily flows to the outer peripheral side, and FIG. 7 shows that the trapezoidal oblique side is directed to the outer and inner peripheral side of the exciter. Magnetic flux easily flows to the inner peripheral side.
6 and 7 is preferably determined by the side of the outer circumference or the inner circumference where a larger amount of magnetic flux flows. For example, when a larger amount of magnetic flux flows on the outer circumference side, the embodiment of FIG. 6 is preferably selected. .
In addition, the point of providing a step at the joint portion between the
<第1〜第4共通の実施形態>
図8は、本発明の第1乃至第4の実施形態に共通する励磁機およびそれを用いた電動機の構造を示す図である。なお、図8は極数を4として電動機の構造を具体化した一例であり、永久磁石の形状や位置、励磁機のティース数などの技術的な範囲を限定するものではない。
図8において、1は外側の界磁機、2は内側の界磁機、3は励磁機、4はヨーク、5はティース、7は外側の永久磁石、8は内側の永久磁石を示す。また、図8の点線矢印は、図9の時刻t0における磁束密度を図示したもので、太い点線が強い磁束密度、細い点線が弱い磁束密度を表す。
本実施形態においては、ヨークに図示されていない励磁コイルを集中して巻きつけることによって、各ヨークに記載した位置に、図9に示すU,V,Wの3相の励磁電流を流すことによって、図8の矢印で示す方向に磁束の流れを作ることができる。
なお、図8におけるU´,V´W´は、U,V,Wの正負を反転させた励磁電流を示す。
なお、図8では、隣り合うヨークには異なる相の励磁電流を印加しているが、例えば、隣り合う2つのヨークをセットにして同じ相の励磁電流を印加してもよい。
また、前記第1乃至第4の実施形態に示す励磁機を、電動機に適用することによって、鉄損が少なく出力トルクが大きい電動機を提供することができる。
<First to Fourth Common Embodiments>
FIG. 8 is a diagram showing the structure of an exciter common to the first to fourth embodiments of the present invention and an electric motor using the same. FIG. 8 is an example in which the number of poles is four and the structure of the motor is embodied, and does not limit the technical range such as the shape and position of the permanent magnet and the number of teeth of the exciter.
In FIG. 8, 1 is an outer field machine, 2 is an inner field machine, 3 is an exciter, 4 is a yoke, 5 is a tooth, 7 is an outer permanent magnet, and 8 is an inner permanent magnet. The dotted arrows in FIG. 8 show the magnetic flux density at time t0 in FIG. 9, and the thick dotted line indicates a strong magnetic flux density and the thin dotted line indicates a weak magnetic flux density.
In the present embodiment, the exciting coils (not shown) are concentratedly wound around the yoke, so that the three-phase exciting currents U, V, and W shown in FIG. 8, the flow of magnetic flux can be created in the direction indicated by the arrow in FIG.
Note that U ′, V′W ′ in FIG. 8 indicate an exciting current in which the positive, negative, and positive of U, V, and W are inverted.
In FIG. 8, exciting currents of different phases are applied to adjacent yokes. However, for example, exciting currents of the same phase may be applied by setting two adjacent yokes as a set.
Further, by applying the exciter described in the first to fourth embodiments to a motor, it is possible to provide a motor having a small iron loss and a large output torque.
さらに、本発明においては界磁機の材料は問わないが、電磁鋼板、焼結磁性材料、薄手極低炭素鋼、単結晶鉄粉を絶縁材料でコーティングした材料のいずれかであることが好ましい。
まず、電磁鋼板では、普通鋼等他材料に比べて磁気特性に優れているので、界磁機における鉄損を低減できる。
さらに、焼結磁性材料では、金属粉末焼結体により界磁機が構成できるので、機械的設計と磁気的設計を独立に行えることから界磁機設計の自由度が増し、永久磁石から発生する磁束を有効に利用しながら、かつ機械的強度、耐久性等の信頼性の高い界磁機が得られる。
また、薄手極低炭素鋼は普通鋼の一種であるため、材料コストが極めて低いので材料を調達し易い。
さらに、単結晶鉄粉を絶縁材料でコーティングした材料は、例えば、長軸方向に<001>方位を持つ単結晶鉄粉を絶縁樹脂でコーティングし、熱硬化性樹脂とともに型に流し込むことによって界磁機を作ることができ、界磁機を流れる磁束の方向と単結晶鉄粉の磁化容易方向とを一致させることによって、界磁機における鉄損を低減することができる。
また、本発明において、励磁機が固定子、かつ、界磁機が回転子であってもよく、また、励磁機が回転子、界磁機が固定子であってもよい。
Further, in the present invention, the material of the field machine is not limited, but it is preferably any one of an electromagnetic steel sheet, a sintered magnetic material, a thin ultra-low carbon steel, and a material obtained by coating a single crystal iron powder with an insulating material.
First, since the magnetic steel sheet has better magnetic properties than other materials such as ordinary steel, iron loss in the field machine can be reduced.
Furthermore, in the case of a sintered magnetic material, a field machine can be constituted by a metal powder sintered body, so that the mechanical design and the magnetic design can be performed independently, so that the degree of freedom of the field machine design is increased and the permanent magnet is generated. A field machine with high reliability, such as mechanical strength and durability, while effectively utilizing magnetic flux can be obtained.
Further, thin ultra-low carbon steel is a kind of ordinary steel, and the material cost is extremely low, so that it is easy to procure the material.
Further, a material obtained by coating single-crystal iron powder with an insulating material is, for example, coated with single-crystal iron powder having a <001> orientation in the major axis direction with an insulating resin and poured into a mold together with a thermosetting resin to form a magnetic field. The iron loss in the field machine can be reduced by making the direction of the magnetic flux flowing through the field machine coincide with the direction of easy magnetization of the single crystal iron powder.
Further, in the present invention, the exciter may be a stator and the field machine may be a rotor, or the exciter may be a rotor and the field machine may be a stator.
図12は、本発明の第5の実施形態である界磁機の平面構造を示す図である。図12において、31は外側の界磁機、32は永久磁石を示す。外側界磁機中の永久磁石にはたらく力は回転による遠心力が殆どであり、図12に示される電動機平面図のように、永久磁石を外側界磁機の内壁に貼付するだけでも、永久磁石は遠心力により界磁機に押しつけられるため、強度の観点から
永久磁石の支持は問題ない。また、図12に示されるように、界磁機内周面が単一円周面となるよう、永久磁石を界磁機内に埋め込む形態が望ましい。さらに、上記界磁機の材質は電磁鋼板、焼結磁性材料または薄手極低炭素鋼(SULC)が望ましく、特に三次元的な磁気回路設計が可能で鉄損を低減させることから単結晶鉄粉は望ましい。こうのような界磁機を使用することで、永久磁石の固定方法を簡略化でき、さらに、永久磁石と励磁機ティースの距離を短縮できるのでトルクを向上できる。
また、図12に示すように前記外側界磁機31は、鋼板を軸方向に積層して構成されるが、前記鋼板の径方向を固定するために周囲に構造部材9を配置している。該構造部材9を磁性体とすることで、該外側界磁機における総磁束量を増加することが可能となり、さらに高いトルクを得ることが可能と
なる。
FIG. 12 is a diagram showing a planar structure of a field machine according to a fifth embodiment of the present invention. In FIG. 12, 31 indicates an outer field machine, and 32 indicates a permanent magnet. The force acting on the permanent magnets in the outer field machine is almost the centrifugal force due to rotation. As shown in the plan view of the motor shown in FIG. Is pressed against the field machine by centrifugal force, so there is no problem in supporting the permanent magnet from the viewpoint of strength. Further, as shown in FIG. 12, it is preferable that the permanent magnet is embedded in the field machine so that the inner circumferential surface of the field machine becomes a single circumferential surface. Further, the material of the field machine is preferably an electromagnetic steel sheet, a sintered magnetic material or a thin ultra-low carbon steel (SULC). In particular, since a three-dimensional magnetic circuit can be designed and iron loss is reduced, a single crystal iron powder is used. Is desirable. By using such a field machine, the method of fixing the permanent magnet can be simplified, and the distance between the permanent magnet and the exciter teeth can be shortened, so that the torque can be improved.
As shown in FIG. 12, the
1 外側の界磁機
2 内側の界磁機
3 励磁機
4 ヨーク
5 ティース
6 励磁コイル
7 外側の永久磁石
8 内側の永久磁石
9 構造部材
21 励磁機コア
22 界磁機構成体
23 コイル
24 界磁機ヨーク
25 非磁性体ベース
26 永久磁石
28 シャフト
29 軸受
30 励磁機
31 外側界磁機
32 永久磁石
DESCRIPTION OF
Claims (17)
該ヨークまたは該ティースの少なくとも一部が一方向性電磁鋼板または、二方向性電磁鋼板であり、
該ヨークの磁化容易軸を前記励磁機の周方向に配置して積層し、前記ティースの磁化容易軸を前記励磁機の径方向に配置して積層することを特徴とする励磁機。 An exciter used for an electric motor in which a field machine is arranged inside and outside of the exciter, the exciter having a yoke and teeth, and at least a part of the yoke or the teeth is divided. ,
At least a part of the yoke or the teeth is a unidirectional electrical steel sheet or a bidirectional electrical steel sheet,
An exciter wherein the axes of easy magnetization of the yokes are arranged in a circumferential direction of the exciter and stacked, and the axes of easy magnetization of the teeth are arranged in a radial direction of the exciter and stacked.
前記ティースは、前記励磁機の軸方向に配置して積層することを特徴とする請求項7に記載の励磁機。 The yoke is arranged and laminated in the radial direction of the exciter,
The exciter according to claim 7, wherein the teeth are arranged and stacked in an axial direction of the exciter.
The electric motor according to claim 10, wherein the exciter of the electric motor is a rotor, and the field machine is a stator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003425704A JP4192086B2 (en) | 2002-12-24 | 2003-12-22 | Exciter, field machine, and electric motor using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002371273 | 2002-12-24 | ||
JP2003078491 | 2003-03-20 | ||
JP2003425704A JP4192086B2 (en) | 2002-12-24 | 2003-12-22 | Exciter, field machine, and electric motor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004304995A true JP2004304995A (en) | 2004-10-28 |
JP4192086B2 JP4192086B2 (en) | 2008-12-03 |
Family
ID=33424736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003425704A Expired - Fee Related JP4192086B2 (en) | 2002-12-24 | 2003-12-22 | Exciter, field machine, and electric motor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4192086B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006254604A (en) * | 2005-03-11 | 2006-09-21 | Nsk Ltd | Motor system |
JPWO2007123107A1 (en) * | 2006-04-20 | 2009-09-03 | パナソニック株式会社 | motor |
JP2010246367A (en) * | 2009-03-18 | 2010-10-28 | Tdk Corp | Core member of rotating machine, and rotating machine |
JP2011135691A (en) * | 2009-12-24 | 2011-07-07 | Jtekt Corp | Motor, electric power steering device, and in-wheel type motor driver |
JP2012075318A (en) * | 2005-07-20 | 2012-04-12 | Panasonic Corp | Rotor and motor equipped with inward/outward rotor yoke |
KR101818297B1 (en) * | 2015-04-13 | 2018-01-15 | 한국산업기술대학교산학협력단 | Rotating Armature Type Wind Power Generator with Dual Field Windings |
JP2021191219A (en) * | 2020-05-29 | 2021-12-13 | 深▲セン▼市一吉製造有限公司Shenzhen Yiji Manufacturing Co., Ltd. | New model energy conservation type mixed wave permanent magnet motor |
-
2003
- 2003-12-22 JP JP2003425704A patent/JP4192086B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006254604A (en) * | 2005-03-11 | 2006-09-21 | Nsk Ltd | Motor system |
JP4581757B2 (en) * | 2005-03-11 | 2010-11-17 | 日本精工株式会社 | Motor system |
JP2012075318A (en) * | 2005-07-20 | 2012-04-12 | Panasonic Corp | Rotor and motor equipped with inward/outward rotor yoke |
JPWO2007123107A1 (en) * | 2006-04-20 | 2009-09-03 | パナソニック株式会社 | motor |
JP4670871B2 (en) * | 2006-04-20 | 2011-04-13 | パナソニック株式会社 | motor |
JP2010246367A (en) * | 2009-03-18 | 2010-10-28 | Tdk Corp | Core member of rotating machine, and rotating machine |
JP2011135691A (en) * | 2009-12-24 | 2011-07-07 | Jtekt Corp | Motor, electric power steering device, and in-wheel type motor driver |
KR101818297B1 (en) * | 2015-04-13 | 2018-01-15 | 한국산업기술대학교산학협력단 | Rotating Armature Type Wind Power Generator with Dual Field Windings |
JP2021191219A (en) * | 2020-05-29 | 2021-12-13 | 深▲セン▼市一吉製造有限公司Shenzhen Yiji Manufacturing Co., Ltd. | New model energy conservation type mixed wave permanent magnet motor |
Also Published As
Publication number | Publication date |
---|---|
JP4192086B2 (en) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102111028B (en) | Axial gap rotating electrical machine and rotor used therefor | |
JP4926107B2 (en) | Rotating electric machine | |
US8120222B2 (en) | Rotating electrical machine | |
JP2009072009A (en) | Permanent magnet rotating machine | |
JP5272831B2 (en) | Rotating electric machine | |
JP5365074B2 (en) | Axial gap type rotating electrical machine | |
JP2011078202A (en) | Axial gap motor | |
JP2010200459A (en) | Rotary electric machine | |
JP2017135766A (en) | Single-phase brushless motor and manufacturing method of single-phase brushless motor | |
JP2013115899A (en) | Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor | |
JP4323940B2 (en) | Exciter, field machine, and synchronous machine using the same | |
JP4192086B2 (en) | Exciter, field machine, and electric motor using the same | |
WO2006019058A1 (en) | Variable magnetoresistive generator | |
JP5151183B2 (en) | Axial gap type rotating electric machine and compressor | |
US9755465B2 (en) | Method for manufacturing a rotor of a synchronous reluctance motor, a rotor of a synchronous reluctance motor, and a synchronous reluctance motor | |
JP2007202292A (en) | Exciter | |
US11888350B2 (en) | Stator, stator manufacturing method, motor, and electric vehicle | |
JP2019208360A (en) | Motor, method of manufacturing the same, vacuum cleaner including the same, and method of manufacturing the same | |
JP2008187863A (en) | Axial gap rotary electric machine and compressor | |
JP2004222492A (en) | Rotary machines of three dimensional stator structure | |
JP4323941B2 (en) | Exciter, field machine, and synchronous machine using the same | |
JP2004236495A (en) | Exciter and synchronizer using it | |
JP5894414B2 (en) | Generator | |
JP4369797B2 (en) | Stator core manufacturing method | |
JP2011114989A (en) | Rotary electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080916 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080919 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4192086 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |