JP2004302462A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP2004302462A
JP2004302462A JP2004082989A JP2004082989A JP2004302462A JP 2004302462 A JP2004302462 A JP 2004302462A JP 2004082989 A JP2004082989 A JP 2004082989A JP 2004082989 A JP2004082989 A JP 2004082989A JP 2004302462 A JP2004302462 A JP 2004302462A
Authority
JP
Japan
Prior art keywords
undercoat layer
layer
conductive
electrophotographic photoreceptor
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004082989A
Other languages
Japanese (ja)
Other versions
JP4407332B2 (en
Inventor
Hiroaki Fujiwara
宏昭 藤原
Takahiro Osada
卓博 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004082989A priority Critical patent/JP4407332B2/en
Publication of JP2004302462A publication Critical patent/JP2004302462A/en
Application granted granted Critical
Publication of JP4407332B2 publication Critical patent/JP4407332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor including an undercoat layer whose electrical properties also including a recursive property are good in all environments from a low temperature and low humidity environment to a high temperature and high humidity environment even when the thickness of the undercoat layer is made larger, with respect to an electrophotographic photoreceptor including an undercoat layer and a photosensitive layer. <P>SOLUTION: The electrophotographic photoreceptor includes an undercoat layer containing metal compound particles and a binder resin and a photosensitive layer on a conductive substrate, wherein the metal compound particles comprise metal compound particles made conductive by a treatment of making them conductive. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、少なくとも下引き層と感光層を有する電子写真感光体において、電気特性が良好で、画像欠陥の発生しない電子写真感光体に関するものである。   The present invention relates to an electrophotographic photoreceptor having at least an undercoat layer and a photosensitive layer, which has good electric characteristics and does not cause image defects.

従来、電子写真感光体には、セレン、セレン−テルル合金、セレン化ヒ素、硫化カドミウム等の無機系光導電物質が広く用いられてきたが、近年では低公害であり、製造が容易な有機系の光導電物質を感光層に用いた電子写真感光体が主流となっている。
感光層の形態としては、電荷輸送物質を含んだ電荷輸送媒体中に電荷発生材料の粒子を分散した、いわゆる分散型または単層型の感光層のほか、電荷発生材料を含んだ電荷発生層と電荷輸送物質を含んだ電荷輸送層を積層した、いわゆる積層型の感光層等が知られている。特に光を吸収して電荷を発生する機能と、発生した電荷を輸送する機能を分離した電荷発生層および電荷移動層からなる積層型の感光体が主流となっている。これらの感光体は、複写機、レーザープリンター等の分野に広く用いられている。
Conventionally, inorganic photoconductive materials such as selenium, selenium-tellurium alloy, arsenic selenide, and cadmium sulfide have been widely used for electrophotographic photoreceptors, but in recent years, organic photoconductors which have low pollution and are easy to manufacture have been used. An electrophotographic photoreceptor using a photoconductive material of the above type for a photosensitive layer has become mainstream.
As a form of the photosensitive layer, in addition to a so-called dispersion type or single-layer type photosensitive layer in which particles of a charge generation material are dispersed in a charge transport medium containing a charge transport material, a charge generation layer containing a charge generation material may be used. A so-called laminated type photosensitive layer in which a charge transport layer containing a charge transport material is laminated is known. In particular, a laminated photoreceptor having a charge generation layer and a charge transfer layer in which a function of generating a charge by absorbing light and a function of transporting the generated charge are separated is mainly used. These photoconductors are widely used in the fields of copying machines, laser printers and the like.

電子写真感光体は、導電性支持体上に感光層を形成したものが基本構成である。支持体からの電荷注入や支持体の欠陥による画像欠陥の解消、感光層との接着性向上、帯電性の改善のために、感光層と支持体の間に下引き層を設けることが知られている。
ポリアミド樹脂に無機材料を分散させた下引き層として、バンドギャップが2〜4eVの金属酸化物粒子である酸化チタンと酸化スズを8−ナイロンに分散させたもの(例えば、特許文献1参照)、アルミナ処理酸化チタンをポリアミド樹脂に分散させたもの(例えば、特許文献2参照)が知られている。また更に、画像特性を乱さず、電気特性を向上させる目的で、平均1次粒子径が100nm以下の酸化チタン粒子をポリアミド樹脂に分散させたものが(例えば、特許文献3参照)、更には環境特性を改善する目的で、有機珪素化合物処理された金属酸化物粒子をポリアミド樹脂等のバインダー樹脂に分散させたものが(例えば、特許文献4参照)提案されている。
An electrophotographic photoreceptor has a basic structure in which a photosensitive layer is formed on a conductive support. It is known to provide an undercoat layer between the photosensitive layer and the support in order to eliminate image defects due to charge injection from the support or defects in the support, to improve adhesion to the photosensitive layer, and to improve chargeability. ing.
As an undercoat layer in which an inorganic material is dispersed in a polyamide resin, titanium oxide and tin oxide, which are metal oxide particles having a band gap of 2 to 4 eV, are dispersed in 8-nylon (for example, see Patent Document 1). One in which alumina-treated titanium oxide is dispersed in a polyamide resin is known (for example, see Patent Document 2). Further, for the purpose of improving electric characteristics without disturbing image characteristics, titanium oxide particles having an average primary particle diameter of 100 nm or less are dispersed in a polyamide resin (for example, see Patent Document 3). For the purpose of improving the characteristics, a dispersion of metal oxide particles treated with an organosilicon compound in a binder resin such as a polyamide resin has been proposed (for example, see Patent Document 4).

一方、下引き層の役割の一つとして、支持体の欠陥の隠蔽があるが、この隠蔽効果を大きくするのには、下引き層の膜厚を厚くするのが効果的で有ることが知られている。また、最近では、電子写真装置のコンパクト化の流れの中で、帯電方法として、接触帯電方法を採用する装置が増加してきている。この帯電方式の装置では、特に感光体の絶縁破壊(リーク)が、画像欠陥を生み出す問題となっている。この絶縁破壊の抑制にも下引き層の膜厚を厚くすることが効果的で有ることが知られている。
特開昭62−280864号公報 特開平2−181158号公報 特開平10−069116号公報 特開平11−015183号公報
On the other hand, one of the roles of the undercoat layer is to cover the defects of the support, but it is known that increasing the thickness of the undercoat layer is effective for increasing the concealment effect. Have been. In recent years, in the trend of downsizing of electrophotographic apparatuses, apparatuses adopting a contact charging method as a charging method have been increasing. In this charging system, particularly, dielectric breakdown (leakage) of the photoreceptor causes a problem of causing image defects. It is known that increasing the thickness of the undercoat layer is also effective in suppressing this dielectric breakdown.
JP-A-62-280864 JP-A-2-181158 JP-A-10-069116 JP 11-015183 A

支持体欠陥の隠蔽効果や感光体の絶縁破壊防止効果のために、下引き層の膜厚を厚くすることが望まれている。しかし、下引き層の膜厚を厚くした電子写真感光体では、繰り返しの使用により、感光体に残留する電位が上昇しやすいなどの欠点を有しており、その課題を克服するために、例えば、透過型電子顕微鏡により測定した平均一次粒子径が100nm以下の酸化チタン粒子を分散させた下引き層や、有機珪素化合物などで疎水化処理された金属酸化物粒子を分散させた下引き層が用いられてきた。   It is desired to increase the thickness of the undercoat layer in order to conceal the defects of the support and prevent dielectric breakdown of the photoconductor. However, the electrophotographic photoreceptor having a thick undercoat layer has a drawback that the potential remaining on the photoreceptor tends to increase due to repeated use, and in order to overcome the problem, for example, An undercoat layer in which titanium oxide particles having an average primary particle diameter of 100 nm or less measured by a transmission electron microscope are dispersed, or an undercoat layer in which metal oxide particles subjected to a hydrophobic treatment with an organic silicon compound or the like are dispersed. Has been used.

しかしながら、平均一次粒子径が100nm以下の酸化チタン粒子を分散させた下引き層では、常温常湿度の環境下では電気特性が改善されるが、高温高湿度の環境下では残留電位が上昇しやすいなどの欠点をもっており、一方で、有機珪素化合物などで疎水化処理された金属酸化物粒子を分散させた下引き層は、高温高湿度の環境下での特性は改善されるが、低温低湿度の環境下での電気特性が悪くなるという問題があった。   However, in the undercoat layer in which titanium oxide particles having an average primary particle diameter of 100 nm or less are dispersed, the electric characteristics are improved under the environment of normal temperature and normal humidity, but the residual potential is easily increased under the environment of high temperature and high humidity. On the other hand, the undercoat layer in which metal oxide particles hydrophobized with an organosilicon compound or the like are dispersed has improved characteristics in a high-temperature and high-humidity environment, but has a low temperature and a low humidity. There is a problem that the electrical characteristics under the environment of the above are deteriorated.

本発明は、少なくとも下引き層および感光層を有する電子写真感光体において、下引き層の膜厚を厚くした場合にも、低温低湿度環境から高温高湿度環境までの総ての環境下で、繰り返し特性も含めて電気特性が良好な下引き層を有する電子写真感光体を提供することを目的とする。また、本発明の別の目的としては、低温低湿度環境から高温高湿度環境までの総ての環境下で、繰り返し特性も含めて電気特性が良好な感光体を備えた電子写真装置を提供することにある。   The present invention, in an electrophotographic photoreceptor having at least an undercoat layer and a photosensitive layer, even when the thickness of the undercoat layer is increased, in all environments from a low-temperature low-humidity environment to a high-temperature high-humidity environment, An object of the present invention is to provide an electrophotographic photoreceptor having an undercoat layer having good electric characteristics including repetition characteristics. Another object of the present invention is to provide an electrophotographic apparatus provided with a photoreceptor having good electric characteristics including repetition characteristics in all environments from a low-temperature and low-humidity environment to a high-temperature and high-humidity environment. It is in.

本発明者らは、下引き層中に、導電化処理された金属化合物粒子を含有させることにより、上記課題を解決できることを見いだし、本発明に到達した。すなわち本発明は、導電性基体上に、金属化合物粒子およびバインダー樹脂を含有する下引き層と感光層を有する電子写真感光体において、該金属化合物粒子が、導電化処理されたものであることを特徴とする電子写真感光体に存する。   The present inventors have found that the above problem can be solved by including a metal compound particle subjected to a conductive treatment in an undercoat layer, and have reached the present invention. That is, the present invention relates to an electrophotographic photoreceptor having a photosensitive layer and an undercoat layer containing a metal compound particle and a binder resin on a conductive substrate, wherein the metal compound particle is a conductive layer. Characteristic electrophotographic photosensitive member.

本発明の導電化処理された金属化合物粒子を含有する下引き層を有する電子写真感光体は、支持体欠陥等の影響を受けず、絶縁破壊を防止し、様々な環境下においても良好な電気特性を示す。   The electrophotographic photoreceptor having the undercoat layer containing the metal compound particles subjected to the electroconductivity treatment of the present invention is not affected by defects such as a support, prevents dielectric breakdown, and has a good electric charge even in various environments. Show characteristics.

以下、本発明の実施の形態につき詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の代表例であって、本発明の趣旨を逸脱しない範囲において適宜変形して実施することができる。
本発明における感光体は、導電性基体上に下引き層を有するものであり、該下引き層は、導電化処理された金属化合物粒子を含有する。該下引き層は、導電性支持体と感光層の間に形成される。
Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is a representative example of the embodiments of the present invention, and may be appropriately modified without departing from the spirit of the present invention. can do.
The photoreceptor of the present invention has an undercoat layer on a conductive substrate, and the undercoat layer contains metal compound particles subjected to a conductivity treatment. The undercoat layer is formed between the conductive support and the photosensitive layer.

下引き層は、常法により形成すればよい。すなわち、層の含有する材料を溶剤に溶解または分散し、得られた塗布液を導電性支持体上に塗布、乾燥することにより形成される。塗布液中には、下引き層の特性および塗布液の分散安定性を悪化させない範囲で、必要に応じて、金属酸化物以外の粒子、電荷輸送分子、酸化防止剤、分散剤、レベリング剤、その他の添加剤等を加えても良い。   The undercoat layer may be formed by a conventional method. That is, it is formed by dissolving or dispersing the material contained in the layer in a solvent, applying the obtained coating solution on a conductive support, and drying. In the coating solution, as long as the properties of the undercoat layer and the dispersion stability of the coating solution are not deteriorated, if necessary, particles other than metal oxides, charge transport molecules, antioxidants, dispersants, leveling agents, Other additives and the like may be added.

下引き層の塗布は、ある程度均一に塗布できる方法であれば、いかなる塗布方法を用いても良いが、一般的には、浸漬塗布やスプレー塗布、ノズル塗布方法等で塗布される。
<導電化処理された金属化合物粒子>
金属化合物粒子の導電化処理方法としては、カーボンブラック、黒鉛、金、銀、パラジウム、白金、銅、ニッケル、アルミニウム等の金属粉または金属フレーク、炭素繊維、金属化ガラス繊維、ステンレス繊維、アルミ繊維などの導電性繊維、酸化インジウム、酸化スズ、酸化スズにアンチモン,インジウム等の金属元素がドープされた透明導電フィラー等の粉末で、被導電化粒子表面を被覆する手法が用いられる。なかでもアンチモン、インジウム等の金属元素でドープされた酸化スズ粉末の使用が、粉体抵抗の制御のしやすさ等から好ましい。
The undercoat layer may be applied by any coating method as long as it can be applied to a certain degree, but is generally applied by dip coating, spray coating, nozzle coating, or the like.
<Conducted metal compound particles>
Examples of the method for making the metal compound particles conductive include metal powder or metal flakes such as carbon black, graphite, gold, silver, palladium, platinum, copper, nickel, and aluminum, carbon fiber, metallized glass fiber, stainless steel fiber, and aluminum fiber. For example, a method of coating the surface of the particles to be conductive with a powder of a conductive fiber such as indium oxide, tin oxide, or a transparent conductive filler obtained by doping tin oxide with a metal element such as antimony or indium is used. Among them, the use of tin oxide powder doped with a metal element such as antimony or indium is preferable because of easy control of powder resistance.

被導電化粒子としては、酸化チタン、酸化亜鉛、アルミナ、シリカなどの金属酸化物;硫酸バリウムなどの金属硫酸塩;硫化亜鉛などの金属硫化物;ホウ酸アルミニウムウィスカー等があげられるが、これらの中でも酸化チタン、酸化亜鉛、アルミナ、シリカ等の金属酸化物が好ましい。なかでも、コスト、分散性、および電荷発生層で生成した電荷の流れを阻害しない点で、酸化チタンが特に好ましい。   Examples of the conductive particles include metal oxides such as titanium oxide, zinc oxide, alumina, and silica; metal sulfates such as barium sulfate; metal sulfides such as zinc sulfide; and aluminum borate whiskers. Among them, metal oxides such as titanium oxide, zinc oxide, alumina and silica are preferable. Among them, titanium oxide is particularly preferable in terms of cost, dispersibility, and the fact that the flow of charges generated in the charge generation layer is not hindered.

また、被導電化粒子の平均一次粒径としては、あまり大きすぎると粒子の分散均一性が悪くなるため、通常、1μm以下、好ましくは0.5μm以下で用いられる。また、あまり小さすぎると粒子の凝集などが起こり好ましくないため、通常、50nm以上、好ましくは100nm以上で用いられる。被導電化粉末の形状としては球状、針状、紡錘状等あげられるが、帯電特性の面から球状が最もコントロールしやすく好ましい。   If the average primary particle size of the particles to be made conductive is too large, the dispersion uniformity of the particles is deteriorated. Therefore, the average primary particle size is usually 1 μm or less, preferably 0.5 μm or less. On the other hand, if the particle size is too small, aggregation of particles and the like occur, which is not preferable. Examples of the shape of the powder to be conductive include a sphere, a needle, a spindle, and the like, and a sphere is preferred because it is most easily controlled in terms of charging characteristics.

導電化処理された金属化合物粒子の粉体抵抗値は特に制限されないが、小さすぎると含有量に対する下引き層の体積抵抗率の変化が大きくなり、感光体の製造が困難になるため、9.8MPa圧粉体で、通常1Ωcm以上、好ましくは3Ωcm以上、より好ましくは5Ωcm以上のものが用いられる。また、導電化処理された酸化物粒子の粉体抵抗値が大きくなりすぎると、下引き層の体積抵抗率を所望の値に調整するのに、多量の粒子を含有させる必要があり、製造コストが嵩むことになるので、9.8MPa圧粉体で、通常100Ωcm以下、好ましくは50Ωcm以下、より好ましくは30Ωcm以下のものが用いられる。   The powder resistance value of the metal compound particles subjected to the conductivity treatment is not particularly limited, but if it is too small, the change in the volume resistivity of the undercoat layer with respect to the content becomes large, and it becomes difficult to produce a photoreceptor. An 8 MPa green compact, usually 1 Ωcm or more, preferably 3 Ωcm or more, more preferably 5 Ωcm or more is used. Further, if the powder resistance of the conductive oxide particles becomes too large, it is necessary to contain a large amount of particles in order to adjust the volume resistivity of the undercoat layer to a desired value. Therefore, a 9.8 MPa green compact, usually 100 Ωcm or less, preferably 50 Ωcm or less, more preferably 30 Ωcm or less is used.

本発明では、下引き層の含有する導電化処理された酸化物粒子の量は、使用する導電化処理された酸化物粒子の粉体抵抗値に関係するため、下引き層の体積抵抗率を所望のものとするために適宜調整するが、通常、下引き層中の全粒子に対して0.1〜20重量%が好ましく、特に好ましくは1〜15重量%、更に好ましくは2〜10重量%の範囲で用いられる。   In the present invention, the amount of the conductive particles subjected to the conductivity treatment contained in the undercoat layer is related to the powder resistance value of the oxide particles subjected to the conductivity treatment to be used. It is appropriately adjusted in order to obtain a desired one, but it is usually preferably 0.1 to 20% by weight, particularly preferably 1 to 15% by weight, more preferably 2 to 10% by weight based on all particles in the undercoat layer. %.

また、導電化処理された酸化物粒子として、1種類のものを用いても良いし、2種以上の混合物であっても構わない。しかし、2種以上の混合物では粒子同士の凝集が生じたり、電荷のトラップが生成する可能性があるため、1種類での使用が好ましい。
<導電化処理されていない金属酸化物粒子>
本発明における下引き層は、導電化処理された金属化合物粒子とは別に、導電化処理されていない金属酸化物粒子を含有することが好ましい。該金属酸化物粒子としてはn型性(電子輸送性)の粒子が好ましい。そのような金属酸化物としては、具体的には、チタン酸ストロンチウム,チタン酸カルシウム,チタン酸バリウム等のチタン酸塩;酸化チタン;酸化チタンに酸化ニッケル、酸化亜鉛、酸化コバルト等の金属酸化物を固溶させたもの;酸化チタンにニオブ,アンチモン,タングステン,インジウム,ニッケル,鉄,珪素等の金属元素をドープしたもの等が挙げられる。これらの中でも、価格および化合物としての安定性から、酸化チタン粒子が好ましい。
In addition, as the oxide particles subjected to the conductivity treatment, one kind may be used, or a mixture of two or more kinds may be used. However, in the case of a mixture of two or more kinds, there is a possibility that aggregation of particles occurs or a trap of electric charge is generated, so that one kind is preferably used.
<Metal oxide particles that have not been rendered conductive>
The undercoat layer in the present invention preferably contains metal oxide particles that have not been subjected to a conductive treatment, separately from the metal compound particles that have been subjected to a conductive treatment. As the metal oxide particles, n-type (electron transporting) particles are preferable. Specific examples of such metal oxides include titanates such as strontium titanate, calcium titanate, and barium titanate; titanium oxide; metal oxides such as nickel oxide, zinc oxide, and cobalt oxide; Solid solution; titanium oxide doped with a metal element such as niobium, antimony, tungsten, indium, nickel, iron, silicon and the like. Among these, titanium oxide particles are preferable from the viewpoint of price and stability as a compound.

これらの金属酸化物粒子は、下引き層形成用塗布液の分散安定性の面および残留電位等の電気特性の面から、平均一次粒子径としては、通常100nm以下の粒子であり、好ましくは60nm以下、更に好ましくは50nm以下で、通常10nm以上、好ましくは、20nm以上のものが用いられる。
下引き層形成用の塗布液に粒子を分散した分散液を安定化するために、該金属酸化物粒子は、疎水化処理されることが好ましい。疎水化処理方法としては、疎水化できるものであれば特に限定されないが、オクタデカン酸,ドデカン酸などの飽和脂肪族カルボン酸;1,1,1−トリメチロールエタン、ペンタエリトリトールなどのポリオール;チタネート系カップリング剤、アルミニウム系カップリング剤、シリコーンなどの有機金属化合物による処理等が挙げられる。これらの中でもジメチルポリシロキサンまたはメチル水素ポ
リシロキサン等のシリコーンオイル;メチルジメトキシシラン等のシラン処理剤およびシランカップリング剤等の有機珪素化合物により処理することが好ましく、その中でも特にメチル水素ポリシロキサンおよび下記一般式の構造で表されるシラン処理剤により処理することが、金属酸化物との反応性も良く好ましい。
These metal oxide particles are particles having an average primary particle diameter of usually 100 nm or less, preferably 60 nm, from the viewpoint of the dispersion stability of the coating liquid for forming an undercoat layer and the electric characteristics such as residual potential. Hereinafter, those having a thickness of 50 nm or less, more preferably 10 nm or more, and preferably 20 nm or more are used.
In order to stabilize a dispersion in which particles are dispersed in a coating liquid for forming an undercoat layer, the metal oxide particles are preferably subjected to a hydrophobic treatment. The method of hydrophobizing treatment is not particularly limited as long as it can be hydrophobized, but saturated aliphatic carboxylic acids such as octadecanoic acid and dodecanoic acid; polyols such as 1,1,1-trimethylolethane and pentaerythritol; Coupling agents, aluminum-based coupling agents, treatment with an organometallic compound such as silicone, and the like can be given. Among them, it is preferable to treat with a silicone oil such as dimethylpolysiloxane or methylhydrogenpolysiloxane; an organosilicon compound such as a silane treating agent such as methyldimethoxysilane and a silane coupling agent. The treatment with a silane treating agent represented by the general formula is preferred because it has good reactivity with the metal oxide.

Figure 2004302462
Figure 2004302462

(式中、R1およびR2は、それぞれ独立して、メチル基またはエチル基を示す。R3はメ
チル基、エチル基、メトキシ基およびエトキシ基よりなる群より選ばれた基を示す。)
これらの疎水化処理された粒子の最表面は、前記疎水化処理剤で処理されているが、その前に、酸化アルミ等の親水性の処理剤で処理されていても構わない。
<下引き層のバインダー樹脂>
下引き層を形成するバインダー樹脂としては、ポリビニルアセタール、ポリアミド樹脂、フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂等の樹脂材料および電気特性を改善する目的で導電性樹脂を用いることが出来る。
(In the formula, R 1 and R 2 each independently represent a methyl group or an ethyl group. R 3 represents a group selected from the group consisting of a methyl group, an ethyl group, a methoxy group and an ethoxy group.)
The outermost surfaces of these hydrophobically treated particles have been treated with the above-mentioned hydrophobizing agent, but may be previously treated with a hydrophilic treating agent such as aluminum oxide.
<Binder resin for undercoat layer>
As a binder resin for forming the undercoat layer, a resin material such as polyvinyl acetal, a polyamide resin, a phenol resin, a polyester resin, an epoxy resin, a polyurethane resin, a polyacrylic acid resin, and a conductive resin for the purpose of improving electrical characteristics are used. I can do it.

なかでも、支持体との接着性に優れ、電荷発生層塗布液に用いられる溶媒に対する溶解性の小さなポリアミド樹脂が好ましい。その中でも特に下記一般式で示されるジアミン成分を構成成分として有する共重合ポリアミド樹脂が好ましい。   Among them, a polyamide resin which has excellent adhesion to a support and has low solubility in a solvent used for a charge generation layer coating solution is preferred. Among them, a copolymer polyamide resin having a diamine component represented by the following general formula as a component is particularly preferable.

Figure 2004302462
Figure 2004302462

(A、Bは、それぞれ独立して置換基を有していてもよいシクロヘキシル環を表し、R4、R5はそれぞれ独立して水素、アルキル基、アルコキシ基、アリール基を表す。)
粒子とバインダー樹脂の比率は任意に選ぶことが出来るが、塗布液の安定性および特性面から、バインダー樹脂1重量部に対して、0.5重量部から6重量部の範囲が好ましく、2重量部から4重量部の範囲が特に好ましい。
(A and B each independently represent a cyclohexyl ring which may have a substituent, and R 4 and R 5 each independently represent hydrogen, an alkyl group, an alkoxy group, or an aryl group.)
The ratio of the particles to the binder resin can be arbitrarily selected, but from the viewpoint of the stability and characteristics of the coating solution, the ratio is preferably 0.5 parts by weight to 6 parts by weight with respect to 1 part by weight of the binder resin. Particular to 4 parts by weight is particularly preferred.

下引き層の膜厚は、薄すぎると局所的な帯電不良に対する効果が充分でなく、また逆に厚すぎると残留電位の上昇、あるいは導電性基体と感光層との間の接着強度の低下の原因となる。本発明の下引き層の膜厚は、通常0.1μm以上、好ましくは1μm以上、より好ましくは3μm以上、特に好ましくは5μm以上であり、通常20μm以下、好ましくは15μm以下で、より好ましくは10μm以下で使用される。   If the thickness of the undercoat layer is too small, the effect on local charging failure is not sufficient, and if too thick, on the other hand, the residual potential increases, or the adhesion strength between the conductive substrate and the photosensitive layer decreases. Cause. The thickness of the undercoat layer of the present invention is usually at least 0.1 μm, preferably at least 1 μm, more preferably at least 3 μm, particularly preferably at least 5 μm, usually at most 20 μm, preferably at most 15 μm, more preferably at most 10 μm. Used in:

下引き層の体積抵抗率は、低すぎると電荷が容易に移動してしまい、感光体が帯電しないため、好ましくは1×1010Ωcm以上で用いられ、体積抵抗率が高すぎると残留電位の蓄積に繋がるため、好ましくは1×1013Ωcm以下で用いられる。
<支持体>
本発明で用いる導電性支持体としては、導電性支持体としては、周知の電子写真感光体
に採用されているものがいずれも使用できる。具体的には例えば、アルミニウム、ステンレス鋼、銅、ニッケル等の金属材料からなるドラム、シートあるいはこれらの金属箔のラミネート物、蒸着物、あるいは表面にアルミニウム、銅、パラジウム、酸化すず、酸化インジウム等の導電性層を設けたポリエステルフィルム、紙等の絶縁性支持体が挙げられる。更に、金属粉末、カーボンブラック、ヨウ化銅、高分子電解質等の導電性物質を適当なバインダーとともに塗布して導電処理したプラスチックフィルム、プラスチックドラム、紙、紙管等が挙げられる。また、金属粉末、カーボンブラック、炭素繊維等の導電性物質を含有し、導電性となったプラスチックのシートやドラムが挙げられる。そして、酸化スズ、酸化インジウム等の導電性金属酸化物で導電処理したプラスチックフィルムやベルトが挙げられる。
When the volume resistivity of the undercoat layer is too low, the charge easily moves and the photoconductor is not charged. Therefore, the volume resistivity is preferably 1 × 10 10 Ωcm or more. Since it leads to accumulation, it is preferably used at 1 × 10 13 Ωcm or less.
<Support>
As the conductive support used in the present invention, as the conductive support, any of those used in well-known electrophotographic photosensitive members can be used. Specifically, for example, aluminum, stainless steel, copper, a drum made of a metal material such as copper, a laminate of these metal foils, a deposited material, or a surface thereof, aluminum, copper, palladium, tin oxide, indium oxide, etc. And an insulating support such as a polyester film or paper provided with a conductive layer. Further, plastic films, plastic drums, paper, paper tubes, and the like, which are subjected to conductive treatment by applying a conductive substance such as metal powder, carbon black, copper iodide, and polymer electrolyte together with a suitable binder, may be used. Further, a plastic sheet or drum containing a conductive substance such as a metal powder, carbon black, or carbon fiber to become conductive may be used. Further, plastic films and belts which have been subjected to a conductive treatment with a conductive metal oxide such as tin oxide or indium oxide can be used.

なかでもアルミニウム等の金属のエンドレスパイプが好ましい支持体である。アルミニウムまたはその合金のエンドレスパイプは、押し出し、引き抜き、しごき等の加工により成形される。成形したものをそのまま用いても良いし、更に切削、研削、研磨などの加工を加えたものでも良い。導電性支持体の表面には、画質に影響のない範囲で、例えば酸化処理や薬品処理等の各種の処理を施すことができる。
<感光層>
下引き層の上には感光層が形成される。感光層は、電荷発生物質、電荷輸送物質およびバインダ−樹脂を単一の層に含むような単層構造のもの(以下、単層型感光層または分散型感光層ということがある)でもよいし、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層を積層した積層構造(以下、積層型感光層ということがある)でも構わない。
Among them, an endless pipe made of metal such as aluminum is a preferable support. The endless pipe made of aluminum or its alloy is formed by extrusion, drawing, ironing or the like. The molded product may be used as it is, or may be further processed by cutting, grinding, polishing or the like. The surface of the conductive support can be subjected to various treatments such as an oxidation treatment and a chemical treatment within a range that does not affect the image quality.
<Photosensitive layer>
A photosensitive layer is formed on the undercoat layer. The photosensitive layer may have a single-layer structure in which a charge generating substance, a charge transport substance, and a binder resin are contained in a single layer (hereinafter, may be referred to as a single-layer photosensitive layer or a dispersed photosensitive layer). Alternatively, a laminated structure in which a charge generating layer containing a charge generating substance and a charge transporting layer containing a charge transporting substance are laminated (hereinafter, sometimes referred to as a laminated photosensitive layer) may be used.

感光層が単層構造の場合には、感光材料がバインダーに分散してなる公知のものが使用される。例えば、電荷発生物質を主成分として、バインダー樹脂に分散させたもの。電荷発生物質および電荷輸送物質を主成分として、バインダー樹脂に分散させたものが用いられる。感光層が積層構造の感光層では、下引き層上に電荷発生層、電荷輸送層が積層される。
<電荷発生物質>
電荷発生物質としては、フタロシアニン、アゾ、ペリレン、キナクリドン、多環キノン、ピリリウム塩、インジゴ、チオインジゴ、アントアントロン、ピラントロン、シアニン等の各種有機顔料、色素が使用できる。中でも無金属フタロシアニン、銅、インジウム、ガリウム、錫、チタン、亜鉛、バナジウム、シリコン等の金属、またはその酸化物、水酸化物、塩化物の配位したフタロシアニン類、モノアゾ、ビスアゾ、トリスアゾ、ポリアゾ類等のアゾ顔料、ペリレン顔料が好ましい。
When the photosensitive layer has a single-layer structure, a known material in which a photosensitive material is dispersed in a binder is used. For example, a material in which a charge generation material is a main component and dispersed in a binder resin. A material in which a charge generating substance and a charge transporting substance are mainly dispersed in a binder resin is used. When the photosensitive layer has a laminated structure, a charge generation layer and a charge transport layer are laminated on the undercoat layer.
<Charge generating substance>
As the charge generating substance, various organic pigments and dyes such as phthalocyanine, azo, perylene, quinacridone, polycyclic quinone, pyrylium salt, indigo, thioindigo, anthantrone, pyranthrone and cyanine can be used. Among them, metals such as metal-free phthalocyanines, copper, indium, gallium, tin, titanium, zinc, vanadium, and silicon, or oxides, hydroxides, and chloride-coordinated phthalocyanines, monoazo, bisazo, trisazo, and polyazos And azo pigments and perylene pigments.

そして、これらの電荷発生材量の中でも、無金属および金属含有フタロシアニン類が、500nm〜800nmの比較的長波長のレーザー光またはLED等に対して高感度の感光体が得られる点で、また、モノアゾ、ビスアゾ、トリスアゾ等のアゾ顔料が、白色光または300nm〜500nmの比較的短波長のレーザー光またはLED等に対して十分な感度を持つ点で優れており、好ましい。   Among these charge generating materials, metal-free and metal-containing phthalocyanines can provide a photoreceptor with high sensitivity to laser light of a relatively long wavelength of 500 nm to 800 nm, LED, or the like. Azo pigments such as monoazo, bisazo, and trisazo are excellent in that they have sufficient sensitivity to white light, laser light having a relatively short wavelength of 300 to 500 nm, LED, or the like, and are preferable.

また、フタロシアニン類の中でも特に、CuKα特性X線に対するX線回折スペクトルのブラック角(2θ±0.2°)が、27.3°に主たる回折ピークを示す、いわゆるD型オキシチタニウムフタロシアニン、9.3°,13.2°,26.2°および27.1°に主たる回折ピークを示す、いわゆるA型オキシチタニウムフタロシアニン、9.2,14.1,15.3,19.7,27.1 ゜に主たる回折ピークを有するジヒドロキシ
シリコンフタロシアニン、8.5°,12.2°,13.8°,16.9°,22.4°,28.4°および30.1°に主たる回折ピークを示すジクロロスズフタロシアニン、7.5゜,9.9゜,12.5゜,16.3゜,18.6゜,25.1゜および28.3
゜に主たる回折ピークを示すヒドロキシガリウムフタロシアニン、7.4゜,16.6゜,25.5゜および28.3゜に回折ピークを示すクロロガリウムフタロシアニンが、好ましい。
Among the phthalocyanines, so-called D-type oxytitanium phthalocyanine, in which the black angle (2θ ± 0.2 °) of the X-ray diffraction spectrum with respect to the CuKα characteristic X-ray shows a main diffraction peak at 27.3 °, 9. So-called oxytitanium phthalocyanine type A, showing main diffraction peaks at 3 °, 13.2 °, 26.2 ° and 27.1 °, 9.2, 14.1, 15.3, 19.7, 27.1 Dihydroxysilicon phthalocyanine having a main diffraction peak at ゜, a main diffraction peak at 8.5 °, 12.2 °, 13.8 °, 16.9 °, 22.4 °, 28.4 ° and 30.1 ° The indicated dichlorotin phthalocyanine, 7.5%, 9.9%, 12.5%, 16.3%, 18.6%, 25.1% and 28.3.
Preference is given to hydroxygallium phthalocyanine, which exhibits major diffraction peaks at ゜, and chlorogallium phthalocyanine, which exhibits diffraction peaks at 7.4, 16.6, 25.5 and 28.3 °.

積層型感光層の電荷発生層は、これらの物質の微粒子とバインダーポリマーを溶剤に溶解あるいは分散して得られる塗布液を塗布乾燥して得ることができる。
電荷発生層に用いるバインダー樹脂としては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、ビニルアルコール、エチルビニルエーテル等のビニル化合物の重合体および共重合体、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリアミド、ポリウレタン、セルロースエーテル、フェノキシ樹脂、ケイ素樹脂、エポキシ樹脂等が挙げられる。バインダー樹脂はこれらの樹脂の中の1種だけを用いても良いし、2種類以上の混合物であっても構わない。これらの樹脂の中でも、顔料の分散安定性の理由からポリビニルアセタール樹脂、フェノキシ樹脂が好ましい。
The charge generation layer of the laminated photosensitive layer can be obtained by applying and drying a coating solution obtained by dissolving or dispersing fine particles of these substances and a binder polymer in a solvent.
As the binder resin used for the charge generation layer, styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinyl alcohol, polymers and copolymers of vinyl compounds such as ethyl vinyl ether, polyvinyl acetal, polycarbonate, polyester, Examples include polyamide, polyurethane, cellulose ether, phenoxy resin, silicon resin, epoxy resin and the like. As the binder resin, only one kind of these resins may be used, or a mixture of two or more kinds may be used. Among these resins, a polyvinyl acetal resin and a phenoxy resin are preferable because of the dispersion stability of the pigment.

電荷発生層形成用塗布液に用いる溶剤としては、メタノール、プロパノールのようなアルコール類、1,4−ジオキサン、1,2−ジメトキシエタンのようなエーテル類、メチルエチルケトン、シクロヘキサノン、4−メトキシ−4−メチルペンタノン−2のようなケトン類、トルエンのような炭化水素類が、挙げられる。これらの溶媒の中から1種だけを用いても良いし、2種類以上の混合物であっても構わない。これらの溶媒の中でも、顔料の結晶安定性の理由から1,2−ジメトキシエタン、4−メトキシ−4−メチルペンタノン−2が好ましい。   Examples of the solvent used for the coating solution for forming the charge generation layer include alcohols such as methanol and propanol, ethers such as 1,4-dioxane and 1,2-dimethoxyethane, methyl ethyl ketone, cyclohexanone, and 4-methoxy-4-. Ketones, such as methylpentanone-2, and hydrocarbons, such as toluene. One of these solvents may be used alone, or a mixture of two or more solvents may be used. Among these solvents, 1,2-dimethoxyethane and 4-methoxy-4-methylpentanone-2 are preferred because of the crystal stability of the pigment.

電荷発生物質とバインダーポリマーの割合は、特に制限はないが、一般には電荷発生物質100重量部に対し、5〜500重量部、好ましくは20〜300重量部のバインダーポリマーを使用する。
また電荷発生層は上記電荷発生物質の蒸着膜であってもよい。
電荷発生層の膜厚は、0.05〜5μm、好ましくは0.1〜2μmである。
<電荷輸送物質>
電荷輸送物質としては、ポリビニルカルバゾール、ポリビニルピレン、ポリアセナフチレン等の高分子化合物、または各種ピラゾリン誘導体、オキサゾール誘導体、ヒドラゾン誘導体、スチルベン誘導体、ブタジエン誘導体、アリールアミン誘導体等の低分子化合物が使用でき、今日では、ヒドラゾン誘導体、スチルベン誘導体、ブタジエン誘導体、ヒドラゾン誘導体の低分子化合物が好適に用いられる。
The ratio between the charge generating substance and the binder polymer is not particularly limited, but generally 5 to 500 parts by weight, preferably 20 to 300 parts by weight, of the binder polymer is used per 100 parts by weight of the charge generating substance.
Further, the charge generation layer may be a deposited film of the above charge generation substance.
The thickness of the charge generation layer is 0.05 to 5 μm, preferably 0.1 to 2 μm.
<Charge transport material>
As the charge transport substance, a high molecular compound such as polyvinyl carbazole, polyvinyl pyrene, and polyacenaphthylene, or a low molecular compound such as various pyrazoline derivatives, oxazole derivatives, hydrazone derivatives, stilbene derivatives, butadiene derivatives, and arylamine derivatives can be used. Today, low molecular weight compounds of hydrazone derivatives, stilbene derivatives, butadiene derivatives and hydrazone derivatives are preferably used.

積層型感光層における電荷輸送層は、これらの電荷輸送物質とバインダーポリマーを溶剤に溶解して得られる塗布液を電荷発生層の上に塗布乾燥して得ることができる。バインダーポリマーとしては、上記電荷輸送物質と相溶性が良く、塗膜形成後に電荷輸送物質が結晶化したり、相分離することのないポリマーが好ましい。それらの例としては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、ビニルアルコール、エチルビニルエーテル等のビニル化合物の重合体および共重合体、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロースエステル、セルロースエーテル、フェノキシ樹脂、ケイ素樹脂、エポキシ樹脂および、上記記載の低分子化合物の電荷移動材料を主鎖または/および側鎖に導入した重合体等が挙げられる。   The charge transport layer in the laminated photosensitive layer can be obtained by applying and drying a coating solution obtained by dissolving the charge transport material and the binder polymer in a solvent on the charge generation layer. As the binder polymer, a polymer which has good compatibility with the above-described charge transporting substance and does not crystallize or phase-separate the charge transporting substance after forming the coating film is preferable. Examples thereof include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinyl alcohol, and ethyl vinyl ether, polyvinyl acetal, polycarbonate, polyester, polysulfone, and polyphenylene oxide. , Polyurethane, cellulose ester, cellulose ether, phenoxy resin, silicon resin, epoxy resin, and a polymer in which the above-described charge transfer material of a low molecular compound is introduced into a main chain and / or a side chain.

これらの中でも、耐摩耗性などの機械的特性、溶液中での電荷輸送物質とバインダーポリマーの相溶性の点でポリカーボネート樹脂が好適に用いられる。
バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂に対して電荷輸送物質が少なすぎると電気特性が悪化するため、通常10重量部以上、好ましくは20重量部以上であり、特に好ましくは30重量部以上で用いられる。また、電荷輸送物質が多すぎると電
荷輸送層の硬度が下がり、使用時の摩耗が大きくなったり、表面が傷つき画像欠陥が発生しやすくなることから、通常200重量部以下、好ましくは100重量部以下であり、特に好ましくは70重量部以下である。
Among them, polycarbonate resins are preferably used in view of mechanical properties such as abrasion resistance and compatibility of the charge transport material and the binder polymer in a solution.
The ratio between the binder resin and the charge transport material is usually at least 10 parts by weight, preferably at least 20 parts by weight, particularly preferably at least 30 parts by weight, because if the amount of the charge transport material is too small relative to the binder resin, the electrical properties deteriorate. Used in more than one part. Further, when the amount of the charge transporting substance is too large, the hardness of the charge transporting layer is reduced, and the wear during use is increased, and the surface is damaged and image defects are easily generated. Therefore, usually 200 parts by weight or less, preferably 100 parts by weight. Or less, particularly preferably 70 parts by weight or less.

電荷輸送層の膜厚は、通常10〜50μm、好ましくは13〜35μmの範囲で使用される。
電荷輸送層は必要に応じて電子吸引性化合物を添加しても良い。電子吸引性化合物としては、テトラシアノキノジメタン、ジシアノキノメタン、ジシアノキノビニル基を有する芳香族エステル類等のシアノ化合物、2,4,6−トリニトロフルオレノン等のニトロ化合物、ペリレン等の縮合多環芳香族化合物、ジフェノキノン誘導体、キノン類、アルデヒド類、ケトン類、エステル類、酸無水物、フタリド類、置換および無置換サリチル酸の金属錯体、置換および無置換サリチル酸の金属塩、芳香族カルボン酸の金属錯体、芳香族カルボン酸の金属塩が挙げられる。好ましくは、シアノ化合物、ニトロ化合物、縮合多環芳香族化合物、ジフェノキノン誘導体、置換および無置換サリチル酸の金属錯体、置換および無置換サリチル酸の金属塩、芳香族カルボン酸の金属錯体、芳香族カルボン酸の金属塩を用いるのがよい。
The thickness of the charge transport layer is usually in the range of 10 to 50 μm, preferably 13 to 35 μm.
An electron withdrawing compound may be added to the charge transport layer as needed. Examples of the electron-withdrawing compound include cyano compounds such as tetracyanoquinodimethane, dicyanoquinomethane, aromatic esters having a dicyanoquinovinyl group, nitro compounds such as 2,4,6-trinitrofluorenone, and condensation of perylene and the like. Polycyclic aromatic compounds, diphenoquinone derivatives, quinones, aldehydes, ketones, esters, acid anhydrides, phthalides, substituted and unsubstituted salicylic acid metal complexes, substituted and unsubstituted salicylic acid metal salts, aromatic carboxylic acids And metal salts of aromatic carboxylic acids. Preferably, a cyano compound, a nitro compound, a condensed polycyclic aromatic compound, a diphenoquinone derivative, a metal complex of substituted and unsubstituted salicylic acid, a metal salt of substituted and unsubstituted salicylic acid, a metal complex of aromatic carboxylic acid, and a metal complex of aromatic carboxylic acid It is preferable to use a metal salt.

本発明の電子写真用感光体の感光層は成膜性、可とう性、塗布性、機械的強度、滑り性、オゾン,NOx等の耐ガス特性を向上させるために可塑剤、酸化防止剤、紫外線吸収剤、無機粒子、樹脂粒子、ワックス、シリコーンオイル、レベリング剤等の各種の添加剤を含有していてもよい。
単層型感光層では、上記の電荷発生物質、電荷輸送物質、各種添加剤およびバインダーポリマーを混合、分散したものを用いる。
<その他の機能層>
感光層の上に、機械的特性の向上およびオゾン,NOx等の耐ガス特性向上のために、オーバーコート層を用いても良い。更に必要に応じて、接着層、中間層、透明絶縁層等を有していてもよい。
The photosensitive layer of the electrophotographic photoreceptor of the present invention is formed of a plasticizer, an antioxidant, and the like in order to improve film formability, flexibility, applicability, mechanical strength, slipperiness, and gas resistance such as ozone and NOx. Various additives such as an ultraviolet absorber, inorganic particles, resin particles, wax, silicone oil, and a leveling agent may be contained.
In the single-layer type photosensitive layer, a mixture in which the above-mentioned charge generating substance, charge transporting substance, various additives and binder polymer are mixed and dispersed is used.
<Other functional layers>
An overcoat layer may be used on the photosensitive layer in order to improve the mechanical properties and the resistance to gas such as ozone and NOx. Further, if necessary, it may have an adhesive layer, an intermediate layer, a transparent insulating layer and the like.

更に、下引き層と感光層の間や、下引き層と導電性基体の間に、中間層を設けても良いが、本発明の下引き層は、それのみで、繰り返し時の電気特性を含めて、良好な電気特性を示すので、そのような中間層を設けない方が、生産性およびコストの面で好ましい。
<層形成方法>
下引き層、感光層およびその他の機能層は、塗布液をスプレー法、スパイラル法、リング法、浸漬法等により導電性支持体上に塗布して形成する。
Further, an intermediate layer may be provided between the undercoat layer and the photosensitive layer, or between the undercoat layer and the conductive substrate. However, the undercoat layer of the present invention alone has an electrical characteristic upon repetition. In addition, since it shows good electric characteristics, it is preferable not to provide such an intermediate layer in terms of productivity and cost.
<Layer forming method>
The undercoat layer, photosensitive layer and other functional layers are formed by applying a coating solution on a conductive support by a spray method, a spiral method, a ring method, an immersion method or the like.

スプレー法に用いるスプレーとしては、エアスプレー、エアレススプレー、静電エアスプレー、静電エアレススプレー、回転霧化式静電スプレー、ホットスプレー、ホットエアレススプレー等が挙げられる。膜厚を均一とするには、再公表平1−805198号公報に記載されている回転霧化式静電スプレーを用いる方法が好ましい。
スパイラル法としては、特開昭52−119651号公報に記載されている注液塗布機又はカーテン塗布機を用いた方法、特開平1−231966号公報に記載されている微小開口部から塗料を筋状に連続して飛翔させる方法、特開平3−193161号公報に開示されているマルチノズル体を用いた方法等が挙げられる。
<画像形成装置>
次に、本発明の電子写真感光体を用いた画像形成装置(本発明の画像形成装置)の実施の形態について、装置の要部構成を示す図1を用いて説明する。但し、実施の形態は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない限り任意に変形して実施することができる。
Examples of the spray used in the spraying method include air spray, airless spray, electrostatic air spray, electrostatic airless spray, rotary atomizing electrostatic spray, hot spray, and hot airless spray. In order to make the film thickness uniform, a method using a rotary atomization type electrostatic spray described in Japanese Patent Laid-Open Publication No. 1-805198 is preferable.
Examples of the spiral method include a method using a liquid injection coating machine or a curtain coating machine described in JP-A-52-119651, and a method of applying a paint from a fine opening described in JP-A-1-219666. And a method using a multi-nozzle body disclosed in JP-A-3-193161.
<Image forming apparatus>
Next, an embodiment of an image forming apparatus using the electrophotographic photoreceptor of the present invention (image forming apparatus of the present invention) will be described with reference to FIG. However, the embodiments are not limited to the following description, and can be arbitrarily modified and implemented without departing from the gist of the present invention.

図1に示すように、画像形成装置は、電子写真感光体1,帯電装置2,露光装置3及び
現像装置4を備えて構成され、更に、必要に応じて転写装置5,クリーニング装置6及び定着装置7が設けられる。
電子写真感光体1は、上述した本発明の電子写真感光体であれば特に制限はないが、図1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を形成したドラム状の感光体を示している。この電子写真感光体1の外周面に沿って、帯電装置2,露光装置3,現像装置4,転写装置5及びクリーニング装置6がそれぞれ配置されている。
As shown in FIG. 1, the image forming apparatus includes an electrophotographic photosensitive member 1, a charging device 2, an exposing device 3, and a developing device 4, and further includes a transfer device 5, a cleaning device 6, and a fixing device as necessary. A device 7 is provided.
The electrophotographic photoreceptor 1 is not particularly limited as long as it is the above-described electrophotographic photoreceptor of the present invention. In FIG. 1, as an example, a drum in which the above-described photosensitive layer is formed on the surface of a cylindrical conductive support 2 shows a photoconductor in a shape of a circle. A charging device 2, an exposure device 3, a developing device 4, a transfer device 5, and a cleaning device 6 are arranged along the outer peripheral surface of the electrophotographic photosensitive member 1.

帯電装置2は、電子写真感光体1を帯電させるもので、電子写真感光体1の表面を所定電位に均一帯電させる。帯電装置としては、コロトロンやスコロトロン等のコロナ帯電装置、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電装置(接触型帯電装置)帯電ブラシ等の接触型帯電装置などがよく用いられる。直接帯電手段の例としては、帯電ローラ、帯電ブラシ等の接触帯電器などが挙げられる。なお、図1では、帯電装置2の一例としてローラ型の帯電装置(帯電ローラ)を示している。直接帯電手段として、気中放電を伴う帯電、あるいは気中放電を伴わない注入帯電いずれも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合、及び直流に交流を重畳させて用いることもできる。   The charging device 2 charges the electrophotographic photosensitive member 1, and uniformly charges the surface of the electrophotographic photosensitive member 1 to a predetermined potential. Examples of the charging device include a corona charging device such as a corotron and a scorotron, and a contact charging device such as a direct charging device (contact charging device) for charging a direct charging member to which a voltage is applied by bringing the member into contact with the surface of the photoreceptor. Often used. Examples of the direct charging unit include a contact charging device such as a charging roller and a charging brush. FIG. 1 illustrates a roller-type charging device (charging roller) as an example of the charging device 2. As the direct charging means, either charging with air discharge or injection charging without air discharge is possible. In addition, as the voltage applied at the time of charging, a DC voltage alone may be used, or an AC may be superimposed on a DC.

露光装置3は、電子写真感光体1に露光を行なって電子写真感光体1の感光面に静電潜像を形成することができるものであれば、その種類に特に制限はない。具体例としては、ハロゲンランプ、蛍光灯、半導体レーザーやHe−Neレーザー等のレーザー、LEDなどが挙げられる。また、感光体内部露光方式によって露光を行なうようにしてもよい。露光を行なう際の光は任意であるが、例えば波長が780nmの単色光、波長600nm〜700nmのやや短波長寄りの単色光、波長380nm〜500nmの短波長の単色光などで露光を行なえばよい。   The type of the exposure device 3 is not particularly limited as long as it can expose the electrophotographic photosensitive member 1 to form an electrostatic latent image on the photosensitive surface of the electrophotographic photosensitive member 1. Specific examples include halogen lamps, fluorescent lamps, lasers such as semiconductor lasers and He-Ne lasers, and LEDs. Further, the exposure may be performed by a photoconductor internal exposure method. The light at the time of exposure is arbitrary, and for example, the exposure may be performed using monochromatic light having a wavelength of 780 nm, monochromatic light having a wavelength slightly shorter than 600 nm to 700 nm, or monochromatic light having a shorter wavelength of 380 nm to 500 nm. .

現像装置4は、その種類に特に制限はなく、カスケード現像、一成分絶縁トナー現像、一成分導電トナー現像、二成分磁気ブラシ現像などの乾式現像方式や、湿式現像方式などの任意の装置を用いることができる。図1では、現像装置4は、現像槽41、アジテータ42、供給ローラ43、現像ローラ44、及び、規制部材45からなり、現像槽41の内部にトナーTを貯留している構成となっている。また、必要に応じ、トナーTを補給する補給装置(図示せず)を現像装置4に付帯させてもよい。この補給装置は、ボトル、カートリッジなどの容器からトナーTを補給することが可能に構成される。   The type of the developing device 4 is not particularly limited, and an arbitrary device such as a dry developing system such as a cascade developing, a one-component insulating toner developing, a one-component conductive toner developing, a two-component magnetic brush developing, or a wet developing system is used. be able to. In FIG. 1, the developing device 4 includes a developing tank 41, an agitator 42, a supply roller 43, a developing roller 44, and a regulating member 45, and has a configuration in which the toner T is stored in the developing tank 41. . Further, a replenishing device (not shown) for replenishing the toner T may be attached to the developing device 4 as needed. The replenishing device is configured to be able to replenish the toner T from a container such as a bottle or a cartridge.

供給ローラ43は、導電性スポンジ等から形成される。現像ローラ44は、鉄,ステンレス鋼,アルミニウム,ニッケルなどの金属ロール、又はこうした金属ロールにシリコン樹脂,ウレタン樹脂,フッ素樹脂などを被覆した樹脂ロールなどからなる。この現像ローラ44の表面には、必要に応じて、平滑加工や粗面加工を加えてもよい。
現像ローラ44は、電子写真感光体1と供給ローラ43との間に配置され、電子写真感光体1及び供給ローラ43に各々当接している。供給ローラ43及び現像ローラ44は、回転駆動機構(図示せず)によって回転される。供給ローラ43は、貯留されているトナーTを担持して、現像ローラ44に供給する。現像ローラ44は、供給ローラ43によって供給されるトナーTを担持して、電子写真感光体1の表面に接触させる。
The supply roller 43 is formed from a conductive sponge or the like. The developing roller 44 is made of a metal roll of iron, stainless steel, aluminum, nickel, or the like, or a resin roll in which such a metal roll is coated with a silicon resin, a urethane resin, a fluorine resin, or the like. The surface of the developing roller 44 may be subjected to smoothing or roughening if necessary.
The developing roller 44 is disposed between the electrophotographic photosensitive member 1 and the supply roller 43, and is in contact with the electrophotographic photosensitive member 1 and the supply roller 43, respectively. The supply roller 43 and the developing roller 44 are rotated by a rotation drive mechanism (not shown). The supply roller 43 carries the stored toner T and supplies it to the developing roller 44. The developing roller 44 carries the toner T supplied by the supply roller 43 and contacts the surface of the electrophotographic photosensitive member 1.

規制部材45は、シリコン樹脂やウレタン樹脂などの樹脂ブレード、ステンレス鋼、アルミニウム、銅、真鍮、リン青銅などの金属ブレード、又はこうした金属ブレードに樹脂を被覆したブレード等により形成されている。この規制部材45は、現像ローラ44に当接し、ばね等によって現像ローラ44側に所定の力で押圧(一般的なブレード線圧は5〜500g/cm)される。必要に応じて、この規制部材45に、トナーTとの摩擦帯電によりトナーTに帯電を付与する機能を具備させてもよい。   The regulating member 45 is formed by a resin blade such as a silicone resin or a urethane resin, a metal blade such as stainless steel, aluminum, copper, brass, phosphor bronze, or the like, or a blade in which such a metal blade is coated with a resin. The regulating member 45 is in contact with the developing roller 44 and is pressed against the developing roller 44 by a predetermined force with a spring or the like (a general blade linear pressure is 5 to 500 g / cm). If necessary, the regulating member 45 may have a function of charging the toner T by frictional charging with the toner T.

アジテータ42は、回転駆動機構によってそれぞれ回転されており、トナーTを攪拌するとともに、トナーTを供給ローラ43側に搬送する。アジテータ42は、羽根形状、大きさ等を違えて複数設けてもよい。
転写装置5は、その種類に特に制限はなく、コロナ転写、ローラ転写、ベルト転写などの静電転写法、圧力転写法、粘着転写法など、任意の方式を用いた装置を使用することができる。ここでは、転写装置5が電子写真感光体1に対向して配置された転写チャージャー,転写ローラ,転写ベルト等から構成されるものとする。この転写装置5は、トナーTの帯電電位とは逆極性で所定電圧値(転写電圧)を印加し、電子写真感光体1に形成されたトナー像を記録紙(用紙,媒体)Pに転写するものである。
The agitator 42 is rotated by a rotation drive mechanism, and agitates the toner T and conveys the toner T to the supply roller 43 side. A plurality of agitators 42 may be provided with different blade shapes, sizes, and the like.
The type of the transfer device 5 is not particularly limited, and any type of device such as an electrostatic transfer method such as corona transfer, roller transfer, and belt transfer, a pressure transfer method, and an adhesive transfer method can be used. . Here, it is assumed that the transfer device 5 includes a transfer charger, a transfer roller, a transfer belt, and the like which are arranged to face the electrophotographic photosensitive member 1. The transfer device 5 applies a predetermined voltage value (transfer voltage) having a polarity opposite to the charged potential of the toner T, and transfers the toner image formed on the electrophotographic photosensitive member 1 to a recording paper (paper, medium) P. Things.

クリーニング装置6について特に制限はなく、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナーなど、任意のクリーニング装置を用いることができる。クリーニング装置6は、感光体1に付着している残留トナーをクリーニング部材で掻き落とし、残留トナーを回収するものである。但し、感光体表面に残留するトナーが少ないか、殆ど無い場合には、クリーニング装置6は無くても構わない。   The cleaning device 6 is not particularly limited, and any cleaning device such as a brush cleaner, a magnetic brush cleaner, an electrostatic brush cleaner, a magnetic roller cleaner, and a blade cleaner can be used. The cleaning device 6 is configured to scrape residual toner adhered to the photoreceptor 1 with a cleaning member and collect the residual toner. However, when the toner remaining on the photoreceptor surface is small or almost nonexistent, the cleaning device 6 may be omitted.

定着装置7は、上部定着部材(定着ローラ)71及び下部定着部材(定着ローラ)72から構成され、定着部材71又は72の内部には加熱装置73が備えられている。なお、図1では、上部定着部材71の内部に加熱装置73が備えられた例を示す。上部及び下部の各定着部材71,72は、ステンレス,アルミニウムなどの金属素管にシリコンゴムを被覆した定着ロール、更にフッ素樹脂で被覆した定着ロール、定着シートなどが公知の熱定着部材を使用することができる。更に、各定着部材71,72は、離型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としてもよく、バネ等により互いに強制的に圧力を加える構成としてもよい。   The fixing device 7 includes an upper fixing member (fixing roller) 71 and a lower fixing member (fixing roller) 72, and a heating device 73 is provided inside the fixing member 71 or 72. FIG. 1 shows an example in which a heating device 73 is provided inside the upper fixing member 71. For the upper and lower fixing members 71 and 72, use is made of a known heat fixing member such as a fixing roll in which a metal tube made of stainless steel, aluminum or the like is coated with silicon rubber, a fixing roll coated with a fluorine resin, and a fixing sheet. be able to. Further, the fixing members 71 and 72 may be configured to supply a release agent such as silicone oil in order to improve the releasability, or may be configured to forcibly apply pressure to each other by a spring or the like.

記録紙P上に転写されたトナーは、所定温度に加熱された上部定着部材71と下部定着部材72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却されて記録紙P上にトナーが定着される。
なお、定着装置についてもその種類に特に限定はなく、ここで用いたものをはじめ、熱ローラ定着、フラッシュ定着、オーブン定着、圧力定着など、任意の方式による定着装置を設けることができる。
When the toner transferred onto the recording paper P passes between the upper fixing member 71 and the lower fixing member 72 heated to a predetermined temperature, the toner is heated to a molten state, cooled after passing through, and cooled. The toner is fixed on P.
The type of the fixing device is not particularly limited, and a fixing device of any type, such as a fixing device used here, a heat roller fixing device, a flash fixing device, an oven fixing device, and a pressure fixing device, may be provided.

以上のように構成された電子写真装置では、次のようにして画像の記録が行なわれる。即ち、まず感光体1の表面(感光面)が、帯電装置2によって所定の電位(例えば−600V)に帯電される。この際、直流電圧により帯電させても良く、直流電圧に交流電圧を重畳させて帯電させてもよい。
続いて、帯電された感光体1の感光面を、記録すべき画像に応じて露光装置3により露光し、感光面に静電潜像を形成する。そして、その感光体1の感光面に形成された静電潜像の現像を、現像装置4で行なう。
In the electrophotographic apparatus configured as described above, an image is recorded as follows. That is, first, the surface (photosensitive surface) of the photoconductor 1 is charged to a predetermined potential (for example, −600 V) by the charging device 2. At this time, the battery may be charged by a DC voltage, or may be charged by superimposing an AC voltage on the DC voltage.
Subsequently, the charged photosensitive surface of the photoconductor 1 is exposed by the exposure device 3 according to an image to be recorded, and an electrostatic latent image is formed on the photosensitive surface. Then, the developing device 4 develops the electrostatic latent image formed on the photosensitive surface of the photosensitive member 1.

現像装置4は、供給ローラ43により供給されるトナーTを、規制部材(現像ブレード)45により薄層化するとともに、所定の極性(ここでは感光体1の帯電電位と同極性であり、負極性)に摩擦帯電させ、現像ローラ44に担持しながら搬送して、感光体1の表面に接触させる。
現像ローラ44に担持された帯電トナーTが感光体1の表面に接触すると、静電潜像に対応するトナー像が感光体1の感光面に形成される。そしてこのトナー像は、転写装置5によって記録紙Pに転写される。この後、転写されずに感光体1の感光面に残留しているトナーが、クリーニング装置6で除去される。
The developing device 4 thins the toner T supplied by the supply roller 43 by the regulating member (developing blade) 45 and has a predetermined polarity (here, the same polarity as the charging potential of the photoconductor 1 and a negative polarity). ), And is transported while being carried on the developing roller 44, and is brought into contact with the surface of the photoconductor 1.
When the charged toner T carried by the developing roller 44 comes into contact with the surface of the photoreceptor 1, a toner image corresponding to the electrostatic latent image is formed on the photosensitive surface of the photoreceptor 1. Then, this toner image is transferred onto the recording paper P by the transfer device 5. Thereafter, the toner remaining on the photosensitive surface of the photoconductor 1 without being transferred is removed by the cleaning device 6.

トナー像の記録紙P上への転写後、定着装置7を通過させてトナー像を記録紙P上へ熱定着することで、最終的な画像が得られる。
なお、画像形成装置は、上述した構成に加え、例えば除電工程を行なうことができる構成としても良い。除電工程は、電子写真感光体に露光を行なうことで電子写真感光体の除電を行なう工程であり、除電装置としては、蛍光灯、LED等が使用される。また除電工程で用いる光は、強度としては露光光の3倍以上の露光エネルギーを有する光である場合が多い。
After the transfer of the toner image onto the recording paper P, the final image is obtained by passing the toner image through the fixing device 7 and thermally fixing the toner image onto the recording paper P.
Note that the image forming apparatus may be configured to be able to perform, for example, a charge removing step in addition to the above-described configuration. The charge removing step is a step of removing the charge of the electrophotographic photosensitive member by exposing the electrophotographic photosensitive member, and a fluorescent lamp, an LED, or the like is used as the charge removing device. In addition, the light used in the charge removing step is often light having an exposure energy three times or more the intensity of the exposure light.

また、画像形成装置は更に変形して構成してもよく、例えば、前露光工程、補助帯電工程などの工程を行なうことができる構成としたり、オフセット印刷を行なう構成としたり、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
なお、電子写真感光体1を、帯電装置2、露光装置3、現像装置4、転写装置5、クリーニング装置6、及び定着装置7のうち1つ又は2つ以上と組み合わせて、一体型のカートリッジ(以下適宜「電子写真感光体カートリッジ」という)として構成し、この電子写真感光体カートリッジを複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成にしてもよい。この場合、例えば電子写真感光体1やその他の部材が劣化した場合に、この電子写真感光体カートリッジを画像形成装置本体から取り外し、別の新しい電子写真感光体カートリッジを画像形成装置本体に装着することにより、画像形成装置の保守・管理が容易となる。
Further, the image forming apparatus may be further modified and configured, for example, a configuration capable of performing steps such as a pre-exposure step and an auxiliary charging step, a configuration performing offset printing, and a plurality of types. A full-color tandem system using toner may be used.
The electrophotographic photosensitive member 1 is combined with one or more of the charging device 2, the exposing device 3, the developing device 4, the transfer device 5, the cleaning device 6, and the fixing device 7 to form an integrated cartridge ( Hereinafter, the cartridge is appropriately referred to as an “electrophotographic photoreceptor cartridge”, and the electrophotographic photoreceptor cartridge may be configured to be detachable from a main body of an electrophotographic apparatus such as a copying machine or a laser beam printer. In this case, for example, when the electrophotographic photosensitive member 1 and other members are deteriorated, the electrophotographic photosensitive member cartridge is removed from the image forming apparatus main body, and another new electrophotographic photosensitive member cartridge is mounted on the image forming apparatus main body. This facilitates maintenance and management of the image forming apparatus.

以下本発明を実施例、比較例により更に詳細に説明するが、本発明はその要旨を越えない限り、これらに限定されるものではない。なお、実施例中で用いる「部」は断りがない限り、「重量部」を示す。
<分散液S1の作製方法>
平均一次粒子径40nmのルチル型酸化チタン(石原産業(株)製、製品名 TTO55N)と該酸化チタンに対して3重量%のメチルジメトキシシランをボールミルにて混合して得られたスラリーを乾燥後、更にメタノールで洗浄した後乾燥して得られた疎水化処理酸化チタンを、メタノール/1−プロパノールの混合溶媒中でボールミル分散を行い、疎水化処理酸化チタンの分散スラリーを得た。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto unless it exceeds the gist thereof. In addition, “parts” used in the examples indicates “parts by weight” unless otherwise specified.
<Production method of dispersion liquid S1>
A slurry obtained by mixing a rutile type titanium oxide having an average primary particle diameter of 40 nm (manufactured by Ishihara Sangyo Co., Ltd., product name: TTO55N) and 3% by weight of methyldimethoxysilane with respect to the titanium oxide in a ball mill is dried. Further, the hydrophobized titanium oxide obtained by washing with methanol and then drying was subjected to ball mill dispersion in a mixed solvent of methanol / 1-propanol to obtain a dispersion slurry of the hydrophobized titanium oxide.

ここで得られた分散スラリーと、メタノール、1−プロパノール、トルエン、および下記構造式で表されるナイロンのペレットを加温しながら攪拌混合を行い、ナイロンペレットを溶解し、その後、超音波分散処理を行うことにより、最終的に、疎水化処理酸化チタン/ナイロン=4/1の分散液を調製し、これを分散液S1とした。   The dispersion slurry obtained here, methanol, 1-propanol, toluene, and nylon pellets represented by the following structural formula are stirred and mixed while heating to dissolve the nylon pellets, and then subjected to ultrasonic dispersion treatment. Finally, a dispersion of hydrophobically treated titanium oxide / nylon = 4/1 was prepared, and this was designated as dispersion S1.

Figure 2004302462
Figure 2004302462

<分散液S2の作製方法>
分散液S1の作製と同様にして得られた疎水化処理酸化チタンをメタノール/1−プロパノールの混合溶媒中でボールミル分散を行い、疎水化処理酸化チタンの分散スラリーを得た。また、同様にして、導電性のアンチモンドープ酸化スズで導電化処理された、平均粒径0.3〜0.4μmのアナターゼ型酸化チタン(チタン工業(株)製、製品名 EC−100)の分散スラリーを作製した。
<Method for preparing dispersion liquid S2>
The hydrophobized titanium oxide obtained in the same manner as in the preparation of the dispersion S1 was subjected to ball mill dispersion in a mixed solvent of methanol / 1-propanol to obtain a dispersed slurry of the hydrophobized titanium oxide. Similarly, an anatase type titanium oxide (product name: EC-100, manufactured by Titanium Industry Co., Ltd.) having an average particle diameter of 0.3 to 0.4 μm, which has been made conductive by conductive antimony-doped tin oxide. A dispersion slurry was prepared.

得られた2つの分散スラリーを混合し、更に、メタノール、1−プロパノール、トルエン、分散液S1の作製時に用いたものと同じナイロンのペレットを加温しながら攪拌混合してナイロンペレットを溶解し、その後、超音波分散処理を行うことにより、最終的に、疎水化処理酸化チタン/EC−100/ナイロン=99/1/25の分散液を調製し、これを分散液S2とした。
<塗布液S3の作製方法>
疎水化処理酸化チタン/EC−100/ナイロン比を疎水化処理酸化チタン/EC−100/ナイロン=95/5/25とした以外は塗布液S2と同様の分散液を作製し、これを分散液S3とした。
<塗布液S4の作製方法>
疎水化処理酸化チタン/EC−100/ナイロン比を疎水化処理酸化チタン/EC−100/ナイロン=90/10/25とした以外は塗布液S2と同様の分散液を作製し、これを分散液S4とした。
<塗布液S5の作製方法>
疎水化処理酸化チタン/EC−100/ナイロン比を疎水化処理酸化チタン/EC−100/ナイロン=85/15/33.3とした以外は塗布液S2と同様の分散液を作製し、これを分散液S5とした。
<塗布液S6の作製方法>
疎水化処理酸化チタン/EC−100/ナイロン比を疎水化処理酸化チタン/EC−100/ナイロン=75/25/50とした以外は塗布液S2と同様の分散液を作製し、これを分散液S6とした。
<実施例1>
分散液S2を用い、外径30mm、長さ250mm、肉厚1.0mmのアルミニウム製シリンダーに浸漬塗布し、その乾燥膜厚が、6μmとなるように下引き層を設けた。
次に、CuKα特性X線に対するX線回折スペクトルのブラック角(2θ±0.2°)が、9.3゜、13.2゜、26.2゜および27.1°に主たるピークを示す、A型オキシチタニウムフタロシニアン10部、ポリビニルブチラール(電気化学工業(株)製、商品名 #6000−C)5部に1,2−ジメトキシエタン500部を加え、サンドグラインドミルで粉砕、分散処理を行った。この分散液に先に下引き層を設けたアルミニウム製シリンダーを浸漬塗布し、その乾燥膜厚が0.3g/m2 (約0.3μm)となるように電荷発生層を設けた。
The obtained two dispersion slurries were mixed, and further, methanol, 1-propanol, toluene, and the same nylon pellets used during the preparation of the dispersion S1 were stirred and mixed while heating to dissolve the nylon pellets, Thereafter, a dispersion liquid of hydrophobically treated titanium oxide / EC-100 / nylon = 99/1/25 was finally prepared by performing an ultrasonic dispersion treatment, and this was designated as a dispersion liquid S2.
<Production method of coating liquid S3>
A dispersion liquid was prepared in the same manner as the coating liquid S2 except that the ratio of the hydrophobized titanium oxide / EC-100 / nylon was changed to the hydrophobized titanium oxide / EC-100 / nylon = 95/5/25. It was set to S3.
<Production method of coating liquid S4>
A dispersion liquid similar to the coating liquid S2 was prepared except that the ratio of the hydrophobized titanium oxide / EC-100 / nylon was changed to hydrophobic titanium oxide / EC-100 / nylon = 90/10/25. It was set to S4.
<Production method of coating liquid S5>
A dispersion liquid was prepared in the same manner as the coating liquid S2 except that the ratio of the hydrophobized titanium oxide / EC-100 / nylon was changed to the hydrophobized titanium oxide / EC-100 / nylon = 85/15 / 33.3. This was Dispersion S5.
<Production method of coating liquid S6>
A dispersion liquid similar to the coating liquid S2 was prepared except that the ratio of the hydrophobicized titanium oxide / EC-100 / nylon was changed to 75/25/50 of the hydrophobicized titanium oxide / EC-100 / nylon. S6.
<Example 1>
The dispersion liquid S2 was applied by dip coating to an aluminum cylinder having an outer diameter of 30 mm, a length of 250 mm, and a wall thickness of 1.0 mm, and an undercoat layer was provided so that the dry film thickness was 6 μm.
Next, the black angles (2θ ± 0.2 °) of the X-ray diffraction spectrum with respect to the CuKα characteristic X-ray show main peaks at 9.3 °, 13.2 °, 26.2 °, and 27.1 °. To 10 parts of A-type oxytitanium phthalocyanine and 5 parts of polyvinyl butyral (trade name # 6000-C, manufactured by Denki Kagaku Kogyo Co., Ltd.), 500 parts of 1,2-dimethoxyethane were added, and the mixture was pulverized and dispersed by a sand grinding mill. Was done. An aluminum cylinder provided with an undercoat layer was dip-coated on this dispersion, and a charge generation layer was provided such that the dry film thickness was 0.3 g / m 2 (about 0.3 μm).

次に、下記構造のポリカーボネート樹脂(モノマーモル比、m:n=7:3)100部   Next, 100 parts of a polycarbonate resin having the following structure (monomer molar ratio, m: n = 7: 3)

Figure 2004302462
Figure 2004302462

下記構造式で表されるヒドラゾン化合物50部 50 parts of a hydrazone compound represented by the following structural formula

Figure 2004302462
Figure 2004302462

下記構造式で表されるヒドラゾン化合物14部 14 parts of a hydrazone compound represented by the following structural formula

Figure 2004302462
Figure 2004302462

下記構造式で表されるシアノ化合物2部 2 parts of a cyano compound represented by the following structural formula

Figure 2004302462
Figure 2004302462

を1,4ジオキサン、テトラヒドロフランの混合溶媒に溶解させた液を浸隻塗布することにより、乾燥後の膜厚が17.5μmになるように電荷移動層をもうけた。このようにして得られたドラムを感光体A1とする。
<実施例2>
実施例1で用いたアルミニウム製シリンダーに、分散液S3を用いて、浸漬塗布によりその乾燥膜厚が6μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムを感光体A2とする。
<実施例3>
実施例1で用いたアルミニウム製シリンダーに、分散液S4を用いて、浸漬塗布によりその乾燥膜厚が6μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムを感光体A3とする。
<実施例4>
実施例1で用いたアルミニウム製シリンダーに、分散液S5を用いて、浸漬塗布によりその乾燥膜厚が6μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムを感光体A4とする。
<比較例1>
実施例1で用いたアルミニウム製シリンダーに、分散液S1を用いて、浸漬塗布によりその乾燥膜厚が6μmとなるように下引き層を設けた以外は、実施例1と同様にして感光
体を得た。このようにして得たドラムを比較感光体B1とする。
<比較例2>
実施例1で用いたアルミニウム製シリンダーに、分散液S6を用いて、浸漬塗布によりその乾燥膜厚が6μmとなるように下引き層を設けた以外は、実施例1と同様にして感光体を得た。このようにして得たドラムを比較感光体B2とする。
Was dissolved in a mixed solvent of 1,4 dioxane and tetrahydrofuran to form a charge transfer layer by immersion coating so that the film thickness after drying was 17.5 μm. The drum thus obtained is referred to as a photoconductor A1.
<Example 2>
A photoconductor was prepared in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was provided with a subbing layer by dip coating using a dispersion liquid S3 so that the dry film thickness was 6 μm. Obtained. The drum thus obtained is referred to as a photoconductor A2.
<Example 3>
A photoreceptor was prepared in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was provided with an undercoat layer by dip coating using a dispersion liquid S4 so as to have a dry film thickness of 6 μm. Obtained. The drum thus obtained is referred to as a photoconductor A3.
<Example 4>
A photoconductor was prepared in the same manner as in Example 1, except that the aluminum cylinder used in Example 1 was provided with an undercoat layer by dip coating using the dispersion liquid S5 so as to have a dry film thickness of 6 μm. Obtained. The drum thus obtained is referred to as a photoconductor A4.
<Comparative Example 1>
A photoconductor was prepared in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was provided with an undercoat layer by dip coating using the dispersion liquid S1 so as to have a dry film thickness of 6 μm. Obtained. The drum thus obtained is referred to as Comparative Photoconductor B1.
<Comparative Example 2>
A photoreceptor was prepared in the same manner as in Example 1 except that the aluminum cylinder used in Example 1 was provided with an undercoat layer by dip coating using the dispersion liquid S6 so as to have a dry film thickness of 6 μm. Obtained. The drum thus obtained is referred to as Comparative Photoconductor B2.

下引き層の体積抵抗率は、下引き層塗布液S1〜S6をそれぞれ、ポリエステルフィルム上に蒸着されたアルミニウム蒸着層上に乾燥後の膜厚が6μmとなるようにワイヤーバーで塗布した後、乾燥させて得た体積抵抗率測定用資料を用いて行った。これらの試料を高抵抗率計(三菱化学(株)製 商品名 ハイレスター−UP MCP−HT450)を
用いて測定、1分後の抵抗値より算出した値を測定値とし、体積抵抗率値を得た。この結果を表1に示す。
The volume resistivity of the undercoat layer is such that the undercoat layer coating liquids S1 to S6 are each coated with a wire bar on an aluminum deposition layer deposited on a polyester film so that the thickness after drying is 6 μm, The measurement was performed using the material for measuring volume resistivity obtained by drying. These samples were measured using a high resistivity meter (trade name, High Leicester-UP MCP-HT450, manufactured by Mitsubishi Chemical Corporation). The value calculated from the resistance value after one minute was measured, and the volume resistivity value was measured. Obtained. Table 1 shows the results.

Figure 2004302462
実施例1〜4の感光体に用いた下引き層の体積抵抗率は、1×1010〜1×1013Ωcmの範囲であり、導電化処理された金属化合物粒子を含まない比較例1では体積抵抗率が1×1013Ωcmを超え、導電化処理された金属化合物粒子を25重量%含む比較例2では、体積抵抗率が1×1010Ωcm以下であった。
<評価>
次にこれらの電子写真感光体を感光体特性測定機に装着して、気温5℃、相対湿度10%(以下、これをLL環境ということがある)、気温25℃、相対湿度50%(以下、これをNN環境ということがある)、気温35℃、相対湿度85%(以下、これをHH環境ということがある)の各環境下で、表面電位が−600Vになるように感光体を帯電させた後、780nmの光を照射した時の表面電位が1/2になるのに要する露光量(以下、半減露光量またはE1/2ということがある)、表面電位を−600Vになるように感光体を帯電させ5秒間放置したときの、帯電時と5秒放置後の電位の比(以下、DDRということがある)、660nmのLED光を照射した後の残留電位(以下、Vrということがある)を測定した。結果を表2に示す。
Figure 2004302462
The volume resistivity of the undercoat layer used for the photoreceptors of Examples 1 to 4 was in the range of 1 × 10 10 to 1 × 10 13 Ωcm, and in Comparative Example 1 which did not contain the metal compound particles subjected to the conductivity treatment. In Comparative Example 2 in which the volume resistivity exceeded 1 × 10 13 Ωcm and the metal compound particles subjected to the conductivity treatment were 25% by weight, the volume resistivity was 1 × 10 10 Ωcm or less.
<Evaluation>
Next, these electrophotographic photoreceptors are mounted on a photoreceptor characteristic measuring device, and the temperature is 5 ° C., the relative humidity is 10% (hereinafter, this may be referred to as LL environment), the temperature is 25 ° C., and the relative humidity is 50% (hereinafter, referred to as LL environment). The photoconductor is charged so as to have a surface potential of −600 V under each environment of 35 ° C. and 85% relative humidity (hereinafter sometimes referred to as an HH environment). After that, the exposure amount required to reduce the surface potential when irradiating light of 780 nm (hereinafter, sometimes referred to as half-exposure amount or E1 / 2) and the surface potential to -600 V are set. When the photosensitive member is charged and left for 5 seconds, the ratio of the potential at the time of charging and after 5 seconds (hereinafter, may be referred to as DDR), and the residual potential after irradiating 660 nm LED light (hereinafter, referred to as Vr) Was measured). Table 2 shows the results.

Figure 2004302462

感光体A1,A2,A3,A4は、LL,NN,HHの各環境下において、良好な電気特性を示すが、比較感光体B1は、特にLL環境下において、660nmのLED光照射後の残留電位が大きくなり良好でない。また、比較感光体B2は、表面電位−600Vまで帯電せず、電気特性を測定することができなかった。
Figure 2004302462

The photoconductors A1, A2, A3, and A4 show good electrical characteristics in each of the LL, NN, and HH environments, but the comparative photoconductor B1 has a residual after irradiation of 660 nm LED light, particularly in the LL environment. Potential increases and is not good. Further, the comparative photoconductor B2 was not charged to a surface potential of −600 V, and the electrical characteristics could not be measured.

次にこれらの感光体A1〜A4および比較感光体B1を市販のレーザープリンター(セイコーエプソン社製 LP−1700)に装着して、HH環境下で、A4用紙16000枚を5%の文字パターンで印刷後(1日に2000枚を印刷)、書き込み露光量(1.5μJ/cm2)露光光を照射後、電位を測定した。結果を表3に示す。A1,A2,A3
、A4、B1共に初期と比べて、電位の上昇は少なく良好であった。
Next, these photoconductors A1 to A4 and comparative photoconductor B1 were mounted on a commercially available laser printer (LP-1700 manufactured by Seiko Epson Corporation), and 16,000 A4 paper sheets were printed in a 5% character pattern under an HH environment. Thereafter (2,000 sheets were printed a day), the exposure light (1.5 μJ / cm 2 ) was irradiated with exposure light, and the potential was measured. Table 3 shows the results. A1, A2, A3
, A4, and B1 were good with little increase in potential compared to the initial stage.

Figure 2004302462
<比較例3>
実施例1で用いたアルミニウム製シリンダーに、分散液S2を用いて、浸漬塗布により、その乾燥膜厚が3μmとなるように下引き層を設けた以外は、実施例1と同様にして感
光体を得た。このようにして得たドラムを比較感光体B3とする。
Figure 2004302462
<Comparative Example 3>
A photoconductor was prepared in the same manner as in Example 1 except that the undercoat layer was provided on the aluminum cylinder used in Example 1 by dip coating using the dispersion liquid S2 so as to have a dry film thickness of 3 μm. Got. The drum thus obtained is referred to as Comparative Photoconductor B3.

感光体A1および比較感光体B3を直流、交流が印加されたブラシ帯電を特徴とする、市販のレーザープリンター(セイコーエプソン社製 LP1900)にそれぞれ装着し、NN環境下でA4用紙の5%文字パターンを20000枚出力し、絶縁破壊の評価を行った。下引き層膜厚が6μmの感光体A1では、20000枚耐刷後も絶縁破壊は発生しなかったが、下引き層膜厚が3μmの感光体B3では6900枚耐刷した時点で絶縁破壊を示す画像があらわれた。その結果を表4に示す。   The photoreceptor A1 and the comparative photoreceptor B3 were respectively mounted on a commercially available laser printer (LP1900, manufactured by Seiko Epson Corporation), which was characterized by brush charging to which DC and AC were applied. Was output on 20,000 sheets, and the dielectric breakdown was evaluated. In the case of the photoreceptor A1 having an undercoat layer thickness of 6 μm, no dielectric breakdown occurred even after printing for 20,000 sheets. The image shown appears. Table 4 shows the results.

Figure 2004302462
Figure 2004302462

本発明の電子写真感光体を用いた画像形成装置の一実施例を示す概念図である。FIG. 2 is a conceptual diagram illustrating an embodiment of an image forming apparatus using the electrophotographic photosensitive member of the present invention.

符号の説明Explanation of reference numerals

1 感光体
2 帯電装置(帯電ローラ)
3 露光装置
4 現像装置
5 転写装置
6 クリーニング装置
7 定着装置
41 現像槽
42 アジテータ
43 供給ローラ
44 現像ローラ
45 規制部材
71 上部定着部材(定着ローラ)
72 下部定着部材(定着ローラ)
73 加熱装置
T トナー
P 記録紙
Reference Signs List 1 photoconductor 2 charging device (charging roller)
Reference Signs List 3 exposure device 4 developing device 5 transfer device 6 cleaning device 7 fixing device 41 developing tank 42 agitator 43 supply roller 44 developing roller 45 regulating member 71 upper fixing member (fixing roller)
72 Lower fixing member (fixing roller)
73 Heating device T Toner P Recording paper

Claims (11)

導電性基体上に、金属化合物粒子およびバインダー樹脂を含有する下引き層と感光層を有する電子写真感光体において、該金属化合物粒子が、導電化処理された金属化合物粒子を含むものであることを特徴とする電子写真感光体。 An electrophotographic photoreceptor having a photosensitive layer and an undercoat layer containing metal compound particles and a binder resin on a conductive substrate, wherein the metal compound particles include metal compound particles subjected to a conductivity treatment. Electrophotographic photoreceptor. 下引き層の体積抵抗率が1×1010〜1×1013Ωcmであることを特徴とする、請求項1に記載の電子写真感光体。 2. The electrophotographic photoreceptor according to claim 1, wherein the undercoat layer has a volume resistivity of 1 × 10 10 to 1 × 10 13 Ωcm. 下引き層に含まれる導電化処理された金属化合物粒子が、該下引き層中に含まれる全金属化合物粒子に対して0.1〜20重量%であることを特徴とする、請求項1または請求項2のいずれかに記載の電子写真感光体。 The conductive compound-containing metal compound particles contained in the undercoat layer are present in an amount of 0.1 to 20% by weight based on all metal compound particles contained in the undercoat layer. The electrophotographic photosensitive member according to claim 2. 下引き層が、導電化処理された金属化合物粒子のほかに、導電化処理されていない金属酸化物粒子を含有することを特徴とする、請求項1〜3のいずれかに記載の電子写真感光体。 The electrophotographic photosensitive material according to any one of claims 1 to 3, wherein the undercoat layer contains, in addition to the metal compound particles subjected to the conductivity treatment, metal oxide particles not subjected to the conductivity treatment. body. 導電化処理されていない金属酸化物粒子が、チタン原子を構成成分に含むことを特徴とする、請求項4に記載の電子写真感光体。 5. The electrophotographic photoreceptor according to claim 4, wherein the metal oxide particles that have not been made conductive include a titanium atom as a constituent. 導電化処理されていない金属酸化物粒子の平均一次粒子径が、100nm以下であることを特徴とする、請求項4または請求項5のいずれかに記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 4, wherein the average primary particle diameter of the metal oxide particles that have not been made conductive is 100 nm or less. 下引き層の膜厚が3μm以上であることを特徴とする、請求項1〜6のいずれかに記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein the undercoat layer has a thickness of 3 μm or more. 下引き層がバインダー樹脂としてポリアミド樹脂を含有することを特徴とする、請求項1〜7のいずれかに記載の電子写真感光体 The electrophotographic photoreceptor according to any one of claims 1 to 7, wherein the undercoat layer contains a polyamide resin as a binder resin. 感光層に含まれる電荷発生物質が、フタロシアニン顔料であることを特徴とする請求項1〜8のいずれかに記載の電子写真感光体。 The electrophotographic photoreceptor according to any one of claims 1 to 8, wherein the charge generation substance contained in the photosensitive layer is a phthalocyanine pigment. 請求項1〜9の何れかに記載の電子写真感光体を用いた、画像形成装置。 An image forming apparatus using the electrophotographic photosensitive member according to claim 1. 請求項10に記載の画像形成装置を用いた、画像形成方法。

An image forming method using the image forming apparatus according to claim 10.

JP2004082989A 2003-03-20 2004-03-22 Electrophotographic photoreceptor Expired - Fee Related JP4407332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082989A JP4407332B2 (en) 2003-03-20 2004-03-22 Electrophotographic photoreceptor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003077562 2003-03-20
JP2004082989A JP4407332B2 (en) 2003-03-20 2004-03-22 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2004302462A true JP2004302462A (en) 2004-10-28
JP4407332B2 JP4407332B2 (en) 2010-02-03

Family

ID=33421924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082989A Expired - Fee Related JP4407332B2 (en) 2003-03-20 2004-03-22 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP4407332B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222986A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Electrophotographic photoreceptor, and process cartridge and electrophotographic device, having the electrophotographic photoreceptor
WO2010123134A1 (en) * 2009-04-23 2010-10-28 Canon Kabushiki Kaisha Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
WO2010123132A1 (en) * 2009-04-23 2010-10-28 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US8211602B2 (en) 2006-03-30 2012-07-03 Mitsubishi Chemical Corporation Image forming apparatus
CN103901742A (en) * 2012-12-26 2014-07-02 柯尼卡美能达株式会社 Electrophotographic photoreceptor
JP2015180923A (en) * 2014-03-07 2015-10-15 キヤノン株式会社 Electrophotographic photoreceptor, manufacturing method of the same, process cartridge, and electrophotographic device
JP2019101163A (en) * 2017-11-30 2019-06-24 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211602B2 (en) 2006-03-30 2012-07-03 Mitsubishi Chemical Corporation Image forming apparatus
US8974998B2 (en) 2006-03-30 2015-03-10 Mitsubishi Chemical Corporation Method of image forming with a photoreceptor and toner
US8741530B2 (en) 2006-03-30 2014-06-03 Mitsubishi Chemical Corporation Image forming apparatus
US8221950B2 (en) 2006-03-30 2012-07-17 Mitsubishi Chemical Corporation Image forming apparatus
JP2009222986A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Electrophotographic photoreceptor, and process cartridge and electrophotographic device, having the electrophotographic photoreceptor
US8481236B2 (en) 2009-04-23 2013-07-09 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
CN102405443A (en) * 2009-04-23 2012-04-04 佳能株式会社 Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4696174B2 (en) * 2009-04-23 2011-06-08 キヤノン株式会社 Method for producing electrophotographic photosensitive member
JP2010271704A (en) * 2009-04-23 2010-12-02 Canon Inc Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
CN102405443B (en) * 2009-04-23 2013-07-31 佳能株式会社 Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
WO2010123132A1 (en) * 2009-04-23 2010-10-28 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US8865381B2 (en) 2009-04-23 2014-10-21 Canon Kabushiki Kaisha Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
WO2010123134A1 (en) * 2009-04-23 2010-10-28 Canon Kabushiki Kaisha Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
CN103901742A (en) * 2012-12-26 2014-07-02 柯尼卡美能达株式会社 Electrophotographic photoreceptor
JP2014126702A (en) * 2012-12-26 2014-07-07 Konica Minolta Inc Electrophotographic photoreceptor
JP2015180923A (en) * 2014-03-07 2015-10-15 キヤノン株式会社 Electrophotographic photoreceptor, manufacturing method of the same, process cartridge, and electrophotographic device
JP2019101163A (en) * 2017-11-30 2019-06-24 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP6995588B2 (en) 2017-11-30 2022-01-14 キヤノン株式会社 Electrophotographic photosensitive members, process cartridges and electrophotographic equipment

Also Published As

Publication number Publication date
JP4407332B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP5577722B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge, and image forming apparatus
WO2006073160A1 (en) Electrophotographic photoreceptor and image-forming apparatus
JP4407332B2 (en) Electrophotographic photoreceptor
JP6107298B2 (en) Electrophotographic photosensitive member, electrophotographic process cartridge, and image forming apparatus
JP4735421B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5636728B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2011197261A (en) Coating liquid for undercoat layer of electrophotographic photoreceptor, method for producing the liquid, and usage of the same
JP5659455B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP4151515B2 (en) Electrophotographic photoreceptor
JP4466414B2 (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and cartridge
JP4779850B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP5655490B2 (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and electrophotographic cartridge
JP2007256465A (en) Electrophotographic photoreceptor and image forming apparatus using the photoreceptor
JP5482399B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2010096881A (en) Coating liquid for producing electrophotographic photoreceptor, electrophotographic photoreceptor, image forming apparatus and electrophotographic photoreceptor cartridge
JP3791277B2 (en) Electrophotographic photoreceptor
JP5309465B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP2010181630A (en) Coating liquid for basecoat layer of electrophotographic photoreceptor, method for producing the liquid, and usage of the liquid
JP4506559B2 (en) Image forming apparatus
JP5772264B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge, and image forming apparatus
JP5556327B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP4942382B2 (en) Electrophotographic photoreceptor and image forming apparatus using the photoreceptor
JP2005182006A (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and cartridge
JP2016138936A (en) Electrophotographic photoreceptor, electrophotographic process cartridge, and image forming apparatus
JP6102639B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4407332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees