JP2004301591A - Method and apparatus for measuring contact force of pantagraph - Google Patents

Method and apparatus for measuring contact force of pantagraph Download PDF

Info

Publication number
JP2004301591A
JP2004301591A JP2003093281A JP2003093281A JP2004301591A JP 2004301591 A JP2004301591 A JP 2004301591A JP 2003093281 A JP2003093281 A JP 2003093281A JP 2003093281 A JP2003093281 A JP 2003093281A JP 2004301591 A JP2004301591 A JP 2004301591A
Authority
JP
Japan
Prior art keywords
force
contact force
measuring
lift
boat body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003093281A
Other languages
Japanese (ja)
Other versions
JP4012108B2 (en
Inventor
Mitsuru Ikeda
充 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2003093281A priority Critical patent/JP4012108B2/en
Publication of JP2004301591A publication Critical patent/JP2004301591A/en
Application granted granted Critical
Publication of JP4012108B2 publication Critical patent/JP4012108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method and a measuring apparatus of contact force in a pantagraph for accurately measuring contact force. <P>SOLUTION: A head 11 in the pantagraph 10 is supported at left and right locations via restoration springs 15R, 15L (distance D between both the restoration springs) on a head support 17. For measuring contact force Fc operating between a trolley line 1 and the head 11, sectional force F1, Fr operating on the head 11 at the left and right locations, inertia Fi operating on the head 11, and left and right deflection (d) in the trolley line 1 on the head 11 are measured, and a lift component Fz is obtained, based on Fz=(-D/2d-1)×F1+(D/2d-1)×Fr. Force Fs(Fs=Fr+F1), where the head support 17 pushes up the head 11, and the inertia Fi in the head 11 are added to the lift Fz to obtain the contact force Fc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気鉄道におけるトロリ線とパンタグラフの舟体との間に作用する接触力を測定する方法及び装置に関する。特には、接触力をより正確に測定することのできるパンタグラフの接触力測定方法及び接触力測定装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
現状の営業用の電気鉄道においては、トロリ線からパンタグラフを介して車両に電力を送る方式が一般的である。トロリ線とパンタグラフの舟体との接触力は、トロリ線の高さ変動や車両・パンタグラフの振動等によって変動する。この接触力の変動が大きすぎると、パンタグラフの舟体がトロリ線から離れる離線が生じるおそれがある。離線が頻発すると、舟体とトロリ線との間にスパークが生じて、摺り板の損耗が進み、問題となる。また、離線に至らない場合でも、パンタグラフの接触力は極力変動の小さい方がよい。
【0003】
そこで、電車の走行中のトロリ線とパンタグラフの舟体との接触力を測定し、得られた測定結果を離線の抑制対策の参考としたいとの要請がある。あるいは、このような接触力の測定技術は、離線の抑制対策だけではなく、トロリ線―パンタグラフ系の集電性能の評価や、電車線の設備診断方法の1つとして活用することも考えられている。
【0004】
ところで、走行中の電車のパンタグラフの舟体には、上下方向下向きの力として接触力が作用する。一方、接触力とは別に、舟体を支持する支持部材(舟支えや復元バネ等)が舟体を押し上げる力、舟体に生じる慣性力、及び、舟体にかかる揚力も作用する。支持部材が舟体を押し上げる力は、支持部材の性状(復元バネの歪等)から予め把握することができる。また、舟体に生じる慣性力は、舟体に取り付けた加速度計等により測定することができる。そこで、接触力の絶対値を正確に測定するため、舟体にかかる揚力を正確に推定し、接触力に含まれる揚力の寄与を正確に知る必要が生じる。
【0005】
従来より、現車におけるパンタグラフの舟体の揚力測定は、パンタグラフを中腰状態、すなわち、ワイヤ等を用いて舟体をトロリ線から150〜250mm程度低い位置に固定した状態として、ワイヤ等に作用する張力を測定し、この張力から揚力を推定することが行われている。
このような揚力測定方法では、パンタグラフを中腰状態とするため、測定時の舟体の位置は、実際に電車が走行する際の位置よりも低いこととなる。ところが、舟体の揚力特性はパンタグラフの高さに依存して変化するうえ、走行中の電車の屋根上では空気の境界層が発達するため、舟体の受ける空気の相対流速も高さに応じて変化する。したがって、測定時に得られる揚力と、実際の電車の走行時に作用する揚力とが同一であるという保証があまりないという問題がある。
【0006】
一方、舟体にかかる揚力測定を、風洞試験によって実施することもしばしば行われている。
風洞試験による揚力測定は、高い測定精度が得られ易いという利点はあるが、走行中の電車の屋根上における空気の流速分布を再現することが困難であり、この流速分布を正しく再現できない場合は、高い測定精度を確保できなくなるという難点がある。
【0007】
本発明は、前記の課題に鑑みてなされたものであって、接触力をより正確に測定することのできるパンタグラフの接触力測定方法及び接触力測定装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記の課題を解決するため、本発明のパンタグラフの接触力測定方法は、トロリ線(給電線)とパンタグラフ(集電装置)の舟体との間に作用する接触力Fcを測定する方法であって、 前記舟体を支持する支持部材が該舟体を押し上げる押上力Fsを測定し、 前記舟体の慣性力Fiを測定し、 前記舟体にかかる揚力Fzを推定し、 該揚力Fzに前記押上力Fsと前記慣性力Fiを加えて前記接触力Fcを求めることを特徴とする。
【0009】
本発明によれば、走行中の現車におけるパンタグラフの舟体にかかる揚力Fzの寄与を考慮した、より正確な接触力Fcの測定を行うことができる。
【0010】
本発明のパンタグラフの接触力測定方法においては、前記舟体が前記支持部材上に左右2箇所で支持されており、 該舟体の左右2箇所の支持部(両支持部間の距離D)における断面力Fr、Flを測定し、 前記舟体上における前記トロリ線の左右偏位dを測定し、 これら断面力Fr、Fl及び左右偏位dから、
Fz=(−D/2d−1)・Fl+(D/2d−1)・Fr
に基づき、前記接触力Fcのうち前記舟体に作用する揚力成分Fzを求めることができる。
この場合、断面力Fr、Fl及び左右偏位dに基づき揚力成分Fzを求めることができる。
【0011】
本発明のパンタグラフの接触力測定方法においては、前記舟体の左右方向中心位置と、前記舟体に作用する揚力Fzの合力が作用する位置との間の距離uを測定し、

Figure 2004301591
に基づき、前記揚力成分Fzを求めることが好ましい。
この場合、揚力Fzをより一層正確に推定することができる。
【0012】
本発明のパンタグラフの接触力測定装置は、トロリ線(給電線)とパンタグラフ(集電装置)の舟体との間に作用する接触力Fcを測定する装置であって、 前記舟体を支持する支持部材を有するとともに、該舟体が該支持部材上に左右2箇所の支持部(両支持部間の距離D)で支持されており、 前記支持部材が前記舟体を押し上げる押上力Fsとして前記舟体の左右2箇所の支持部における断面力Fr、Flを測定する押上力測定手段と、 前記舟体の慣性力Fiを測定する慣性力測定手段と、 前記舟体上における前記トロリ線の左右偏位dを測定する偏位測定手段と、 前記断面力Fr、Fl及び左右偏位dから、
Fz=(−D/2d−1)・Fl+(D/2d−1)・Fr
に基づき、前記接触力Fcのうち前記舟体に作用する揚力成分Fzを求める揚力成分算出手段と、 前記揚力Fzに前記押上力Fsと前記慣性力Fiを加えて前記接触力Fcを求める接触力算出手段と、を具備することを特徴とする。
【0013】
本発明のパンタグラフの接触力測定装置においては、前記舟体の左右方向中心位置と、前記舟体に作用する揚力Fzの合力が作用する位置との間の距離uを、前記トロリ線の左右偏位dの関数として予め求めておき、 前記揚力成分算出手段が、
Figure 2004301591
に基づき、前記揚力成分Fzを求めることができる。
【0014】
【発明の実施の形態】
以下、図面を参照しつつ説明する。
図1は、本発明の一実施の形態に係る電気鉄道のパンタグラフ周辺を示す模式的正面図である。
図1に示すように、パンタグラフ10は、図示せぬ電車の車体屋根上に設けられている。このパンタグラフ10は、舟体11を備えている。この舟体11は、左右方向(車体幅方向)に沿って延びている。舟体11は、この例では1本の舟体のみで構成されているが、前後方向(車両の進行方向)に離れて1組ずつ計2本設けられているものもある。舟体11は、一例でアルミニウム合金製である。舟体11の上表面には、摺り板13が貼られている。摺り板13は、鉄系や銅系の焼結合金製、あるいは、カーボン系材料等からなる。この摺り板13がトロリ線1に直接接触する。
【0015】
舟体11は、左右2個の復元バネ(コイルバネ)15R、15Lを介して、舟体支え17に支えられている。舟体11は、復元バネ15の弾性力でトロリ線1に押し付けられる。舟体支え17の中央部下には、パンタグラフ10全体を支持する枠組19が設けられている。この枠組19は、図示せぬコイルバネあるいはエアシリンダ等によって上下に昇降する。例えば、パンタグラフ10の非使用時は、枠組19が下がって舟体11はトロリ線1から離れる。枠組19の下端は、ガイシ等を介して車体屋根上に固定されている。
【0016】
舟体11の左右寄り側面には、歪ゲージ20が取り付けられている。この歪ゲージ20により、舟体11の左右2個の復元バネ15R、15Lの位置における断面力(せん断力)Fr、Flが測定される。なお、本実施例においては、舟体支え17の荷重の測定手段として歪ゲージを用いているが、その他に復元バネ15R、15Lに歪ゲージを貼り付けることによってFr、Flを測定する方法や、レーザ変位計により復元バネ15R、15Lの伸びを測定してバネ定数を乗じることによりFr、Flを測定する方法等、様々な手段を用いることができる。
【0017】
以下、本発明に係る接触力測定原理について説明する。
図1に示すように、舟体11下の左右の復元バネ(コイルバネ)15R、15L間の距離をDとし、これら左右2箇所において舟体11に作用する断面力をそれぞれFl、Frとする。これらの断面力Fl、Frは、歪ゲージ20で測定可能な舟体11のせん断力か、あるいは、復元バネ15R、15L及びその下の舟体支え17に作用する荷重とする。さらに、舟体11上におけるトロリ線1の左右偏位をdとする。
【0018】
トロリ線1と舟体11との間に作用する接触力をFcで表し、左右2箇所の支持部が舟体11を押し上げる力をFsで表す。また、接触力Fcのうち舟体11に作用する揚力成分をFzで表す。すると、慣性力は無視するものとして、これらの間に以下の4つの関係式が成り立つ:
Fl=((D−2d)/2D)・Fc−(1/2)・Fz、
Fr=((D+2d)/2D)・Fc−(1/2)・Fz、
Fc=Fs+Fz、
Fr+Fl=Fs。
【0019】
以上の4式からFcを消去すると、
Fz=(−D/2d−1)・Fl+(D/2d−1)・Fr (1)
が得られる。
この式(1)により、断面力Fl、Frと左右偏位dがわかれば舟体11に作用する正確な揚力Fzを推定することができる。断面力Fl、Frは、前述の通り歪ゲージ20等によって測定することができる。左右偏位dは、例えば車体の屋根上に設けた異方倍率レンズを用いてトロリ線1と舟体11の画像を収録して処理することで求めることができる。検側車の場合は、通常、レーザ式の偏位測定装置を備えているので、これを用いてもよい。
【0020】
ところで、以上に述べた測定原理は、舟体11に作用する揚力を、舟体11の長手方向(左右方向)全体にわたる等分布荷重と見なしているが、実際には揚力成分Fzの合力の作用点は常に舟体11の中心にあるとは限らない。そこで、揚力成分Fzの合力の作用点と舟体11の左右方向中心位置との距離uを予め測定し、前述の(1)式を次式
Figure 2004301591
のように変形し、この(2)式に基づいて揚力成分Fzを求めることが好ましい。一般に、前述の距離uは、トロリ線1の位置の関数として与えられる(距離uの推定結果は、図3を用いて後述する)。
【0021】
次に、本発明の測定原理を検証した風洞試験の結果について述べる。
図2は、本発明に係る式(1)に基づき舟体揚力Fzを推定した結果を示すグラフである。横軸は舟体揚力の実測値(単位N)を示し、縦軸は本発明に係る式(1)に基づき推定した舟体揚力の値(単位N)を示す。
図2に示すグラフ中の右上がりの直線は、前述の式(1)に基づく推定値の実測値への回帰直線である。このグラフから、回帰直線の近辺に点が分布しているのがわかり、実測値の任意の点に対する推定値の値が有効に定まっているということができる。
【0022】
さらに、前述した揚力成分Fzの合力の作用点と舟体の左右方向中心位置との距離uを考慮した結果について述べる。
図3は、本実施例における揚力成分Fzの合力の作用点と舟体の左右方向中心位置との距離uの推定結果を示すグラフである。縦軸は舟体揚力の合力の作用中心位置の推定値(単位mm)を示し、横軸はトロリ線の偏位(単位mm)を示す。
図4は、本発明に係る式(2)に基づき舟体揚力Fzを推定した結果を示すグラフである。横軸は舟体揚力の実測値(単位N)を示し、縦軸は本発明に係る式(2)に基づき推定した舟体揚力の値(単位N)を示す。
【0023】
前述した通り、距離uはトロリ線の位置の関数として与えられる。図3に示すように、本実施例では、トロリ線の偏位の値xに対し、距離uの推定値yを次の一次式
y=0.2211x−16.401
に基づき求めた。
【0024】
そこで、この距離uを考慮した式(2)に基づき舟体揚力を推定すると、図4に示すような結果が得られた。図2のグラフと図4のグラフを比較すると、図4のグラフの方がより一層強い相関が得られていることがわかる。したがって、式(2)を用いて揚力を推定する方が、式(1)を用いて揚力を推定するよりも、一層精度よく推定することができるといえる。なお、式(1)を用いた場合でも、概略値の推定には充分ということもいえる。
【0025】
【発明の効果】
以上の説明から明らかなように、本発明によれば、接触力をより正確に測定することのできるパンタグラフの接触力測定方法及び接触力測定装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る電気鉄道のパンタグラフ周辺を示す模式的正面図である。
【図2】本発明に係る式(1)に基づき舟体揚力Fzを推定した結果を示すグラフである。
【図3】本実施例における揚力成分Fzの合力の作用点と舟体の左右方向中心位置との距離uの推定結果を示すグラフである。
【図4】本発明に係る式(2)に基づき舟体揚力Fzを推定した結果を示すグラフである。
【符号の説明】
1 トロリ線 10 パンタグラフ
11 舟体 13 摺り板
15R、15L 復元バネ 17 舟体支え
19 枠組 20 歪ゲージ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring a contact force acting between a trolley wire and a pantograph hull in an electric railway. In particular, the present invention relates to a pantograph contact force measuring method and a contact force measuring device capable of measuring contact force more accurately.
[0002]
Problems to be solved by the prior art and the invention
In a current electric railway for business use, a method of transmitting electric power from a trolley wire to a vehicle via a pantograph is generally used. The contact force between the trolley wire and the boat body of the pantograph fluctuates due to fluctuations in the height of the trolley wire, vibration of the vehicle / pantograph, and the like. If the fluctuation of the contact force is too large, the pantograph boat may be separated from the trolley wire. If the disconnection frequently occurs, a spark is generated between the boat body and the trolley wire, and the abrasion of the sliding plate proceeds, which is a problem. Further, even in the case where no derailment occurs, it is better that the contact force of the pantograph has as little fluctuation as possible.
[0003]
Therefore, there is a demand that the contact force between the trolley wire and the pantograph hull while the train is running be measured, and the obtained measurement result be used as a reference for measures to suppress the disconnection. Alternatively, such a contact force measurement technique is considered to be used not only as a measure for suppressing derailment, but also as one of methods for evaluating the current collection performance of a trolley wire-pantograph system and as a method for diagnosing equipment on a train line. I have.
[0004]
By the way, a contact force acts on a boat body of a pantograph of a running train as a vertically downward force. On the other hand, in addition to the contact force, a force for supporting the boat body (boat support, restoring spring, etc.) to push up the boat body, an inertial force generated in the boat body, and a lift force applied to the boat body also act. The force by which the support member pushes up the boat body can be grasped in advance from the properties of the support member (such as the distortion of the restoring spring). The inertial force generated in the hull can be measured by an accelerometer or the like attached to the hull. Therefore, in order to accurately measure the absolute value of the contact force, it is necessary to accurately estimate the lift applied to the hull and accurately know the contribution of the lift included in the contact force.
[0005]
2. Description of the Related Art Conventionally, a lift measurement of a pantograph hull in a current vehicle is performed on a wire or the like while the pantograph is in a middle waist state, that is, a state where the hull is fixed at a position about 150 to 250 mm lower than a trolley wire using a wire or the like. It has been practiced to measure the tension and estimate the lift from the tension.
In such a lift measuring method, the position of the hull at the time of measurement is lower than the position at the time when the train actually travels because the pantograph is in the middle waist state. However, the lift characteristics of the hull vary depending on the height of the pantograph, and the boundary layer of air develops on the roof of the running train, so the relative velocity of air received by the hull also depends on the height. Change. Therefore, there is a problem that there is not much guarantee that the lift obtained at the time of measurement and the lift acting when the train actually travels are the same.
[0006]
On the other hand, the measurement of the lift applied to the hull is often performed by a wind tunnel test.
Lift measurement by a wind tunnel test has the advantage that high measurement accuracy is easily obtained, but it is difficult to reproduce the flow velocity distribution of air on the roof of a running train, and if this flow velocity distribution cannot be reproduced correctly, However, there is a disadvantage that high measurement accuracy cannot be ensured.
[0007]
The present invention has been made in view of the above problems, and has as its object to provide a contact force measuring method and a contact force measuring device for a pantograph that can more accurately measure a contact force.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a contact force measuring method for a pantograph according to the present invention is a method for measuring a contact force Fc acting between a trolley wire (feeding line) and a boat body of a pantograph (current collector). The support member that supports the boat body measures a lifting force Fs that pushes up the boat body, measures the inertial force Fi of the boat body, estimates the lift Fz applied to the boat body, and calculates the lift Fz applied to the boat. The present invention is characterized in that the contact force Fc is obtained by adding a pushing force Fs and the inertial force Fi.
[0009]
According to the present invention, a more accurate measurement of the contact force Fc can be performed in consideration of the contribution of the lift Fz applied to the hull of the pantograph in the running vehicle.
[0010]
In the method for measuring a contact force of a pantograph according to the present invention, the boat is supported on the support member at two places on the left and right sides, and at two support parts on the left and right sides (a distance D between both support parts) of the boat body. Measure the sectional forces Fr and Fl, measure the lateral displacement d of the trolley wire on the boat body, and from these sectional forces Fr, Fl and the lateral displacement d,
Fz = (− D / 2d−1) · Fl + (D / 2d−1) · Fr
From the contact force Fc, a lift component Fz acting on the boat body can be obtained based on the contact force Fc.
In this case, the lift component Fz can be obtained based on the sectional forces Fr and Fl and the lateral deviation d.
[0011]
In the contact force measuring method for a pantograph according to the present invention, a distance u between a center position of the boat body in the left-right direction and a position where a resultant force of a lift Fz acting on the boat body acts is measured.
Figure 2004301591
It is preferable to obtain the lift component Fz based on
In this case, the lift Fz can be more accurately estimated.
[0012]
A contact force measuring device for a pantograph according to the present invention is a device for measuring a contact force Fc acting between a trolley wire (feed line) and a boat body of a pantograph (current collector), and supports the boat body. A support member, and the boat body is supported on the support member by two right and left support portions (a distance D between the two support portions), and the support member pushes up the boat body as a pushing force Fs. Push-up force measuring means for measuring sectional forces Fr and Fl at two right and left support portions of the hull; inertial force measuring means for measuring inertial force Fi of the hull; and left and right of the trolley wire on the hull A displacement measuring means for measuring the displacement d, and from the sectional forces Fr, Fl and the lateral displacement d,
Fz = (− D / 2d−1) · Fl + (D / 2d−1) · Fr
A lift component calculating means for calculating a lift component Fz acting on the boat body out of the contact force Fc, and a contact force for obtaining the contact force Fc by adding the lifting force Fs and the inertial force Fi to the lift Fz. And a calculating means.
[0013]
In the contact force measuring device for a pantograph according to the present invention, a distance u between a center position of the boat body in the left-right direction and a position at which a resultant force of the lift Fz acting on the boat body acts is defined by a lateral deviation of the trolley wire. Determined in advance as a function of the position d,
Figure 2004301591
, The lift component Fz can be obtained.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, description will be made with reference to the drawings.
FIG. 1 is a schematic front view showing the periphery of a pantograph of an electric railway according to one embodiment of the present invention.
As shown in FIG. 1, the pantograph 10 is provided on the body roof of a train (not shown). This pantograph 10 includes a boat body 11. The hull 11 extends in the left-right direction (the width direction of the vehicle body). In this example, the hull 11 is constituted by only one hull, but there are also two hulls 11 provided in a pair at a distance in the front-rear direction (the traveling direction of the vehicle). The boat body 11 is made of an aluminum alloy, for example. A sliding plate 13 is attached to the upper surface of the boat body 11. The sliding plate 13 is made of an iron-based or copper-based sintered alloy, or made of a carbon-based material. The sliding plate 13 comes into direct contact with the trolley wire 1.
[0015]
The boat body 11 is supported by a boat support 17 via two left and right restoration springs (coil springs) 15R and 15L. The boat body 11 is pressed against the trolley wire 1 by the elastic force of the restoration spring 15. A frame 19 that supports the entire pantograph 10 is provided below the center of the hull support 17. The frame 19 is moved up and down by a coil spring or an air cylinder (not shown). For example, when the pantograph 10 is not used, the hull 11 moves away from the trolley wire 1 by lowering the framework 19. The lower end of the framework 19 is fixed on the roof of the vehicle body via a insulator or the like.
[0016]
A strain gauge 20 is attached to the left and right side surfaces of the boat body 11. The strain gauges 20 measure the sectional forces (shear forces) Fr and Fl at the positions of the two left and right restoration springs 15R and 15L of the boat body 11. In the present embodiment, a strain gauge is used as a means for measuring the load of the boat support 17, but in addition, a method of measuring Fr and Fl by attaching a strain gauge to the restoring springs 15R and 15L, Various means such as a method of measuring Fr and Fl by measuring the elongation of the restoration springs 15R and 15L with a laser displacement meter and multiplying the spring constants by a spring constant can be used.
[0017]
Hereinafter, the principle of measuring the contact force according to the present invention will be described.
As shown in FIG. 1, the distance between the left and right restoration springs (coil springs) 15R and 15L below the boat body 11 is D, and the cross-sectional forces acting on the boat body 11 at these two left and right locations are Fl and Fr, respectively. These sectional forces Fl and Fr are the shearing force of the hull 11 that can be measured by the strain gauge 20, or the loads acting on the restoring springs 15R and 15L and the hull support 17 thereunder. Further, the lateral displacement of the trolley wire 1 on the boat body 11 is represented by d.
[0018]
The contact force acting between the trolley wire 1 and the hull 11 is represented by Fc, and the force by which the right and left support portions push up the hull 11 is represented by Fs. The lift component acting on the boat body 11 of the contact force Fc is represented by Fz. Then, ignoring the inertial force, the following four equations hold between them:
Fl = ((D−2d) / 2D) · Fc− (1/2) · Fz,
Fr = ((D + 2d) / 2D) .Fc- (1/2) .Fz,
Fc = Fs + Fz,
Fr + Fl = Fs.
[0019]
When Fc is eliminated from the above four equations,
Fz = (− D / 2d−1) · Fl + (D / 2d−1) · Fr (1)
Is obtained.
From this equation (1), if the sectional forces Fl and Fr and the lateral deviation d are known, an accurate lift Fz acting on the boat body 11 can be estimated. The sectional forces Fl and Fr can be measured by the strain gauge 20 or the like as described above. The lateral deviation d can be obtained, for example, by recording and processing images of the trolley wire 1 and the hull 11 using an anisotropic magnification lens provided on the roof of the vehicle body. In the case of the inspection side vehicle, a laser type displacement measuring device is usually provided, so this may be used.
[0020]
By the way, the measurement principle described above regards the lift acting on the hull 11 as an evenly distributed load over the entire longitudinal direction (left-right direction) of the hull 11, but actually the action of the resultant force of the lift component Fz. The point is not always at the center of the hull 11. Therefore, the distance u between the point of application of the resultant force of the lift component Fz and the center position of the boat body 11 in the left-right direction is measured in advance, and the above equation (1) is calculated by
Figure 2004301591
It is preferable to obtain the lift component Fz based on the equation (2). Generally, the distance u is given as a function of the position of the trolley wire 1 (the estimation result of the distance u will be described later with reference to FIG. 3).
[0021]
Next, the results of a wind tunnel test verifying the measurement principle of the present invention will be described.
FIG. 2 is a graph showing the result of estimating the hull lift Fz based on Equation (1) according to the present invention. The horizontal axis shows the measured value (unit N) of the hull lift, and the vertical axis shows the value (unit N) of the hull lift estimated based on the formula (1) according to the present invention.
The straight line rising to the right in the graph shown in FIG. 2 is a regression line of the estimated value based on the above-described equation (1) to the actually measured value. From this graph, it can be seen that the points are distributed near the regression line, and it can be said that the value of the estimated value for any point of the actually measured value is effectively determined.
[0022]
Further, a result in consideration of the distance u between the point of application of the resultant force of the lift component Fz and the center position of the boat body in the left-right direction will be described.
FIG. 3 is a graph illustrating the estimation result of the distance u between the point of application of the resultant force of the lift component Fz and the center position of the hull in the left-right direction in the present embodiment. The vertical axis indicates the estimated value (unit: mm) of the acting center position of the resultant force of the hull lift, and the horizontal axis indicates the displacement (unit: mm) of the trolley wire.
FIG. 4 is a graph showing the result of estimating the hull lift Fz based on Equation (2) according to the present invention. The horizontal axis shows the measured value (unit N) of the hull lift, and the vertical axis shows the value (unit N) of the hull lift estimated based on Expression (2) according to the present invention.
[0023]
As described above, the distance u is given as a function of the position of the trolley wire. As shown in FIG. 3, in the present embodiment, the estimated value y of the distance u is expressed by the following linear expression y = 0.211x-16.401 with respect to the trolley wire deviation value x.
Was determined based on
[0024]
Then, when the hull lift was estimated based on the equation (2) considering the distance u, the result as shown in FIG. 4 was obtained. Comparing the graph of FIG. 2 with the graph of FIG. 4, it can be seen that a stronger correlation is obtained in the graph of FIG. Therefore, it can be said that estimating the lift using Expression (2) can estimate the lift more accurately than estimating the lift using Expression (1). It can be said that even when the equation (1) is used, it is sufficient for estimating the approximate value.
[0025]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to provide a contact force measuring method and a contact force measuring device for a pantograph that can more accurately measure a contact force.
[Brief description of the drawings]
FIG. 1 is a schematic front view showing the periphery of a pantograph of an electric railway according to an embodiment of the present invention.
FIG. 2 is a graph showing a result of estimating a hull lift Fz based on Expression (1) according to the present invention.
FIG. 3 is a graph showing a result of estimating a distance u between an action point of a resultant force of a lift component Fz and a center position of a boat body in the left-right direction in the embodiment.
FIG. 4 is a graph showing a result of estimating a hull lift Fz based on Expression (2) according to the present invention.
[Explanation of symbols]
Reference Signs List 1 trolley wire 10 pantograph 11 hull 13 sliding plates 15R, 15L restoring spring 17 hull support 19 frame 20 strain gauge

Claims (5)

トロリ線(給電線)とパンタグラフ(集電装置)の舟体との間に作用する接触力Fcを測定する方法であって、
前記舟体を支持する支持部材が該舟体を押し上げる押上力Fsを測定し、
前記舟体の慣性力Fiを測定し、
前記舟体にかかる揚力Fzを推定し、
該揚力Fzに前記押上力Fsと前記慣性力Fiを加えて前記接触力Fcを求めることを特徴とするパンタグラフの接触力測定方法。
A method for measuring a contact force Fc acting between a trolley wire (feeding wire) and a boat body of a pantograph (current collector),
The support member that supports the boat body measures a push-up force Fs that pushes up the boat body,
Measuring the inertial force Fi of the hull,
Estimating the lift Fz applied to the hull,
A contact force measuring method for a pantograph, wherein the contact force Fc is obtained by adding the lifting force Fs and the inertial force Fi to the lift force Fz.
前記舟体が前記支持部材上に左右2箇所で支持されており、
該舟体の左右2箇所の支持部(両支持部間の距離D)における断面力Fr、Flを測定し、
前記舟体上における前記トロリ線の左右偏位dを測定し、
これら断面力Fr、Fl及び左右偏位dから、
Fz=(−D/2d−1)・Fl+(D/2d−1)・Fr
に基づき、前記接触力Fcのうち前記舟体に作用する揚力成分Fzを求めることを特徴とする請求項1記載のパンタグラフの接触力測定方法。
The boat body is supported at two places on the left and right on the support member,
The cross-sectional forces Fr and Fl at the two supporting portions (the distance D between the two supporting portions) of the hull are measured,
Measuring the lateral displacement d of the trolley wire on the hull,
From these sectional forces Fr, Fl and the lateral deviation d,
Fz = (− D / 2d−1) · Fl + (D / 2d−1) · Fr
The contact force measuring method for a pantograph according to claim 1, wherein a lift component Fz acting on the boat body is obtained from the contact force Fc based on the following formula.
前記舟体の左右方向中心位置と、前記舟体に作用する揚力Fzの合力が作用する位置との間の距離uを測定し、
Figure 2004301591
に基づき、前記揚力成分Fzを求めることを特徴とする請求項2記載のパンタグラフの接触力測定方法。
The distance u between the center position in the left-right direction of the hull and the position where the resultant force of the lift Fz acting on the hull is measured,
Figure 2004301591
3. The method for measuring a contact force of a pantograph according to claim 2, wherein the lift component Fz is obtained based on:
トロリ線(給電線)とパンタグラフ(集電装置)の舟体との間に作用する接触力Fcを測定する装置であって、
前記舟体を支持する支持部材を有するとともに、該舟体が該支持部材上に左右2箇所の支持部(両支持部間の距離D)で支持されており、
前記支持部材が前記舟体を押し上げる押上力Fsとして前記舟体の左右2箇所の支持部における断面力Fr、Flを測定する押上力測定手段と、
前記舟体の慣性力Fiを測定する慣性力測定手段と、
前記舟体上における前記トロリ線の左右偏位dを測定する偏位測定手段と、
前記断面力Fr、Fl及び左右偏位dから、
Fz=(−D/2d−1)・Fl+(D/2d−1)・Fr
に基づき、前記接触力Fcのうち前記舟体に作用する揚力成分Fzを求める揚力成分算出手段と、
前記揚力Fzに前記押上力Fsと前記慣性力Fiを加えて前記接触力Fcを求める接触力算出手段と、
を具備することを特徴とするパンタグラフの接触力測定装置。
An apparatus for measuring a contact force Fc acting between a trolley wire (feeding wire) and a boat body of a pantograph (current collector),
A support member for supporting the boat body, and the boat body is supported on the support member by two right and left support portions (a distance D between both support portions);
Push-up force measuring means for measuring sectional forces Fr and Fl at two right and left support portions of the boat as a push-up force Fs by which the support member pushes up the boat,
Inertial force measuring means for measuring the inertial force Fi of the hull,
A displacement measuring means for measuring a lateral displacement d of the trolley wire on the boat body,
From the sectional forces Fr and Fl and the lateral deviation d,
Fz = (− D / 2d−1) · Fl + (D / 2d−1) · Fr
Lift component calculating means for obtaining a lift component Fz acting on the boat body out of the contact force Fc based on
Contact force calculating means for obtaining the contact force Fc by adding the lifting force Fs and the inertial force Fi to the lift force Fz;
A contact force measuring device for a pantograph, comprising:
前記舟体の左右方向中心位置と、前記舟体に作用する揚力Fzの合力が作用する位置との間の距離uを、前記トロリ線の左右偏位dの関数として予め求めておき、
前記揚力成分算出手段が、
Figure 2004301591
に基づき、前記揚力成分Fzを求めることを特徴とする請求項4記載のパンタグラフの接触力測定装置。
A distance u between a center position in the horizontal direction of the boat body and a position where a resultant force of the lift Fz acting on the boat body acts is obtained in advance as a function of the lateral displacement d of the trolley wire,
The lift component calculating means,
Figure 2004301591
The contact force measuring device for a pantograph according to claim 4, wherein the lift component Fz is obtained based on the following formula.
JP2003093281A 2003-03-31 2003-03-31 Pantograph contact force measuring method and contact force measuring device Expired - Fee Related JP4012108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093281A JP4012108B2 (en) 2003-03-31 2003-03-31 Pantograph contact force measuring method and contact force measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093281A JP4012108B2 (en) 2003-03-31 2003-03-31 Pantograph contact force measuring method and contact force measuring device

Publications (2)

Publication Number Publication Date
JP2004301591A true JP2004301591A (en) 2004-10-28
JP4012108B2 JP4012108B2 (en) 2007-11-21

Family

ID=33406120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093281A Expired - Fee Related JP4012108B2 (en) 2003-03-31 2003-03-31 Pantograph contact force measuring method and contact force measuring device

Country Status (1)

Country Link
JP (1) JP4012108B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071578A (en) * 2005-09-05 2007-03-22 Railway Technical Res Inst Pantograph lift measuring device
JP2007244091A (en) * 2006-03-08 2007-09-20 Railway Technical Res Inst Method for estimating pantograph lift by contact force
JP2008185457A (en) * 2007-01-30 2008-08-14 Railway Technical Res Inst Contact force measuring method and device of pantograph
JP2008230322A (en) * 2007-03-19 2008-10-02 Railway Technical Res Inst Pantograph lift estimating system and estimating method
JP2010025677A (en) * 2008-07-17 2010-02-04 Railway Technical Res Inst Method and device for measuring contact force of pantograph
JP2010288353A (en) * 2009-06-10 2010-12-24 Railway Technical Res Inst Calculation method for contact force of pantograph
WO2011136021A1 (en) 2010-04-30 2011-11-03 株式会社 明電舎 Contact force measurement method and contact force measurement device
KR101142243B1 (en) * 2010-09-20 2012-05-15 한국철도기술연구원 Signal measurement system for current collection equipment in a electric train using measuring angle of rotation
CN107487187A (en) * 2017-08-25 2017-12-19 诺和君目(北京)科技有限公司 Contact reaction type pantograph control system
RU2681477C1 (en) * 2018-04-09 2019-03-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет путей сообщения" Electric rolling stock measuring current collector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071578A (en) * 2005-09-05 2007-03-22 Railway Technical Res Inst Pantograph lift measuring device
JP2007244091A (en) * 2006-03-08 2007-09-20 Railway Technical Res Inst Method for estimating pantograph lift by contact force
JP2008185457A (en) * 2007-01-30 2008-08-14 Railway Technical Res Inst Contact force measuring method and device of pantograph
JP2008230322A (en) * 2007-03-19 2008-10-02 Railway Technical Res Inst Pantograph lift estimating system and estimating method
JP2010025677A (en) * 2008-07-17 2010-02-04 Railway Technical Res Inst Method and device for measuring contact force of pantograph
JP2010288353A (en) * 2009-06-10 2010-12-24 Railway Technical Res Inst Calculation method for contact force of pantograph
WO2011136021A1 (en) 2010-04-30 2011-11-03 株式会社 明電舎 Contact force measurement method and contact force measurement device
KR101142243B1 (en) * 2010-09-20 2012-05-15 한국철도기술연구원 Signal measurement system for current collection equipment in a electric train using measuring angle of rotation
CN107487187A (en) * 2017-08-25 2017-12-19 诺和君目(北京)科技有限公司 Contact reaction type pantograph control system
CN107487187B (en) * 2017-08-25 2023-06-30 诺和君目(北京)科技有限公司 Contact pressure feedback type pantograph control system
RU2681477C1 (en) * 2018-04-09 2019-03-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет путей сообщения" Electric rolling stock measuring current collector

Also Published As

Publication number Publication date
JP4012108B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP5443257B2 (en) Contact force measuring method and contact force measuring device
JP3699320B2 (en) Pantograph displacement, contact force and trolley line deviation measuring device
JP4012108B2 (en) Pantograph contact force measuring method and contact force measuring device
JP4954732B2 (en) Pantograph contact force measuring method and contact force measuring device
JP3930299B2 (en) Pantograph contact force measuring method and contact force measuring device
JP4954733B2 (en) Pantograph contact force measuring method and contact force measuring device
JP3618062B2 (en) Pantograph contact force measuring method and contact force measuring device
JP5457900B2 (en) Contact force control method, contact force control device, and contact force control method and contact force control device in current collector
KR101527079B1 (en) Area Catenary contact force measurement device with camera and measurement method
JP2012191778A (en) Malfunction detection method of dynamic characteristic of pantograph
JP5467932B2 (en) Method and apparatus for detecting local recesses in pantograph slide plate
JP2013205270A (en) Method for detecting abnormality in pantograph
JP3352009B2 (en) Contact force measuring device
JP3722463B2 (en) Pantograph contact force measuring method and contact force measuring device
JP6170443B2 (en) Method and apparatus for estimating trolley wire static height
CN105004305B (en) A kind of pantograph collector head carbon sliding block thickness detection apparatus
JP5536536B2 (en) Method and apparatus for detecting local recesses in pantograph slide plate
JP4602803B2 (en) Method and apparatus for estimating amount of erosion of pantograph slip plate
JP2010111366A (en) Method for estimating overhead line stationary height in electric railway
JP2015150996A (en) Estimation method and estimation device for trolley wire deviation by wind load, operation regulation method and operation regulation device for preventing trolley wire interruption accident in electric railway
JP5399054B2 (en) Setting method of presag of catenary overhead type overhead train line in electric railway
EP1710116A2 (en) Apparatus and method for measuring the position of the contact line, in the railroad sector, with respect to the center of the collection bow
JP2007267442A (en) Pantagraph and method of reducing fluctuation of contact force thereof
JP4575116B2 (en) Pantograph characteristic diagnostic method and apparatus
JP7194131B2 (en) CONTACT FORCE MEASURING METHOD AND CURRENT COLLECTOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees