JP2004301332A - Liquid sealing type vibration absorption device - Google Patents

Liquid sealing type vibration absorption device Download PDF

Info

Publication number
JP2004301332A
JP2004301332A JP2004163453A JP2004163453A JP2004301332A JP 2004301332 A JP2004301332 A JP 2004301332A JP 2004163453 A JP2004163453 A JP 2004163453A JP 2004163453 A JP2004163453 A JP 2004163453A JP 2004301332 A JP2004301332 A JP 2004301332A
Authority
JP
Japan
Prior art keywords
liquid
piston
main
electromagnet
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004163453A
Other languages
Japanese (ja)
Inventor
Takeshi Oku
岳史 奥
Shuichi Okamoto
修一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2004163453A priority Critical patent/JP2004301332A/en
Publication of JP2004301332A publication Critical patent/JP2004301332A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To develop predetermined damping effect for vibration in a wide high frequency zone by making rigidity of bulkhead itself for partitioning variable. <P>SOLUTION: A bulkhead 7 for partitioning for dividing two main and auxiliary liquid chambers 9, 8 communicated and connected mutually through an orifice 10 for buffering is constituted like a piston displaceable in the direction in which volume of two main and auxiliary liquid chambers 9, 8 is changed. An electromagnet 11 is annularly arranged in an outer peripheral part of the bulkhead 7 like the piston to constitute a part of a main body 6. MR fluid 15 whose viscosity is changed depending on magnitude of magnetic field strength is provided between the electromagnet 11 and the bulkhead 7 like the piston in a sealed condition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として自動車用エンジンを車体に弾性支持させて振動を吸収し減衰するエンジンマウント等に用いられる液体封入式振動吸収装置に関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid-filled vibration absorber used mainly for an engine mount that absorbs and attenuates vibration by elastically supporting an automobile engine on a vehicle body.

この種の液体封入式振動吸収装置は、弾性ゴム及びダイヤフラム等の弾性体を含む中空状本体ボディの内部に仕切り用隔壁を設けることで主,副二つの液室が区画形成され、振動付加時の弾性ゴムの変形に伴って圧縮される主液室内の封入液体の一部が緩衝用オリフィスを通過して副液室側に流動することによって、主液室内の液圧変動を吸収させて振動を減衰するように構成されているのが一般的である。   In this type of liquid-filled vibration absorbing device, two main and sub liquid chambers are defined by providing a partitioning partition inside a hollow main body including an elastic body such as elastic rubber and a diaphragm. A part of the filled liquid in the main liquid chamber, which is compressed due to the deformation of the elastic rubber, flows through the buffer orifice to the sub liquid chamber, thereby absorbing the fluctuation of the liquid pressure in the main liquid chamber and vibrating. Is generally attenuated.

しかし、上記のごとく緩衝用オリフィスのみを有し、仕切り用隔壁が固定されてなる液体封入式振動吸収装置では、振動が低周波数領域の場合は封入液体がオリフィスを通過して副液室側に流動するので、主液室内の液圧変動を吸収して振動を減衰することが可能であるものの、振動が高周波数領域の場合はオリフィスが閉ざされたと同様な状態となるために、主液室内の液圧変動を吸収することができず、高周波振動を減衰することができない。   However, as described above, in the liquid-filled vibration absorbing device having only the buffer orifice and the partition wall fixed, when the vibration is in a low frequency region, the sealed liquid passes through the orifice and moves to the sub liquid chamber side. Since the fluid flows, it is possible to absorb the fluctuation of the liquid pressure in the main liquid chamber and attenuate the vibration.However, when the vibration is in a high frequency range, the state becomes the same as when the orifice is closed. Cannot absorb the fluctuation of the hydraulic pressure, and cannot attenuate the high frequency vibration.

そこで、従来、二つの液室を区画する仕切り用隔壁をゴムエマトラマーなどを用いた弾性膜から構成し、高周波数領域の振動が作用したとき、弾性膜からなる仕切り用隔壁を弾性変位させることで主液室の液圧変動を吸収させるように構成したものが提案されていた。   Therefore, conventionally, a partition wall that partitions the two liquid chambers is formed of an elastic film using a rubber emma tramer or the like, and when vibration in a high frequency region acts, the partition wall made of the elastic film is elastically displaced. There has been proposed one configured to absorb the fluctuation of the liquid pressure in the liquid chamber.

しかしながら、上記のような従来の液体封入式振動吸収装置の場合は、仕切り用隔壁が弾性膜であっても、1つの部材である限りその剛性は一定で、振動周波数に応じて剛性を変化させることができないために、特定(一つまたは非常に狭い範囲)の周波数領域の振動に対してのみ減衰効果が発揮されるだけで、それ以外の周波数領域の振動に対しては十分な減衰効果を発揮することができないという問題があった。   However, in the case of the above-described conventional liquid-filled vibration absorbing device, even if the partition wall is an elastic film, its rigidity is constant as long as it is one member, and the rigidity changes according to the vibration frequency. Because it is not possible, only a damping effect is exhibited for vibrations in a specific (one or very narrow range) frequency region, and sufficient damping effect is obtained for vibrations in other frequency regions. There was a problem that it could not be demonstrated.

本発明は上記のような実情に鑑みてなされたもので、仕切り用隔壁自体の剛性を可変にして、広い高周波数領域の振動に対して所定の減衰効果を発揮させることができる液体封入式振動吸収装置を提供することを目的としている。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and a liquid-filled type vibration that can exhibit a predetermined damping effect with respect to vibration in a wide high frequency range by making the rigidity of the partition wall itself variable. It is intended to provide an absorption device.

上記目的を達成するために、本発明に係る液体封入式振動吸収装置は、弾性体を含む中空状本体ボディの内部に仕切り用隔壁を介して主,副二つの液室が形成されているとともに、それら主,副二つの液室を連通させることにより振動付加時の弾性体の変形に伴い圧縮される主液室内の封入液体の一部を副液室側に流動させて主液室内の液圧変動を吸収する緩衝用オリフィスが設けられてなる液体封入式振動吸収装置において、
上記仕切り用隔壁が、主,副二つの液室の体積を可変する方向に変位可能な強磁性材質からなるピストン状部材から構成され、このピストン状隔壁の外周部には、本体ボディの一部を構成するようにピストン状隔壁と同芯に電磁石が環状に配設されているとともに、この環状電磁石とピストン状隔壁との間には、液体中に強磁性金属微粒子を分散させてなり、磁界強さの大きさによって粘度が変化するMR流体が密封状態で介在されていることを特徴とするものである。
In order to achieve the above object, a liquid-filled vibration absorbing device according to the present invention has two main and sub liquid chambers formed inside a hollow main body including an elastic body via a partition wall. The main and sub liquid chambers communicate with each other to cause a part of the sealed liquid in the main liquid chamber, which is compressed due to the deformation of the elastic body when vibration is applied, to flow to the sub liquid chamber, thereby causing the liquid in the main liquid chamber to flow. In a liquid-filled vibration absorbing device provided with a buffer orifice for absorbing pressure fluctuations,
The partition wall is composed of a piston-like member made of a ferromagnetic material that can be displaced in a direction in which the volumes of the main and sub liquid chambers can be varied. An electromagnet is arranged annularly concentrically with the piston-like partition so as to constitute a magnet, and between the annular electromagnet and the piston-like partition, ferromagnetic metal fine particles are dispersed in a liquid to form a magnetic field. It is characterized in that an MR fluid whose viscosity changes according to the magnitude of the strength is interposed in a sealed state.

上記のような特徴構成を有する本発明によれば、電磁石への通電をオン・オフしたり、通電(印加)電流をコントロールしたりして磁界強さの大きさを調整しMR流体の粘度を増減変化させることによって、低周波数領域では仕切り用ピストン状隔壁を一定位置に固定し、かつ、高周波数領域では仕切り用ピストン状隔壁を主,副二つの液室の体積が相対的に可変される方向に変位させて隔壁自体の剛性を変化させることで、主,副両液室の体積弾性率を任意に、かつ応答性よく変更することが可能である。これによって、高周波数領域の振動が作用するときの減衰係数のピーク周波数を可変させて広い高周波数領域での振動に対して十分な減衰効果を発揮させることができる。   According to the present invention having the above-described features, the energization to the electromagnet is turned on / off, and the energization (application) current is controlled to adjust the magnitude of the magnetic field strength and reduce the viscosity of the MR fluid. By increasing or decreasing, the partitioning piston-shaped partition wall is fixed at a fixed position in the low frequency region, and the volume of the main and sub two liquid chambers is relatively varied in the high frequency region. By changing the rigidity of the partition wall itself by displacing in the direction, it is possible to arbitrarily and responsively change the bulk modulus of both the main and sub liquid chambers. As a result, the peak frequency of the damping coefficient when the vibration in the high frequency region acts can be varied to exert a sufficient damping effect on the vibration in a wide high frequency region.

上記のごとき液体封入式振動吸収装置におけるピストン状隔壁としては、漏れ磁束を少なくしてピストン状隔壁を少ない消費電力のもとで確実、円滑に駆動変位させることからみて、非磁性あるいは弱磁性材質からなる本体部と、上記電磁石の両極部に接続されたヨークと共に磁路の一部を形成する、例えば鉄、コバルト、ニッケル等の強磁性材質からなるリング部とから構成されていることが望ましい。   The piston-like partition in the liquid-filled vibration absorbing device as described above is made of a non-magnetic or weak magnetic material in view of the fact that the leakage magnetic flux is reduced and the piston-like partition is reliably and smoothly driven and displaced with low power consumption. And a ring portion formed of a ferromagnetic material such as iron, cobalt, nickel or the like that forms a part of a magnetic path together with a yoke connected to both poles of the electromagnet. .

また、上記電磁石、MR流体及びピストン状隔壁は、共に円環状形であることが最も好ましいが、楕円環状形や矩形環状形であってもよい。   It is most preferable that the electromagnet, the MR fluid and the piston-like partition are all annular, but they may be elliptical or rectangular.

以上のように、本発明によれば、電磁石とそれによって発生される磁界強さの大きさによって粘度が変化するMR流体との組み合わせによって、仕切り用ピストン状隔壁を固定したり、主,副二つの液室の体積を相対的に可変する方向に変位させて隔壁自体の剛性を変化させたりすることが可能であるため、低周波数領域の振動に対しては液封式振動吸収装置が本来備えている高い減衰係数を確保して振動を十分に低減できる上に、高周波数領域の振動が作用する場合は、主,副両液室の体積弾性率を任意に、かつ応答性よく変更させて減衰係数のピーク周波数を可変させることができ、したがって、広い高周波数領域での振動に対しても十分な減衰効果を発揮させることができるという効果を奏する。   As described above, according to the present invention, the combination of the electromagnet and the MR fluid whose viscosity changes according to the magnitude of the magnetic field generated by the electromagnet fixes the partitioning piston-shaped partition wall, and allows the primary and secondary parts to be fixed. Since the rigidity of the partition wall itself can be changed by displacing the volume of the two liquid chambers in a direction that can be relatively varied, the liquid ring vibration absorber is inherently provided for vibration in the low frequency range. In addition to ensuring a high damping coefficient and sufficiently reducing vibration, if the vibration in the high frequency range acts, change the bulk modulus of both the main and sub liquid chambers arbitrarily and with good responsiveness. This makes it possible to vary the peak frequency of the damping coefficient, and thus has the effect of exhibiting a sufficient damping effect even for vibration in a wide high-frequency region.

特に、請求項2に記載のような構成を採用することにより、漏れ磁束を少なくしてピストン状隔壁を少ない消費電力のもとで確実、円滑に駆動変位させ、所定の振動減衰効果を確実に達成することができる。   In particular, by adopting the configuration as set forth in claim 2, the leakage flux is reduced, the piston-shaped partition wall is reliably and smoothly driven and displaced with low power consumption, and the predetermined vibration damping effect is ensured. Can be achieved.

以下、本発明の実施例を図面にもとづいて説明する。
〔実施例1〕
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Example 1]

図1は実施例1の液体封入式振動吸収装置の縦断面構造を示し、この液体封入式振動吸収装置は、自動車用エンジン等の振動発生源側に取付け可能な取付金具1、環状形の主金具2、これら両金具1,2間に連結された円錐形状の本体弾性ゴム3、自動車用フレーム等の振動受部側に取付け可能な環状形の取付け部材4、この取付け部材4内に張設保持されたダイヤフラム5とから中空状に構成されている本体ボディ6の内部に仕切り用隔壁7を設置して該仕切り用隔壁7の上下に主,副二つの液室9,8が区画形成されている。   FIG. 1 shows a longitudinal sectional structure of a liquid-filled vibration absorbing device according to a first embodiment. This liquid-filled vibration absorbing device has a mounting bracket 1 that can be mounted on a vibration source side of an automobile engine or the like, and an annular main body. A metal fitting 2, a conical body elastic rubber 3 connected between the metal fittings 1 and 2, an annular mounting member 4 that can be mounted on a vibration receiving portion side of a frame for an automobile or the like, and stretched inside the mounting member 4. A partition wall 7 is installed inside a hollow main body 6 from the held diaphragm 5, and two main and sub liquid chambers 9 and 8 are formed above and below the partition wall 7. ing.

上記主,副二つの液室9,8間には、両液室9,8を相互に連通し、振動付加時の弾性ゴム3の弾性変形に伴い圧縮される主液室9内の封入液体の一部を副液室8側に流動させて主液室9内の液圧変動をダイヤフラム5の変形と相俟って吸収する緩衝用オリフィス10が設けられている。   Between the two main and sub liquid chambers 9, 8, the two liquid chambers 9, 8 communicate with each other, and the sealed liquid in the main liquid chamber 9 is compressed by the elastic deformation of the elastic rubber 3 when vibration is applied. A buffer orifice 10 is provided to absorb a part of the pressure in the main liquid chamber 9 together with the deformation of the diaphragm 5 by causing a part of the fluid to flow to the sub liquid chamber 8 side.

上記のような基本構成を有する液体封入式振動吸収装置において、上記仕切り用隔壁7が、非磁性あるいは弱磁性材質からなる円形盤状の本体部7Aと鉄やコバルト、ニッケル等の強磁性材質からなるリング部7Bとからなり、上記主,副二つの液室9,8の体積を相対的に可変するa−b方向に変位可能なピストン状部材に構成されている。   In the liquid-filled vibration absorbing device having the basic configuration as described above, the partitioning wall 7 is made of a disk-shaped main body 7A made of a nonmagnetic or weak magnetic material and a ferromagnetic material such as iron, cobalt, or nickel. And a ring-shaped member 7B, which is a piston-like member that can be displaced in the a-b direction that relatively varies the volumes of the two main and sub liquid chambers 9, 8.

このピストン状隔壁7におけるリング部7Bの外周部には、本体ボディ6の一部を構成するようにピストン状隔壁7と同芯に電磁石11が円環状に配設されており、この電磁石11の両極部に接続された円環状のヨーク12,13と上記ピストン状隔壁7におけるリング部7Bとによって磁路14が形成されている。また、上記緩衝用オリフィス10は、一方のヨーク12側に主液室9側に開口接続するように一方のヨーク12側に形成された通路10aと、この通路10aに一端を接続して他方のヨーク13側に半円環状に形成された通路10bと、この半円環状通路10bに一端を接続しかつ他端をヨーク12側の通路10aの開口位置に対して、例えば180°変位した箇所で副液室8に開口接続するようにヨーク13側に形成された通路10cとにより構成されている。   An electromagnet 11 is annularly arranged concentrically with the piston-like partition 7 so as to constitute a part of the main body 6 around the outer periphery of the ring portion 7B of the piston-like partition 7. A magnetic path 14 is formed by the annular yokes 12 and 13 connected to both pole portions and the ring portion 7B of the piston-like partition wall 7. The buffer orifice 10 has a passage 10a formed on one yoke 12 so as to open and connect to the main yoke chamber 9 on one yoke 12 side, and one end connected to the passage 10a. A passage 10 b formed in a semi-annular shape on the yoke 13 side, and one end connected to the semi-circular passage 10 b and the other end displaced, for example, by 180 ° with respect to the opening position of the passage 10 a on the yoke 12 side. A passage 10c formed on the yoke 13 side so as to open and connect to the auxiliary liquid chamber 8 is constituted.

そして、上記ピストン状隔壁7におけるリング部7Bと電磁石11との間に形成される円環状隙間のピストン状隔壁7変位方向の両端部をそれぞれ円環状弾性ゴム16,16によりシールし、そのシールされた円環状隙間内にMR流体15が密封状態に介在されているとともに、両端の円環状弾性ゴム16,16によりピストン状隔壁7が上記a−b方向に変位可能に弾性支持されている。上記MR流体15は、高濃度の懸濁液中に1〜10μm程度の粒子径をもつ強磁性金属微粒子を分散させてなるビンガム流体で、−40〜150℃の作動温度域を有し磁界強さの大きさによって粘度が変化するものであり、磁気粘性流体あるいは磁気流動学的流体と呼ばれている。   Then, both ends of the annular space formed between the ring portion 7B and the electromagnet 11 in the piston-like partition 7 in the displacement direction of the piston-like partition 7 are sealed by annular elastic rubbers 16 and 16, respectively. The MR fluid 15 is hermetically sealed in the annular gap, and the piston-like partition 7 is elastically supported by the annular elastic rubbers 16 at both ends so as to be displaceable in the a-b direction. The MR fluid 15 is a Bingham fluid obtained by dispersing ferromagnetic metal fine particles having a particle diameter of about 1 to 10 μm in a high-concentration suspension, has an operating temperature range of −40 to 150 ° C., and has a strong magnetic field. The viscosity changes depending on the size of the fluid, and is called a magnetorheological fluid or a magnetorheological fluid.

上記構成の液体封入式振動吸収装置において、低周波数領域の振動が作用する条件下では、電磁石スイッチ(図示省略)をONにして電磁石11へ一定の印加電流を通電させることによって、磁路14に形成される磁界強さが大きくなり、これに伴ってMR流体15の粘度が増大して、図2(a)中の点線で示すように、ピストン状隔壁7の剛性、つまり、動ばね定数が大きくなる。これによって、ピストン状隔壁7は殆ど固定され、主液室9の封入液体が緩衝用オリフィス10を通過して副液室8側に流動して主液室9内の液圧変動を吸収することになり、図2(b)中の点線で示すように、低周波数領域で大きな減衰係数が得られる。   In the liquid-filled vibration absorbing device having the above-described configuration, under a condition in which vibration in a low frequency range acts, an electromagnet switch (not shown) is turned on to apply a constant applied current to the electromagnet 11, thereby causing the magnetic path 14 to pass through. The strength of the formed magnetic field increases, and the viscosity of the MR fluid 15 increases accordingly. As shown by the dotted line in FIG. 2A, the rigidity of the piston-like partition wall 7, that is, the dynamic spring constant is reduced. growing. As a result, the piston-like partition 7 is almost fixed, and the sealed liquid in the main liquid chamber 9 flows through the buffer orifice 10 to the sub liquid chamber 8 to absorb fluctuations in the liquid pressure in the main liquid chamber 9. As shown by the dotted line in FIG. 2B, a large attenuation coefficient is obtained in a low frequency region.

一方、高周波数領域の振動が作用する条件下では、電磁石スイッチをOFFにして電磁石11への通電を停止することによって、磁界強さが小さくなり、これに伴ってMR流体15の粘度が減少して、図2(a)中の実線に示すように、ピストン状隔壁7の剛性、つまり、動ばね定数が通電時よりも小さくなる。これによって、ピストン状隔壁7は自由変位可能な状態となり、低周波数領域での減衰係数は図2(b)中の実線で示すように、電磁石スイッチがONの場合に比べて小さくなる反面、主、副二つの液室9,8の体積弾性率が応答性よく変更されることになるため、高周波数領域での振動に対して十分大きな減衰効果を発揮させることが可能となる。   On the other hand, under the condition where the vibration in the high frequency region acts, the magnetic field strength is reduced by turning off the electromagnet switch and stopping the energization to the electromagnet 11, and the viscosity of the MR fluid 15 is reduced accordingly. Thus, as shown by the solid line in FIG. 2 (a), the rigidity of the piston-shaped partition wall 7, that is, the dynamic spring constant becomes smaller than when energized. As a result, the piston-like partition 7 can be freely displaced, and the damping coefficient in the low frequency region becomes smaller as compared with the case where the electromagnet switch is ON, as shown by the solid line in FIG. Since the bulk elastic moduli of the sub two liquid chambers 9 and 8 are changed with good responsiveness, it is possible to exert a sufficiently large damping effect on vibration in a high frequency region.

また、電磁石スイッチがONにある時の電磁石11への印加電流値を増減して磁界強さを変化させることによって、MR流体15の粘度が変動して図3(a)中に太さの相違する複数の実線で示すように、ピストン状隔壁7の動ばね定数のピーク値及びそのピーク値周波数を変更可能となり、これによって、図3(b)中に太さの相違する複数の実線で示すように、低周波数領域での減衰係数のピーク周波数を可変し、これに伴って電磁石スイッチが0FFの時、つまり、高周波数領域での主,副二つの液室9,8の体積弾性率を任意に変更して、高周波数領域の広い周波数範囲での振動に対して大きな減衰効果を発揮させることが可能となる。
〔実施例2〕
Further, by changing the magnetic field strength by increasing or decreasing the current applied to the electromagnet 11 when the electromagnet switch is ON, the viscosity of the MR fluid 15 fluctuates and the difference in the thickness in FIG. As shown by a plurality of solid lines, the peak value of the dynamic spring constant of the piston-like partition wall 7 and the frequency of the peak value can be changed, whereby the plurality of solid lines having different thicknesses in FIG. Thus, the peak frequency of the damping coefficient in the low frequency region is varied, and accordingly, when the electromagnet switch is OFF, that is, the bulk modulus of the two main and sub liquid chambers 9 and 8 in the high frequency region is reduced. By arbitrarily changing, it is possible to exert a large damping effect on vibration in a wide frequency range in a high frequency range.
[Example 2]

図4は実施例2の液体封入式振動吸収装置の縦断面構造を示し、この実施例2では、オリフィス10をピストン状隔壁7における本体部7Aに形成している点で実施例1と相違するのみで、その他の構成は実施例1と同様であるため、該当部分に同一の符号を付して、それらの詳しい構造説明は省略する。
〔実施例3及び4〕
FIG. 4 shows a vertical cross-sectional structure of a liquid-filled vibration absorbing device according to a second embodiment. The second embodiment differs from the first embodiment in that an orifice 10 is formed in a main body 7A of a piston-like partition wall 7. Only the other components are the same as those of the first embodiment, and the same reference numerals are given to the corresponding portions, and detailed description of those components is omitted.
[Examples 3 and 4]

図5は実施例3の液体封入式振動吸収装置の縦断面構造、図6は実施例4の液体封入式振動吸収装置の縦断面構造を示し、これら実施例3及び4では、ピストン状隔壁7におけるリング部7Bと電磁石11との間に形成される円環状隙間のうち、ピストン状隔壁7の変位方向(a−b)の一端部近くの磁路14形成部分にのみ円環状弾性ゴム16,16を介してMR流体15を密封状態に介在させている点で実施例1と相違し、その他の構成は実施例1と同様であるため、該当部分に同一の符号を付して、それらの詳しい構造説明は省略する。これら実施例3及び4では、漏れ磁束が少なくなって磁束を一層効率よく形成できる。特に、図6に示す実施例4のように、ピストン状隔壁7における本体部7Aの外周縁部7eとヨーク12の内周縁部12eとを共に先鋭形状にして対向させギャップを小さくすることにより、印加電流の割に電磁力を高めることができる。
〔実施例5及び6〕
FIG. 5 shows a longitudinal sectional structure of a liquid-filled vibration absorbing device of the third embodiment, and FIG. 6 shows a longitudinal sectional structure of a liquid-filled vibration absorbing device of the fourth embodiment. In the annular gap formed between the ring portion 7B and the electromagnet 11, the annular elastic rubber 16, 16 is formed only in the portion where the magnetic path 14 is formed near one end of the piston-like partition wall 7 in the displacement direction (ab). The first embodiment differs from the first embodiment in that the MR fluid 15 is interposed in a hermetically sealed state via the second embodiment 16, and other configurations are the same as those in the first embodiment. Detailed description of the structure is omitted. In Examples 3 and 4, the leakage magnetic flux is reduced and the magnetic flux can be formed more efficiently. In particular, as in Embodiment 4 shown in FIG. 6, the outer peripheral edge 7e of the main body 7A and the inner peripheral edge 12e of the yoke 12 in the piston-like partition 7 are both sharpened and opposed to each other to reduce the gap. The electromagnetic force can be increased relative to the applied current.
[Examples 5 and 6]

図7は実施例5の液体封入式振動吸収装置の縦断面構造、図8は実施例6の液体封入式振動吸収装置の縦断面構造を示し、これら実施例5及び6では、共に弾性ゴム16,16を磁路14から外側に食み出るような略山型断面形状に形成することで弾性ゴム16,16が磁束の邪魔にならないようにした点が実施例1と相違し、また、実施例6ではそれに加えて電磁石11を内外二重に配設している点でも実施例1と相違し、その他の構成は実施例1と同様であるため、該当部分に同一の符号を付して、それらの詳しい構造説明は省略する。
〔実施例7〜9〕
FIG. 7 shows a longitudinal sectional structure of the liquid-filled vibration absorbing device of the fifth embodiment, and FIG. 8 shows a longitudinal sectional structure of the liquid-filled vibration absorbing device of the sixth embodiment. , 16 are formed in a substantially mountain-shaped cross-sectional shape so as to protrude outward from the magnetic path 14, so that the elastic rubbers 16, 16 do not interfere with the magnetic flux. The sixth embodiment differs from the first embodiment in that the electromagnets 11 are additionally arranged in an inner and outer double, and the other configuration is the same as that of the first embodiment. The detailed description of those structures is omitted.
[Examples 7 to 9]

図9は実施例7の液体封入式振動吸収装置の縦断面構造、図10は実施例8の液体封入式振動吸収装置の縦断面構造、図11は実施例9の液体封入式振動吸収装置の縦断面構造を示し、これら実施例7、8及び9では、共にピストン状隔壁7におけるリング部7Bの中間位置から外側に向けて突出部7bを一体に形成するとともに、ヨーク12,13の内周端部から突出部7bに向けて延長ヨーク部12a,13aを一体に突出形成することにより、複数の磁路14を形成して磁界強さの大きさによるMR流体15の粘度の増減変化を一層効率よく行なえるようにした点で実施例1と相違し、実施例8ではそれに加えて、リング部7Bの突出部7bにMR流体15の流動を制限するオリフィス17を設けて高周波数領域でのピストン状隔壁7の変位速度を適正にコントロールするようにした点でも実施例1と相違し、また、実施例9ではそれらに加えて、リング部7Bの突出部7bに設けられるオリフィス17を変位方向(a−b)に対して傾斜させてMR流体15の流動に抵抗を与えるようにした点でも実施例1と相違し、その他の構成は実施例1と同様であるため、該当部分に同一の符号を付して、それらの詳しい構造説明は省略する。
〔実施例10〕
9 is a longitudinal sectional view of the liquid-filled vibration absorbing device of the seventh embodiment, FIG. 10 is a longitudinal sectional view of the liquid-filled vibration absorbing device of the eighth embodiment, and FIG. In the seventh, eighth and ninth embodiments, a protruding portion 7b is integrally formed outwardly from an intermediate position of the ring portion 7B in the piston-like partition wall 7 and the inner circumferences of the yokes 12 and 13 are shown. The extension yoke portions 12a and 13a are integrally formed so as to protrude from the end portion toward the protruding portion 7b, so that a plurality of magnetic paths 14 are formed to further increase or decrease the viscosity of the MR fluid 15 due to the magnitude of the magnetic field strength. Embodiment 8 differs from Embodiment 1 in that it can be performed efficiently. In Embodiment 8, in addition to this, an orifice 17 for restricting the flow of the MR fluid 15 is provided in the protruding portion 7b of the ring portion 7B to provide a high frequency region. Piston-shaped partition 7 The embodiment differs from the first embodiment in that the displacement speed is appropriately controlled. In the ninth embodiment, in addition, the orifice 17 provided on the protruding portion 7b of the ring portion 7B is displaced in the displacement direction (ab). The embodiment is different from the first embodiment also in that it is inclined with respect to the flow direction of the MR fluid 15 to provide resistance to the flow of the MR fluid 15, and the other configuration is the same as that of the first embodiment. The detailed description of those structures is omitted.
[Example 10]

図12は実施例10の液体封入式振動吸収装置の縦断面構造を示し、この実施例10では、ピストン状隔壁7が円盤状の本体部7Aのみからなり、この円盤状の本体部7Aの周端部分を、MR流体15を密封したゴムチューブ状弾性体18で保持させることによりピストン状隔壁7を上記a−b方向に変位可能に構成した点で実施例1と相違し、その他の構成は実施例1と同様であるため、該当部分に同一の符号を付して、それらの詳しい構造説明は省略する。
〔実施例11〕
FIG. 12 shows a longitudinal sectional structure of a liquid-filled vibration absorbing device according to the tenth embodiment. In the tenth embodiment, the piston-like partition wall 7 includes only a disk-shaped main body 7A. The end portion is different from the first embodiment in that the piston-like partition wall 7 is configured to be displaceable in the a-b direction by holding the MR fluid 15 with a rubber tube-like elastic body 18 hermetically sealed. Since this embodiment is the same as the first embodiment, the same reference numerals are given to the corresponding portions, and the detailed description of the structures is omitted.
[Example 11]

また、図13は実施例11の液体封入式振動吸収装置の縦断面構造を示し、この実施例11では、ピストン状隔壁7におけるリング部7Bをヨーク12,13の内周端部に貼付固定した非磁性環状弾性部材19と電磁石11との間に形成され、内部にMR流体15を密封した円環状隙間内に収納保持させて上記a−b方向に変位可能に構成した点で実施例1と相違し、その他の構成は実施例1と同様であるため、該当部分に同一の符号を付して、それらの詳しい構造説明は省略する。   FIG. 13 shows a vertical cross-sectional structure of the liquid-filled vibration absorbing device according to the eleventh embodiment. In the eleventh embodiment, the ring portion 7B of the piston-like partition wall 7 is attached and fixed to the inner peripheral ends of the yokes 12, 13. The first embodiment differs from the first embodiment in that the MR fluid 15 is formed between the non-magnetic annular elastic member 19 and the electromagnet 11 and housed and held in an annular gap in which the MR fluid 15 is sealed so as to be displaceable in the a-b direction. Differences and other configurations are the same as those of the first embodiment. Therefore, corresponding portions are denoted by the same reference numerals, and detailed description of those structures is omitted.

上記実施例2〜実施例11のいずれの液体封入式振動吸収装置においても、低周波数領域の振動に対しては、ピストン状隔壁7を固定し、主液室9の封入液体が緩衝用オリフィス10を通過して副液室8側に流動し主液室9内の液圧変動を吸収することによって大きな減衰係数が得られ、また、高周波数領域の振動に対してはMR流体15の粘度の減少に伴いピストン状隔壁7の動ばね定数が小さくて自由変位可能な状態となり、主,副二つの液室9,8の体積弾性率が応答性よく変更されることによって十分大きな減衰効果を発揮するといったように、実施例1とほぼ同様な防振作用を発揮させることが可能である。   In any of the liquid-filled vibration absorbing devices of the above-described Embodiments 2 to 11, the piston-shaped partition wall 7 is fixed and the liquid in the main liquid chamber 9 is filled with the buffer orifice 10 against vibration in the low frequency range. And flows to the sub liquid chamber 8 side to absorb the fluctuation of the liquid pressure in the main liquid chamber 9 to obtain a large damping coefficient. With the decrease, the dynamic spring constant of the piston-like partition 7 becomes small and becomes freely displaceable, and the bulk modulus of the two main and sub-liquid chambers 9 and 8 is changed with good responsiveness to exhibit a sufficiently large damping effect. As in the case of the first embodiment, it is possible to exhibit the substantially same vibration damping action as in the first embodiment.

なお、上記各実施例においては、ピストン状隔壁7が円形であり、それに伴って、電磁石11を円環状形とし、かつ、MR流体15も円環状に配置介在させたものについて説明したが、ピストン状隔壁7を楕円形や矩形とした場合、それに応じて電磁石11の形状及びMR流体15の配置介在形状を楕円環状形や矩形環状形としてもよいこともちろんである。   In each of the above embodiments, the piston-shaped partition wall 7 is circular, and accordingly, the electromagnet 11 is formed in an annular shape, and the MR fluid 15 is also arranged and interposed in an annular shape. In the case where the partition wall 7 has an elliptical shape or a rectangular shape, the shape of the electromagnet 11 and the interposed shape of the MR fluid 15 may be an elliptical annular shape or a rectangular annular shape.

本発明に係る液体封入式振動吸収装置で、実施例1の液体封入式振動吸収装置の縦断面構造図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view of a liquid-filled vibration absorbing device according to a first embodiment of the present invention. (a)は電磁石スイッチをON/0FFした時の動ばね定数と周波数との相関関係を示す特性図、(b)はその時の減衰係数と周波数との相関関係を示す特性図である。(A) is a characteristic diagram showing the correlation between the dynamic spring constant and the frequency when the electromagnet switch is turned ON / OFF, and (b) is a characteristic diagram showing the correlation between the damping coefficient and the frequency at that time. (a)は電磁石スイッチをONにして印加電流を増減した時の動ばね定数と周波数との相関関係を示す特性図、(b)はその時の減衰係数と周波数との相関関係を示す特性図である。(A) is a characteristic diagram showing the correlation between the dynamic spring constant and the frequency when the applied current is increased or decreased by turning on the electromagnet switch, and (b) is a characteristic diagram showing the correlation between the damping coefficient and the frequency at that time. is there. 本発明に係る液体封入式振動吸収装置で、実施例2の液体封入式振動吸収装置の縦断面構造図である。FIG. 6 is a vertical sectional view of a liquid-filled vibration absorbing device according to a second embodiment of the present invention. 本発明に係る液体封入式振動吸収装置で、実施例3の液体封入式振動吸収装置の縦断面構造図である。FIG. 9 is a longitudinal sectional view of a liquid-filled vibration absorbing device according to a third embodiment of the present invention. 本発明に係る液体封入式振動吸収装置で、実施例4の液体封入式振動吸収装置の縦断面構造図である。FIG. 8 is a longitudinal sectional structural view of a liquid-filled vibration absorbing device according to a fourth embodiment of the present invention. 本発明に係る液体封入式振動吸収装置で、実施例5の液体封入式振動吸収装置の縦断面構造図である。FIG. 13 is a longitudinal sectional view of a liquid-filled vibration absorbing device according to a fifth embodiment of the present invention. 本発明に係る液体封入式振動吸収装置で、実施例6の液体封入式振動吸収装置の縦断面構造図である。FIG. 14 is a longitudinal sectional view of a liquid-filled vibration absorbing device according to a sixth embodiment of the present invention. 本発明に係る液体封入式振動吸収装置で、実施例7の液体封入式振動吸収装置の縦断面構造図である。FIG. 13 is a longitudinal sectional structural view of a liquid-filled vibration absorbing device according to a seventh embodiment of the present invention. 本発明に係る液体封入式振動吸収装置で、実施例8の液体封入式振動吸収装置の縦断面構造図である。FIG. 14 is a longitudinal sectional view of a liquid-filled vibration absorbing device according to an eighth embodiment of the present invention. 本発明に係る液体封入式振動吸収装置で、実施例9の液体封入式振動吸収装置の縦断面構造図である。FIG. 16 is a longitudinal sectional view of a liquid-filled vibration absorbing device according to a ninth embodiment of the present invention. 本発明に係る液体封入式振動吸収装置で、実施例10の液体封入式振動吸収装置の縦断面構造図である。FIG. 16 is a longitudinal sectional view of a liquid-filled vibration absorbing device according to a tenth embodiment of the present invention. 本発明に係る液体封入式振動吸収装置で、実施例11の液体封入式振動吸収装置の縦断面構造図である。FIG. 21 is a vertical sectional view of a liquid-filled vibration absorbing device according to an eleventh embodiment of the present invention.

符号の説明Explanation of reference numerals

3 本体弾性ゴム
5 ダイヤフラム
6 中空状本体ボディ
7 ピストン状隔壁
7A 本体部
7B リング部
8 副液室
9 主液室
10 オリフィス
11 電磁石
12,13 ヨーク
14 磁路
15 MR流体

3 Body Elastic Rubber 5 Diaphragm 6 Hollow Body 7 Piston Partition 7A Body 7B Ring 8 Sub-Liquid Chamber 9 Main Fluid Chamber 10 Orifice 11 Electromagnet 12, 13 Yoke 14 Magnetic Path 15 MR Fluid

Claims (3)

弾性体を含む中空状本体ボディの内部に仕切り用隔壁を介して主,副二つの液室が形成されているとともに、それら主,副二つの液室を連通させることにより振動付加時の弾性体の変形に伴い圧縮される主液室内の封入液体の一部を副液室側に流動させて主液室内の液圧変動を吸収する緩衝用オリフィスが設けられてなる液体封入式振動吸収装置において、
上記仕切り用隔壁が、主,副二つの液室の体積を可変する方向に変位可能な強磁性材質からなるピストン状部材から構成され、
このピストン状隔壁の外周部には、本体ボディの一部を構成するようにピストン状隔壁と同芯に電磁石が環状に配設されているとともに、
この環状電磁石とピストン状隔壁との間には、液体中に強磁性金属微粒子を分散させてなり、磁界強さの大きさによって粘度が変化するMR流体が密封状態で介在されていることを特徴とする液体封入式振動吸収装置。
Two main and sub-liquid chambers are formed inside a hollow main body including an elastic body via a partition wall, and the two main liquid chambers and the two sub-liquid chambers are communicated with each other to provide an elastic body when vibration is applied. In the liquid-filled vibration absorbing device, there is provided a buffer orifice for absorbing part of the liquid pressure in the main liquid chamber by flowing a part of the liquid sealed in the main liquid chamber to the sub liquid chamber side due to the deformation of the liquid. ,
The partition wall is composed of a piston-like member made of a ferromagnetic material that can be displaced in a direction in which the volumes of the main and sub two liquid chambers are changed,
An electromagnet is annularly arranged concentrically with the piston-like partition so as to constitute a part of the main body, on an outer peripheral portion of the piston-like partition,
Between the annular electromagnet and the piston-shaped partition, ferromagnetic metal fine particles are dispersed in a liquid, and an MR fluid whose viscosity changes according to the magnitude of the magnetic field strength is interposed in a sealed state. Liquid-enclosed vibration absorber.
上記ピストン状隔壁は、非磁性あるいは弱磁性材質からなる本体部と、上記電磁石の両極部に接続されたヨークと共に磁路の一部を形成する強磁性材質からなるリング部とから構成されている請求項1に記載の液体封入式振動吸収装置。   The piston-shaped partition wall includes a main body made of a nonmagnetic or weak magnetic material, and a ring made of a ferromagnetic material forming a part of a magnetic path together with a yoke connected to both poles of the electromagnet. The liquid-filled vibration absorbing device according to claim 1. 上記MR流体が、ピストン状隔壁の外周部に環状に配置して介在されている請求項1または2に記載の液体封入式振動吸収装置。

3. The liquid-filled vibration absorbing device according to claim 1, wherein the MR fluid is annularly arranged and interposed on an outer peripheral portion of the piston-shaped partition wall.

JP2004163453A 2004-06-01 2004-06-01 Liquid sealing type vibration absorption device Withdrawn JP2004301332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004163453A JP2004301332A (en) 2004-06-01 2004-06-01 Liquid sealing type vibration absorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004163453A JP2004301332A (en) 2004-06-01 2004-06-01 Liquid sealing type vibration absorption device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001004775A Division JP3595772B2 (en) 2001-01-12 2001-01-12 Liquid filled vibration absorber

Publications (1)

Publication Number Publication Date
JP2004301332A true JP2004301332A (en) 2004-10-28

Family

ID=33411308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163453A Withdrawn JP2004301332A (en) 2004-06-01 2004-06-01 Liquid sealing type vibration absorption device

Country Status (1)

Country Link
JP (1) JP2004301332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006018764B4 (en) * 2006-04-20 2012-09-20 Zf Friedrichshafen Ag Hydraulically damping elastomeric bearing
CN105178467A (en) * 2015-08-28 2015-12-23 重庆邮电大学 Wide-range-adjustable magnetic-sensitive rubber support of coextrusion-shear modes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006018764B4 (en) * 2006-04-20 2012-09-20 Zf Friedrichshafen Ag Hydraulically damping elastomeric bearing
CN105178467A (en) * 2015-08-28 2015-12-23 重庆邮电大学 Wide-range-adjustable magnetic-sensitive rubber support of coextrusion-shear modes
CN105178467B (en) * 2015-08-28 2017-04-26 重庆邮电大学 Wide-range-adjustable magnetic-sensitive rubber support of coextrusion-shear modes

Similar Documents

Publication Publication Date Title
US8672105B2 (en) Damping control device filled with magnetorheological fluid and engine mount having the same
JP5827422B2 (en) Mounting device
ES2632215T3 (en) A magnetorheological fluid-based support device that includes a velocity bypass track passage
JP2003065384A (en) Vibration absorbing device and liquid sealing type vibration absorbing device
JP2019060442A (en) Active type vibration control device
JP3595772B2 (en) Liquid filled vibration absorber
US5261649A (en) Elastic mount having main fluid chamber communicating with auxiliary fluid chamber partially defined by oscillating plate actuated by moving coil in annular gap between two yokes connected to permanent magnet
JP2004301332A (en) Liquid sealing type vibration absorption device
JP3595774B2 (en) Liquid filled type vibration damping device
JP2004301333A (en) Liquid sealing type vibration absorption device
JP3603029B2 (en) Liquid filled vibration absorber
JP3595773B2 (en) Liquid filled vibration absorber
JP2004232708A (en) Liquid sealed vibration control device
JP2000213586A (en) Liquid-sealing type active vibration controlling device
JPH028528A (en) Vibration damper device
JP2004232706A (en) Liquid sealed vibration control device
KR101748980B1 (en) Magnetic viscous damper
JP2004257568A (en) Liquid-sealed vibration absorbing device
JP2015052351A (en) Fluid filled type vibration control device
JPH1047426A (en) Fluid-encapsulating mount device
JP2006266425A (en) Liquid filled active vibration damper
JP4623428B2 (en) Fluid filled vibration isolator
JP2003269527A (en) Liquid sealed type engine mount
JP2004301334A (en) Liquid enclosed type vibrationproof device
JP2007146907A (en) Dynamic damper

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401