JP2004301101A - Adjustable valve mechanism of internal combustion engine - Google Patents

Adjustable valve mechanism of internal combustion engine Download PDF

Info

Publication number
JP2004301101A
JP2004301101A JP2003097705A JP2003097705A JP2004301101A JP 2004301101 A JP2004301101 A JP 2004301101A JP 2003097705 A JP2003097705 A JP 2003097705A JP 2003097705 A JP2003097705 A JP 2003097705A JP 2004301101 A JP2004301101 A JP 2004301101A
Authority
JP
Japan
Prior art keywords
oil
variable valve
hydraulic pressure
valve
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097705A
Other languages
Japanese (ja)
Inventor
Maki Chokai
真樹 鳥海
Shigeteru Shindo
茂輝 新藤
Yusuke Takagi
裕介 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003097705A priority Critical patent/JP2004301101A/en
Publication of JP2004301101A publication Critical patent/JP2004301101A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To securely prevent a valve lift changing mechanism 13 and a valve timing changing mechanism 17 from lowering in action responsiveness owing to rising in oil temperature or lowering in oil pressure. <P>SOLUTION: The mechanism is provided with the valve lift mechanism (VVL) 13 for gradually changing the valve lift amount of a suction valve and the valve timing changing mechanism (VTC) 17 for continuously changing the valve timing of the suction valve 15. When oil pressure of an oil pump 31 is lower than the set oil pressure or oil temperature is higher than the set oil temperature in an operating range to operate both VVL13 and VTC17, oil pressure supply from a VVL solenoid 11 to VVL13 is prohibited. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、作動油の油圧により作動して、内燃機関の吸気弁又は排気弁のバルブリフト特性を変更可能な2つ以上の可変動弁機構を備えた内燃機関の可変動弁装置に関する。
【0002】
【従来の技術】
特許文献1には、作動油としての潤滑油の油圧により作動して、内燃機関の吸気弁又は排気弁のバルブリフト特性を変更可能な可変動弁機構として、バルブリフト量及び作動角をニ段階に切り換えるバルブリフト変更機構と、バルブタイミングを連続的に変更可能なバルブタイミング変更機構と、を併用した装置が開示されている。この装置は、バルブリフトを大小変化させることができると同時に、バルブタイミングを連続的に調整でき、各運転条件下で要求されるバルブリフト特性に良好に適合させることができる。
【0003】
また、この特許文献1では、暖機運転中のように作動油の油温が低い間は、バルブタイミング変更機構及びバルブリフト変更機構の双方への油圧供給を禁止し、その後に油温が上昇する際、過渡的な油圧の低下を防止するために、バルブタイミングを連続的に調整可能なバルブタイミング変更機構への油圧供給を先に許可し、次いでバルブリフトを段階的に切り換えるバルブリフト変更機構への油圧供給を許可している。
【0004】
【特許文献1】
特開平8−177433号公報
【0005】
【発明が解決しようとする課題】
上記の特許文献1では、機関始動直後の暖機運転中のように、作動油の油温が非常に低い場合には、粘度が高く通路圧損が大きいために、可変動弁機構への油圧供給を禁止している。これとは別に、暖機完了後の機関運転中に、作動油の油温が非常に高くなると、オイルポンプから供給される作動油の油圧が低くなり、可変動弁機構の作動応答性を保証し得る油圧を確保することが困難となる。上記の作動応答性を保証するために、油圧源であるオイルポンプの容量を大きくすると、コストの増加やフリクションの増加等を招いてしまう。
【0006】
本発明は、このような課題に鑑みてなされたものであり、オイルポンプ等の油圧源の大容量化によるコストの増加やフリクションの増加等を招くことなく、作動油の油温上昇・油圧低下に伴う可変動弁機構の作動応答性の低下を確実に回避し得る新規な内燃機関の可変動弁装置を提供することを主たる目的としている。
【0007】
【課題を解決するための手段】
作動油の油圧により作動し、吸気弁又は排気弁のバルブリフト特性を変更する第1可変動弁機構及び第2可変動弁機構と、上記作動油を加圧する油圧源と、上記第1可変動弁機構へ供給される油圧を制御する第1油圧制御弁と、上記第2可変動弁機構へ供給される油圧を制御する第2油圧制御弁と、上記油圧源から供給される作動油の油圧又は油温を検出する検出手段と、を備える。この検出手段による検出油圧が設定油圧より低いか又は検出油温が設定油温より高いことを含む禁止条件が成立する場合に、第1可変動弁機構及び第2可変動弁機構の少なくとも一方への油圧供給を禁止する。
【0008】
【発明の効果】
本発明によれば、作動油の油温が上昇して油圧が低下したような場合に、第1可変動弁機構及び第2可変動弁機構の少なくとも一方への油圧供給が禁止されるため、油温の上昇・油圧の低下に伴う可変動弁機構の作動応答性の低下を確実に回避することができる。
【0009】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面に基づいて詳細に説明する。
【0010】
図1は、本発明に係る内燃機関の可変動弁装置を簡略的に示す構成図である。
【0011】
この可変動弁装置は、作動油(潤滑油)の油圧により作動して、吸気弁15のバルブリフト特性を変更可能な2つの可変動弁機構、すなわち、吸気弁15のバルブリフト量を変更可能なバルブリフト変更機構(第1可変動弁機構)13と、吸気弁15のバルブタイミングを変更可能なバルブタイミング変更機構(第2可変動弁機構)17と、を備えている。以下、バルブリフト変更機構をVVL(バリアブルバルブリフタ)と呼び、バルブタイミング変更機構をVTC(バルブタイミングコントローラ)と呼ぶ。
【0012】
これらのVVL13やVTC17は上記の特開平8−177433号公報や特開平8−177426号公報等に開示されているように公知であり、ここでは簡単な説明にとどめる。VVL13は、カムシャフト14に設けられた高速カム14aと低速カム14bとを使い分けることにより、バルブリフト量及び作動角を二段階に切り換えるもので、吸気弁15のバルブリフタ16には、油圧に応じて高速カム14aと低速カム14bとを切り換えて使用するための切換機構が設けられている。VTC17は、吸気弁15のカムシャフト14とともに回転するインナハウジングと、タイミングベルトを介してクランクシャフトから回転動力が伝達されるカムプーリとともに回転するアウタハウジングと、を有し、油圧に応じて両者を相対的に回動することにより、クランクシャフトのクランク角に対するカムシャフト14の位相、つまり吸気弁15の作動中心角の位相を変化させて、吸気弁15のバルブタイミング(開閉時期)を連続的に変更する。
【0013】
VVL13へ供給される油圧は第1油圧制御弁としてのVVLソレノイド11により切換・制御され、VTC17へ供給される油圧は第2油圧制御弁としてのVTCソレノイド18により切換・制御される。これらソレノイド11,18の動作はコントロールユニット1により制御される。このコントロールユニット1は、CPU,メモリ及び入出力インターフェースを備えたデジタルコンピュータであり、水温信号2,吸入空気量信号3,スロットルセンサー信号4,酸素センサの出力信号5,クランクシャフトの回転信号6,カムシャフト14の角度を検出するカム角センサ19からの信号20の他、後述する油温センサ36からの信号37やVVL油圧センサ21からの信号等が入力される。これらの機関運転状態を表す信号に基づいて、コントロールユニット1は、空燃比制御信号7や点火時期制御信号8を対応するアクチュエータへ出力するとともに、VTC制御信号9をVTCソレノイド18へ出力し、かつ、VVLソレノイド信号10をVVLソレノイド11へ出力し、その動作を制御する。
【0014】
図2は、VVL13及びVTC17の油圧回路を示している。作動油の油圧源としてのオイルポンプ31は、周知のように、クランクシャフトにより駆動され、動油を加圧してシリンダブロック41内のメインギャラリ32へ圧送する。オイルポンプ31とVVLソレノイド11とはVVLソレノイド給油路34により接続され、VVLソレノイド11とVVL13とはVVL給油路12により接続されている。つまり、オイルポンプ31とVVL13とを結ぶ給油路34,12の途中に、VVLソレノイド11が配設されている。オイルポンプ31とVTCソレノイド18とはVTCソレノイド給油路33により接続され、VTCソレノイド18とVTC17とはVTC給油路19により接続されている。つまり、オイルポンプ31とVTC17とを結ぶ給油路33,19の途中に、VTCソレノイド18が設けられている。
【0015】
油温センサ36は、VTCソレノイド給油路33とVVLソレノイド給油路34との上流側(オイルポンプ31側)の合流部に設けられ、オイルポンプ31から供給される作動油の油温を検出する。
【0016】
VVL油圧センサ21は、VVL給油路12の途中に設けられ、基本的には、VVL13へ供給される油圧を検出する。このVVL13へ供給される油圧に基づいて、VVL13の切換判定等が行われる。この技術に関しては、本出願人が先に出願した特願2002−272992号に詳しく記載されている。
【0017】
また、VVL油圧センサ21は、後述する第2,第4実施例でVVL13・VTC17の作動禁止判定を行うために、オイルポンプ31から供給される作動油の油圧を検出する機能を兼用している。このようにVVL油圧センサ21によりオイルポンプ31からの供給油圧を検出できるように、VVLソレノイド11をバイパスしてオイルポンプ31とVVLソレノイド11とを結ぶバイパス通路35が設けられている。
【0018】
このバイパス通路35によって、VVL13の油圧の立ち上がりを早める効果も得られる。但し、VVLソレノイド11のOFF時にバイパス通路35を経由してVVL13へ供給される油圧によりVVL13が誤作動することのないように、バイパス通路35にはオリフィス等が設けられている。
【0019】
図3は、機関負荷及び機関回転数に応じたVVL13の作動領域を示している。VVL13へ油圧が供給されていない初期状態・OFF状態(非作動状態)では、低リフト・小作動角側の低速カム14bが使用され、VVL13へ油圧が供給されると(ON状態・作動状態)、高リフト・大作動角側の高速カム14aへ切り換えられる。
【0020】
図4は、機関負荷及び機関回転数に応じたVTC17の作動領域を示している。VTC17へ油圧が供給されていない初期状態・OFF状態(非作動状態)では、吸気弁15の開閉時期が最も遅角しており、VTC17へ油圧が供給されると(ON状態・作動状態)、吸気弁15の開閉時期が進角側へ連続的に変更・制御される。
【0021】
図5は、上記のVVL作動領域とVTC作動領域とを重ね合わせた図である。同図に示すように、VVL13の作動領域とVTC17の作動領域とが比較的幅広い機関負荷・回転域(図の破線領域)R1にわたって重なり合っている。
【0022】
図6〜10は、コントロールユニット1により記憶・実行される制御の流れを示すフローチャートである。これらのルーチンは、所定期間毎(例えば10ms毎)に繰り返し実行される。
【0023】
図6を参照して、S(ステップ)1では、VVL切換許可フラグVv及びVTC変換許可フラグVtを初期化、すなわち0とする。VVL切換許可フラグVvが0の場合、VVLソレノイド11からVVL13への油圧供給が禁止される。つまり、VVL13の作動(切換)が禁止され、低速カム14bが使用される。VVL切換許可フラグVvが1の場合、VVLソレノイド11からVVL13への油圧供給が許可される。VTC変換許可フラグVtが0の場合、VTCソレノイド18からVTC17への油圧供給が禁止される。つまり、VTC17の作動(変換)が禁止され、吸気弁15のバルブタイミングは最遅角となる。VTC変換許可フラグVtが1の場合、VTC17への油圧供給が許可される。
【0024】
S2では、図3に示すようなマップを参照して、機関負荷及び機関回転数(機関運転領域)がVVL13のON領域であるか否かを判定する。VVL13のON領域であれば、S3でVVL切換許可フラグVvをたてる(1にする)。S4では、図4に示すようなマップを参照して、機関負荷及び機関回転数がVTC17のON領域であるか否かを判定する。VTC17のON領域であれば、S5でVTC変換許可フラグVtをたてる(1にする)。
【0025】
図7は、本発明の第1実施例に係る制御の流れを示すフローチャートである。S11では、上述した図6のルーチン等により設定されるVVL切換許可フラグVv及びVTC変換許可フラグVtの値を読み込む。S12では、VVL切換許可フラグVvが1であるか、つまり機関負荷及び機関回転数がVVL13のON領域であるかを判定する。S13では、VTC変換許可フラグVtが1であるか、つまり機関負荷及び機関回転数がVTC17のON領域であるかを判定する。S14では、油温センサ36により作動油の油温Otを検出し、S15では、この検出油温Otが第1基準油温Ot2よりも高いか否かを判定する。
【0026】
上述したS12,S13,S15の禁止条件が全て成立する場合、つまり、VVL13及びVTC17の双方を作動すべき機関負荷及び機関回転数の機関運転域(図5の斜線領域R1)であり、かつ、検出油温Otが第1基準油温Ot2よりも高い場合には、S16へ進み、VVL切換許可フラグVvを0とする。これにより、VVL13への油圧供給が禁止され、VVL13の作動が禁止される(禁止手段)。
【0027】
S17では、油温センサ36の検出油温Otが第2基準油温Ot3よりも高いか否かを判定する。第2基準油温Ot3は、第1基準油温Ot2よりも高い値に設定されている。上述したS12,S13,S15の禁止条件が成立し、かつ、S17において検出油温Otが第2基準油温Ot3よりも高い場合、S18へ進み、VTC変換許可フラグVtを0とする。これにより、VTC17への油圧供給が禁止され、VTC17の作動が禁止される(第2の禁止手段)。
【0028】
このような第1実施例によれば、以下に列記する作用効果(1)〜(3)を得ることができる。
【0029】
(1)油温の上昇に伴う油圧の低下により、VVL13及びVTC17の作動応答性を保証できなくなるような状況で、VVL13及びVTC17の双方が作動することを確実に回避することができ、フェールセーフ性に優れている。また、作動応答性を確保するためにオイルポンプ31を大容量化する必要がなく、コスト及びフリクションの低減化を図ることができる。
【0030】
(2)油温の上昇・油圧の低下に伴い、先ずバルブリフト特性を段階的に変更するVVL13の作動のみを禁止し、バルブリフト特性を連続的に変更するVTC17の作動を優先させているため、VTC17の変換範囲を限界まで拡大でき、先にVTC17の作動を禁止する場合やVVL13及びVTC17の双方の作動を同時に禁止する場合に比して、燃費等の運転性能の低下を低減・抑制することができる。詳しくは、仮にVTC17を先に禁止すると、領域R3,R4(図4)でしか作動できず、また、VTC17,VVL13の双方を禁止すると、R5(図5)でしか作動できない。このように、燃費向上を図れる領域で、可変動弁機構を用いることができない。これに対して本実施例では、先にVVLをOFFとしてVTCの作動を優先させているため、燃費領域に対応する領域R2とR5(図5)で作動可能となり、燃費向上を図ることができる。
【0031】
(3)オイルポンプ31から供給される油圧の代用特性として、一般的なエンジンでも用いられる油温センサ36により検出される油温を利用して、VVL13・VTC17の作動禁止判定(S15,S17)を行っているため、オイルポンプ31からの供給油圧を直接的に検出する油圧センサを省略することができ、構成の簡素化を図ることができる。
【0032】
図8は、本発明の第2実施例に係る制御の流れを示すフローチャートである。この第2実施例では、VVL油圧センサ21により検出される油圧を用いて、VVL13・VTC17の作動禁止判定(S15a,S17a)を行っている点で、上記の第1実施例と異なっている。
【0033】
S11〜S13の処理は上記の第1実施例と同じである。S14aでは、VVL油圧センサ21の出力値(検出油圧)Opを読み込む。S15aでは、VVL油圧センサ21の検出油圧Opが第1設定油圧Op2よりも低いか否かを判定する。
【0034】
S12,S13,及びS15aの禁止条件が全て成立する場合、つまり、VVL13及びVTC17の双方を作動すべき機関負荷及び機関回転域であり、かつ、検出油圧Opが第1設定油圧Op2より低いと判定されると、S16へ進み、VVL切換許可フラグVvを0とする。これにより、VVL13への油圧供給が禁止され、VVL13の作動が禁止される。
【0035】
S17aでは、VVL油圧センサ21の検出油圧Opが第2設定油圧Op3よりも低いか否かを判定する。第2設定油圧Op3は、第1設定油圧Op2よりも低い値に設定されている。上記の禁止条件が成立し、かつ、油圧センサ36の検出油圧Opが第2設定油圧Op3よりも低い場合、S18へ進み、VTC変換許可フラグVtを0とする。これにより、VTC17への油圧供給が禁止され、VTC17の作動が禁止される。
【0036】
この第2実施例によれば、上述した第1実施例の(1),(2)の作用効果が得られることに加え、次の(4),(5)の作用効果が得られる。
【0037】
(4)代用特性である油温ではなく、VVL油圧センサ21により直接的に検出される油圧を用いて、VVL13及びVTC17の作動禁止判定(S15a,S17a)を行っているため、制御精度に優れている。
【0038】
(5)VVL13の切換判定制御等を行うために、VVLソレノイド11からVVL13への供給油圧を検出可能な既存のVVL油圧センサ21を利用して、VVL13及びVTC17の作動禁止判定(S15a,S17a)を行っており、この作動禁止判定を行うために別途油圧センサを設ける必要がなく、構成の簡素化を図ることができる。
【0039】
図9は、本発明の第3実施例に係る制御の流れを示すフローチャートである。S11〜S13の処理は上記の第1実施例と同じである。S14bでは、油温センサ36の検出油温Otを読み込む。S15bでは、油温センサ36の検出油温Otが基準油温Ot1よりも高いか否かを判定する。この基準油温Ot1は、例えば第1実施例の第1基準油温Ot2とほぼ同じ値である。
【0040】
S12,S13,及びS15bの禁止条件が全て成立する場合、つまり、VVL13及びVTC17の双方を作動すべき機関負荷及び機関回転域であり、かつ、検出油温Otが基準油温Ot1より高い場合には、S16bへ進み、VVL切換許可フラグVvを0とするとともに、VTC変換許可フラグVtを0とする。これにより、VVL13への油圧供給が禁止され、VVL13の作動が禁止されると同時に、VTC17への油圧供給が禁止され、VTC17の作動が禁止される。
【0041】
この第3実施例では、上述した第1実施例の(1),(3)の効果が得られることに加え、検出油温Otが基準油温Ot1を越えるとVVL13及びVTC17の双方の作動を一斉に禁止するようにしているため、制御の簡素化を図ることができる。
【0042】
図10は、本発明の第4実施例に係る制御の流れを示すフローチャートである。S11〜S13の処理は上記の第1実施例と同じである。S14cでは、VVL油圧センサ21の出力値(検出圧力)Opを読み込む。S15cでは、VVL油圧センサ21の検出油圧Opが設定油圧Op1よりも低いか否かを判定する。この基準油圧Op1は、例えば第2実施例の第1基準油圧Op2とほぼ同じ値である。
【0043】
S12,S13,及びS15cの禁止条件が全て成立する場合、つまり、VVL13及びVTC17の双方を作動すべき機関負荷及び機関回転域であり、かつ、検出油圧Opが設定油圧Op1より低いと判定されると、S16cへ進み、VVL切換許可フラグVvを0とするとともに、VTC変換許可フラグVtを0とする。これにより、VVL13への油圧供給が禁止され、VVL13の作動が禁止されるとともに、VTC17への油圧供給が禁止され、VTC17の作動が禁止される。
【0044】
この第4実施例では、上述した第1,2実施例の(1),(4),(5)の効果が得られることに加え、検出油圧Opが設定油圧Op1より低くなるとVVL13及びVTC17の双方の作動を一斉に禁止するようにしているため、制御の簡素化を図ることができる。
【0045】
以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明はこれらの実施例に限定されるものではなく、その趣旨・範囲を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、排気弁に複数の可変動弁機構を適用した装置に本発明を適用しても良い。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の可変動弁装置を簡略的に示す構成図。
【図2】上記可変動弁装置のバルブリフト変更機構及びバルブタイミング変更機構の油圧回路図。
【図3】バルブリフト変更機構の作動領域を示す特性図。
【図4】バルブタイミング変更機構の作動領域を示す特性図。
【図5】バルブリフト変更機構の作動領域とバルブタイミング変更機構の作動領域とを重ね合わせた特性図。
【図6】機関負荷及び機関回転数に応じたバルブリフト変更機構及びバルブタイミング変更機構の作動の禁止・許可を行う制御処理を示すフローチャート。
【図7】本発明の第1実施例に係る制御の流れを示すフローチャート。
【図8】本発明の第2実施例に係る制御の流れを示すフローチャート。
【図9】本発明の第3実施例に係る制御の流れを示すフローチャート。
【図10】本発明の第4実施例に係る制御の流れを示すフローチャート。
【符号の説明】
11…VVLソレノイド(第1油圧制御弁)
13…バルブリフト変更機構(第1可変動弁機構)
17…バルブタイミング変更機構(第2可変動弁機構)
18…VTCソレノイド(第2油圧制御弁)
21…油圧センサ
31…オイルポンプ(油圧源)
35…バイパス通路
36…油温センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a variable valve operating apparatus for an internal combustion engine having two or more variable valve operating mechanisms that can be operated by hydraulic pressure of hydraulic oil to change a valve lift characteristic of an intake valve or an exhaust valve of the internal combustion engine.
[0002]
[Prior art]
Patent Literature 1 discloses a variable valve mechanism capable of changing the valve lift characteristics of an intake valve or an exhaust valve of an internal combustion engine by operating with the oil pressure of a lubricating oil as a hydraulic oil. An apparatus using both a valve lift changing mechanism for switching the valve timing and a valve timing changing mechanism for continuously changing the valve timing is disclosed. This device can vary the valve lift, and at the same time, can continuously adjust the valve timing, so that the valve lift characteristics required under each operating condition can be well adapted.
[0003]
Further, in Patent Document 1, while the oil temperature of the hydraulic oil is low, such as during a warm-up operation, the supply of hydraulic pressure to both the valve timing change mechanism and the valve lift change mechanism is prohibited, and thereafter the oil temperature rises In order to prevent a transient drop in oil pressure, a valve lift change mechanism that permits the supply of oil pressure to the valve timing change mechanism that can continuously adjust the valve timing first, and then switches the valve lift in stages Oil pressure supply to the plant.
[0004]
[Patent Document 1]
JP-A-8-177433 [0005]
[Problems to be solved by the invention]
In the above-mentioned Patent Document 1, when the oil temperature of the hydraulic oil is extremely low, such as during a warm-up operation immediately after the start of the engine, since the viscosity is high and the passage pressure loss is large, the hydraulic pressure is supplied to the variable valve mechanism. Is banned. Separately, if the oil temperature of the hydraulic oil becomes extremely high during the operation of the engine after the completion of warm-up, the hydraulic pressure of the hydraulic oil supplied from the oil pump will decrease, ensuring the operation responsiveness of the variable valve mechanism. It is difficult to secure a hydraulic pressure that can be used. If the capacity of the oil pump, which is a hydraulic power source, is increased to guarantee the above-described operation responsiveness, an increase in cost, an increase in friction, and the like will be caused.
[0006]
The present invention has been made in view of such a problem, and without increasing the cost and increasing the friction due to an increase in the capacity of a hydraulic source such as an oil pump, the hydraulic oil temperature rise and hydraulic pressure decrease of the hydraulic oil are not caused. It is a main object of the present invention to provide a novel variable valve operating device for an internal combustion engine that can reliably avoid a decrease in the operation responsiveness of the variable valve operating mechanism accompanying the above.
[0007]
[Means for Solving the Problems]
A first variable valve mechanism and a second variable valve mechanism that are operated by hydraulic pressure of hydraulic oil and change valve lift characteristics of an intake valve or an exhaust valve; a hydraulic source for pressurizing the hydraulic oil; A first hydraulic control valve for controlling a hydraulic pressure supplied to the valve mechanism, a second hydraulic control valve for controlling a hydraulic pressure supplied to the second variable valve mechanism, and a hydraulic pressure of hydraulic oil supplied from the hydraulic pressure source Or a detecting means for detecting the oil temperature. When a prohibition condition including that the hydraulic pressure detected by the detecting means is lower than the set hydraulic pressure or the detected oil temperature is higher than the set oil temperature is satisfied, the control proceeds to at least one of the first variable valve mechanism and the second variable valve mechanism. Prohibit hydraulic pressure supply.
[0008]
【The invention's effect】
According to the present invention, when the oil temperature of the hydraulic oil increases and the hydraulic pressure decreases, the supply of the hydraulic pressure to at least one of the first variable valve mechanism and the second variable valve mechanism is prohibited. It is possible to reliably avoid a decrease in the operational response of the variable valve mechanism due to an increase in oil temperature and a decrease in oil pressure.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
FIG. 1 is a configuration diagram schematically showing a variable valve operating device for an internal combustion engine according to the present invention.
[0011]
This variable valve device is operated by hydraulic pressure of hydraulic oil (lubricating oil) to change two valve operating mechanisms capable of changing a valve lift characteristic of the intake valve 15, that is, a variable valve lift amount of the intake valve 15. A variable valve lift changing mechanism (first variable valve mechanism) 13 and a valve timing changing mechanism (second variable valve mechanism) 17 capable of changing the valve timing of the intake valve 15 are provided. Hereinafter, the valve lift changing mechanism is referred to as VVL (Variable Valve Lifter), and the valve timing changing mechanism is referred to as VTC (Valve Timing Controller).
[0012]
These VVL13 and VTC17 are known as disclosed in the above-mentioned JP-A-8-177433 and JP-A-8-177426, and will be described only briefly here. The VVL 13 switches a valve lift amount and an operating angle in two stages by selectively using a high-speed cam 14a and a low-speed cam 14b provided on a cam shaft 14, and a valve lifter 16 of an intake valve 15 is provided with a valve lifter 16 according to oil pressure. A switching mechanism for switching between the high speed cam 14a and the low speed cam 14b for use is provided. The VTC 17 has an inner housing that rotates with the camshaft 14 of the intake valve 15 and an outer housing that rotates with a cam pulley to which rotational power is transmitted from a crankshaft via a timing belt. , The phase of the camshaft 14 relative to the crank angle of the crankshaft, that is, the phase of the operating center angle of the intake valve 15 is changed, thereby continuously changing the valve timing (opening / closing timing) of the intake valve 15. I do.
[0013]
The hydraulic pressure supplied to the VVL 13 is switched and controlled by a VVL solenoid 11 as a first hydraulic control valve, and the hydraulic pressure supplied to the VTC 17 is switched and controlled by a VTC solenoid 18 as a second hydraulic control valve. The operation of these solenoids 11, 18 is controlled by the control unit 1. The control unit 1 is a digital computer having a CPU, a memory, and an input / output interface, and includes a water temperature signal 2, an intake air amount signal 3, a throttle sensor signal 4, an oxygen sensor output signal 5, a crankshaft rotation signal 6, In addition to the signal 20 from the cam angle sensor 19 for detecting the angle of the camshaft 14, a signal 37 from an oil temperature sensor 36 described later, a signal from the VVL oil pressure sensor 21, and the like are input. Based on the signals indicating these engine operating conditions, the control unit 1 outputs the air-fuel ratio control signal 7 and the ignition timing control signal 8 to the corresponding actuator, and outputs the VTC control signal 9 to the VTC solenoid 18, and , A VVL solenoid signal 10 to a VVL solenoid 11 to control its operation.
[0014]
FIG. 2 shows a hydraulic circuit of VVL13 and VTC17. As is well known, an oil pump 31 serving as a hydraulic oil pressure source is driven by a crankshaft to pressurize the hydraulic oil and feed it to a main gallery 32 in a cylinder block 41. The oil pump 31 and the VVL solenoid 11 are connected by a VVL solenoid oil supply passage 34, and the VVL solenoid 11 and VVL 13 are connected by the VVL oil supply passage 12. That is, the VVL solenoid 11 is provided in the middle of the oil supply paths 34 and 12 connecting the oil pump 31 and the VVL 13. The oil pump 31 and the VTC solenoid 18 are connected by a VTC solenoid oil supply passage 33, and the VTC solenoid 18 and the VTC 17 are connected by a VTC oil supply passage 19. That is, the VTC solenoid 18 is provided in the middle of the oil supply passages 33 and 19 connecting the oil pump 31 and the VTC 17.
[0015]
The oil temperature sensor 36 is provided at a junction on the upstream side (oil pump 31 side) of the VTC solenoid oil supply passage 33 and the VVL solenoid oil supply passage 34, and detects the oil temperature of the working oil supplied from the oil pump 31.
[0016]
The VVL oil pressure sensor 21 is provided in the middle of the VVL oil supply passage 12 and basically detects the oil pressure supplied to the VVL 13. Based on the hydraulic pressure supplied to the VVL 13, the switching determination of the VVL 13 and the like are performed. This technique is described in detail in Japanese Patent Application No. 2002-272992 filed earlier by the present applicant.
[0017]
The VVL oil pressure sensor 21 also has a function of detecting the oil pressure of the hydraulic oil supplied from the oil pump 31 in order to determine the prohibition of the operation of the VVL 13 / VTC 17 in the second and fourth embodiments described later. . As described above, the bypass passage 35 that connects the oil pump 31 and the VVL solenoid 11 by bypassing the VVL solenoid 11 is provided so that the VVL oil pressure sensor 21 can detect the supply oil pressure from the oil pump 31.
[0018]
The bypass passage 35 also has the effect of accelerating the rise of the hydraulic pressure of the VVL 13. However, the bypass passage 35 is provided with an orifice or the like so that the VVL 13 does not malfunction due to the hydraulic pressure supplied to the VVL 13 via the bypass passage 35 when the VVL solenoid 11 is turned off.
[0019]
FIG. 3 shows an operation region of the VVL 13 according to the engine load and the engine speed. In the initial state where the oil pressure is not supplied to the VVL 13 / OFF state (non-operating state), the low-speed cam 14b on the low lift / small operating angle side is used, and when the oil pressure is supplied to the VVL 13 (ON state / operating state). Is switched to the high-speed cam 14a on the high lift / large operation angle side.
[0020]
FIG. 4 shows an operation range of the VTC 17 according to the engine load and the engine speed. In the initial state where the oil pressure is not supplied to the VTC 17 / OFF state (non-operating state), the opening / closing timing of the intake valve 15 is the most retarded, and when the oil pressure is supplied to the VTC 17 (ON state / operating state), The opening / closing timing of the intake valve 15 is continuously changed and controlled to the advanced side.
[0021]
FIG. 5 is a diagram in which the VVL operation region and the VTC operation region are overlapped. As shown in the figure, the operation region of the VVL 13 and the operation region of the VTC 17 overlap over a relatively wide engine load / rotation region (broken line region in the figure) R1.
[0022]
6 to 10 are flowcharts showing the flow of control stored and executed by the control unit 1. These routines are repeatedly executed every predetermined period (for example, every 10 ms).
[0023]
Referring to FIG. 6, in S (step) 1, VVL switching permission flag Vv and VTC conversion permission flag Vt are initialized, that is, set to 0. When the VVL switching permission flag Vv is 0, the supply of the hydraulic pressure from the VVL solenoid 11 to the VVL 13 is prohibited. That is, the operation (switching) of the VVL 13 is prohibited, and the low-speed cam 14b is used. When the VVL switching permission flag Vv is 1, the supply of hydraulic pressure from the VVL solenoid 11 to the VVL 13 is permitted. When the VTC conversion permission flag Vt is 0, the supply of hydraulic pressure from the VTC solenoid 18 to the VTC 17 is prohibited. That is, the operation (conversion) of the VTC 17 is prohibited, and the valve timing of the intake valve 15 is the most retarded. When the VTC conversion permission flag Vt is 1, the supply of hydraulic pressure to the VTC 17 is permitted.
[0024]
In S2, referring to a map as shown in FIG. 3, it is determined whether or not the engine load and the engine speed (engine operation region) are in the VVL13 ON region. If it is in the ON area of the VVL 13, the VVL switching permission flag Vv is set (set to 1) in S3. In S4, referring to a map as shown in FIG. 4, it is determined whether or not the engine load and the engine speed are in the VTC 17 ON region. If it is in the ON area of the VTC 17, the VTC conversion permission flag Vt is set (set to 1) in S5.
[0025]
FIG. 7 is a flowchart showing a control flow according to the first embodiment of the present invention. In S11, the values of the VVL switching permission flag Vv and the VTC conversion permission flag Vt set by the above-described routine of FIG. 6 and the like are read. In S12, it is determined whether the VVL switching permission flag Vv is 1, that is, whether the engine load and the engine speed are in the ON region of the VVL13. In S13, it is determined whether the VTC conversion permission flag Vt is 1, that is, whether the engine load and the engine speed are in the VTC 17 ON region. In S14, the oil temperature Ot of the working oil is detected by the oil temperature sensor 36, and in S15, it is determined whether or not the detected oil temperature Ot is higher than the first reference oil temperature Ot2.
[0026]
When all the prohibition conditions of S12, S13, and S15 described above are satisfied, that is, the engine operating range (the hatched region R1 in FIG. 5) of the engine load and the engine speed at which both the VVL 13 and the VTC 17 are to be operated, and When the detected oil temperature Ot is higher than the first reference oil temperature Ot2, the process proceeds to S16, and the VVL switching permission flag Vv is set to 0. As a result, the supply of the hydraulic pressure to the VVL 13 is prohibited, and the operation of the VVL 13 is prohibited (prohibiting means).
[0027]
In S17, it is determined whether or not the detected oil temperature Ot of the oil temperature sensor 36 is higher than the second reference oil temperature Ot3. The second reference oil temperature Ot3 is set to a value higher than the first reference oil temperature Ot2. If the prohibition conditions of S12, S13, and S15 described above are satisfied and the detected oil temperature Ot is higher than the second reference oil temperature Ot3 in S17, the process proceeds to S18, and the VTC conversion permission flag Vt is set to 0. As a result, the supply of the hydraulic pressure to the VTC 17 is prohibited, and the operation of the VTC 17 is prohibited (second prohibiting means).
[0028]
According to the first embodiment, the following effects (1) to (3) can be obtained.
[0029]
(1) In a situation in which the operation responsiveness of the VVL 13 and the VTC 17 cannot be guaranteed due to a decrease in the oil pressure due to an increase in the oil temperature, it is possible to reliably prevent both the VVL 13 and the VTC 17 from operating, and thus fail-safe. Excellent in nature. In addition, it is not necessary to increase the capacity of the oil pump 31 in order to secure the operation responsiveness, so that cost and friction can be reduced.
[0030]
(2) With an increase in the oil temperature and a decrease in the oil pressure, first, only the operation of the VVL 13 that changes the valve lift characteristics in a stepwise manner is prohibited, and the operation of the VTC 17 that continuously changes the valve lift characteristics is prioritized. , The conversion range of the VTC 17 can be expanded to the limit, and a decrease in the driving performance such as fuel efficiency is reduced and suppressed as compared with the case where the operation of the VTC 17 is prohibited first or the case where both the operations of the VVL 13 and the VTC 17 are simultaneously prohibited. be able to. More specifically, if VTC 17 is prohibited first, operation is possible only in regions R3 and R4 (FIG. 4). If both VTC 17 and VVL 13 are prohibited, operation is possible only in R5 (FIG. 5). As described above, the variable valve mechanism cannot be used in a region where the fuel efficiency can be improved. On the other hand, in the present embodiment, since the operation of the VTC is prioritized by turning off the VVL first, the operation can be performed in the regions R2 and R5 (FIG. 5) corresponding to the fuel consumption region, and the fuel consumption can be improved. .
[0031]
(3) As a substitute for the oil pressure supplied from the oil pump 31, the oil temperature detected by the oil temperature sensor 36 which is also used in a general engine is used to determine whether or not to operate the VVL13 / VTC17 (S15, S17). Therefore, the oil pressure sensor for directly detecting the oil pressure supplied from the oil pump 31 can be omitted, and the configuration can be simplified.
[0032]
FIG. 8 is a flowchart showing a control flow according to the second embodiment of the present invention. The second embodiment differs from the first embodiment in that the operation prohibition determination (S15a, S17a) of the VVL13 / VTC17 is performed using the oil pressure detected by the VVL oil pressure sensor 21.
[0033]
The processing of S11 to S13 is the same as in the first embodiment. In S14a, the output value (detected oil pressure) Op of the VVL oil pressure sensor 21 is read. In S15a, it is determined whether the detected oil pressure Op of the VVL oil pressure sensor 21 is lower than the first set oil pressure Op2.
[0034]
When all the prohibition conditions of S12, S13, and S15a are satisfied, that is, it is determined that the engine load and the engine speed range in which both VVL13 and VTC17 are to be operated, and that the detected hydraulic pressure Op is lower than the first set hydraulic pressure Op2. Then, the process proceeds to S16, where the VVL switching permission flag Vv is set to 0. Accordingly, the supply of the hydraulic pressure to the VVL 13 is prohibited, and the operation of the VVL 13 is prohibited.
[0035]
In S17a, it is determined whether or not the detected oil pressure Op of the VVL oil pressure sensor 21 is lower than the second set oil pressure Op3. The second set oil pressure Op3 is set to a value lower than the first set oil pressure Op2. When the above prohibition condition is satisfied and the detected oil pressure Op of the oil pressure sensor 36 is lower than the second set oil pressure Op3, the process proceeds to S18, and the VTC conversion permission flag Vt is set to 0. As a result, the supply of the hydraulic pressure to the VTC 17 is prohibited, and the operation of the VTC 17 is prohibited.
[0036]
According to the second embodiment, the following effects (4) and (5) are obtained in addition to the effects (1) and (2) of the first embodiment.
[0037]
(4) Since the operation prohibition determination (S15a, S17a) of VVL13 and VTC17 is performed using the oil pressure directly detected by the VVL oil pressure sensor 21 instead of the oil temperature which is a substitute characteristic, the control accuracy is excellent. ing.
[0038]
(5) In order to perform the switching determination control of the VVL 13, etc., the operation inhibition determination of the VVL 13 and the VTC 17 is performed using the existing VVL oil pressure sensor 21 capable of detecting the hydraulic pressure supplied from the VVL solenoid 11 to the VVL 13 (S15a, S17a). Therefore, it is not necessary to separately provide a hydraulic pressure sensor for performing the operation prohibition determination, and the configuration can be simplified.
[0039]
FIG. 9 is a flowchart showing the flow of control according to the third embodiment of the present invention. The processing of S11 to S13 is the same as in the first embodiment. In S14b, the detected oil temperature Ot of the oil temperature sensor 36 is read. In S15b, it is determined whether or not the detected oil temperature Ot of the oil temperature sensor 36 is higher than the reference oil temperature Ot1. This reference oil temperature Ot1 is, for example, substantially the same value as the first reference oil temperature Ot2 of the first embodiment.
[0040]
When all the prohibition conditions of S12, S13, and S15b are satisfied, that is, when the engine load and the engine rotation range are to operate both VVL13 and VTC17, and the detected oil temperature Ot is higher than the reference oil temperature Ot1 Proceeds to S16b, sets the VVL switching permission flag Vv to 0, and sets the VTC conversion permission flag Vt to 0. Accordingly, the supply of the hydraulic pressure to the VVL 13 is prohibited, and the operation of the VVL 13 is prohibited. At the same time, the supply of the hydraulic pressure to the VTC 17 is prohibited, and the operation of the VTC 17 is prohibited.
[0041]
In the third embodiment, in addition to the effects (1) and (3) of the first embodiment described above, when the detected oil temperature Ot exceeds the reference oil temperature Ot1, both the operations of the VVL 13 and the VTC 17 are performed. Since the control is prohibited all at once, the control can be simplified.
[0042]
FIG. 10 is a flowchart showing a control flow according to the fourth embodiment of the present invention. The processing of S11 to S13 is the same as in the first embodiment. In S14c, the output value (detected pressure) Op of the VVL oil pressure sensor 21 is read. In S15c, it is determined whether or not the detected oil pressure Op of the VVL oil pressure sensor 21 is lower than the set oil pressure Op1. This reference oil pressure Op1 is, for example, substantially the same value as the first reference oil pressure Op2 of the second embodiment.
[0043]
When all the prohibition conditions of S12, S13, and S15c are satisfied, that is, it is determined that the engine load and the engine speed range in which both the VVL 13 and the VTC 17 are to be operated, and that the detected hydraulic pressure Op is lower than the set hydraulic pressure Op1. Then, the process proceeds to S16c, where the VVL switching permission flag Vv is set to 0, and the VTC conversion permission flag Vt is set to 0. As a result, the supply of the hydraulic pressure to the VVL 13 is prohibited, the operation of the VVL 13 is prohibited, and the supply of the hydraulic pressure to the VTC 17 is prohibited, so that the operation of the VTC 17 is prohibited.
[0044]
In the fourth embodiment, in addition to the effects (1), (4), and (5) of the first and second embodiments described above, when the detected oil pressure Op becomes lower than the set oil pressure Op1, the VVL13 and VTC17 Since both operations are prohibited at the same time, control can be simplified.
[0045]
Although the present invention has been described based on the specific embodiments as described above, the present invention is not limited to these embodiments, and various modifications and changes may be made without departing from the spirit and scope of the present invention. Is included. For example, the present invention may be applied to a device in which a plurality of variable valve mechanisms are applied to an exhaust valve.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing a variable valve operating device for an internal combustion engine according to the present invention.
FIG. 2 is a hydraulic circuit diagram of a valve lift changing mechanism and a valve timing changing mechanism of the variable valve operating device.
FIG. 3 is a characteristic diagram showing an operation region of a valve lift changing mechanism.
FIG. 4 is a characteristic diagram showing an operation region of a valve timing changing mechanism.
FIG. 5 is a characteristic diagram in which an operation area of a valve lift changing mechanism and an operation area of a valve timing changing mechanism are overlapped.
FIG. 6 is a flowchart showing a control process for prohibiting and permitting operation of a valve lift changing mechanism and a valve timing changing mechanism according to an engine load and an engine speed.
FIG. 7 is a flowchart showing a control flow according to the first embodiment of the present invention.
FIG. 8 is a flowchart showing a control flow according to a second embodiment of the present invention.
FIG. 9 is a flowchart showing a control flow according to a third embodiment of the present invention.
FIG. 10 is a flowchart showing a control flow according to a fourth embodiment of the present invention.
[Explanation of symbols]
11 VVL solenoid (first hydraulic control valve)
13. Valve lift change mechanism (first variable valve mechanism)
17: Valve timing change mechanism (second variable valve mechanism)
18 VTC solenoid (second hydraulic control valve)
21 ... oil pressure sensor 31 ... oil pump (oil pressure source)
35 ... bypass passage 36 ... oil temperature sensor

Claims (9)

作動油の油圧により作動し、吸気弁又は排気弁のバルブリフト特性を変更する第1可変動弁機構及び第2可変動弁機構と、
上記作動油を加圧する油圧源と、
上記第1可変動弁機構へ供給される油圧を制御する第1油圧制御弁と、
上記第2可変動弁機構へ供給される油圧を制御する第2油圧制御弁と、
上記油圧源から供給される作動油の油圧又は油温を検出する検出手段と、
この検出手段による検出油圧が設定油圧より低いか又は検出油温が設定油温より高いことを含む禁止条件を判定する判定手段と、
上記禁止条件が成立する場合に、第1可変動弁機構及び第2可変動弁機構の少なくとも一方への油圧供給を禁止する禁止手段と、
を有する内燃機関の可変動弁装置。
A first variable valve mechanism and a second variable valve mechanism that are operated by hydraulic pressure of hydraulic oil and change valve lift characteristics of an intake valve or an exhaust valve;
A hydraulic pressure source for pressurizing the hydraulic oil,
A first hydraulic control valve for controlling a hydraulic pressure supplied to the first variable valve mechanism;
A second hydraulic control valve for controlling a hydraulic pressure supplied to the second variable valve mechanism,
Detecting means for detecting the oil pressure or oil temperature of the hydraulic oil supplied from the oil pressure source,
Determining means for determining a prohibition condition including that the hydraulic pressure detected by the detecting means is lower than the set hydraulic pressure or the detected oil temperature is higher than the set oil temperature;
Prohibiting means for prohibiting hydraulic pressure supply to at least one of the first variable valve mechanism and the second variable valve mechanism when the prohibition condition is satisfied;
A variable valve device for an internal combustion engine having the same.
作動油の油圧により作動し、吸気弁又は排気弁のバルブリフト特性を変更する第1可変動弁機構及び第2可変動弁機構と、
上記作動油を加圧する油圧源と、
上記第1可変動弁機構へ供給される油圧を制御する第1油圧制御弁と、
上記第2可変動弁機構へ供給される油圧を制御する第2油圧制御弁と、
上記油圧源から供給される作動油の油圧又は油温を検出する検出手段と、
この検出手段による検出油圧が設定油圧より低いか又は検出油温が設定油温より高いことを含む禁止条件を判定する判定手段と、
上記禁止条件が成立する場合に、第1可変動弁機構への油圧供給を禁止する禁止手段と、
を有する内燃機関の可変動弁装置。
A first variable valve mechanism and a second variable valve mechanism that are operated by hydraulic pressure of hydraulic oil and change valve lift characteristics of an intake valve or an exhaust valve;
A hydraulic pressure source for pressurizing the hydraulic oil,
A first hydraulic control valve for controlling a hydraulic pressure supplied to the first variable valve mechanism;
A second hydraulic control valve for controlling a hydraulic pressure supplied to the second variable valve mechanism,
Detecting means for detecting the oil pressure or oil temperature of the hydraulic oil supplied from the oil pressure source,
Determining means for determining a prohibition condition including that the hydraulic pressure detected by the detecting means is lower than the set hydraulic pressure or the detected oil temperature is higher than the set oil temperature;
Prohibiting means for prohibiting hydraulic pressure supply to the first variable valve mechanism when the prohibition condition is satisfied;
A variable valve device for an internal combustion engine having the same.
上記第1可変動弁機構が、吸気弁又は排気弁のバルブリフト量を変更可能なバルブリフト変更機構であり、
上記第2可変動弁機構が、吸気弁又は排気弁のバルブタイミングを変更可能なバルブタイミング変更機構である請求項2に記載の内燃機関の可変動弁装置。
The first variable valve mechanism is a valve lift changing mechanism capable of changing a valve lift amount of an intake valve or an exhaust valve,
3. The variable valve operating device for an internal combustion engine according to claim 2, wherein the second variable valve operating mechanism is a valve timing changing mechanism capable of changing a valve timing of an intake valve or an exhaust valve.
上記第1可変動弁機構が、バルブリフト特性を段階的に変更するものであり、
上記第2可変動弁機構が、バルブリフト特性を連続的に変更するものである請求項2又は3に記載の内燃機関の可変動弁装置。
The first variable valve mechanism changes the valve lift characteristics in a stepwise manner.
4. The variable valve apparatus for an internal combustion engine according to claim 2, wherein the second variable valve mechanism changes the valve lift characteristic continuously.
上記禁止条件が成立し、かつ、上記検出油圧が上記設定油圧よりも低い第2の設定油圧より低いか、又は上記検出油温が上記設定油温よりも高い第2の設定油温より高い場合に、第2可変動弁機構への油圧供給を禁止する第2の禁止手段を有する請求項2〜4のいずれかに記載の内燃機関の可変動弁装置。When the prohibition condition is satisfied and the detected oil pressure is lower than a second set oil pressure lower than the set oil pressure or the detected oil temperature is higher than a second set oil temperature higher than the set oil temperature 5. The variable valve operating device for an internal combustion engine according to claim 2, further comprising a second prohibiting unit that prohibits the supply of the hydraulic pressure to the second variable valve operating mechanism. 上記禁止条件が、機関運転領域が第1可変動弁機構の作動領域であること、及び機関運転領域が第2可変動弁機構の作動領域であることを含んでいる請求項1〜5のいずれかに記載の内燃機関の可変動弁装置。6. The prohibition condition according to claim 1, wherein the engine operation region is an operation region of the first variable valve mechanism, and the engine operation region is an operation region of the second variable valve mechanism. A variable valve operating device for an internal combustion engine according to any one of the above. 上記検出手段が、油圧源から供給される作動油の油温を検出する油温センサである請求項1〜6のいずれかに記載の内燃機関の可変動弁装置。7. The variable valve apparatus for an internal combustion engine according to claim 1, wherein said detection means is an oil temperature sensor for detecting an oil temperature of hydraulic oil supplied from a hydraulic pressure source. 上記検出手段が、油圧源から供給される作動油の油圧を検出する油圧センサである請求項1〜6のいずれかに記載の内燃機関の可変動弁装置。7. The variable valve apparatus for an internal combustion engine according to claim 1, wherein said detection means is a hydraulic pressure sensor that detects a hydraulic pressure of hydraulic oil supplied from a hydraulic pressure source. 上記油圧センサが、第1油圧制御弁と第1可変動弁機構とを結ぶ油路に設けられ、第1可変動弁機構へ供給される油圧を検出する機能を有しており、
かつ、上記第1油圧制御弁をバイパスして油圧源と油圧センサとを結ぶバイパス通路が設けられる請求項8に記載の内燃機関の可変動弁装置。
The oil pressure sensor is provided in an oil passage connecting the first oil pressure control valve and the first variable valve mechanism, and has a function of detecting oil pressure supplied to the first variable valve mechanism,
9. The variable valve train for an internal combustion engine according to claim 8, wherein a bypass passage is provided for connecting a hydraulic pressure source and a hydraulic pressure sensor by bypassing the first hydraulic pressure control valve.
JP2003097705A 2003-04-01 2003-04-01 Adjustable valve mechanism of internal combustion engine Pending JP2004301101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097705A JP2004301101A (en) 2003-04-01 2003-04-01 Adjustable valve mechanism of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097705A JP2004301101A (en) 2003-04-01 2003-04-01 Adjustable valve mechanism of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004301101A true JP2004301101A (en) 2004-10-28

Family

ID=33409422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097705A Pending JP2004301101A (en) 2003-04-01 2003-04-01 Adjustable valve mechanism of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004301101A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023898A (en) * 2005-07-15 2007-02-01 Toyota Motor Corp Control device for engine
JP2014136982A (en) * 2013-01-15 2014-07-28 Toyota Motor Corp Control device for internal combustion engine
JP2015017510A (en) * 2013-07-09 2015-01-29 本田技研工業株式会社 Oil path structure for internal combustion engine
US9260987B2 (en) 2014-06-18 2016-02-16 Hyundai Motor Company Variable valve lift system in engine and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023898A (en) * 2005-07-15 2007-02-01 Toyota Motor Corp Control device for engine
JP4692118B2 (en) * 2005-07-15 2011-06-01 トヨタ自動車株式会社 Engine control device
JP2014136982A (en) * 2013-01-15 2014-07-28 Toyota Motor Corp Control device for internal combustion engine
JP2015017510A (en) * 2013-07-09 2015-01-29 本田技研工業株式会社 Oil path structure for internal combustion engine
US9260987B2 (en) 2014-06-18 2016-02-16 Hyundai Motor Company Variable valve lift system in engine and control method thereof

Similar Documents

Publication Publication Date Title
JP3985696B2 (en) Variable valve operating device for internal combustion engine
US7464676B2 (en) Air dynamic steady state and transient detection method for cam phaser movement
JP2008031973A (en) Variable valve timing control device for internal combustion engine
JP4003187B2 (en) Variable valve timing control device for internal combustion engine
JP3876648B2 (en) Engine valve timing control device
JP2002227665A (en) Hydraulic control device for valve closing mechanism in internal combustion engine
JP2001303990A (en) Variable valve timing controller for internal combustion engine
JP4985419B2 (en) Hydraulic control device for engine
JP2004301101A (en) Adjustable valve mechanism of internal combustion engine
JPH0642379A (en) Valve timing control device for valve system
JP3546669B2 (en) Valve timing control device for internal combustion engine
JP2004285998A (en) Device for controlling engine at starting
JP4206793B2 (en) Variable valve operating device for internal combustion engine
JP2008075484A (en) Control device of internal combustion engine
JP2000054870A (en) Diagnostic device for hydraulic variable valve timing mechanism
JP2008008283A (en) Control device of vane type variable valve timing adjusting mechanism
JP4410664B2 (en) Control device for internal combustion engine
JP2000073797A (en) Variable valve timing device for engine
JP2720636B2 (en) Control device for internal combustion engine
JP4396507B2 (en) Valve characteristic control device for internal combustion engine
JP2004060572A (en) Valve timing control device of internal combustion engine
JP4165433B2 (en) Control device for internal combustion engine
JP4798234B2 (en) Variable valve system
JP2007113398A (en) Control device for engine
JP2004293508A (en) Flow control device of cooling water