JP2004300897A - Repairing structure for existing bearing apparatus and repairing method for the same - Google Patents

Repairing structure for existing bearing apparatus and repairing method for the same Download PDF

Info

Publication number
JP2004300897A
JP2004300897A JP2003098443A JP2003098443A JP2004300897A JP 2004300897 A JP2004300897 A JP 2004300897A JP 2003098443 A JP2003098443 A JP 2003098443A JP 2003098443 A JP2003098443 A JP 2003098443A JP 2004300897 A JP2004300897 A JP 2004300897A
Authority
JP
Japan
Prior art keywords
base plate
existing
bearing
bridge axis
shear deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003098443A
Other languages
Japanese (ja)
Other versions
JP4285685B2 (en
Inventor
Hideaki Haino
英朗 配野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBM Co Ltd
Original Assignee
BBM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBM Co Ltd filed Critical BBM Co Ltd
Priority to JP2003098443A priority Critical patent/JP4285685B2/en
Publication of JP2004300897A publication Critical patent/JP2004300897A/en
Application granted granted Critical
Publication of JP4285685B2 publication Critical patent/JP4285685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a repairing structure for an existing bearing apparatus, which is implemented by using an existing base plate and anchor bolts, need not secure a high under-girder installation space, and is free from a fear of interference with a jack-up space in a bridge axial direction, and to provide a repairing method for the existing bearing apparatus. <P>SOLUTION: In implementation of the repairing structure for the existing bearing apparatus, a new base plate 9 is carried in from a direction at right angles to the bridge axis and fixed to the existing base plate 1 of the existing bearing apparatus. The new base plate has a bridge axial dimension smaller than an inner axial interval between a pair of the anchor bolts 3 which fix the existing base plate 1 at its ends in the direction at right angles to the bridge axis. Then a shear deformation restricting-cum-bearing member 12 is carried in from the direction at right angles to the bridge axis and fixed to the new base plate 9. The member 12 has a bridge axial dimension smaller than the inner axial interval between the pair of the anchor bolts 3. Further an elastic load bearing body 15 is set in the shear deformation binding member 12, and a superstructure 7 is borne by the elastic load bearing body 15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高架道路橋あるいは橋梁等における既設弾性支承装置におけるベースプレートおよびアンカーボルトを撤去することなくこれらを利用した既設支承装置の補修工法および補修構造に関する。
【0002】
【従来の技術】
従来、支承装置を交換する場合、例えば、図11に示すようなベースプレート1をアンカーボルト3によって下部構造物に固定する震度法による鋼製支承装置20を、タイプBの鋼製支承装置(非特許文献1参照)に置き換えることが考えられているが、タイプBの鋼製支承装置の場合には、上下方向の寸法が高くなって、上下方向の寸法の増大を許容することが難しい、上下に2層あるいは3層高架道路橋等では、支承装置によって支持されている上部構造物(桁)を高レベル位置にできないため、タイプBの鋼製支承装置の設置スペースを確保することができず、タイプBの鋼製支承装置を設置することができないと言う問題がある。
【0003】
また、支承装置を交換する場合、既設の支承装置におけるベースプレートおよびアンカーボルトまでを撤去するようになると、支承装置の交換作業が大掛かりとなり、施工費用が非常に高価になると言う問題がある。
さらに、橋軸方向における下部構造物上に設置したジャッキにより、上部構造物をレベルアップした状態で、支承装置を交換する場合には、橋軸方向には、ジャッキがあるために、ジャッキアップスペースを確保する必要性があると共に、橋軸方向から支承装置を挿入配置することができない問題がある。
【0004】
【非特許文献1】
道路橋示方書(V耐震設計編) 社団法人日本道路協会発行、2002年14月10日、P.245
【0005】
【発明が解決しようとする課題】
本発明者は、前記3つの問題点を同時に、有利に解決することができる支承装置について種々検討した結果、上下方向のゴム層等の弾性層の厚さを比較的薄くでき、桁下の上下方向設置スペースを既設の支承装置以内に収め、ゴム層のせん断変形を拘束して上部構造物の鉛直荷重を高支圧荷重で支承できる機能分離型の支承装置を使用すること、およびせん断変形拘束部材を既設のベースプレートに橋軸直角方向から挿入設置することができる寸法形状にし、既設のベースプレートおよびアンカーボルトを利用することにより、可能になることを見出し、本発明を完成させた。
【0006】
本発明は、桁下の上下方向の支承装置設置スペースを既設支承装置内とすることを可能とし、また、下部構造物に設置されているベースプレートおよびアンカーボルトを撤去することなく、これらを利用して、下部構造物のはつり作業をすることなく、しかも橋軸方向に配置されるジャッキアップ用スペースを阻害することなく、安価に設置することができる、既設支承装置の補修構造および補修工法を提供することを目的とする。
する。
【0007】
【課題を解決するための手段】
前記課題を解決するために、請求項1に記載の既設のベースプレートを利用した既設支承装置の補修構造においては、下部構造物に設置されている既設支承装置における既設のベースプレート上に、既設のベースプレートを固定している橋軸直角方向端部における一対のアンカーボルト間の橋軸方向の内側間隔寸法よりも橋軸方向の寸法が小さい新設のベースプレートが橋軸直角方向から搬入されて固定され、前記新設のベースプレートに、前記一対のアンカーボルトの橋軸方向の内側間隔寸法よりも橋軸方向の寸法が小さいせん断変形拘束兼支承部材が橋軸直角方向から搬入されて固定され、前記せん断変形拘束部材内に荷重支持用弾性支承体が設置され、前記荷重支承用弾性支承体により、上部構造物が支持されていることを特徴とする。
【0008】
また、請求項2の発明においては、請求項1に記載の既設のベースプレートを利用した既設支承装置の補修構造において、前記せん断変形拘束兼支承部材は中空環状の部材であり、サイドブロックを兼ねた部材であることを特徴とする。
【0009】
さらにまた、請求項3の発明においては、請求項1または請求項2に記載の既設のベースプレートを利用した既設支承装置の補修構造において、新設のベースプレートが既設のベースプレートに溶接により固定され、新設のベースプレートにせん断変形拘束兼支承部材がボルトにより着脱可能に固定され、前記新設のベースプレートとせん断変形拘束兼支承部材により形成された空間内に荷重支承用弾性支承体の上部が突出するように着脱可能に配置されていることを特徴とする。
【0010】
なおまた、請求項4の既設のベースプレートを使用した既設支承装置の補修工法においては、既設支承装置を弾性支承装置に補修する補修工法において、下部構造物上の橋軸方向に配置されたジャッキにより上部構造物をジャッキアップして支持した状態で、下部構造物に設置されている既設支承装置におけるベースプレートおよびアンカーボルトを撤去することなく、既設ベースプレート上の支承装置の上部部分を撤去した後、前記既設のベースプレートを固定している橋軸直角方向端部における一対のアンカーボルトの内側間隔寸法よりも橋軸方向の寸法が小さい新設のベースプレートを橋軸直角方向から搬入して前記既設のベースプレートに固定し、次いで前記新設のベースプレートに、前記一対のアンカーボルトの内側間隔寸法よりも橋軸方向の寸法が小さいせん断変形拘束兼支承部材を橋軸直角方向から搬入して固定し、次いで、前記せん断変形拘束支承部材内に荷重支持用弾性支承体を設置した後、上部構造物を降下させて、前記荷重支承用弾性支承体により、上部構造物を支持するようにしたことを特徴とする。
【0011】
本発明によると、支承装置を設置する桁下の上下寸法を大きくすることなく、しかも、既設の支承装置におけるベースプレートとアンカーボルトとを利用でき、上部構造物の橋軸方向のジャッキアップスペースを阻害することなく、橋軸直角方向からアンカーボルト間隔寸法内の小さな寸法の新たなベースプレートおよびせん断変形拘束兼支承部材を搬入設置することができ、新たに設置される支承装置の施工コストを安価に、しかも容易に補修することができる。
【0012】
【発明の実施の形態】
次に、本発明を図示の実施形態を参照しながら詳細に説明する。
【0013】
先ず、既設の支承装置における上部部分が取り除かれた図7の平面状態で説明すると、図7には、既設の支承装置20におけるベースプレート1およびベースプレート1をコンクリート製下部構造物2に固定するため、ベースプレート1の4隅部の透孔に予め下部構造物2に埋め込み固定されたアンカーボルト3の頭部が挿入されて座金4およびナット5により固定された状態で残され、ベースプレート1が下部構造物2に固定されている状態が示されていると共に、桁6等の上部構造物7が、その下面で下部構造物2上に配置された2点差線で示すジャッキ8により、ジャッキアップされ、さらにベースプレート1上の既設支承装置20の上部の一部または上部部分全体が撤去された状態が示されている。
さらに、図8には、図7の状態から既設のベースプレート1上に、新たなベースプレート9が橋軸直角方向から搬入されて、新たなベースプレート9の周側縁部が溶接38により固定されて設置された状態が示されている。
【0014】
図7および図8の各図の矢印Aで示す方向が橋軸直角方向で、前記の新たなベースプレート9は、橋軸直角方向の両側端における既設のベースプレート1を固定しているアンカーボルト3間の橋軸方向の内側間隔寸法Lよりも小さい橋軸直角方向の寸法L1の新たなベースプレート9であり、このベースプレート9は鋼板製材料により製作されている。
【0015】
前記新たなベースプレート9の上面には、図5に示すように、橋軸直角方向の両側に、円形の上向き開口凹部10が設けられ、その上向き開口凹部10は、鋼製円柱体状のせん断キー11(図3参照)の下部部分を嵌合収容するための凹部である。
【0016】
また、前記ベースプレート9の橋軸直角方向の両側には、橋軸方向に間隔を置いて、このベースプレート9上に載置される図6に示すせん断変形拘束兼支承部材12を固定するための複数の雌ねじ孔13が設けられている。
【0017】
図8の状態から、図6に示すせん断変形拘束兼支承部材12を橋軸直角方向から図9に示すように、前記と同様に各アンカーボルト3間の橋軸方向の内側寸法Lより小さい寸法L1を有する既設の矩形状鋼製ベースプレート1上に載置した後、前記せん断変形拘束兼支承部材12の下部を既設のベースプレート1に溶接により固定されている。
【0018】
前記のせん断変形拘束兼支承部材12は、図6に示すように、橋軸直角方向の両側下面に、せん断キー11の上部を嵌合収容するための下向き開口凹部14が設けられ、また前記せん断変形拘束兼支承部材12の中央部には、後記の高支圧弾性支承体15を収容配置するための貫通した比較的大径の円形孔16が設けられ、さらに、前記せん断変形拘束兼支承部材12の橋軸直角方向の両側には、前記円形孔16から橋軸直角方向に離れた位置で、上方に立ち上がる橋軸方向中央部の支承凸部22と、前記支承凸部22よりも高レベル位置の橋軸方向端部の移動制限用支承凸部22aとが設けられ、その支承凸部22の平坦な上面23には、橋軸方向の中央部に、後記の上揚力押え部材17を固定するための雌ねじ孔18が設けられ、また前記雌ねじ孔18の両側の各支承凸部22aには、ボルト挿通孔21が設けられている。なお、前記支承段部22の上面レベルは、桁6が降下された時に、桁6の下面に固定されている上沓27の橋軸直角方向の両側上面に設けられている段部上面35とほぼ同レベルになるように、高さが設定される。
【0019】
前記せん断変形拘束兼支承部材12における中央部の貫通した円形孔16の内周方向の縦壁19は、図10に示す荷重支承用弾性支承体15としての高支圧弾性支承体15(詳細は後記する。)における上部鋼製部材24の横移動を拘束するためのもので、これにより、間接的に高支圧弾性支承体15におけるゴムのような弾性層25のせん断変形を拘束し、弾性層25を鉛直方向の荷重のみ負担するような構造にされている。
【0020】
前記のせん断変形拘束兼支承部材12の中央部の貫通した円形孔16周囲の高さ寸法は、高支圧弾性支承体15における上部鋼製部材24の厚さの中間部(ほぼ中央部)に位置するように構成された高さ寸法とされ、高支圧弾性支承体15における上部鋼製部材24の上下方向の移動を可能にし、上部鋼製部材24の横方向の移動を拘束するように構成されている。
【0021】
前記のせん断変形拘束兼支承部材12における橋軸直角方向の両側の部分の、橋軸方向に延長する平面ほぼ矩形状の支承凸部(突出部)22の間の溝状空間部分26は、後記の上沓27の配置スペースとされ、前記支承凸部22の内側面により、上沓27の橋軸直角方向の移動が制限され、上沓27の橋軸方向への移動を可能とする構成とされている。
【0022】
このようなせん断変形拘束兼支承部材12と新設のベースプレート9に設置した後、前記各せん断力キー収納用の上向き開口凹部10に、図3に示すように、それぞれ、鋼製円柱状のせん断キー11を嵌合し、前記既設のベースプレート1に橋軸直角方向のアンカーボルト3間から、図6に示すせん断変形拘束兼支承部材12を搬入載置し、各せん断キー11の上部をせん断変形拘束兼支承部材12における下向き開口凹部14に嵌合すると共に、前記せん断変形拘束兼支承部材12における橋軸直角方向の両側における橋軸方向の両側に設けられているボルト挿通用孔21に、ボルト28を挿通すると共に、新設のベースプレート9の雌ねじ孔13にボルト28を螺合緊締して、せん断変形拘束兼支承部材12を新設のベースプレート9に固定する。
【0023】
その後、前記せん断変形拘束兼支承部材12における中央部の円形孔16に、上部構造物7(6)の鉛直荷重を支承する荷重支承用弾性支承体15として、高支圧弾性支承体15を嵌合配置し、高支圧弾性支承体15の下部鋼製部材29を新設のベースプレート9上に載置する。
【0024】
ここで、前記の高支圧弾性支承体15の構成について説明すると、この高支圧弾性支承体15は、その弾性層にせん断変形が起こらないようにさせて、弾性層に鉛直荷重のみ負担させるようにすることにより、弾性層の厚さを薄くでき、これにより弾性支承装置全体の高さ寸法を低く抑えることができるように構成され、かつ弾性層を高支圧で使用することが可能にされた弾性体であり、例えば、図10に示すように、底面円形で断面ほぼ凹字状の下部鋼製部材29とこれとほぼ同形の平面円形で断面ほぼ逆凹字状の上部鋼製部材24と前記各鋼製部材29,24の間に介在されてこれらの凹部に嵌合されて一体に接着材または焼き付けあるいは一体成形により固着されたゴムのような弾性体(層)25とを備えた着脱交換自在な高支圧弾性支承体15であり、この高支圧弾性支承体15が前記せん断変形拘束兼支承部材12の円形孔16に着脱自在に嵌合配置され、内周縦壁面19により、前記下部鋼製部材29と上部鋼製部材24の相対的な横移動を拘束して、高支圧弾性支承体15におけるゴムのような弾性体(層)25の上下両端部分の相対的な横方向の変位による弾性体(層)25のせん断変形を間接的に拘束している。したがって、前記高支圧弾性支承体15が、橋軸直角方向および橋軸方向等に横移動するのが防止され、かつ前記せん断変形拘束兼支承部材12に対し前記上部鋼製部材24は上方から圧縮力の大小の変化により、上下方向に摺動可能に設けられている。
【0025】
前記せん断変形拘束兼支承部材12の各横断面円形の内周縦壁面19は、中心が同じ円形の軌跡上に配置されており、上部鋼製部材24よりも若干大きな相似形になるように設定されて、円形に形成される。前記せん断変形拘束兼支承部材12の内周縦壁面19には、テフロン(登録商標)層(四フッ化エチレン層)、四フッ化エチレン板または層からなる低摩擦のすべり支承面が適宜形成されている。なお、符号30は弾性体(層)25の変形を許容するための変形許容空間である。
【0026】
前記上部鋼製部材24の上面には、円形の嵌合用凹部37が設けられ、その嵌合用凹部37に、四フッ化エチレン板、あるいは四フッ化エチレン層等のすべり支承部材31が嵌合係止されると共に接着剤等により固定されるか、前記上部鋼製部材24の上面にステンレス鋼板等のすべり支承部材31がビス等により固定されている。前記弾性層(体)25の中間部外周面に内向きの環状凹部が形成されていることで、変形許容空間30が形成可能とされ、ゴム層の外周縁部等に応力集中するのが緩和されように構成されている。
【0027】
また、前記鋼製のせん断拘束兼支承部材12の内側上部には、前記上部鋼製部材24の外側面の中間部が近接または当接されるように配置され、前記鋼製せん断拘束兼支承部材12における貫通する円形孔16周囲の上面レベルは、上部鋼製部材24の板厚の中間部(図示の場合は、ほぼ板厚の中央部のレベル)に位置するように設定されている。このような構成により、桁6を含む上部構造物7の撓みにより、上部鋼製部材24が多少傾動(回転)してもこれを吸収しながら支承することができる。
【0028】
このように、高支圧弾性支承体15が下部構造物2に新設のベースプレート9およびせん断変形拘束兼支承部材12を介して間接的に係止されると共に鋼製のせん断拘束兼支承部材12に直接的に水平方向に移動不能に係止されることにより、高支圧弾性支承体孔15における弾性層25がせん断変形不能に構成されている。
【0029】
また、桁6の下面における上沓27の下面に、高支圧弾性支承体15の四フッ化エチレン板との摩擦係数の小さい材料として、ステンレス板等のすべり支承材を固定する。(図示を省略した)
【0030】
このように、下部構造物2側に設置する新たなベースプレート9およびせん断変形拘束兼支承部材12並びに高支圧弾性支承体15を設置すると共に、必要に応じ前記のように上部構造物7側のすべり部材を設置した後、前記ジャッキ8を短縮して、上沓27の下面を高支圧弾性体15における上部鋼製部材24のすべり支承面(すべり支承部材31)に載置する。
【0031】
次いで、前記せん断変形拘束兼支承部材12における支承凸部22ボルト挿通孔34を有する矩形状鋼板からなる上揚力押え部材17の基端側をボルト33により、前記上揚力押え部材17のボルト孔34に挿通すると共に、前記上揚力押え部材17の先端部を、上沓27の上面側の段部上面35に係合させた状態で、前記ボルト32をせん断変形拘束兼支承部材12に固定する。
【0032】
このようにされて、桁6側に固定されている上沓27より桁6は、せん断変形拘束兼支承部材12により、橋軸直角方向の移動が制限され、また桁6の温度変化等による橋軸方向の伸縮については、すべり支承材により、橋軸方向にすべり摩擦により移動可能とされ(ただし、後記に説明する上沓27の形状により可動形式と固定形式がある)、上部構造物7に作用する鉛直荷重等による桁6の撓みについては、すべり支承を介した高支圧弾性体15の圧縮変形により支承されるように構成されている。この時にも、前記高支圧弾性体15における弾性層25はせん断変形を拘束されているので、せん断変形を伴わない圧縮変形のみ作用される弾性体して機能されるため、弾性層25を比較的薄層に、かつ単位面積当り高い応力を負担できる高支圧の弾性支承体として作用させることができる。
【0033】
また、上沓27の橋軸直角方向の両側には、橋軸方向に間隔をおいて橋軸方向の端部に、橋軸直角方向の横方向に張り出す側方突出部39が設けられているので、前記の対向する各側方突出部37の内側間隔は、前記各側方突出部37内においてこれに対向するように配置される前記せん断変形拘束兼支承部材12における支承凸部22の橋軸方向の前後面間の長さ寸法よりも若干大きく設定されている(図示の場合)。このように、支承凸部22の橋軸方向の前後面間の寸法と同程度に若干大きくする場合は、桁6の伸縮によるすべり支承部材部分のすべりを充分起こすことができない固定端(固定支点)用の固定形式であり、また前記の側方突出部37の間隔を大きくすることにより、桁6の伸縮等を大きく許容することができる可動端(可動支点)用の可動支承となる。
【0034】
本発明の場合には、サイドブロックを兼ねたせん断変形拘束兼支承部材12は、ボルトを取り外すことにより、着脱自在とされ、新たなせん断変形拘束兼支承部材に適宜交換可能とされ、またこれにより高支圧弾性支承体15も着脱自在で、新たな高支圧弾性支承体に適宜交換可能とされている。
【0035】
なお、前記の構成により、桁6を含む上部構造物7の撓みにより上部鋼製部材24が多少傾動(回転)しても、弾性層25の圧縮弾性変形により前記撓みを吸収しながら支承することができる。
【0036】
本発明を実施する場合、上沓27または調整板40がセットボルト等により桁6の下フランジに固定されている場合には、上沓27を取り替えるようにしてもよい。
【0037】
本発明を実施する場合、鋼桁6としては、H形鋼等の形鋼以外にボックス断面の箱桁あるいはその他のコンクリート製上部構造物にも適用することができる。下部構造物としては、鋼製下部構造物にベースプレート1が、アンカーボルトに代えてボルトにより固定されている構造にも適用することができる。
【0038】
【発明の効果】
請求項1の発明によると、橋軸直角方向から既設のアンカーボルト間の寸法内において、橋軸直角方向の寸法の小さい新設のベースプレートおよびせん断変形拘束兼支承部材を搬入して取り付けるようにしたので、桁等の上部構造物を上方にレベルアップした状態に保つために必要なジャッキを配置するための、ジャッキアップスペースを下部構造物の上面における橋軸方向の側部に確保することができるので、既設支承装置を補修する際、既設弾性支承装置の橋軸方向の両側のジャッキアップスペースを阻害することがない。
【0039】
また、本発明の補修構造は、既設のベースプレートおよびアンカーボルトを利用しているので、下部構造物の上部に損傷を与えることなく、既設の支承装置の補修を容易に経済的に行なうことができ、施工コストを安価に低減することができる。
【0040】
また、請求項2の発明によると、せん断変形拘束兼支承部材を荷重支承用弾性支承体における橋軸方向および橋軸直角方向のせん断変形拘束部材として作用させることができると共に、ベースプレートの上部の橋軸直角方向の両側に配置される橋軸直角方向の上部構造物の移動制限部材とすることができ、また上部構造物の上揚力を下部構造物に伝達させるための上揚力止め部材を容易に前記せん断変形拘束兼支承部材に取り付けることができ、装置をコンパクトにすることができる。
【0041】
また、請求項3の発明によると、既設のベースプレートにボルト用雌ねじ等の加工を施すことなく、既設のベースプレートの表面の塵・油等の除去作業をするだけで、新設のベースプレートを既設のベースプレートに容易に固定することができる。また新設のベースプレートにせん断変形拘束兼支承部材がボルトにより着脱自在に取り付けられているので、せん断変形拘束兼支承部材の交換が必要になった場合には、ボルトを取り外すことにより容易にその交換をすることができる。また、せん断変形拘束兼支承部材内に荷重支承用弾性支承体を着脱自在に固定するようにしたので、前記せん断変形拘束兼支承部材と同様にその交換作業を容易に行なうことができる。
【0042】
請求項4の発明によると、既設支承装置を弾性支承装置に補修する補修工法において、下部構造物上の橋軸方向に配置されたジャッキにより上部構造物をジャッキアップして支持した状態で、下部構造物に設置されている既設支承装置におけるベースプレートおよびアンカーボルトを撤去することなく、既設ベースプレート上の支承装置の上部部分を撤去した後、前記既設のベースプレートを固定している橋軸直角方向の一対のアンカーボルトの内側間隔寸法よりも橋軸直角方向の寸法が小さい新設のベースプレートを橋軸直角方向から搬入して前記既設のベースプレートに固定し、次いで前記新設のベースプレートに、前記一対のアンカーボルトの内側間隔寸法よりも橋軸直角方向の寸法が小さいせん断変形拘束兼支承部材を橋軸直角方向から搬入して固定し、次いで、前記せん断変形拘束支承部材内に荷重支持用弾性支承体を設置した後、上部構造物を降下させて、前記荷重支承用弾性支承体により、上部構造物を支持するようにしたので、下部構造物をはつるなどの損傷を与えることなく、すでに下部構造物に設置されているベースプレートおよびこれを固定しているアンカーボルトを有効に利用して、新たな弾性支承装置を設置することができ、しかも橋軸方向のジャッキスペースを確保しながら橋軸直角方向から新設のベースプレートおよびせん断変形拘束兼支承部材ならびに弾性支承体を容易に設置することができ、しかも支承装置の高さを低く抑えることができ、さらに補修コストを低減して既設の支承装置を弾性支承装置に補修することができる。
【図面の簡単な説明】
【図1】本発明を実施して既設支承装置を補修してすべり式弾性支承装置にした状態を示す縦断正面図である。
【図2】上沓から下の部分を示す図1の横断平面図である。
【図3】本発明を実施して既設支承装置を補修してすべり式弾性支承装置にした縦断正面図である。
【図4】桁からなる上部構造物を切り欠き、ジャッキ配置部およびすべり式弾性支承装置を示す一部切欠横断平面図である。
【図5】既設支承装置におけるベースプレートに設置される新たなベースプレートを示すものであって、(a)は平面図、(b)は一部縦断正面図である。
【図6】新たなベースプレートに設置されるせん断拘束壁を備えていると共に、上揚力止め部材を取り付けるための橋軸直角方向の支承部材(サイドブロック)を兼ねたせん断拘束兼支承部材を示すものであって、(a)は平面図、(b)は一部縦断正面図である。
【図7】既設支承装置を補修する手順を示すものであって、下部構造物に残される既設の支承装置におけるベースプレートおよびアンカーボルトの設置状態を示し、桁を切り欠いて示す一部切欠平面図である。
【図8】既設支承装置を補修する手順を示すものであって、既設のベースプレートに新設の支承装置におけるベースプレートを設置した状態を示し、桁を切り欠いて示す一部切欠平面図である。
【図9】新設のベースプレートにせん断変形拘束兼支承部材を設置すると共に、新設のベースプレート上に載置するように高支圧荷重支承装置をせん断変形拘束兼支承部材に嵌合した状態を示す一部切欠平面図である。
【図10】本発明において使用される高支圧弾支承体を示すものであって、(a)は高支圧弾性支承体を拡大して示す正面図、(b)は(a)の平面図である。
【図11】従来の震度法による鋼製支承装置を一例を示す一部縦断正面図である。
【符号の説明】
1 ベースプレート
2 コンクリート製下部構造物
3 アンカーボルト
4 座金
5 ナット
6 桁
7 上部構造物
8 ジャッキ
9 新たなベースプレート
10 上向き開口部
11 せん断キー
12 せん断変形拘束兼支承部材
13 雌ねじ孔
14 下向き開口凹部
15 高支圧弾性支承体
16 円形孔
17 上揚力押え部材
18 雌ねじ孔
19 内周縦壁
20 既設の支承装置
21 ボルト挿通孔
22 支承凸部
23 上面
24 上部鋼製部材
25 弾性層
26 溝状空間部分
27 上沓
28 ボルト
29 下部鋼製部材
30 変形許容空間
31 すべり支承部材
32 押え部材
33 ボルト
34 ボルト孔
35 段部上面
36 側方突出部
37 嵌合用凹部
38 溶接
39 側方突出部
40 調整板
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a repair method and a repair structure for an existing elastic device using an existing elastic device without removing a base plate and an anchor bolt without removing the base plate and the anchor bolt in an elevated road bridge or a bridge.
[0002]
[Prior art]
Conventionally, when the bearing device is replaced, for example, a steel bearing device 20 using a seismic intensity method of fixing a base plate 1 to an undercarriage with an anchor bolt 3 as shown in FIG. However, in the case of a type B steel bearing device, the size in the vertical direction is increased, and it is difficult to allow an increase in the size in the vertical direction. In a two- or three-story elevated road bridge or the like, the upper structure (girder) supported by the bearing device cannot be located at a high level, so that a space for installing a type B steel bearing device cannot be secured. There is a problem that a type B steel bearing device cannot be installed.
[0003]
Further, when the bearing device is replaced, there is a problem that if the base plate and the anchor bolts of the existing bearing device are removed, the replacement of the bearing device becomes large and the construction cost becomes extremely high.
In addition, when replacing the bearing device with the upper structure leveled up by jacks installed on the lower structure in the bridge axis direction, there is a jack in the bridge axis direction, so the jack-up space And it is not possible to insert and arrange the bearing device from the bridge axis direction.
[0004]
[Non-patent document 1]
Road Bridge Specification (V Seismic Design Edition) Published by The Japan Road Association, April 10, 2002, 245
[0005]
[Problems to be solved by the invention]
The present inventor has conducted various studies on a bearing device that can simultaneously and advantageously solve the above three problems, and as a result, the thickness of an elastic layer such as a rubber layer in the vertical direction can be made relatively thin, and Use a function-separated type bearing device that can keep the installation space within the existing bearing device within the existing bearing device, restrain the shear deformation of the rubber layer and support the vertical load of the superstructure with a high bearing load, and restrain the shear deformation. The present invention has been completed by finding that the member can be inserted into the existing base plate in a direction perpendicular to the bridge axis and the member can be inserted into the existing base plate, and the existing base plate and anchor bolts can be used.
[0006]
The present invention makes it possible to set the space for installing the support device in the vertical direction below the girder within the existing support device, and utilizes the base plate and the anchor bolts installed on the lower structure without removing them. Therefore, the present invention provides a repair structure and a repair method for an existing bearing device that can be installed at a low cost without hanging work of a lower structure and without obstructing a jack-up space arranged in the bridge axis direction. The purpose is to do.
I do.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in a repair structure of an existing support device using an existing base plate according to claim 1, an existing base plate is provided on an existing base plate of an existing support device installed in a lower structure. A new base plate having a dimension in the bridge axis direction smaller than the inner dimension in the bridge axis direction between the pair of anchor bolts at the end portion in the direction perpendicular to the bridge axis is carried in from the direction perpendicular to the bridge axis and fixed. A shear deformation restraining and supporting member having a dimension in the bridge axis direction smaller than the inner dimension of the pair of anchor bolts in the bridge axis direction is carried in and fixed to the newly installed base plate from a direction perpendicular to the bridge axis. An elastic bearing for load support is installed in the inside, and the upper structure is supported by the elastic bearing for load bearing.
[0008]
Further, in the invention of claim 2, in the repair structure of the existing support device using the existing base plate according to claim 1, the shear deformation restraining and supporting member is a hollow annular member, which also serves as a side block. It is a member.
[0009]
Further, according to the invention of claim 3, in the repair structure of the existing bearing device using the existing base plate according to claim 1 or 2, the new base plate is fixed to the existing base plate by welding, and the new base plate is fixed. The shear deformation restraining and supporting member is detachably fixed to the base plate by bolts, and is detachably mounted so that the upper portion of the load bearing elastic bearing protrudes into the space formed by the new base plate and the shear deformation restraining and supporting member. Characterized by being arranged in
[0010]
Further, in the method for repairing an existing bearing device using an existing base plate according to claim 4, the repair method for repairing the existing bearing device to an elastic bearing device includes a jack disposed on a lower structure in a bridge axis direction. In a state where the upper structure is jacked up and supported, after removing the upper part of the bearing device on the existing base plate without removing the base plate and the anchor bolt in the existing bearing device installed on the lower structure, A new base plate, whose dimension in the bridge axis direction is smaller than the inner space between the pair of anchor bolts at the end perpendicular to the bridge axis at which the existing base plate is fixed, is carried in from the direction perpendicular to the bridge axis and fixed to the existing base plate. And then attaches to the newly installed base plate the inner distance between the pair of anchor bolts. The shear deformation restraining and supporting member having a small dimension in the bridge axis direction is carried in from the direction perpendicular to the bridge axis and fixed, and then, after the elastic supporting body for load support is installed in the shear deformation restraining supporting member, the upper structure is removed. The upper structure is supported by the load-bearing elastic bearing body by being lowered.
[0011]
According to the present invention, it is possible to use the base plate and the anchor bolts of the existing support device without increasing the vertical dimension under the girder where the support device is installed, and obstruct the jack-up space of the upper structure in the bridge axis direction. The new base plate and the shear deformation restraining and supporting member with a small dimension within the anchor bolt spacing dimension can be loaded and installed from the direction perpendicular to the bridge axis, and the construction cost of the newly installed bearing device can be reduced. Moreover, it can be easily repaired.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the illustrated embodiment.
[0013]
First, a description will be given of the planar state of FIG. 7 in which the upper part of the existing bearing device is removed. FIG. 7 shows that the base plate 1 and the base plate 1 of the existing bearing device 20 are fixed to the concrete lower structure 2. The heads of the anchor bolts 3 previously embedded and fixed in the lower structure 2 are inserted into the through holes at the four corners of the base plate 1 and are left fixed by the washers 4 and the nuts 5. 2, the upper structure 7 such as the spar 6 is jacked up by a jack 8 indicated by a two-dotted line disposed on the lower structure 2 on its lower surface, and The upper part of the existing bearing device 20 on the base plate 1 or the entire upper part is removed.
Further, in FIG. 8, a new base plate 9 is loaded from the state of FIG. 7 onto the existing base plate 1 in a direction perpendicular to the bridge axis, and the peripheral edge of the new base plate 9 is fixed by welding 38 and installed. The state shown is shown.
[0014]
The direction indicated by the arrow A in each of FIGS. 7 and 8 is the direction perpendicular to the bridge axis, and the new base plate 9 is provided between the anchor bolts 3 fixing the existing base plate 1 at both ends in the direction perpendicular to the bridge axis. Is a new base plate 9 having a dimension L1 in the direction perpendicular to the bridge axis smaller than the inner gap dimension L in the direction of the bridge axis, and the base plate 9 is made of a steel plate material.
[0015]
As shown in FIG. 5, on the upper surface of the new base plate 9, circular upward opening recesses 10 are provided on both sides in the direction perpendicular to the bridge axis, and the upward opening recess 10 is formed of a steel cylindrical shear key. 11 is a concave portion for fitting and accommodating a lower portion of the lower portion 11 (see FIG. 3).
[0016]
In addition, on both sides of the base plate 9 in the direction perpendicular to the bridge axis, there are a plurality of gaps for fixing the shear deformation restraining and supporting members 12 shown in FIG. Female screw hole 13 is provided.
[0017]
From the state of FIG. 8, the shear deformation restraining and supporting member 12 shown in FIG. 6 is smaller than the inner dimension L in the bridge axis direction between the anchor bolts 3 as described above, as shown in FIG. After being placed on the existing rectangular steel base plate 1 having L1, the lower portion of the shear deformation restraining and supporting member 12 is fixed to the existing base plate 1 by welding.
[0018]
As shown in FIG. 6, the shear deformation restraining and supporting member 12 is provided with a downward opening recess 14 for fittingly housing the upper portion of the shear key 11 on both lower surfaces in the direction perpendicular to the bridge axis. At the center of the deformation restraining and supporting member 12, there is provided a relatively large-diameter circular hole 16 for accommodating and disposing a high bearing elastic supporting body 15 to be described later. At both sides in the direction perpendicular to the bridge axis 12, at a position away from the circular hole 16 in the direction perpendicular to the bridge axis, a support projection 22 at the center in the bridge axis direction rising upward and a higher level than the support projection 22. And a movement-restricting support protrusion 22a at the end of the bridge-axis direction at the position. A flat upper surface 23 of the support protrusion 22 is fixed to a later-described upper lift holding member 17 at a central portion in the bridge-axis direction. Female threaded holes 18 are provided for Each bearing protrusions 22a on both sides of the female screw hole 18, bolt insertion holes 21 are provided. When the girder 6 is lowered, the upper surface level of the bearing step 22 is equal to the upper surface 35 provided on both upper surfaces of the upper shoe 27 fixed to the lower surface of the girder 6 in the direction perpendicular to the bridge axis. The height is set so that they are almost the same level.
[0019]
The vertical wall 19 in the inner circumferential direction of the circular hole 16 penetrating the center portion of the shear deformation restraining and supporting member 12 is provided with a high bearing elastic bearing 15 as a load bearing elastic bearing 15 shown in FIG. This will restrict the lateral movement of the upper steel member 24 in the following.), Thereby indirectly restraining the shear deformation of the elastic layer 25 such as rubber in the high bearing elastic bearing 15 and elasticity. The structure is such that the layer 25 bears only a vertical load.
[0020]
The height around the circular hole 16 penetrating the center of the shear deformation restraining and supporting member 12 is set at the middle part (almost the center) of the thickness of the upper steel member 24 in the high bearing elastic bearing 15. The upper bearing member 15 has a height dimension configured to be positioned so as to allow the upper steel member 24 to move vertically in the high bearing elastic bearing body 15, and to restrict the lateral movement of the upper steel member 24. It is configured.
[0021]
A groove-shaped space portion 26 between the substantially rectangular support protrusions (projections) 22 extending in the bridge axis direction on both sides of the shear deformation restraining and supporting member 12 in the direction perpendicular to the bridge axis is described later. A space in which the upper shoe 27 is arranged, and movement of the upper shoe 27 in the direction perpendicular to the bridge axis is restricted by the inner side surface of the bearing projection 22, so that the upper shoe 27 can be moved in the bridge axis direction. Have been.
[0022]
After being installed on the shear deformation restraining and supporting member 12 and the newly provided base plate 9, as shown in FIG. 3, the steel cylindrical shear keys are respectively inserted into the upward opening recesses 10 for storing the respective shear force keys. 6 is carried in the existing base plate 1 from between the anchor bolts 3 in the direction perpendicular to the bridge axis, and the shear deformation restraining and supporting member 12 shown in FIG. The bolt 28 is fitted into the downward opening recess 14 of the dual support member 12, and the bolt 28 is inserted into the bolt insertion hole 21 provided on both sides of the shear deformation restraining and dual support member 12 in the direction perpendicular to the bridge axis. And the bolt 28 is screwed and tightened into the female screw hole 13 of the new base plate 9, and the shear deformation restraining and supporting member 12 is inserted into the new base plate 9. A constant.
[0023]
Thereafter, a high bearing elastic bearing 15 is fitted as a load bearing elastic bearing 15 for supporting the vertical load of the upper structure 7 (6) in the circular hole 16 at the center of the shear deformation restraining and bearing member 12. The lower steel member 29 of the high bearing elastic bearing 15 is placed on the newly installed base plate 9.
[0024]
Here, the configuration of the high bearing elastic bearing 15 will be described. The high bearing elastic bearing 15 prevents only the vertical load from being applied to the elastic layer by preventing the elastic layer from being sheared. By doing so, the thickness of the elastic layer can be reduced, whereby the overall height of the elastic bearing device can be reduced, and the elastic layer can be used at a high bearing pressure. As shown in FIG. 10, for example, as shown in FIG. 10, a lower steel member 29 having a circular bottom surface and a substantially concave cross section and an upper steel member having a substantially circular flat circular cross section and a substantially inverted concave shape are provided. And an elastic body (layer) 25, such as rubber, which is interposed between the steel members 29, 24, is fitted in these recesses, and is integrally fixed with an adhesive or by baking or integral molding. High bearing elasticity that can be replaced The high bearing elastic bearing 15 is removably fitted to the circular hole 16 of the shear deformation restraining and supporting member 12, and is formed by the inner peripheral vertical wall surface 19 with the lower steel member 29. Restricting the relative lateral movement of the upper steel member 24, the elastic body (layer) due to the relative lateral displacement of the upper and lower ends of the elastic body (layer) 25 such as rubber in the high bearing elastic support body 15. Layer 25 is indirectly restrained from shearing deformation. Accordingly, the high bearing elastic bearing body 15 is prevented from laterally moving in the direction perpendicular to the bridge axis and in the bridge axis direction, and the upper steel member 24 is positioned above the shear deformation restraining and supporting member 12 from above. It is provided so as to be slidable in the vertical direction depending on the change in the magnitude of the compression force.
[0025]
The inner peripheral vertical wall surfaces 19 of each circular cross section of the shear deformation restraining and supporting member 12 are arranged on the same circular locus at the center and set to have a similar shape slightly larger than the upper steel member 24. To form a circle. On the inner peripheral vertical wall surface 19 of the shear deformation restraining and supporting member 12, a low friction sliding bearing surface made of a Teflon (registered trademark) layer (ethylene tetrafluoride layer), an ethylene tetrafluoride plate or a layer is appropriately formed. ing. Reference numeral 30 denotes a deformation allowable space for allowing the elastic body (layer) 25 to deform.
[0026]
A circular fitting recess 37 is provided on the upper surface of the upper steel member 24, and a slip bearing member 31 such as an ethylene tetrafluoride plate or an ethylene tetrafluoride layer fits into the fitting recess 37. It is stopped and fixed with an adhesive or the like, or a slip bearing member 31 such as a stainless steel plate is fixed to the upper surface of the upper steel member 24 with a screw or the like. Since the inward annular concave portion is formed on the outer peripheral surface of the intermediate portion of the elastic layer (body) 25, the deformation allowable space 30 can be formed, and the concentration of stress on the outer peripheral edge of the rubber layer is reduced. It is configured to be.
[0027]
In addition, an intermediate portion of the outer surface of the upper steel member 24 is disposed near or in contact with the inner side of the steel shear restraining and supporting member 12, and the steel shear restraining and supporting member 12 is provided. The upper surface level around the penetrating circular hole 16 in 12 is set so as to be located at the middle part of the plate thickness of the upper steel member 24 (in the case of the drawing, the level at the substantially central part of the plate thickness). With such a configuration, even if the upper steel member 24 slightly tilts (rotates) due to the bending of the upper structure 7 including the spar 6, it can be supported while absorbing the tilt.
[0028]
As described above, the high bearing elastic bearing 15 is indirectly locked to the lower structure 2 via the newly provided base plate 9 and the shear deformation restraining and supporting member 12, and is also fixed to the steel shear restraining and supporting member 12. The elastic layer 25 in the high bearing elastic support hole 15 is configured to be non-shear deformable by being directly immovably locked in the horizontal direction.
[0029]
Further, a slip bearing material such as a stainless steel plate is fixed to the lower surface of the upper shoe 27 on the lower surface of the spar 6 as a material having a small friction coefficient with the tetrafluoroethylene plate of the high bearing elastic bearing member 15. (Not shown)
[0030]
In this way, the new base plate 9 and the shear deformation restraining and supporting member 12 and the high bearing elastic support 15 which are installed on the lower structure 2 side are installed, and if necessary, the upper structure 7 side is provided as described above. After installing the sliding member, the jack 8 is shortened, and the lower surface of the upper shoe 27 is placed on the sliding bearing surface (slip bearing member 31) of the upper steel member 24 in the high bearing elastic body 15.
[0031]
Next, the base end side of the upper lifting force holding member 17 made of a rectangular steel plate having the bearing convex portion 22 and the bolt insertion hole 34 of the shear deformation restraining and supporting member 12 is bolted to the bolt hole 34 of the upper lifting force holding member 17. The bolt 32 is fixed to the shear deformation restraining and supporting member 12 while the distal end of the upper lifting force holding member 17 is engaged with the step upper surface 35 on the upper surface side of the upper shoe 27.
[0032]
In this way, the movement of the girder 6 from the upper shoe 27 fixed to the girder 6 in the direction perpendicular to the bridge axis is restricted by the shear deformation restraining and supporting member 12, and the bridge 6 due to a temperature change of the girder 6. With respect to the expansion and contraction in the axial direction, the sliding bearing allows the sliding structure to move in the bridge axis direction due to sliding friction (however, there is a movable type and a fixed type depending on the shape of the upper shoe 27 described later). The bending of the girder 6 due to the vertical load or the like acting thereon is supported by the compression deformation of the high bearing elastic body 15 via the sliding bearing. Also at this time, since the elastic layer 25 of the high bearing elastic body 15 is restrained from shearing deformation, the elastic layer 25 functions as an elastic body that acts only on compressive deformation without shearing deformation. The thin bearing layer can act as a high bearing elastic bearing that can bear high stress per unit area.
[0033]
Further, on both sides of the upper shoe 27 in the direction perpendicular to the bridge axis, side protrusions 39 are provided at the ends in the direction of the bridge axis at intervals in the direction of the bridge axis, and project laterally in the direction perpendicular to the bridge axis. Therefore, the inner distance between the opposing side protrusions 37 is equal to the distance between the support protrusions 22 of the shear deformation restraining and supporting member 12 that is disposed in the side protrusions 37 so as to oppose them. The length is set slightly larger than the length between the front and rear surfaces in the bridge axis direction (in the case shown). As described above, when the size of the support protrusion 22 is slightly increased to the same extent as the dimension between the front and rear surfaces in the bridge axis direction, the fixed end (fixed support point) at which the slip of the sliding support member due to the expansion and contraction of the girder 6 cannot sufficiently occur. ), And by increasing the distance between the side protruding portions 37, a movable bearing (movable fulcrum) for the movable end (movable fulcrum) that can greatly tolerate expansion and contraction of the spar 6 and the like.
[0034]
In the case of the present invention, the shear deformation restraining and supporting member 12 also serving as a side block is detachable by removing a bolt, and can be appropriately replaced with a new shear deformation restraining and supporting member. The high bearing elastic support 15 is also detachable, and can be appropriately replaced with a new high bearing elastic support.
[0035]
With the above configuration, even if the upper steel member 24 is slightly tilted (rotated) due to the bending of the upper structure 7 including the spar 6, the support is performed while absorbing the bending by the compressive elastic deformation of the elastic layer 25. Can be.
[0036]
In practicing the present invention, if the upper shoe 27 or the adjusting plate 40 is fixed to the lower flange of the spar 6 by a set bolt or the like, the upper shoe 27 may be replaced.
[0037]
When the present invention is carried out, the steel girder 6 can be applied to a box girder having a box cross section or another concrete superstructure in addition to a section steel such as an H-section steel. As the lower structure, a structure in which the base plate 1 is fixed to a steel lower structure by bolts instead of anchor bolts can be applied.
[0038]
【The invention's effect】
According to the first aspect of the present invention, a new base plate and a shear deformation restraining and supporting member having a small dimension in the direction perpendicular to the bridge axis are carried in and mounted within the dimension between the existing anchor bolts from the direction perpendicular to the bridge axis. Since the jack-up space for arranging jacks necessary to keep the upper structure such as a girder up-leveled can be secured on the side of the upper surface of the lower structure in the bridge axis direction. When the existing bearing device is repaired, the jack-up space on both sides in the bridge axis direction of the existing elastic bearing device is not hindered.
[0039]
Further, since the repair structure of the present invention utilizes the existing base plate and anchor bolts, it is possible to easily and economically repair the existing bearing device without damaging the upper part of the lower structure. The construction cost can be reduced at a low cost.
[0040]
According to the invention of claim 2, the shear deformation restraining and supporting member can act as a shear deformation restraining member in a bridge axis direction and a direction perpendicular to the bridge axis in the load-bearing elastic bearing body, and the bridge above the base plate can be used. It can be a movement restricting member for the upper structure in the direction perpendicular to the bridge axis disposed on both sides in the direction perpendicular to the axis, and the upper lift stopping member for transmitting the upper lift of the upper structure to the lower structure can be easily provided. The device can be attached to the shear deformation restraining and supporting member, and the device can be made compact.
[0041]
According to the third aspect of the present invention, the new base plate is replaced with the existing base plate only by removing dust and oil from the surface of the existing base plate without processing the existing base plate such as female screws for bolts. Can be fixed easily. In addition, since the shear deformation restraining and supporting member is detachably attached to the new base plate with bolts, if it is necessary to replace the shear deformation restraining and supporting member, it can be easily replaced by removing the bolt. can do. In addition, since the load-bearing elastic bearing is removably fixed within the shear deformation restraining and supporting member, it can be easily replaced similarly to the shear deformation restraining and supporting member.
[0042]
According to the invention of claim 4, in the repair method for repairing the existing bearing device to the elastic bearing device, the upper structure is jacked up and supported by jacks arranged in the bridge axis direction on the lower structure, and After removing the upper part of the bearing device on the existing base plate without removing the base plate and the anchor bolts of the existing bearing device installed on the structure, a pair of bridge axis perpendicular to the bridge axis fixing the existing base plate. A new base plate having a smaller dimension in the direction perpendicular to the bridge axis than the inner gap dimension of the anchor bolts is carried in from the direction perpendicular to the bridge axis and fixed to the existing base plate, and then the pair of anchor bolts is fixed to the new base plate. The shear deformation restraining and supporting member whose dimension in the direction perpendicular to the bridge axis is smaller than the inner clearance dimension After loading and fixing the elastic support for load support in the shear deformation restraint support member, the upper structure is lowered, and the upper structure is supported by the elastic support for load support. As a result, a new elastic bearing is effectively used by effectively using the base plate already installed on the lower structure and the anchor bolts fixing the base plate without damaging the lower structure such as peeling. The device can be installed, and a new base plate, a shear deformation restraining and supporting member and an elastic bearing can be easily installed from a direction perpendicular to the bridge axis while securing jack space in the bridge axis direction. Can be kept low, and the repair cost can be reduced, and the existing bearing device can be repaired with the elastic bearing device.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional front view showing a state in which the present invention is applied to repair an existing bearing device to make it a sliding elastic bearing device.
FIG. 2 is a cross-sectional plan view of FIG. 1 showing a portion below an upper shoe.
FIG. 3 is a longitudinal sectional front view in which the present invention is implemented to repair an existing bearing device to make it a sliding elastic bearing device.
FIG. 4 is a partially cutaway cross-sectional plan view showing a jack arrangement portion and a sliding-type elastic bearing device by notching an upper structure made of a girder.
5A and 5B show a new base plate installed on the base plate in the existing support device, wherein FIG. 5A is a plan view and FIG. 5B is a partially longitudinal front view.
FIG. 6 shows a shear restraint and support member having a shear restraint wall installed on a new base plate and also serving as a support member (side block) in a direction perpendicular to the bridge axis for mounting an upper lift stopping member. (A) is a plan view, and (b) is a partially longitudinal front view.
FIG. 7 is a partially cutaway plan view showing a procedure for repairing an existing bearing device, showing a state of installation of a base plate and an anchor bolt in the existing bearing device left on the lower structure, and showing a girder cutout. It is.
FIG. 8 is a partially cutaway plan view showing a procedure for repairing an existing bearing device, showing a state in which a base plate of a newly installed bearing device is installed on an existing base plate, and showing a girder cutout.
FIG. 9 shows a state in which a shear deformation restraining and supporting member is installed on a newly installed base plate, and a high bearing load supporting device is fitted to the shear deformation restraining and supporting member so as to be mounted on the newly installed base plate. It is a partial cutaway plan view.
10A and 10B show a high bearing elastic bearing used in the present invention, wherein FIG. 10A is an enlarged front view of the high bearing elastic bearing, and FIG. 10B is a plan view of FIG. FIG.
FIG. 11 is a partially longitudinal front view showing an example of a conventional steel bearing device by a seismic intensity method.
[Explanation of symbols]
1 Base plate
2 Concrete substructure
3 Anchor bolt
4 Washer
5 nuts
6 digits
7 Upper structure
8 jack
9 New base plate
10 upward opening
11 Shear key
12 Shear deformation restraint and support member
13 Female thread hole
14 downward opening recess
15 High bearing elastic bearing
16 circular hole
17 Upper lift holding member
18 Female thread hole
19 inner vertical wall
20 Existing bearing device
21 Bolt insertion hole
22 Bearing convex
23 Top
24 Upper steel member
25 elastic layer
26 grooved space
27 Kamitsutsu
28 volts
29 Lower steel member
30 Deformable space
31 Sliding support member
32 Holding member
33 volts
34 bolt hole
35 Step top
36 Side projection
37 Fitting recess
38 Welding
39 Side projection
40 Adjustment plate

Claims (4)

下部構造物に設置されている既設支承装置における既設のベースプレート上に、既設のベースプレートを固定している橋軸直角方向端部における一対のアンカーボルト間の橋軸方向の内側間隔寸法よりも橋軸方向の寸法が小さい新設のベースプレートが橋軸直角方向から搬入されて固定され、前記新設のベースプレートに、前記一対のアンカーボルトの橋軸方向の内側間隔寸法よりも橋軸方向の寸法が小さいせん断変形拘束兼支承部材が橋軸直角方向から搬入されて固定され、前記せん断変形拘束部材内に荷重支持用弾性支承体が設置され、前記荷重支承用弾性支承体により、上部構造物が支持されていることを特徴とする既設のベースプレートを利用した既設支承装置の補修構造。On the existing base plate of the existing bearing device installed on the substructure, the bridge shaft is larger than the inner space in the bridge axis direction between the pair of anchor bolts at the end perpendicular to the bridge shaft that fixes the existing base plate. A new base plate having a small dimension in the direction is carried in from the direction perpendicular to the bridge axis and fixed, and the new base plate has a shear deformation in which the dimension in the bridge axis direction is smaller than the inner space dimension in the bridge axis direction of the pair of anchor bolts. A restraining and bearing member is carried in and fixed from a direction perpendicular to the bridge axis, and a load supporting elastic bearing is installed in the shear deformation restraining member, and an upper structure is supported by the load bearing elastic bearing. A repair structure for an existing bearing device utilizing an existing base plate. 前記せん断変形拘束兼支承部材は、橋軸直角方向の両側に配置されるサイドブロックを兼ねた部材であることを特徴とする請求項1に記載の既設のベースプレートを利用した既設支承装置の補修構造。The repair structure for an existing bearing device using an existing base plate according to claim 1, wherein the shear deformation restraining and supporting member is a member that also serves as a side block disposed on both sides in a direction perpendicular to the bridge axis. . 新設のベースプレートが既設のベースプレートに溶接により固定され、新設のベースプレートにせん断変形拘束兼支承部材がボルトにより着脱可能に固定され、前記新設のベースプレートとせん断変形拘束兼支承部材により形成された空間内に荷重支承用弾性支承体の上部が突出するように着脱可能に配置されていることを特徴とする請求項1または2に記載の既設のベースプレートを利用した既設支承装置の補修構造。The new base plate is fixed to the existing base plate by welding, the shear deformation restraining and supporting member is detachably fixed to the new base plate by bolts, and is located in the space formed by the new base plate and the shear deformation restraining and supporting member. The repair structure for an existing bearing device using an existing base plate according to claim 1 or 2, wherein the load bearing elastic bearing body is removably arranged so as to protrude. 既設支承装置を弾性支承装置に補修する補修工法において、下部構造物上の橋軸方向に配置されたジャッキにより上部構造物をジャッキアップして支持した状態で、下部構造物に設置されている既設支承装置におけるベースプレートおよびアンカーボルトを撤去することなく、既設ベースプレート上の支承装置の上部部分を撤去した後、前記既設のベースプレートを固定している橋軸直角方向端部における一対のアンカーボルトの内側間隔寸法よりも橋軸方向の寸法が小さい新設のベースプレートを橋軸直角方向から搬入して前記既設のベースプレートに固定し、次いで前記新設のベースプレートに、前記一対のアンカーボルトの内側間隔寸法よりも橋軸方向の寸法が小さいせん断変形拘束兼支承部材を橋軸直角方向から搬入して固定し、次いで、前記せん断変形拘束支承部材内に荷重支持用弾性支承体を設置した後、上部構造物を降下させて、前記荷重支承用弾性支承体により、上部構造物を支持するようにしたことを特徴とする既設のベースプレートを使用した既設支承装置の補修工法。In the repair method of repairing the existing bearing device to the elastic bearing device, the existing structure installed on the lower structure with the upper structure jacked up and supported by jacks arranged in the bridge axis direction on the lower structure After removing the upper part of the bearing device on the existing base plate without removing the base plate and the anchor bolts in the bearing device, the inner space between the pair of anchor bolts at the end perpendicular to the bridge axis fixing the existing base plate. A newly installed base plate having a dimension in the bridge axis direction smaller than the dimension is carried in from the direction perpendicular to the bridge axis and fixed to the existing base plate. The shear deformation restraint and bearing member with a small dimension in the direction is carried in from the direction perpendicular to the bridge axis and fixed. Then, after the load-bearing elastic bearing is installed in the shear deformation restraint bearing member, the upper structure is lowered, and the upper structure is supported by the load-bearing elastic bearing. Repair method of existing bearing device using existing base plate.
JP2003098443A 2003-04-01 2003-04-01 Repair structure and repair method of existing bearing device Expired - Lifetime JP4285685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098443A JP4285685B2 (en) 2003-04-01 2003-04-01 Repair structure and repair method of existing bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098443A JP4285685B2 (en) 2003-04-01 2003-04-01 Repair structure and repair method of existing bearing device

Publications (2)

Publication Number Publication Date
JP2004300897A true JP2004300897A (en) 2004-10-28
JP4285685B2 JP4285685B2 (en) 2009-06-24

Family

ID=33409964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098443A Expired - Lifetime JP4285685B2 (en) 2003-04-01 2003-04-01 Repair structure and repair method of existing bearing device

Country Status (1)

Country Link
JP (1) JP4285685B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280797A (en) * 2007-05-14 2008-11-20 Nitta Ind Corp High surface-pressure vertical load support, bearing device using the same, and installation method
JP4587238B1 (en) * 2010-06-04 2010-11-24 株式会社美和テック Bearing replacement mounting member
JP4726093B1 (en) * 2010-08-25 2011-07-20 株式会社美和テック Support device for height adjustment for structures
JP2015190597A (en) * 2014-03-28 2015-11-02 三井造船株式会社 Seismic isolation device
CN111733711A (en) * 2020-05-16 2020-10-02 江苏瑞沃建设集团有限公司 Synchronous supporting mechanism based on flat jack method bridge jacking

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104153303B (en) * 2014-08-28 2016-01-06 刘其伟 A kind of self-balancing back pressure type bridge single support replacing options
CN106012818B (en) * 2016-07-06 2018-05-22 北京铁科首钢轨道技术股份有限公司 Horizontal direction anticollision high resiliency bearing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280797A (en) * 2007-05-14 2008-11-20 Nitta Ind Corp High surface-pressure vertical load support, bearing device using the same, and installation method
JP4587238B1 (en) * 2010-06-04 2010-11-24 株式会社美和テック Bearing replacement mounting member
JP2011252368A (en) * 2010-06-04 2011-12-15 Miwa Tech Co Ltd Attaching member for bearing exchange
JP4726093B1 (en) * 2010-08-25 2011-07-20 株式会社美和テック Support device for height adjustment for structures
JP2012046913A (en) * 2010-08-25 2012-03-08 Miwa Tec:Kk Height adjustment corresponding bearing device for structure
JP2015190597A (en) * 2014-03-28 2015-11-02 三井造船株式会社 Seismic isolation device
CN111733711A (en) * 2020-05-16 2020-10-02 江苏瑞沃建设集团有限公司 Synchronous supporting mechanism based on flat jack method bridge jacking
CN111733711B (en) * 2020-05-16 2021-10-12 江苏瑞沃建设集团有限公司 Synchronous supporting mechanism based on flat jack method bridge jacking

Also Published As

Publication number Publication date
JP4285685B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
KR100948359B1 (en) The bridge upper structure lifting method for which bridge upper structure lifter which does the bridge shue function and this were used
KR102036839B1 (en) Vibration abatement type lifting device for replacing and repairing bridges for bridge support and its construction method applying computer control method
KR102280308B1 (en) Plate for impression of bridge
KR100964729B1 (en) Bridge lifting apparatus for changing bridge bearings
KR101248838B1 (en) A lifting jack of upper structure of bridge and method for changing bridge bearings using them
JP2004300897A (en) Repairing structure for existing bearing apparatus and repairing method for the same
CN207245245U (en) Wedge-shaped temporary support
KR100976405B1 (en) MaintenanceRepair support
JP2019124044A (en) Bridge bearing replacement method and bridge bearing structure
KR101599822B1 (en) Separate spherical bearings
KR101471393B1 (en) Anchor socket structure for bridge support
KR101897099B1 (en) Non-lifting bridge support construction method
KR101404818B1 (en) superstructure raise device of the bridge
KR20210131702A (en) Hydraulic jack of bridge repair
JP4190334B2 (en) Repair structure and repair method to repair a function-separated type support device using the base plate of the existing elastic support device
JP2649782B2 (en) A device that supports a fixed level without removing the rubber bearing.
KR100489577B1 (en) Level adjusting bearing for bridge
JP2003206509A (en) Function change repair construction method for existing elastic support
KR100518773B1 (en) bridge bearing and it&#39;s install method made use of an oil pressure
KR200410784Y1 (en) Screw mobil jack
JPH06116912A (en) Structure for bearing building
KR200261956Y1 (en) Hydraulic screw jack with half nut and variable position absorbing hydraulic screw jack
KR20010054811A (en) Pulling up apparatus for work repairing concrete structure
JP6580919B2 (en) Seismic isolation device replacement method and temporary support device
KR200256820Y1 (en) Beam elevation apparatus of steel bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4285685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term