JP2004300466A - Liquid for posttreatment of surface of plating, and posttreatment method - Google Patents

Liquid for posttreatment of surface of plating, and posttreatment method Download PDF

Info

Publication number
JP2004300466A
JP2004300466A JP2003091943A JP2003091943A JP2004300466A JP 2004300466 A JP2004300466 A JP 2004300466A JP 2003091943 A JP2003091943 A JP 2003091943A JP 2003091943 A JP2003091943 A JP 2003091943A JP 2004300466 A JP2004300466 A JP 2004300466A
Authority
JP
Japan
Prior art keywords
post
plating
treatment
solution
thio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003091943A
Other languages
Japanese (ja)
Other versions
JP4168387B2 (en
Inventor
Kazumasa Fujimura
一正 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Chemical Co Ltd
Original Assignee
Ishihara Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Chemical Co Ltd filed Critical Ishihara Chemical Co Ltd
Priority to JP2003091943A priority Critical patent/JP4168387B2/en
Publication of JP2004300466A publication Critical patent/JP2004300466A/en
Application granted granted Critical
Publication of JP4168387B2 publication Critical patent/JP4168387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To satisfactorily secure solder wettability in posttreatment to the surface of plating, and to speed-up /facilitate surface treatment. <P>SOLUTION: A liquid used for posttreatment of the surface of plating formed on a metallic material is prepared by adding a solution obtained by dissolving the carboxylic acid derivative of a specified mercaptobenzothiazole such as 2-benzothiazolylthio-2-acetic acid, 2-benzothiazolylthio-3-propionic acid and 2-[2(benzothiazolyl)thio]isobutyric acid into an organic solvent such as alcohol, and adding the obtained solution to water. Since an organic solvent such as alcohol is previously added in the solvent, the carboxylic acid derivative can be dissolved or uniformly be dispersed into the treatment liquid, so that the solder wettability on the face of plating can satisfactorily be improved. Thus, posttreatment can simply and swiftly be performed in the temperature range near the ordinary temperatures of 0 to 40°C in a short time of 10 s to 10 min. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はメッキ表面の後処理液、並びに当該後処理液を用いたメッキ表面の処理方法であり、メッキ表面のハンダ濡れ性を良好に確保するとともに、表面処理を迅速・簡便化できるものを提供する。
【0002】
【従来の技術】
金属材料にハンダ付けをする場合、ハンダ濡れ性を確保するため、一般に、予め金属材料にスズ又はスズ合金などのメッキ皮膜を形成するが、このメッキ面は酸化により経時劣化し易い。
一方、このようなメッキ表面の後処理とは異なるが、金属材料に付着した酸化膜や硬度成分を除去する広義の表面処理液の従来技術としては、特許文献1に、2−メルカプトベンゾチアゾール、3−(2−ベンゾチアジルチオ)プロピオン酸、(2−ベンゾチアジルチオ)酢酸などのチアゾール化合物と、アルキルベンゼンスルホン酸塩よりなるアニオン系界面活性剤とを含有する腐食抑制剤組成物、並びに、この腐食抑制剤組成物を無機酸や有機酸の水溶液に添加した金属の酸洗浄液組成物が開示されている。
また、特許文献2には、2−ベンゾチアジルチオ酢酸、3−(2−ベンゾチアジルチオ)プロピオン酸、4−(2−ベンゾチアジルチオ)酪酸、5−(2−ベンゾチアジルチオ)吉草酸などのベンゾチアゾール環を有するカルボン酸、或は、そのアルカリ金属、アルカリ土類金属、4級アンモニウムの各種塩を濃度200ppmで添加した防錆剤が開示されている(同文献の特許請求の範囲、第3頁の表参照)。
【0003】
一方、スズ、スズ−鉛合金などのメッキ皮膜を形成した金属材料にハンダ付けを行うに際して、このメッキ材の経時劣化を防止する目的の表面処理方法又は表面処理液の従来技術には、次のものがある。
(1)特許文献3
金属材料にスズ又はスズ−鉛合金メルカプトベンゾチアゾール皮膜を形成した後、ベンゾトリアゾール、1−メチルベンゾトリアゾール、トリルベンゾトリアゾール、1−(N,N−ジオクチルアミノメチル)ベンゾトリアゾールなどのベンゾトリアゾール系化合物、メルカプトベンゾチアゾール又はそのアルカリ金属塩、或はトリアジン系化合物からなる群から選ばれた1種又は2種以上を含有する表面処理液をこの材料に塗布することが開示されている。
特許文献4〜7にも同様な表面処理液が開示されている。
【0004】
(2)特許文献8
金属材料にニッケル又はニッケル合金を下地メッキとして具備する金又は金合金メッキを形成した後、上記特許文献3と同様な化合物を含有する封孔処理液を塗布することが開示されている。
特許文献9〜10にも同様な封孔処理液が開示されている。
【0005】
(3)特許文献11
5−メチルベンゾトリアゾール、2−メルカプトベンゾチアゾールなどの防錆剤と、二塩基酸、そのアミン塩、ヒマシ油脂肪酸エステルなどのベース油と、エチルアルコール、イソプロピルアルコールなどの溶剤とを含有する封孔処理剤で金属メッキ表面を処理することが開示されている。
【0006】
(4)特許文献12
2−メルカプトベンゾチアゾール又はそのアルカリ金属塩、或は、ベンゼン環にアルキル基が結合した2−メルカプトベンゾチアゾール誘導体を含有する水溶液に金を含む金属膜を備えた基体を接触させて、基体表面に腐食防止膜を形成することが開示されている。
【0007】
【特許文献1】
特開2001−316858号公報
【特許文献2】
特公平1−28108号公報
【特許文献3】
特開平7−173675号公報
【特許文献4】
特開平7−173676号公報
【特許文献5】
特開平7−173677号公報
【特許文献6】
特開平7−173678号公報
【特許文献7】
特開平7−173679号公報
【特許文献8】
特開平8−260192号公報
【特許文献9】
特開平8−260193号公報
【特許文献10】
特開平8−260194号公報
【特許文献11】
特開平2001−279491号公報
【特許文献12】
特開2000−17483号公報
【0008】
【発明が解決しようとする課題】
特許文献1に記載されている2−メルカプトベンゾチアゾールを無機酸又は有機酸を含む酸性水溶液に添加すると、アニオン系界面活性剤の存在下でも溶解性はそれほど良くなく、特許文献1〜2の3−(2−ベンゾチアジルチオ)プロピオン酸や(2−ベンゾチアジルチオ)酢酸のカルボン酸誘導体にあっても、充分な水溶性は具備しておらず、有効成分は液中で不均一になり易いという実情がある。そのうえ、特許文献1の酸洗浄液は同文献の実施例に示すような高炭素鋼や軟鋼板には適用できても、本発明の対象とするスズ又はスズ合金などのメッキ表面にこの酸洗浄液を適用すると、メッキ面が腐食してしまう恐れがある。しかも、上記特許文献1の酸洗浄液による表面処理では、50〜70℃の加熱域、30分〜4時間の長時間を必要とする(同文献の実施例1〜4参照)。
【0009】
また、上述のように、上記特許文献3〜12に記載の2−メルカプトベンゾチアゾールはそれほど水溶性はなく、例えば、アルコールに溶解したり、或は、特許文献10に示すように、ラウリン酸、ステアリン酸、オレイン酸などの脂肪酸と、モノアルキル又はジアルキルリン酸エステルなどの乳化剤を含む水に添加する必要がある。
しかしながら、この2−メルカプトベンゾチアゾールについては、性状自体が不安定であり、水や有機溶媒に添加した場合、経時的にある種の化学反応を引き起こして難溶性の沈殿を生じるため、長時間連続で表面処理すると、目的とする効果が持続せず、ハンドリングに大いに問題があり、また、長期に保管する場合にも同様の問題がある。
本発明は、メッキ表面の後処理において、ハンダ濡れ性の良好な確保と、後処理の迅速・簡便化を技術的課題とする。
【0010】
【課題を解決するための手段】
2−メルカプトベンゾチアゾールのカルボン酸誘導体の一部は上記特許文献1〜2にも示されているが、2−メルカプトベンゾチアゾールとは異なり、このカルボン酸誘導体は難溶性沈殿物を生じないため、本発明者らは、この2−メルカプトベンゾチアゾールのカルボン酸誘導体をメッキ表面の後処理に活用することを鋭意研究した結果、先ず、当該カルボン酸誘導体をアルコールに溶解し、次いで、このアルコール溶液を水に添加すると、上記カルボン酸誘導体を処理液中に溶解又は均一分散できることから、メッキ材をこの処理液に浸漬した場合、メッキ表面のハンダ濡れ性が顕著に改善すること、上記特許文献1の酸洗浄液では液温50〜70℃、処理時間30分〜4時間を要しているが、上記処理液を用いると0〜40℃の常温近辺で、且つ、1秒〜10分の短時間で迅速・簡便に後処理できることを見い出し、本発明を完成した。
【0011】
即ち、本発明1は、金属材料にメッキ皮膜を形成した後に、そのメッキ表面を後処理する液であって、
下記の一般式(1)で表される2−メルカプトベンゾチアゾールのカルボン酸誘導体
【化2】

Figure 2004300466
(式(1)中、RはC〜C40アルキレン、OHとNRR(Rは水素又はC〜Cアルキル基)の少なくとも一個が結合した置換C〜C40アルキレンである;nは1〜3の整数である;Rはアルキル、アルコキシ、NRR、COOM(Mは水素、アルカリ金属、アルカリ土類金属、アンモニウム、1〜3級アミンである)、SOM、OHである;mは1〜3の整数である。)
をアルコール類などの有機溶剤に溶解し、この溶液を水に添加したことを特徴とするメッキ表面の後処理液である。
【0012】
本発明2は、上記本発明1において、2−メルカプトベンゾチアゾールのカルボン酸誘導体が、2−〔2(ベンゾチアゾリル)チオ〕酢酸、2−〔2(4−メチルベンゾチアゾリル)チオ〕酢酸、3−〔2(ベンゾチアゾリル)チオ〕プロピオン酸、4−〔2(ベンゾチアゾリル)チオ〕酪酸、2−〔2(ベンゾチアゾリル)チオ〕イソ酪酸、11−〔2(ベンゾチアゾリル)チオ〕ウンデカン酸であることを特徴とするメッキ表面の後処理液である。
【0013】
本発明3は、上記本発明1又は2において、さらに、界面活性剤を含有することを特徴とするメッキ表面の後処理液である。
【0014】
本発明4は、メッキ皮膜を形成した金属材料を上記本発明1〜3のいずれかの後処理液に、処理時間1秒〜10分、液温0〜40℃の条件で接触させることを特徴とするメッキ表面の後処理方法である。
【0015】
本発明5は、上記本発明4において、メッキ皮膜がスズ、スズ合金、金、銀、銅、ニッケルのいずれかの皮膜であることを特徴とするメッキ表面の後処理方法である。
【0016】
【発明の実施の形態】
本発明は、第一に、所定の2−メルカプトベンゾチアゾールのカルボン酸誘導体をアルコールなどの有機溶剤に溶解した後、この溶液を水に添加したメッキ表面の後処理液であり、第二に、この後処理液で金属材料のメッキ面を後処理する方法である。本発明の後処理液は、上記カルボン酸誘導体が水中に溶解した溶液形態、或は、カルボン酸誘導体が水中に均一分散した水性エマルジョンの形態のいずれであっても良い。
【0017】
本発明の2−メルカプトベンゾチアゾールのカルボン酸誘導体は、上記一般式(1)で表される。
ベンゾチアゾール環の2位に結合するメルカプト基には置換基Rが結合し、置換基RはC〜C40アルキレン、置換C〜C40アルキレンである。C〜C40アルキレンの具体例は、メチレン、エチレン、n−プロピレン、n−ブチレン、イソブチレン、C10アルキレンなどである。このアルキレン基は、上述のように、水酸基、アミノ基、アルキルアミノ基、ジアルキルアミノ基が結合した置換アルキレンであっても良い。
また、一般式(1)のベンゾチアゾール環には、アルキル、アルコキシ、NRR、COOM、SOM、OHよりなる群から選ばれた置換基Rが1〜3個結合しても良い。この場合、上記NRRは前記アルキレン基Rの場合と同様に、アミノ基、アルキルアミノ基、ジアルキルアミノ基を意味する。また、カルボキシル基又はスルホン酸基のアニオン部分Mは水素であっても良いし、アルカリ金属、アルカリ土類金属、アンモニウム、1〜3級アミンであって、塩を形成しても良い。
本発明の2−メルカプトベンゾチアゾール誘導体は、メルカプト基に結合する置換基Rにカルボキシル基を有する点に特徴がある。カルボキシル基はアルキレン鎖Rの一端に結合しても良いし、鎖の途中に結合しても良い。例えば、R=Cアルキレンの場合、Cアルキレンがカルボキシル基の炭素原子と合わせてn−ブチレン鎖を形成する場合には、鎖の一端にカルボキシル基が結合し、イソブチレン鎖であれば鎖の途中にカルボキシル基が結合することになる。誘導体分子中のカルボキシル基の結合数は1〜3個である。
【0018】
上記2−メルカプトベンゾチアゾールのカルボン酸誘導体としては、本発明2に示すように、2−〔2(ベンゾチアゾリル)チオ〕酢酸、2−〔2(4−メチルベンゾチアゾリル)チオ〕酢酸、3−〔2(ベンゾチアゾリル)チオ〕プロピオン酸、4−〔2(ベンゾチアゾリル)チオ〕酪酸、2−〔2(ベンゾチアゾリル)チオ〕イソ酪酸、11−〔2(ベンゾチアゾリル)チオ〕ウンデカン酸が好ましく、2−〔2(ベンゾチアゾリル)チオ〕酢酸、3−〔2(ベンゾチアゾリル)チオ〕プロピオン酸、4−〔2(ベンゾチアゾリル)チオ〕酪酸、2−〔2(ベンゾチアゾリル)チオ〕イソ酪酸、11−〔2(ベンゾチアゾリル)チオ〕ウンデカン酸がより好ましい。
【0019】
本発明の2−メルカプトベンゾチアゾールのカルボン酸誘導体は単用又は併用できる。また、2−メルカプトベンゾチアゾール、ベンゾトリアゾール又はこれらの塩を本発明のカルボン酸誘導体と複用することもできる。
本発明の後処理液において、2−メルカプトベンゾチアゾールのカルボン酸誘導体の含有量は0.005〜10.0mmol/Lが適量であり、0.1〜5.0mmol/Lが好ましい。0.005mmol/Lより少ないと、ハンダ付けの際のハンダ濡れ性を確保できず、10.0mmol/Lより多くても表面処理効果にあまり変化はなく、コストの無駄であり、また、ハンダ付けに悪影響を及ぼす恐れがある。
【0020】
本発明は、2−メルカプトベンゾチアゾールのカルボン酸誘導体を液中に溶解又は均一分散させるために、同カルボン酸誘導体を各種有機溶剤に溶解した後、この溶液を水に添加した点に特徴がある。従って、本発明の後処理液の形態は、前述したように、水性エマルジョン又は溶液のいずれであっても良い。この後処理液の形態は、基本的に、有機溶剤やカルボン酸誘導体の濃度、或は、液温などの各種要因により規定される。
上記有機溶剤としては、アルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル等のエステル類、トルエンなどが挙げられ、アルコール類が好ましい。
上記アルコール類は任意のものが使用できるが、メタノール、エタノール、イソプロピルアルコール、エチレングリコール、グリセリンなどが好適である。
上記カルボン酸誘導体を有機溶剤に溶解した液は、撹拌しながら水中に分散又は溶解される。
【0021】
この後処理液には、本発明3に示すように、メッキ表面への液の浸透力を向上し、或は、本発明のカルボン酸誘導体の水中への分散性を高める目的で、界面活性剤を含有することができる。分散性の向上を目的に含むため、上記界面活性剤は乳化剤を包含する概念である。
上記界面活性剤としては、モノアルキルリン酸エステル、ジアルキルリン酸エステルを初め、通常のノニオン系、アニオン系、両性、或はカチオン系などの各種界面活性剤を使用できる。
上記アニオン系界面活性剤としては、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩などが挙げられる。カチオン系界面活性剤としては、モノ〜トリアルキルアミン塩、ジメチルジアルキルアンモニウム塩、トリメチルアルキルアンモニウム塩などが挙げられる。ノニオン系界面活性剤としては、C〜C20アルカノール、フェノール、ナフトール、ビスフェノール類、C〜C25アルキルフェノール、アリールアルキルフェノール、C〜C25アルキルナフトール、C〜C25アルコキシルリン酸(塩)、ソルビタンエステル、ポリアルキレングリコール、C〜C22脂肪族アミドなどにエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)を2〜300モル付加縮合させたものなどが挙げられる。両性界面活性剤としては、カルボキシベタイン、イミダゾリンベタイン、スルホベタイン、アミノカルボン酸などが挙げられる。
上記界面活性剤には、モノアルキルリン酸エステル、ジアルキルリン酸エステルなどが好ましい。
【0022】
本発明4は、上記後処理液を用いたメッキ表面の後処理方法であり、銅或は銅合金製などの金属材料(即ち、被メッキ物)にメッキ皮膜を形成した後に、後処理液をこのメッキ面に接触させることにより実施される。
上記被メッキ物は特に制限されないが、半導体集積回路、プリント基板、フィルムキャリア、コンデンサ、インダクタ、サーミスタ、抵抗、ICなどの電子部品を代表例とする。上記メッキ皮膜は、ハンダ付け性を良好に保持する見地から、スズ皮膜、スズ−銅合金、スズ−銀合金、スズ−ビスマス合金、スズ−鉛合金などのスズ合金皮膜、金、銀、ニッケルが好ましい。メッキ方法は電気メッキ、無電解メッキを問わない。
【0023】
上記接触方法は、メッキ材を後処理液に浸漬することを基本とするが、メッキ材に後処理液を塗布しても良いし、噴霧しても良い。
本発明4に示すように、後処理の時間は1秒〜10分であり、液の温度は0℃〜40℃である。好ましい処理時間は10秒〜5分、好ましい温度は室温近辺である。
即ち、冒述の特許文献1では、50〜70℃の加熱条件で、30分〜4時間の長時間をかけて酸洗浄しているが、本発明4では、このような方法とは異なり、常温近辺の温度で短時間の接触処理だけで足り、この迅速且つ簡便な後処理によりメッキ面のハンダ濡れ性は充分に向上するのである。尚、処理時間は処理温度により適宜増減でき、また、メッキ材の形状や材質に応じて処理時間と温度を適宜選択できる。
【0024】
【発明の効果】
冒述したように、電子部品などの金属材料にハンダ付けをする場合、ハンダ濡れ性を確保するために、予めスズ又はスズ合金などのメッキ皮膜を形成しているが、このメッキ面は酸化により経時劣化し易い。
本発明では、予め、所定の2−メルカプトベンゾチアゾールのカルボン酸誘導体を有機溶剤に溶解し、この溶液を水に添加して得られた溶液又は水性エマルジョンを用いてメッキ表面を後処理するため、上記カルボン酸誘導体を液中に溶解又は均一分散でき、メッキ面のハンダ濡れ性を良好に改善できる。
また、本発明の液を後処理に適用すると、上述の優れた均一分散性により、0℃〜40℃の常温近辺の温度域で、且つ1秒〜10分の短時間で液をメッキ面に接触させるだけで、メッキ面のハンダ濡れ性を充分に向上することができるため、50〜70℃の加熱域で、且つ30分〜4時間の長時間をかけて酸洗浄する特許文献1とは異なり、メッキ表面の後処理を迅速・簡便化できる。
尚、本発明のカルボン酸誘導体は、前述したように、2−メルカプトベンゾチアゾールとは異なり、経時的に難溶性沈殿物を生じないため、長時間後処理に供しても効果の減退はなく、ハンドリングに優れる。長期保管する場合にも同様である。
【0025】
【実施例】
以下、スズメッキ表面又はニッケルメッキ表面を本発明の液で後処理する実施例、並びに、当該後処理方法を施したメッキ表面のハンダ濡れ性試験例を説明する。
尚、本発明は下記の実施例、試験例に拘束されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得ることは勿論である。
【0026】
《スズメッキ表面を後処理する実施例》
下記の実施例1〜7のうち、実施例7は本発明の2−メルカプトベンゾチアゾールのカルボン酸誘導体にベンゾトリアゾールを共存させた溶液を用いた例、他の実施例は各種の当該カルボン酸誘導体を単用した溶液の例である。
また、比較例1〜4のうち、比較例1はメッキ表面を後処理しないブランク例、比較例2は冒述の特許文献10を援用して、2−メルカプトベンゾチアゾールとオレイン酸とリン酸モノラウリルエーテルを含有する処理液を用いた例、比較例3は冒述の特許文献1に準拠したもので、(2−ベンゾチアゾリル)チオ酢酸を水に添加した処理液を用いて、70℃の加熱下、30分の条件で処理した例、比較例4は上記比較例3の処理液を用いて、本発明の後処理条件(室温、30秒の短時間)を適用して処理した例である。尚、上記特許文献1に開示された(2−ベンゾチアゾリル)チオ酢酸を同文献の実施例1〜4の形態でそのまま援用すると、硫酸や塩酸を含有する酸性洗浄液であるため、同実施例の高炭素鋼や軟鋼板などに適用することはできても、本発明のメッキ表面に適用すると腐食してしまう恐れがあるため、直接の援用は避けて、上記比較例3〜4の条件で準拠することにした。
【0027】
(1)実施例1
(a)スズメッキ処理
先ず、下記の組成でスズメッキ浴を建浴した。
メタンスルホン酸第一スズ(Sn2+として) 10g/L
メタンスルホン酸 100g/L
オクチルフェノールポリエトキシレート(EO12モル) 10g/L
次いで、3216型チップ抵抗器を被メッキ物として、上記スズメッキ浴を用いて電気メッキを行い、膜厚5μmでスズメッキ皮膜を形成した。
その後、スズメッキを施したチップ抵抗器を5%第三リン酸ナトリウムの水溶液に70℃、30秒の条件で浸漬した後、純水で水洗した。
(b)メッキ表面の後処理
2−メルカプトベンゾチアゾールのカルボン酸誘導体として(2−ベンゾチアゾリル)チオ酢酸を用いて、10g/Lの含有量でメタノール水溶液に溶解させた後、このメタノール溶液を必要量の水に溶解させて、当該カルボン酸誘導体の後処理溶液を得た。後処理溶液中の当該カルボン酸誘導体の添加量は0.2g/L(モル添加量換算では0.89mmol/L)に調整した。
次いで、前記チップ抵抗器をこの後処理溶液に25℃、30秒の条件で浸漬した後、純水で水洗し、ドライヤーで乾燥した。
【0028】
(2)実施例2
上記実施例1を基本として、2−メルカプトベンゾチアゾールのカルボン酸誘導体を3−〔(2−ベンゾチアゾリル)チオ〕プロピオン酸に代替し、後処理溶液中の添加量を0.3g/L(モル添加量換算:1.3mmol/L)に変更した以外は、上記実施例1と同様の条件で、メッキ処理と後処理を行った。
【0029】
(3)実施例3
上記実施例1を基本として、2−メルカプトベンゾチアゾールのカルボン酸誘導体を2−(4−メチルベンゾチアゾリル)チオ酢酸に代替し、後処理溶液中の添加量を0.1g/L(モル添加量換算:0.42mmol/L)に変更した以外は、上記実施例1と同様の条件で、メッキ処理と後処理を行った。
【0030】
(4)実施例4
上記実施例1を基本として、2−メルカプトベンゾチアゾールのカルボン酸誘導体を11−〔(2−ベンゾチアゾリル)チオ〕ウンデカン酸に代替し、後処理溶液中の添加量を0.05g/L(モル添加量換算:0.142mmol/L)に変更した以外は、上記実施例1と同様の条件で、メッキ処理と後処理を行った。
【0031】
(5)実施例5
上記実施例1を基本として、2−メルカプトベンゾチアゾールのカルボン酸誘導体を4−〔(2−ベンゾチアゾリル)チオ〕酪酸に代替し、後処理溶液中の添加量を1.2g/L(モル添加量換算:4.7mmol/L)に変更した以外は、上記実施例1と同様の条件で、メッキ処理と後処理を行った。
【0032】
(6)実施例6
上記実施例1を基本として、2−メルカプトベンゾチアゾールのカルボン酸誘導体を2−〔(2−ベンゾチアゾリル)チオ〕イソ酪酸に代替し、後処理溶液中の添加量を0.05g/L(モル添加量換算:0.20mmol/L)に変更した以外は、上記実施例1と同様の条件で、メッキ処理と後処理を行った。
【0033】
(7)実施例7
上記実施例2を基本として、3−〔(2−ベンゾチアゾリル)チオ〕プロピオン酸に加えて、ベンゾトリアゾールを併存させて、後処理溶液中の各添加量を3−〔(2−ベンゾチアゾリル)チオ〕プロピオン酸=1.3mmol/L、ベンゾトリアゾール=1.0mmol/Lとした以外は、上記実施例2と同様の条件で、メッキ処理と後処理を行った。
【0034】
(8)比較例1
チップ抵抗器に上記実施例1のスズメッキ処理(a)だけを施し、後処理(b)は行わなかった。
【0035】
(9)比較例2
2−メルカプトベンゾチアゾール0.1g/L(モル添加量換算:0.53mmol/L)とオレイン酸3g/Lとリン酸モノラウリルエーテル3g/Lを含有させて後処理用の水溶液を調製した。
そして、上記実施例1を基本として、同実施例の溶液に替えて上記後処理液を使用した以外は、上記実施例1と同様の条件により、メッキ処理と後処理を行った。
【0036】
(10)比較例3
(2−ベンゾチアゾリル)チオ酢酸をそのまま水に添加して、含有量0.1g/L(モル添加量換算:0.44mmol/L)の後処理液を調製した。
そして、上記実施例1を基本として、同実施例の溶液に替えて上記後処理液を使用し、チップ抵抗器の後処理液への浸漬条件を70℃、30分にした以外は、上記実施例1と同様の条件で、メッキ処理と後処理を行った。
【0037】
(11)比較例4
上記比較例3を基本として、チップ抵抗器の後処理液への浸漬条件を25℃、30秒(即ち、前記実施例1と同じ)にした以外は、上記比較例3と同様の条件で、メッキ処理と後処理を行った。
【0038】
そこで、上記実施例1〜7及び比較例2〜4の後処理方法、或は、比較例1のメッキ方法で得られたチップ抵抗器のメッキ面のハンダ濡れ性を調べた。
《スズメッキ面のハンダ濡れ性試験例》
下記のハンダ濡れ性試験では加速試験を加えて、後処理を行ったメッキ表面を苛酷な雰囲気中に置いてハンダ濡れ性を評価した。
即ち、上記実施例1〜7及び比較例1〜4の処理を行ったチップ抵抗器を下記の条件でハンダ濡れ性試験に供して、ゼロクロスタイム(秒)を測定した。
(A)加速試験
プレッシャークッカーに基づき、温度105℃、相対湿度100%、8時間とした。
(B)濡れ性試験の条件
EIAJ ET−7404(ソルダーペーストを用いた表面実装部品のハンダ付け性試験法(平衡法))に基づく。ハンダペーストはEIAJで規定されたSn63/Pb37の標準ペーストを使用した。試験温度は215℃とした。
【0039】
下表はその試験結果である。尚、下表のZCTはゼロクロスタイムである。
Figure 2004300466
【0040】
《ニッケルメッキ表面を後処理する実施例》
(1)実施例8
(a)ニッケルメッキ処理
先ず、下記の組成でニッケルメッキ浴を建浴した。
硫酸ニッケル 240g/L
塩化ニッケル 45g/L
ほう酸 30g/L
pH 4.5〜6.0
次いで、3216型チップ抵抗器を被メッキ物として、上記ニッケルメッキ浴を用いて電気メッキを行い、膜厚3μmでニッケルメッキ皮膜を形成した。
その後、上記ニッケルメッキを施したチップ抵抗器を10%硫酸水溶液に室温で30秒浸漬した後、純水で水洗した。
(b)メッキ表面の後処理
2−メルカプトベンゾチアゾールのカルボン酸誘導体として(2−ベンゾチアゾリル)チオ酢酸を用いて、前記実施例1と同様の操作により、添加量を0.2g/L(モル添加量換算:0.89mmol/L)に調整した当該カルボン酸誘導体の後処理溶液を得た。
次いで、前記チップ抵抗器をこの後処理溶液に25℃、30秒の条件で浸漬した後、純水で水洗し、ドライヤーで乾燥した。
【0041】
(2)比較例5
チップ抵抗器に上記実施例8のニッケルメッキ処理(a)だけを施し、後処理(b)は行わなかった。
【0042】
《ニッケルメッキ面のハンダ濡れ性試験例》
そこで、上記実施例8の後処理、或は、比較例5のメッキ処理のみを行ったチップ抵抗器をハンダ濡れ性試験に供して、ゼロクロスタイム(秒)を測定した。ハンダ濡れ性試験の条件は前記スズメッキ面の場合と同様であるが、加速試験(A)は行わなかった。
下表はその試験結果である。
Figure 2004300466
【0043】
《後処理したメッキ表面のハンダ濡れ性の評価》
スズメッキ表面を後処理した実施例1〜7では、後処理を行わなかった比較例1に対して、明らかにゼロクロスタイムが短縮され、後処理がハンダ濡れ性の向上に確実に寄与していることが確認できた。この場合、実施例3〜4に示すように、2−メルカプトベンゾチアゾールのカルボン酸誘導体は1リットル当たり0.137〜0.42ミリモル程度の微量を添加しても、ハンダ濡れ性の改善に有効であることが判った。また、実施例2はプロピオン酸誘導体の添加例であるが、当該プロピオン酸誘導体の同量とベンゾトリアゾールが共存する実施例7は、ハンダ濡れ性の改善で実施例2と同程度の評価であった。
【0044】
一方、冒述の特許文献1を援用し、2−メルカプトベンゾチアゾールのカルボン酸誘導体を水に直接添加した処理液を用いて、70℃、30分の条件で後処理した比較例3では、当該誘導体が液中できわめて不均一になり、ハンダ濡れ性の改善は望めず、また、25℃、30秒の条件で後処理した比較例4でも、後処理しない比較例1と同様にハンダ濡れ性の評価は低かった。従って、これらの比較例3〜4を実施例1〜7に対比すると、2−メルカプトベンゾチアゾールのカルボン酸誘導体をメッキ表面の後処理に適用する場合、メッキ面のハンダ濡れ性を向上するには、単に水に添加するだけでは有効性が乏しく、アルコールなどの有機溶剤を介在させて水中に溶解することの重要性が裏付けられた。
尚、本発明のようなカルボン酸誘導体ではなく、2−メルカプトベンゾチアゾールを直接使用した比較例2では、ハンダ濡れ性の評価は実施例と同程度であった。ちなみに、この2−メルカプトベンゾチアゾールと本発明のカルボン酸誘導体である(2−ベンゾチアゾリル)チオ酢酸とを含有量0.4mol/Lでメタノールに溶解し、このメタノール溶液を試料としてガラス容器に夫々収容して1カ月強、日光に暴露したところ、カルボン酸誘導体の方には変化はなかったが、2−メルカプトベンゾチアゾールの方には沈殿物の発生が確認できた。このため、各試料を液体クロマトグラフィーで分析したところ、カルボン酸誘導体では含有量の減少はなかったが、2−メルカプトベンゾチアゾールの含有量は31%程度減少していた。従って、2−メルカプトベンゾチアゾールを使用した比較例2は後処理液を調製した初期段階では、実施例1〜7と同程度のハンダ濡れ性を保持できるが、長時間連続で後処理を行うと、含有量が低減しない実施例1〜7とは異なり、この効果は減退してしまうものと思われ、ハンドリングに問題があることが判明した。
他方、実施例8を比較例5に対比すると、2−メルカプトベンゾチアゾールのカルボン酸誘導体を添加した溶液をニッケルメッキ表面に適用しても、スズメッキ面の場合と同様に、ハンダ濡れ性を顕著に改善できることが判った。
以上のように、プリント基板、チップ部品などの電子部品を初めとする金属材料に各種メッキを行い、そのメッキ面をハンダ付けに供する場合、予め、本発明の溶液で当該メッキ面を後処理すると、スズやニッケルの各種メッキ面のハンダ濡れ性を確実に向上することができ、上記電子部品などをハンダ付けする際の信頼性を良好に担保できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a post-treatment liquid for a plating surface and a method for treating a plating surface using the post-treatment liquid, which can ensure good solder wettability on the plating surface and can provide quick and simple surface treatment. I do.
[0002]
[Prior art]
When soldering a metal material, a plating film such as tin or a tin alloy is generally formed in advance on the metal material in order to ensure solder wettability, but this plated surface is easily deteriorated with time due to oxidation.
On the other hand, although it is different from such post-treatment of the plating surface, as a conventional technique of a surface treatment solution in a broad sense for removing an oxide film and a hard component attached to a metal material, Patent Document 1 discloses 2-mercaptobenzothiazole, Corrosion inhibitor composition containing a thiazole compound such as 3- (2-benzothiazylthio) propionic acid and (2-benzothiazylthio) acetic acid, and an anionic surfactant composed of an alkylbenzene sulfonate, and Also disclosed is a metal pickling solution composition in which the corrosion inhibitor composition is added to an aqueous solution of an inorganic acid or an organic acid.
Patent Document 2 discloses 2-benzothiazylthioacetic acid, 3- (2-benzothiazylthio) propionic acid, 4- (2-benzothiazylthio) butyric acid, and 5- (2-benzothiazylthio). ) A rust inhibitor containing a benzothiazole ring-containing carboxylic acid such as valeric acid or various salts of alkali metals, alkaline earth metals and quaternary ammoniums at a concentration of 200 ppm is disclosed (Patent in the same document). Claims, see table on page 3).
[0003]
On the other hand, when performing soldering on a metal material having a plating film formed thereon, such as tin or tin-lead alloy, a conventional surface treatment method or a surface treatment solution for the purpose of preventing the aging of the plating material over time includes the following. There is something.
(1) Patent Document 3
After forming a tin or tin-lead alloy mercaptobenzothiazole film on a metal material, a benzotriazole-based compound such as benzotriazole, 1-methylbenzotriazole, tolylbenzotriazole, and 1- (N, N-dioctylaminomethyl) benzotriazole It is disclosed that a surface treatment liquid containing one or more selected from the group consisting of mercaptobenzothiazole or an alkali metal salt thereof, or a triazine compound is applied to the material.
Patent Documents 4 to 7 also disclose similar surface treatment liquids.
[0004]
(2) Patent Document 8
It is disclosed that after a gold or gold alloy plating having nickel or a nickel alloy as a base plating is formed on a metal material, a sealing treatment liquid containing a compound similar to that of Patent Document 3 is applied.
Patent Documents 9 to 10 also disclose similar sealing treatment liquids.
[0005]
(3) Patent Document 11
Sealing containing a rust inhibitor such as 5-methylbenzotriazole and 2-mercaptobenzothiazole, a base oil such as dibasic acid, amine salt thereof, castor oil fatty acid ester, and a solvent such as ethyl alcohol and isopropyl alcohol. It is disclosed that a metal plating surface is treated with a treating agent.
[0006]
(4) Patent Document 12
A substrate provided with a metal film containing gold is brought into contact with an aqueous solution containing 2-mercaptobenzothiazole or an alkali metal salt thereof, or a 2-mercaptobenzothiazole derivative having an alkyl group bonded to a benzene ring, and the surface of the substrate is brought into contact with the substrate surface. It is disclosed to form a corrosion protection film.
[0007]
[Patent Document 1]
JP 2001-316858 A
[Patent Document 2]
Japanese Patent Publication No. 1-208108
[Patent Document 3]
JP-A-7-173675
[Patent Document 4]
JP-A-7-173676
[Patent Document 5]
JP-A-7-173677
[Patent Document 6]
JP-A-7-173678
[Patent Document 7]
JP-A-7-173679
[Patent Document 8]
JP-A-8-260192
[Patent Document 9]
JP-A-8-260193
[Patent Document 10]
JP-A-8-260194
[Patent Document 11]
JP-A-2001-279492
[Patent Document 12]
JP 2000-17483 A
[0008]
[Problems to be solved by the invention]
When 2-mercaptobenzothiazole described in Patent Document 1 is added to an acidic aqueous solution containing an inorganic acid or an organic acid, the solubility is not so good even in the presence of an anionic surfactant. -Even the carboxylic acid derivatives of (2-benzothiazylthio) propionic acid and (2-benzothiazylthio) acetic acid do not have sufficient water solubility, and the active ingredient is not homogeneous in the liquid. There is a fact that it is easy to become. In addition, even though the acid cleaning solution of Patent Document 1 can be applied to high carbon steel and mild steel sheet as shown in the examples of the document, the acid cleaning solution is applied to the plating surface of tin or tin alloy, etc., which is the object of the present invention. If applied, the plating surface may be corroded. In addition, the surface treatment using the acid cleaning solution described in Patent Document 1 requires a heating range of 50 to 70 ° C. and a long time of 30 minutes to 4 hours (see Examples 1 to 4 of the document).
[0009]
Further, as described above, 2-mercaptobenzothiazole described in Patent Documents 3 to 12 is not so water-soluble, and is dissolved in alcohol, for example, or as shown in Patent Document 10, lauric acid, It must be added to water containing fatty acids such as stearic acid and oleic acid and emulsifiers such as monoalkyl or dialkyl phosphates.
However, 2-mercaptobenzothiazole is unstable in its own properties, and when added to water or an organic solvent, causes a certain chemical reaction with time to produce a hardly soluble precipitate, so When the surface treatment is carried out, the intended effect is not maintained and there is a great problem in handling, and there is a similar problem in the case of long-term storage.
It is a technical object of the present invention to secure good solder wettability and to make the post-processing quick and simple in the post-processing of the plating surface.
[0010]
[Means for Solving the Problems]
Some of the carboxylic acid derivatives of 2-mercaptobenzothiazole are also described in Patent Documents 1 and 2, but unlike 2-mercaptobenzothiazole, this carboxylic acid derivative does not produce a hardly soluble precipitate, The present inventors have made intensive studies on utilizing the carboxylic acid derivative of 2-mercaptobenzothiazole for post-treatment of the plating surface. As a result, first, the carboxylic acid derivative was dissolved in alcohol, and then the alcohol solution was dissolved. When added to water, the carboxylic acid derivative can be dissolved or uniformly dispersed in the treatment liquid. Therefore, when the plating material is immersed in the treatment liquid, the solder wettability of the plating surface is significantly improved. The acid cleaning liquid requires a liquid temperature of 50 to 70 ° C. and a processing time of 30 minutes to 4 hours. In, and, we found that quickly, easily worked up in a short time of 1 second to 10 minutes, thereby completing the present invention.
[0011]
That is, the present invention 1 is a solution for post-treating a plating surface after forming a plating film on a metal material,
Carboxylic acid derivative of 2-mercaptobenzothiazole represented by the following general formula (1)
Embedded image
Figure 2004300466
(In the formula (1), R 1 Is C 1 ~ C 40 Alkylene, OH and NRR (R is hydrogen or C 1 ~ C 4 Substituted C having at least one alkyl group) 1 ~ C 40 R is an alkylene; n is an integer of 1 to 3; 2 Are alkyl, alkoxy, NRR, COOM (M is hydrogen, alkali metal, alkaline earth metal, ammonium, primary or tertiary amine), SO 3 M and OH; m is an integer of 1 to 3. )
Is dissolved in an organic solvent such as alcohols, and this solution is added to water.
[0012]
The present invention 2 is the above-mentioned invention 1, wherein the carboxylic acid derivative of 2-mercaptobenzothiazole is 2- [2 (benzothiazolyl) thio] acetic acid, 2- [2 (4-methylbenzothiazolyl) thio] acetic acid, 3- [2 (benzothiazolyl) thio] propionic acid, 4- [2 (benzothiazolyl) thio] butyric acid, 2- [2 (benzothiazolyl) thio] isobutyric acid, and 11- [2 (benzothiazolyl) thio] undecanoic acid. This is a special post-treatment liquid for the plating surface.
[0013]
A third aspect of the present invention is the post-treatment liquid of the plating surface according to the first or second aspect of the invention, further comprising a surfactant.
[0014]
The present invention 4 is characterized in that the metal material on which the plating film is formed is brought into contact with the post-treatment liquid of any of the above-mentioned present inventions 1 to 10 minutes at a liquid temperature of 0 to 40 ° C. This is a post-treatment method for the plating surface.
[0015]
A fifth aspect of the present invention is the post-treatment method of the fourth aspect, wherein the plating film is any one of tin, tin alloy, gold, silver, copper, and nickel.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is firstly a post-treatment solution of a plating surface obtained by dissolving a predetermined carboxylic acid derivative of 2-mercaptobenzothiazole in an organic solvent such as alcohol, and then adding this solution to water. In this method, a plating surface of a metal material is post-treated with the post-treatment liquid. The post-treatment liquid of the present invention may be in the form of a solution in which the carboxylic acid derivative is dissolved in water, or in the form of an aqueous emulsion in which the carboxylic acid derivative is uniformly dispersed in water.
[0017]
The carboxylic acid derivative of 2-mercaptobenzothiazole of the present invention is represented by the general formula (1).
The mercapto group bonded to the 2-position of the benzothiazole ring has a substituent R 1 Is bonded to the substituent R 1 Is C 1 ~ C 40 Alkylene, substituted C 1 ~ C 40 Alkylene. C 1 ~ C 40 Specific examples of alkylene include methylene, ethylene, n-propylene, n-butylene, isobutylene, C 10 And alkylene. As described above, the alkylene group may be a substituted alkylene to which a hydroxyl group, an amino group, an alkylamino group, or a dialkylamino group is bonded.
The benzothiazole ring of the general formula (1) has an alkyl, alkoxy, NRR, COOM, SO 3 A substituent R selected from the group consisting of M and OH 2 May be combined with one to three. In this case, the NRR is the alkylene group R 1 As in the case of, it means an amino group, an alkylamino group or a dialkylamino group. Further, the anion portion M of the carboxyl group or the sulfonic acid group may be hydrogen, or may be an alkali metal, an alkaline earth metal, ammonium, or a primary to tertiary amine, and may form a salt.
The 2-mercaptobenzothiazole derivative of the present invention has a substituent R bonded to a mercapto group. 1 Is characterized by having a carboxyl group. The carboxyl group is an alkylene chain R 1 May be connected to one end of the chain, or may be connected in the middle of the chain. For example, R 1 = C 3 In the case of alkylene, C 3 When the alkylene forms an n-butylene chain together with the carbon atom of the carboxyl group, a carboxyl group is bonded to one end of the chain, and if it is an isobutylene chain, the carboxyl group is bonded in the middle of the chain. The number of carboxyl groups in the derivative molecule is 1 to 3.
[0018]
As the carboxylic acid derivative of 2-mercaptobenzothiazole, as described in the present invention 2, 2- [2 (benzothiazolyl) thio] acetic acid, 2- [2 (4-methylbenzothiazolyl) thio] acetic acid, -[2 (benzothiazolyl) thio] propionic acid, 4- [2 (benzothiazolyl) thio] butyric acid, 2- [2 (benzothiazolyl) thio] isobutyric acid, and 11- [2 (benzothiazolyl) thio] undecanoic acid are preferred, [2 (benzothiazolyl) thio] acetic acid, 3- [2 (benzothiazolyl) thio] propionic acid, 4- [2 (benzothiazolyl) thio] butyric acid, 2- [2 (benzothiazolyl) thio] isobutyric acid, 11- [2 (benzothiazolyl) ) Thio] undecanoic acid is more preferred.
[0019]
The carboxylic acid derivative of 2-mercaptobenzothiazole of the present invention can be used alone or in combination. Further, 2-mercaptobenzothiazole, benzotriazole or a salt thereof can be used in combination with the carboxylic acid derivative of the present invention.
In the post-treatment liquid of the present invention, the content of the carboxylic acid derivative of 2-mercaptobenzothiazole is appropriately from 0.005 to 10.0 mmol / L, and preferably from 0.1 to 5.0 mmol / L. If the amount is less than 0.005 mmol / L, solder wettability at the time of soldering cannot be secured, and if the amount is more than 10.0 mmol / L, the surface treatment effect does not change much, and the cost is wasted. May have an adverse effect.
[0020]
The present invention is characterized in that, in order to dissolve or uniformly disperse a carboxylic acid derivative of 2-mercaptobenzothiazole in a liquid, the carboxylic acid derivative is dissolved in various organic solvents, and then this solution is added to water. . Therefore, the form of the post-treatment liquid of the present invention may be either an aqueous emulsion or a solution, as described above. The form of the post-treatment liquid is basically determined by various factors such as the concentration of the organic solvent and the carboxylic acid derivative or the liquid temperature.
Examples of the organic solvent include alcohols, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, esters such as ethyl acetate, and toluene, and alcohols are preferable.
Although any of the above alcohols can be used, methanol, ethanol, isopropyl alcohol, ethylene glycol, glycerin and the like are preferable.
A solution in which the carboxylic acid derivative is dissolved in an organic solvent is dispersed or dissolved in water with stirring.
[0021]
As shown in the present invention 3, the post-treatment liquid contains a surfactant for the purpose of improving the penetrating power of the liquid to the plating surface or increasing the dispersibility of the carboxylic acid derivative of the present invention in water. Can be contained. In order to improve the dispersibility, the surfactant is a concept including an emulsifier.
As the above-mentioned surfactant, various surfactants such as normal nonionic, anionic, amphoteric or cationic surfactants, such as monoalkyl phosphates and dialkyl phosphates, can be used.
Examples of the anionic surfactant include an alkyl sulfate, a polyoxyethylene alkyl ether sulfate, a polyoxyethylene alkyl phenyl ether sulfate, an alkyl benzene sulfonate, and an alkyl naphthalene sulfonate. Examples of the cationic surfactant include mono- to trialkylamine salts, dimethyldialkylammonium salts, and trimethylalkylammonium salts. Examples of nonionic surfactants include C 1 ~ C 20 Alkanol, phenol, naphthol, bisphenols, C 1 ~ C 25 Alkylphenol, arylalkylphenol, C 1 ~ C 25 Alkyl naphthol, C 1 ~ C 25 Alkoxy phosphoric acid (salt), sorbitan ester, polyalkylene glycol, C 1 ~ C 22 Examples thereof include those obtained by subjecting an aliphatic amide or the like to addition condensation of ethylene oxide (EO) and / or propylene oxide (PO) in an amount of 2 to 300 mol. Examples of the amphoteric surfactant include carboxybetaine, imidazoline betaine, sulfobetaine, aminocarboxylic acid, and the like.
The surfactant is preferably a monoalkyl phosphate, a dialkyl phosphate, or the like.
[0022]
The present invention 4 is a method for post-treating a plating surface using the above-mentioned post-treatment liquid. After forming a plating film on a metal material such as copper or a copper alloy (that is, an object to be plated), the post-treatment liquid is used. It is implemented by making contact with this plating surface.
The object to be plated is not particularly limited, but typical examples thereof include electronic components such as a semiconductor integrated circuit, a printed circuit board, a film carrier, a capacitor, an inductor, a thermistor, a resistor, and an IC. From the viewpoint of maintaining good solderability, the plating film is formed of a tin film, a tin alloy film such as a tin-copper alloy, a tin-silver alloy, a tin-bismuth alloy, a tin-lead alloy, gold, silver, and nickel. preferable. The plating method may be either electroplating or electroless plating.
[0023]
Although the above-mentioned contact method is based on immersing the plating material in a post-treatment liquid, the plating material may be applied with a post-treatment liquid or sprayed.
As shown in Invention 4, the post-treatment time is 1 second to 10 minutes, and the temperature of the solution is 0 ° C to 40 ° C. Preferred treatment times are 10 seconds to 5 minutes, and preferred temperatures are around room temperature.
That is, in Patent Document 1 mentioned above, acid cleaning is performed for a long time of 30 minutes to 4 hours under heating conditions of 50 to 70 ° C., but in the present invention 4, unlike such a method, A short contact treatment at a temperature near normal temperature is sufficient, and the quick and simple post-treatment sufficiently improves the solder wettability of the plated surface. The processing time can be appropriately increased or decreased depending on the processing temperature, and the processing time and temperature can be appropriately selected according to the shape and material of the plating material.
[0024]
【The invention's effect】
As described above, when soldering a metal material such as an electronic component, a plating film such as tin or a tin alloy is formed in advance in order to ensure solder wettability, but this plating surface is oxidized. It easily deteriorates with time.
In the present invention, a predetermined carboxylic acid derivative of 2-mercaptobenzothiazole is dissolved in an organic solvent in advance, and the plating surface is post-treated using a solution or an aqueous emulsion obtained by adding this solution to water. The carboxylic acid derivative can be dissolved or uniformly dispersed in the liquid, and the solder wettability of the plating surface can be improved satisfactorily.
In addition, when the solution of the present invention is applied to the post-treatment, the solution is applied to the plating surface in a temperature range of about 0 ° C to 40 ° C near room temperature and in a short time of 1 second to 10 minutes due to the excellent uniform dispersibility described above. Patent Literature 1 discloses that the solder wettability of the plating surface can be sufficiently improved only by contacting the substrate, and the acid cleaning is performed in a heating range of 50 to 70 ° C. and for a long time of 30 minutes to 4 hours. Differently, the post-treatment of the plating surface can be performed quickly and simply.
Note that, as described above, the carboxylic acid derivative of the present invention, unlike 2-mercaptobenzothiazole, does not produce a sparingly soluble precipitate over time. Excellent handling. The same applies to long-term storage.
[0025]
【Example】
Hereinafter, examples in which a tin-plated surface or a nickel-plated surface is post-treated with the solution of the present invention, and a test example of solder wettability of a plated surface subjected to the post-treatment method will be described.
It should be noted that the present invention is not limited to the following examples and test examples, and it is needless to say that any modifications can be made within the technical idea of the present invention.
[0026]
<< Example of post-treatment of tin-plated surface >>
Among the following Examples 1 to 7, Example 7 is an example using a solution in which benzotriazole coexists with a carboxylic acid derivative of 2-mercaptobenzothiazole of the present invention, and other Examples are various carboxylic acid derivatives. This is an example of a solution in which is used alone.
In Comparative Examples 1 to 4, Comparative Example 1 was a blank example in which the plating surface was not post-treated, and Comparative Example 2 was 2- mercaptobenzothiazole, oleic acid, and monophosphate with reference to the above-mentioned Patent Document 10. An example using a processing solution containing lauryl ether and Comparative Example 3 are based on the above-mentioned Patent Document 1, and heated at 70 ° C. using a processing solution obtained by adding (2-benzothiazolyl) thioacetic acid to water. Below, an example in which processing was performed under the condition of 30 minutes, and Comparative Example 4 was an example in which the processing solution of Comparative Example 3 was used and the post-processing conditions of the present invention (room temperature, short time of 30 seconds) were applied. . When (2-benzothiazolyl) thioacetic acid disclosed in Patent Document 1 is directly used in the forms of Examples 1 to 4 of the document, it is an acidic cleaning solution containing sulfuric acid and hydrochloric acid. Although it can be applied to carbon steel, mild steel plate, etc., it may be corroded when applied to the plated surface of the present invention. Therefore, avoid direct use and comply with the conditions of Comparative Examples 3 and 4 above. It was to be.
[0027]
(1) Example 1
(A) Tin plating
First, a tin plating bath was constructed with the following composition.
Stannous methanesulfonate (Sn 2+ 10g / L
Methanesulfonic acid 100g / L
Octylphenol polyethoxylate (EO 12 mol) 10 g / L
Next, using a 3216 type chip resistor as an object to be plated, electroplating was performed using the above-mentioned tin plating bath to form a tin plating film having a thickness of 5 μm.
Thereafter, the tin-plated chip resistor was immersed in a 5% aqueous solution of sodium triphosphate at 70 ° C. for 30 seconds, and then washed with pure water.
(B) Post-treatment of plating surface
Using (2-benzothiazolyl) thioacetic acid as a carboxylic acid derivative of 2-mercaptobenzothiazole, the resulting solution was dissolved in an aqueous methanol solution at a content of 10 g / L, and the methanol solution was dissolved in a required amount of water. A post-treatment solution of the carboxylic acid derivative was obtained. The addition amount of the carboxylic acid derivative in the post-treatment solution was adjusted to 0.2 g / L (0.89 mmol / L in terms of molar addition amount).
Next, the chip resistor was immersed in the post-treatment solution at 25 ° C. for 30 seconds, washed with pure water, and dried with a dryer.
[0028]
(2) Example 2
Based on Example 1 above, the carboxylic acid derivative of 2-mercaptobenzothiazole was replaced with 3-[(2-benzothiazolyl) thio] propionic acid, and the amount added in the post-treatment solution was 0.3 g / L (molar addition). The plating treatment and the post-treatment were performed under the same conditions as in Example 1 except that the amount was changed to 1.3 mmol / L).
[0029]
(3) Example 3
Based on Example 1, the carboxylic acid derivative of 2-mercaptobenzothiazole was replaced with 2- (4-methylbenzothiazolyl) thioacetic acid, and the amount added in the post-treatment solution was 0.1 g / L (mol). The plating and post-processing were performed under the same conditions as in Example 1 except that the amount was changed to 0.42 mmol / L.
[0030]
(4) Example 4
Based on Example 1 above, the carboxylic acid derivative of 2-mercaptobenzothiazole was replaced with 11-[(2-benzothiazolyl) thio] undecanoic acid, and the amount added in the post-treatment solution was 0.05 g / L (molar addition). The plating treatment and the post-treatment were performed under the same conditions as in Example 1 except that the amount was changed to 0.142 mmol / L).
[0031]
(5) Example 5
On the basis of Example 1, the carboxylic acid derivative of 2-mercaptobenzothiazole was replaced with 4-[(2-benzothiazolyl) thio] butyric acid, and the amount added in the post-treatment solution was 1.2 g / L (molar addition amount). The plating and post-treatment were performed under the same conditions as in Example 1 except that the conversion was changed to 4.7 mmol / L).
[0032]
(6) Example 6
On the basis of Example 1, the carboxylic acid derivative of 2-mercaptobenzothiazole was replaced with 2-[(2-benzothiazolyl) thio] isobutyric acid, and the amount added in the post-treatment solution was 0.05 g / L (molar addition). The plating and post-treatment were performed under the same conditions as in Example 1 except that the amount was changed to 0.20 mmol / L.
[0033]
(7) Example 7
Based on Example 2 above, in addition to 3-[(2-benzothiazolyl) thio] propionic acid, benzotriazole was allowed to coexist, and the amount of each addition in the post-treatment solution was changed to 3-[(2-benzothiazolyl) thio]. Plating treatment and post-treatment were performed under the same conditions as in Example 2 except that propionic acid = 1.3 mmol / L and benzotriazole = 1.0 mmol / L.
[0034]
(8) Comparative Example 1
The chip resistor was subjected to only the tin plating treatment (a) of Example 1 described above, and was not subjected to the post treatment (b).
[0035]
(9) Comparative example 2
An aqueous solution for post-treatment was prepared by containing 0.1 g / L of 2-mercaptobenzothiazole (converted to a molar amount: 0.53 mmol / L), 3 g / L of oleic acid and 3 g / L of monolauryl ether phosphate.
Then, plating and post-treatment were carried out under the same conditions as in Example 1 except that the above-mentioned post-treatment liquid was used instead of the solution of Example 1 based on Example 1.
[0036]
(10) Comparative example 3
(2-Benzothiazolyl) thioacetic acid was added to water as it was to prepare a post-treatment liquid having a content of 0.1 g / L (converted to a molar amount: 0.44 mmol / L).
Then, based on Example 1 described above, the above-mentioned post-treatment liquid was used in place of the solution of the same example, and the immersion conditions of the chip resistor in the post-treatment liquid were set to 70 ° C. and 30 minutes. Under the same conditions as in Example 1, plating and post-treatment were performed.
[0037]
(11) Comparative example 4
On the basis of Comparative Example 3, the conditions were the same as those of Comparative Example 3 except that the immersion conditions of the chip resistor in the post-treatment liquid were 25 ° C. and 30 seconds (that is, the same as in Example 1). Plating and post-processing were performed.
[0038]
Therefore, the solder wettability of the plated surface of the chip resistor obtained by the post-processing method of Examples 1 to 7 and Comparative Examples 2 to 4 or the plating method of Comparative Example 1 was examined.
《Example of solder wettability test on tin plated surface》
In the following solder wettability test, an accelerated test was added, and the post-treated plated surface was placed in a severe atmosphere to evaluate the solder wettability.
That is, the chip resistors treated in Examples 1 to 7 and Comparative Examples 1 to 4 were subjected to a solder wettability test under the following conditions, and a zero cross time (second) was measured.
(A) Accelerated test
Based on the pressure cooker, the temperature was set to 105 ° C., the relative humidity was set to 100%, and the time was set to 8 hours.
(B) Conditions for wettability test
Based on EIAJ ET-7404 (Soldering test method (equilibrium method) for surface mount components using solder paste). As the solder paste, a standard paste of Sn63 / Pb37 specified by EIAJ was used. The test temperature was 215 ° C.
[0039]
The table below shows the test results. The ZCT in the table below is a zero cross time.
Figure 2004300466
[0040]
<< Example of post-treatment of nickel plating surface >>
(1) Example 8
(A) Nickel plating
First, a nickel plating bath was constructed with the following composition.
Nickel sulfate 240g / L
Nickel chloride 45g / L
Boric acid 30g / L
pH 4.5-6.0
Next, using a 3216 type chip resistor as an object to be plated, electroplating was performed using the above nickel plating bath to form a nickel plating film having a thickness of 3 μm.
Thereafter, the nickel-plated chip resistor was immersed in a 10% sulfuric acid aqueous solution at room temperature for 30 seconds, and then washed with pure water.
(B) Post-treatment of plating surface
Using (2-benzothiazolyl) thioacetic acid as the carboxylic acid derivative of 2-mercaptobenzothiazole, the addition amount was 0.2 g / L (in terms of molar addition amount: 0.89 mmol / L) by the same operation as in Example 1. ) To give a post-treatment solution of the carboxylic acid derivative.
Next, the chip resistor was immersed in the post-treatment solution at 25 ° C. for 30 seconds, washed with pure water, and dried with a dryer.
[0041]
(2) Comparative example 5
The chip resistor was only subjected to the nickel plating treatment (a) of Example 8 described above, and was not subjected to the post treatment (b).
[0042]
<< Solder wettability test example of nickel plating surface >>
Therefore, the chip resistors subjected to only the post-treatment of Example 8 or the plating treatment of Comparative Example 5 were subjected to a solder wettability test, and the zero cross time (second) was measured. The conditions for the solder wettability test were the same as those for the tin-plated surface, but the accelerated test (A) was not performed.
The table below shows the test results.
Figure 2004300466
[0043]
<< Evaluation of solder wettability of post-treated plating surface >>
In Examples 1 to 7 in which the tin-plated surface was post-treated, the zero-cross time was clearly shortened compared to Comparative Example 1 in which the post-treatment was not performed, and the post-treatment certainly contributed to the improvement in solder wettability. Was confirmed. In this case, as shown in Examples 3 and 4, the carboxylic acid derivative of 2-mercaptobenzothiazole is effective in improving solder wettability even when a trace amount of about 0.137 to 0.42 mmol per liter is added. It turned out to be. Example 2 is an example of the addition of a propionic acid derivative. Example 7, in which the same amount of the propionic acid derivative and benzotriazole coexist, was evaluated to be about the same as Example 2 in improving solder wettability. Was.
[0044]
On the other hand, in Comparative Example 3 in which a post-treatment was performed at 70 ° C. for 30 minutes using a treatment solution in which a carboxylic acid derivative of 2-mercaptobenzothiazole was directly added to water, with reference to the above-mentioned Patent Document 1, The derivative becomes extremely non-uniform in the liquid, and no improvement in solder wettability can be expected. Further, in Comparative Example 4 which was post-treated at 25 ° C. for 30 seconds, the solder wettability was similar to Comparative Example 1 in which no post-treatment was performed. Was low. Therefore, when these Comparative Examples 3 and 4 are compared with Examples 1 to 7, when the carboxylic acid derivative of 2-mercaptobenzothiazole is applied to the post-treatment of the plating surface, it is necessary to improve the solder wettability of the plating surface. However, simply adding the compound to water is ineffective, and the importance of dissolving the compound in water with an organic solvent such as alcohol intervening is supported.
Incidentally, in Comparative Example 2 in which 2-mercaptobenzothiazole was directly used instead of the carboxylic acid derivative as in the present invention, the evaluation of solder wettability was about the same as in the examples. Incidentally, this 2-mercaptobenzothiazole and the carboxylic acid derivative (2-benzothiazolyl) thioacetic acid of the present invention were dissolved in methanol at a content of 0.4 mol / L, and this methanol solution was stored as a sample in a glass container. When exposed to sunlight for a little more than a month, no change was observed in the carboxylic acid derivative, but the formation of a precipitate was confirmed in the 2-mercaptobenzothiazole. Therefore, when each sample was analyzed by liquid chromatography, the content of the carboxylic acid derivative did not decrease, but the content of 2-mercaptobenzothiazole decreased by about 31%. Therefore, Comparative Example 2 using 2-mercaptobenzothiazole can maintain the same level of solder wettability as in Examples 1 to 7 in the initial stage of preparing the post-treatment solution, but the post-treatment is continuously performed for a long time. In contrast to Examples 1 to 7 in which the content was not reduced, this effect was considered to be reduced, and it was found that there was a problem in handling.
On the other hand, when Example 8 is compared with Comparative Example 5, even when a solution to which a carboxylic acid derivative of 2-mercaptobenzothiazole is added is applied to the nickel-plated surface, the solder wettability is remarkably increased as in the case of the tin-plated surface. It turns out that it can be improved.
As described above, various types of plating are performed on metal materials including electronic components such as printed circuit boards and chip components, and when the plated surface is subjected to soldering, beforehand, the plated surface is post-treated with the solution of the present invention. In addition, the solder wettability of various plating surfaces of tin and nickel can be reliably improved, and the reliability when soldering the electronic components and the like can be ensured well.

Claims (5)

金属材料にメッキ皮膜を形成した後に、そのメッキ表面を後処理する液であって、
下記の一般式(1)で表される2−メルカプトベンゾチアゾールのカルボン酸誘導体
Figure 2004300466
(式(1)中、RはC〜C40アルキレン、OHとNRR(Rは水素又はC〜Cアルキル基)の少なくとも一個が結合した置換C〜C40アルキレンである;nは1〜3の整数である;Rはアルキル、アルコキシ、NRR、COOM(Mは水素、アルカリ金属、アルカリ土類金属、アンモニウム、1〜3級アミンである)、SOM、OHである;mは1〜3の整数である。)
をアルコール類などの有機溶剤に溶解し、この溶液を水に添加したことを特徴とするメッキ表面の後処理液。
After forming a plating film on a metal material, a liquid for post-treating the plating surface,
Carboxylic acid derivative of 2-mercaptobenzothiazole represented by the following general formula (1)
Figure 2004300466
(In the formula (1), R 1 is a C 1 -C 40 alkylene, a substituted C 1 -C 40 alkylene to which at least one of OH and NRR (R is hydrogen or a C 1 -C 4 alkyl group) is bonded; n Is an integer from 1 to 3; R 2 is alkyl, alkoxy, NRR, COOM (M is hydrogen, alkali metal, alkaline earth metal, ammonium, primary to tertiary amine), SO 3 M, OH M is an integer of 1 to 3.)
A solution for dissolving in a solvent such as alcohols, and adding this solution to water.
2−メルカプトベンゾチアゾールのカルボン酸誘導体が、2−〔2(ベンゾチアゾリル)チオ〕酢酸、2−〔2(4−メチルベンゾチアゾリル)チオ〕酢酸、3−〔2(ベンゾチアゾリル)チオ〕プロピオン酸、4−〔2(ベンゾチアゾリル)チオ〕酪酸、2−〔2(ベンゾチアゾリル)チオ〕イソ酪酸、11−〔2(ベンゾチアゾリル)チオ〕ウンデカン酸であることを特徴とする請求項1に記載のメッキ表面の後処理液。The carboxylic acid derivative of 2-mercaptobenzothiazole is 2- [2 (benzothiazolyl) thio] acetic acid, 2- [2 (4-methylbenzothiazolyl) thio] acetic acid, 3- [2 (benzothiazolyl) thio] propionic acid The plating surface according to claim 1, wherein the plating surface is 4- [2 (benzothiazolyl) thio] butyric acid, 2- [2 (benzothiazolyl) thio] isobutyric acid, or 11- [2 (benzothiazolyl) thio] undecanoic acid. Post-treatment liquid. さらに、界面活性剤を含有することを特徴とする請求項1又は2に記載のメッキ表面の後処理液。The post-treatment solution for a plating surface according to claim 1, further comprising a surfactant. メッキ皮膜を形成した金属材料を請求項1〜3のいずれか1項に記載の後処理液に、処理時間1秒〜10分、液温0〜40℃の条件で接触させることを特徴とするメッキ表面の後処理方法。A metal material having a plating film formed thereon is brought into contact with the post-treatment liquid according to any one of claims 1 to 3 for a treatment time of 1 second to 10 minutes at a liquid temperature of 0 to 40 ° C. Post-treatment method for plating surface. メッキ皮膜がスズ、スズ合金、金、銀、銅、ニッケルのいずれかの皮膜である事を特徴とする請求項4に記載のメッキ表面の後処理方法。5. The method according to claim 4, wherein the plating film is any one of tin, tin alloy, gold, silver, copper, and nickel.
JP2003091943A 2003-03-28 2003-03-28 Post-treatment method for plating surface Expired - Fee Related JP4168387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091943A JP4168387B2 (en) 2003-03-28 2003-03-28 Post-treatment method for plating surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091943A JP4168387B2 (en) 2003-03-28 2003-03-28 Post-treatment method for plating surface

Publications (2)

Publication Number Publication Date
JP2004300466A true JP2004300466A (en) 2004-10-28
JP4168387B2 JP4168387B2 (en) 2008-10-22

Family

ID=33405187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091943A Expired - Fee Related JP4168387B2 (en) 2003-03-28 2003-03-28 Post-treatment method for plating surface

Country Status (1)

Country Link
JP (1) JP4168387B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2182097A1 (en) 2008-09-22 2010-05-05 Rohm and Haas Electronic Materials LLC Metal surface treatment aqueous solution and method for inhibiting whiskers on a metal surface
JP2010525169A (en) * 2007-04-18 2010-07-22 エントン インコーポレイテッド Metal surface strengthening
JP2010209391A (en) * 2009-03-10 2010-09-24 Dowa Metaltech Kk Method of manufacturing nickel plated material
CN110501263A (en) * 2018-05-16 2019-11-26 宝山钢铁股份有限公司 A kind of tin plate sheet surface wettability evaluation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525169A (en) * 2007-04-18 2010-07-22 エントン インコーポレイテッド Metal surface strengthening
US8741390B2 (en) 2007-04-18 2014-06-03 Enthone Inc. Metallic surface enhancement
EP2182097A1 (en) 2008-09-22 2010-05-05 Rohm and Haas Electronic Materials LLC Metal surface treatment aqueous solution and method for inhibiting whiskers on a metal surface
JP2010209391A (en) * 2009-03-10 2010-09-24 Dowa Metaltech Kk Method of manufacturing nickel plated material
CN110501263A (en) * 2018-05-16 2019-11-26 宝山钢铁股份有限公司 A kind of tin plate sheet surface wettability evaluation method
CN110501263B (en) * 2018-05-16 2022-06-28 宝山钢铁股份有限公司 Tin plate surface wettability evaluation method

Also Published As

Publication number Publication date
JP4168387B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US7754105B2 (en) Water-soluble preflux and usage of the same
EP0818562B1 (en) Composition for treating copper and copper alloy surfaces and method for the surface treatment
CN105087182B (en) Circuit board having solder solidified thereon, method for producing circuit board having electronic component mounted thereon, and cleaning agent composition for flux
EP1299575B1 (en) Acidic treatment liquid and method of treating copper surfaces
JP2007059451A (en) Printed circuit board, and method of treating surface of metal of the printed circuit board
KR20150085542A (en) Free flux compositions
KR100668129B1 (en) Preflux composition
WO2019111767A1 (en) Structure containing sn layer or sn alloy layer
JP3952410B2 (en) Metal surface treatment agent, printed circuit board, and metal surface treatment method for printed circuit board
JP2010070838A (en) Aqueous solution for surface treatment of metal and method for reducing whisker on metal surface
JP2005068530A (en) Surface-treating agent, printed circuit board, and method for surface-treating metal on printed circuit board
JP4168387B2 (en) Post-treatment method for plating surface
JP4168388B2 (en) Post-treatment method for plating surface
JP2000026994A (en) Electric-electronic circuit parts
KR101540144B1 (en) Surface treating agent for copper or copper alloy and use thereof
JP2009046761A (en) Surface treatment agent
JP5526463B2 (en) Electroless gold plating method for electronic parts and electronic parts
JP5985368B2 (en) Surface treatment solution for copper or copper alloy and use thereof
JPH0779061A (en) Surface treatment agent for copper and copper alloy
JP7377323B2 (en) Water-soluble preflux and surface treatment method
JPH07330738A (en) Protecting agent for metal surface and production using the same
JP7437057B2 (en) Structure containing Sn layer or Sn alloy layer
JPH06299374A (en) Treatment of metallic surface such as solder, electroless solder ag, ni and zn
JPH06299375A (en) Treatment of metallic surface such as solder, electroless solder, ag, ni, zn, cu and cu alloy
KR20090046513A (en) Pre-flux performing selective coating for pwb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4168387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees