JP2004299953A - Method for producing powdery cement dispersant - Google Patents

Method for producing powdery cement dispersant Download PDF

Info

Publication number
JP2004299953A
JP2004299953A JP2003093656A JP2003093656A JP2004299953A JP 2004299953 A JP2004299953 A JP 2004299953A JP 2003093656 A JP2003093656 A JP 2003093656A JP 2003093656 A JP2003093656 A JP 2003093656A JP 2004299953 A JP2004299953 A JP 2004299953A
Authority
JP
Japan
Prior art keywords
component
meth
mol
cement dispersant
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003093656A
Other languages
Japanese (ja)
Inventor
Kazuhisa Tsukada
和久 塚田
Yoshihisa Kaneda
由久 金田
Masaki Ishimori
正樹 石森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003093656A priority Critical patent/JP2004299953A/en
Publication of JP2004299953A publication Critical patent/JP2004299953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a difficultly agglomerable powdery cement dispersant. <P>SOLUTION: The powdery cement dispersant is produced by synthesizing an inorganic carrier in an aqueous solution of the following cement dispersant (A) and drying the aqueous solution to form a powder. Component A is a water-soluble vinyl copolymer comprising 40 to 85 mol% at least one member (component A1) selected from an olefinmonocarboxylic acid and a salt thereof and 15 to 60 mol% at least one member (component A2) selected from an alkoxypolyethylene glycol (meth)acrylate and a (meth)allylsulfonate, and 0 to 5 mol % at least one member (component A3) selected from an alkyl (meth)acrylate and a hydroxyalkyl (meth)acrylate (the total being 100 mol%) and having a number-average molecular weight of 2,000 to 50,000. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は固結し難い粉末状セメント分散剤の製造方法に関する。
【0002】
【従来の技術】
現在、土木・建築分野では粉末状セメント分散剤がプレミックス製品に添加する分散剤として普及しつつある。当該粉末状セメント分散剤の種類は、メラミンスルホン酸塩ホルムアルデヒド縮合物、ナフタレンスルホン酸塩ホルムアルデヒド縮合物又はポリカルボン酸塩等が知られている。この中でも、特に低水セメント比でも良好な流動性が得られるポリカルボン酸塩を主成分とする粉末セメント分散剤が多用されてきている。
【0003】
しかし、粉末状セメント分散剤は袋詰して保管した場合に、その保管条件、例えば周辺温度、積載荷重の影響により固結する場合がある。特に、粉末度が高く、また保管開始時における粉粒体の温度が高い程、固結の程度が著しくなる。その結果、使用に際して固結物の解砕又は粉砕等の作業が必要となり、作業効率の低下を招くという問題があった。一方、固結防止方法として、粉体の表面コーティング(特開昭48−96732号公報)やゼオライトを混合する方法(特開昭51−1648号公報)が提案されているが、これらの方法を粉末状セメント分散剤に適用した場合に、表面被覆による分散性能の低下やコスト高等の問題があって実用的ではない。
【0004】
【特許文献1】
特開昭48−96732号公報
【特許文献2】
特開昭51−1648号公報
【0005】
【発明が解決しようとする課題】
そこで、本発明は固結し難い粉末状セメント分散剤の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記の問題を解決すべく鋭意研究した結果、特定のセメント分散剤の水溶液中で、無機担体を合成した後、該水溶液を乾燥させて得られた粉末状セメント分散剤は固結し難いことを見出し、本発明を完成した。
【0007】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明に用いるセメント分散剤は、以下のモノマー成分からなる共重合体である。
すなわち、A1成分であるオレフィンモノカルボン酸としては、アクリル酸、メタアクリル酸が好ましい。また、オレフィンモノカルボン酸の塩としてはナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等のアルカリ土類金属塩、アンモニウム塩、ジエタノールアミン、トリエタノールアミン等の有機アミン塩の1種又は2種以上から選ばれる塩が好ましい。
【0008】
A2成分であるアルコキシポリエチレングリコール(メタ)アクリレートとしては、モノメトキシポリエチレングリコール、モノエトキシポリエチレングリコール、モノ(イソ)プロポキシポリエチレングリコール等の炭素数1〜3のアルコキシを有するモノアルコキシポリエチレングリコールと(メタ)アクリル酸とのエステルが挙げられるが、中でもオキシエチレン基の繰り返し数が5〜100のメトキシポリエチレングリコール(メタ)アクリレートが好ましい。繰り返し単位が5未満では分散性能が不十分となり、100を超えると高融点の固体となり、取り扱いが困難となる。また、A2成分の(メタ)アリルスルホン酸塩としては、(メタ)アリルスルホン酸のアルカリ金属塩、アルカリ土類金属塩、有機アミン等が使用できる。本発明においてA2成分として前記のアルコキシポリエチレングリコール(メタ)アクリレート及び前記の(メタ)アリルスルホン酸から選ばれる1種又は2種以上が好適である。
【0009】
A3成分である(メタ)アクリル酸アルキルとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート等が例示できる。また、ヒドロキシアルキル(メタ)アクリレートとしては2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート等が例示できる。
【0010】
A成分中のA1成分は40〜85モル%、A2成分は15〜60モル%、A3成分は0〜5モル%が好ましい。これらの範囲外では分散性能が低下する傾向にある。
【0011】
特に分散性能及び回収率の観点から、A1成分としてメタクリル酸又はその塩を55〜75モル%及びA2成分としてメトキシポリエチレングリコール(メタ)アクリレートを25〜45モル%(A1成分とA2成分の合計100モル%)含む水溶性ビニル共重合体が好ましく、なかでもA1成分としてメタクリル酸又はその塩を50〜72モル%、A2成分としてメトキシポリエチレングリコール(メタ)アクリレートを25〜40モル%及び(メタ)アリルスルホン酸塩を0.1〜10モル%(A1成分とA2成分の合計100モル%)含む水溶性ビニル共重合体がより好ましい。
【0012】
また、水溶性ビニル共重合体の数平均分子量は2000〜50000が好ましい。この範囲外では分散性能が低下する傾向がある。なお、本発明において数平均分子量は、GPC法によるプルラン換算値である。
【0013】
セメント分散剤の水溶液中で生成させる無機担体としては、炭酸カルシウム、二水石膏、炭酸リチウム、炭酸マグネシウム及び硫酸バリウムから選ばれる1種又は2種以上が挙げられる。炭酸カルシウム、炭酸リチウム又は炭酸マグネシウムの生成方法としては、それぞれ水酸化カルシウム、水酸化リチウム又は水酸化マグネシウムをセメント分散剤の水溶液に溶解又は懸濁させた状態で、二酸化炭素を吹き込む方法が例示できる。また、二水石膏又は硫酸バリウムの生成方法としては、それぞれ水酸化カルシウム又は水酸化バリウムをセメント分散剤の水溶液に溶解又は懸濁させた状態で、硫酸を添加する方法が例示できる。かかる方法によれば微細な無機担体(粉体)が生成するため、優れた固結防止効果が得られる。生成させる粉体量は、セメント分散剤(固形分換算)100重量部に対し0.1〜300重量部であり、1〜100重量部が好ましい。粉体量が0.1重量部未満では固結防止効果が十分でなく、300重量部を超えるとセメント分散剤の含有量が少なくなってセメント分散効果が低下する。
【0014】
前記の無機担体が生成したセメント分散剤水溶液の乾燥・粉末化の方法としては、噴霧乾燥器を用いることができる。噴霧乾燥における乾燥条件としては熱風入口温度150〜250℃及び熱風出口温度80〜150℃の温度範囲が好ましい。熱風入口温度が150℃未満では粉末状セメント分散剤の生産効率が低下し、250℃を超えるとセメント分散剤が熱変性を受けてセメント分散性能が低下する。熱風出口温度が80℃未満では粉末の含水率が高くなってブロッキングが発生しやすく、150℃を超えるとセメント分散剤が熱変性を受けて分散性能が低下する。
【0015】
本発明の粉末状分散剤が使用できるセメントは、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、高ビーライトポルトランドセメント、高炉セメント、フライアッシュ含有セメント又はシリカフューム含有セメントを例示できる。
【0016】
【実施例】
合成例1(水溶性ビニル共重合体a1の合成)
200Lのガラスライニング製の反応容器に水200部を仕込み、攪拌しながら加温して、内温を80℃に保った。メタクリル酸60部とメトキシポリエチレングリコール(オキシエチレン基の繰り返し数n=23)メタクリレート334部、3−メルカプトプロピオン酸4.7部及び水390部との混合物と20%過硫酸ナトリウム水溶液25部を共に2時間かけて反応容器に滴下した。更に、20%過硫酸ナトリウム水溶液10部を30分かけて滴下し、同温度で1時間熟成させた。次に冷却しながら48%NaOH58部を滴下して反応液を中和した。この反応液は、メタクリル酸を70モル%、メトキシポリエチレングリコール(n=23)メタクリレートを30モル%(合計100モル%)の割合で共重合反応した、数平均分子量23000の水溶性ビニル共重合体を40質量%含有する水溶液であった。
【0017】
合成例2(水溶性ビニル共重合体a2〜a5の合成)
合成例1と同様にして、水溶性ビニル共重合体a2〜a5を合成した。モノマーの種類、反応比率、水溶性ビニル共重合体の数平均分子量、水溶性ビニル共重合体の濃度を表1にまとめた。
【0018】
【表1】

Figure 2004299953
【0019】
無機担体の合成例
(1)無機担体懸濁液 S1〜S3
100Lのガラスライニング製反応容器に水溶性ビニル共重合体a1、a2又はa3を50部、Ca(OH)を8.6部水を30部投入し、冷却しながら、98%HSO11.4部を2時間かけて徐々に滴下して二水石膏を生成させた。得られた二水石膏を含むa1、a2又はa3の懸濁水溶液をそれぞれS1、S2又はS3として表2に示す。なお、a1、a2又はa3と二水石膏の合計の固形分濃度は40質量%である。
【0020】
(2)無機担体懸濁液 S4〜S5
100Lのガラスライニング製反応容器に水溶性ビニル共重合体a4又はa5を50部、Ca(OH)を14.6部、水を26.4部添加し、撹拌しながら、二酸化炭素8.8部を2時間かけて吹き込み炭酸カルシウムを生成させた。得られた炭酸カルシウムを含むa1又はa2の懸濁水溶液をそれぞれS4又はS5として表2に示す。なお、a4又はa5と炭酸カルシウムの合計の固形分濃度は40質量%である。
【0021】
(3)無機担体懸濁液 S6
100Lのガラスライニング製反応器に水溶性ビニル共重合体a1を50部、重質炭酸カルシウム(丸尾カルシウム社製)を20部水を30部投入し、a1と重質炭酸カルシウムの合計の固形分濃度を40質量%に調整した。重質炭酸カルシウムを含むa1の懸濁水溶液をS6として表2に示す。
【0022】
(4)無機担体懸濁液 S7
100Lのガラスライニング製反応器に水溶性ビニル共重合体a1を50部、弗酸石膏(セントラル硝子社製)を20部水を30部投入し、a1と弗酸石膏の合計の固形分濃度を40質量%に調整した。弗酸石膏を含むa1の懸濁水溶液をS7として表2に示す。
【0023】
【表2】
Figure 2004299953
【0024】
乾燥・粉末化
噴霧乾燥装置として塔径3.2m、高さ7.9mのスプレードライヤを用い、噴霧装置としてディスクアトマイザーを使用して、熱風入口温度を200℃、熱風出口温度を100℃に維持しながら、ディスクアトマイザーの回転速度を24000rpmの条件で、無機粉体懸濁液S1〜S7を90kg/hrの流量で噴霧し乾燥させた。無機粉体懸濁液S1〜S7から得られた粉末状セメント分散剤をそれぞれP1〜P7として、これらの平均粒径を表3に示す。なお平均粒子径はセイシン企業社製粒度分布測定器RSP−85Pを用いて測定した。
【0025】
固結試験
前記の粉末状セメント分散剤P1〜P7を恒温・恒湿槽に入れて含水率が2質量%になるよう調湿した。含水率はケット科学社製赤外線水分計FD−600を用いて、サンプル量5g、加熱温度110℃、加熱時間30分の条件で測定した。次に、製品の袋詰状態のモデルとして、チャック式のビニール袋(寸法:7cm×10cm)に粉末状セメント分散剤50gを一杯に充填してチャックを閉じて密封した状態で、恒温乾燥機に入れ70℃で5時間加温した。次に、当該乾燥機から粉末状セメント分散剤を充填させたビニール袋を取り出し、このビニール袋の上に直接金属製のおもり(荷重25g/cm)を載置して20℃の恒温室内に24時間放置した。24時間経過後、ビニール袋から固結した粉末状セメント分散剤を金属製容器に取り出し、JIS A 1147−201「コンクリートの凝結時間試験方法」で使用される貫入抵抗試験装置を用いて、固結した粉末状セメント分散剤の上面全体に均等に荷重を加えた。そして固結した粉末状セメント分散剤が崩壊した時点の荷重を最大荷重とし、この最大荷重を荷重面積で除した値を固結度とした。この結果を表3に示す。なお、実用上、固結度は2N/cm以下が好ましく、1N/cm以下がより好ましい値である。
【0026】
【表3】
Figure 2004299953
【0027】
表3から分かるように、本発明の粉末状セメント分散剤(実施例1〜5)は全て、炭酸カルシウム又は二水石膏を添加して調整したセメント分散剤(比較例1又は2)と比べ固結度が約1/2以下に低下して固結しにくくなっている。
【0028】
【発明の効果】
本発明の粉末状セメント分散剤の製造方法に係る粉末状セメント分散剤は、固結しにくい。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing a powdery cement dispersant which is hard to be consolidated.
[0002]
[Prior art]
At present, in the field of civil engineering and construction, a powdery cement dispersant is becoming popular as a dispersant to be added to premix products. Known types of the powdery cement dispersant include melamine sulfonate formaldehyde condensate, naphthalene sulfonate formaldehyde condensate, and polycarboxylate. Among them, powder cement dispersants containing polycarboxylate as a main component, which can provide good fluidity even at a low water cement ratio, have been widely used.
[0003]
However, when the powdery cement dispersant is stored in a bag, it may solidify due to the storage conditions, for example, the influence of the ambient temperature and the loading load. In particular, the higher the degree of fineness and the higher the temperature of the granular material at the start of storage, the more the degree of consolidation becomes significant. As a result, work such as crushing or pulverization of the solidified matter is required at the time of use, and there is a problem that the working efficiency is reduced. On the other hand, as a method of preventing caking, a method of surface coating of powder (JP-A-48-96732) and a method of mixing zeolite (JP-A-51-1648) have been proposed. When applied to a powdery cement dispersant, it is not practical due to problems such as a decrease in dispersing performance due to surface coating and an increase in cost.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 48-96732 [Patent Document 2]
JP-A-51-1648 [0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for producing a powdery cement dispersant that is hardly consolidated.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, in an aqueous solution of a specific cement dispersant, after synthesizing an inorganic carrier, and drying the aqueous solution, a powdery cement dispersant obtained is The present inventors have found that it is difficult to consolidate and completed the present invention.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The cement dispersant used in the present invention is a copolymer comprising the following monomer components.
That is, acrylic acid and methacrylic acid are preferable as the olefin monocarboxylic acid as the A1 component. Examples of the salt of olefin monocarboxylic acid include one or more of alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium, ammonium salts, and organic amine salts such as diethanolamine and triethanolamine. Salts selected from are preferred.
[0008]
Examples of the alkoxypolyethylene glycol (meth) acrylate as the component A2 include monoalkoxypolyethylene glycol having an alkoxy having 1 to 3 carbon atoms, such as monomethoxy polyethylene glycol, monoethoxy polyethylene glycol, and mono (iso) propoxy polyethylene glycol, and (meth) Examples thereof include esters with acrylic acid, and among them, methoxypolyethylene glycol (meth) acrylate having 5 to 100 repeating oxyethylene groups is preferable. If the number of repeating units is less than 5, the dispersing performance becomes insufficient, and if it exceeds 100, it becomes a solid having a high melting point and handling becomes difficult. As the (meth) allyl sulfonic acid salt of the component A2, an alkali metal salt, an alkaline earth metal salt, an organic amine or the like of (meth) allyl sulfonic acid can be used. In the present invention, as the A2 component, one or more selected from the above-mentioned alkoxypolyethylene glycol (meth) acrylate and the above-mentioned (meth) allylsulfonic acid are preferable.
[0009]
Examples of the alkyl (meth) acrylate that is the A3 component include methyl (meth) acrylate and ethyl (meth) acrylate. Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate and 3-hydroxypropyl (meth) acrylate.
[0010]
The A1 component in the A component is preferably 40 to 85 mol%, the A2 component is preferably 15 to 60 mol%, and the A3 component is preferably 0 to 5 mol%. Outside these ranges, the dispersion performance tends to decrease.
[0011]
In particular, from the viewpoint of dispersion performance and recovery rate, 55 to 75 mol% of methacrylic acid or a salt thereof as the A1 component and 25 to 45 mol% of methoxypolyethylene glycol (meth) acrylate as the A2 component (a total of 100 Water-soluble vinyl copolymer containing methacrylic acid or a salt thereof as an A1 component, 25 to 40 mol% of methoxypolyethylene glycol (meth) acrylate as an A2 component, and (meth) A water-soluble vinyl copolymer containing 0.1 to 10 mol% of the allyl sulfonate (100 mol% in total of the A1 component and the A2 component) is more preferable.
[0012]
The number average molecular weight of the water-soluble vinyl copolymer is preferably from 2,000 to 50,000. Outside this range, the dispersion performance tends to decrease. In the present invention, the number average molecular weight is a pullulan converted value by the GPC method.
[0013]
Examples of the inorganic carrier generated in the aqueous solution of the cement dispersant include one or more selected from calcium carbonate, gypsum, lithium carbonate, magnesium carbonate, and barium sulfate. Examples of the method for producing calcium carbonate, lithium carbonate or magnesium carbonate include a method in which calcium hydroxide, lithium hydroxide or magnesium hydroxide is dissolved or suspended in an aqueous solution of a cement dispersant, and carbon dioxide is blown. . Examples of the method for producing gypsum or barium sulfate include a method in which calcium hydroxide or barium hydroxide is dissolved or suspended in an aqueous solution of a cement dispersant, and sulfuric acid is added. According to this method, a fine inorganic carrier (powder) is generated, so that an excellent anti-caking effect can be obtained. The amount of the powder to be generated is 0.1 to 300 parts by weight, preferably 1 to 100 parts by weight, per 100 parts by weight of the cement dispersant (in terms of solid content). If the amount of the powder is less than 0.1 part by weight, the effect of preventing solidification is not sufficient, and if the amount exceeds 300 parts by weight, the content of the cement dispersant is reduced and the effect of dispersing the cement is reduced.
[0014]
As a method for drying and pulverizing the aqueous solution of the cement dispersant produced by the inorganic carrier, a spray dryer can be used. As the drying conditions in the spray drying, a hot air inlet temperature of 150 to 250 ° C and a hot air outlet temperature of 80 to 150 ° C are preferable. If the hot air inlet temperature is lower than 150 ° C., the production efficiency of the powdery cement dispersant decreases, and if it exceeds 250 ° C., the cement dispersant undergoes thermal denaturation and the cement dispersing performance decreases. If the hot air outlet temperature is lower than 80 ° C., the water content of the powder increases and blocking easily occurs. If the temperature exceeds 150 ° C., the cement dispersant undergoes thermal denaturation and the dispersing performance decreases.
[0015]
Examples of the cement to which the powdery dispersant of the present invention can be used include ordinary Portland cement, early-strength Portland cement, moderately heated Portland cement, high belite Portland cement, blast furnace cement, fly ash-containing cement and silica fume-containing cement.
[0016]
【Example】
Synthesis Example 1 ( Synthesis of water-soluble vinyl copolymer a1)
200 parts of water was charged into a 200-liter glass-lined reaction vessel, and heated while stirring to maintain the internal temperature at 80 ° C. A mixture of 60 parts of methacrylic acid, 334 parts of methoxypolyethylene glycol (repeating number of oxyethylene groups: n = 23) methacrylate, 4.7 parts of 3-mercaptopropionic acid and 390 parts of water, and 25 parts of a 20% aqueous sodium persulfate solution together The solution was dropped into the reaction vessel over 2 hours. Further, 10 parts of a 20% aqueous sodium persulfate solution was added dropwise over 30 minutes, and the mixture was aged at the same temperature for 1 hour. Next, while cooling, 58 parts of 48% NaOH was added dropwise to neutralize the reaction solution. This reaction solution was obtained by subjecting 70 mol% of methacrylic acid and 30 mol% of methoxypolyethylene glycol (n = 23) methacrylate to a copolymerization reaction (100 mol% in total), a water-soluble vinyl copolymer having a number average molecular weight of 23,000. Was an aqueous solution containing 40% by mass.
[0017]
Synthesis Example 2 ( Synthesis of water-soluble vinyl copolymers a2 to a5)
In the same manner as in Synthesis Example 1, water-soluble vinyl copolymers a2 to a5 were synthesized. Table 1 summarizes the types of monomers, the reaction ratio, the number average molecular weight of the water-soluble vinyl copolymer, and the concentration of the water-soluble vinyl copolymer.
[0018]
[Table 1]
Figure 2004299953
[0019]
Synthesis example of inorganic carrier (1) Inorganic carrier suspension S1 to S3
50 parts of water-soluble vinyl copolymer a1, a2 or a3, 8.6 parts of Ca (OH) 2 , and 30 parts of water are charged into a 100 L glass-lined reaction vessel, and 98% H 2 SO 4 is added while cooling. 4 11.4 parts were gradually added dropwise over 2 hours to form gypsum. The aqueous suspensions of a1, a2, or a3 containing the obtained gypsum are shown in Table 2 as S1, S2, or S3, respectively. The total solid concentration of a1, a2, or a3 and gypsum dihydrate is 40% by mass.
[0020]
(2) Inorganic carrier suspension S4 to S5
50 parts of a water-soluble vinyl copolymer a4 or a5, 14.6 parts of Ca (OH) 2 , and 26.4 parts of water were added to a 100 L glass-lined reaction vessel, and 8.8 carbon dioxide was added with stirring. The part was blown over 2 hours to produce calcium carbonate. The obtained aqueous suspension of a1 or a2 containing calcium carbonate is shown in Table 2 as S4 or S5, respectively. The total solid concentration of a4 or a5 and calcium carbonate is 40% by mass.
[0021]
(3) Inorganic carrier suspension S6
50 parts of a water-soluble vinyl copolymer a1 to a glass lined reactor 100L, 20 parts of heavy calcium carbonate (manufactured by Maruo Calcium Co.), water was charged 30 parts of the total solid of the ground calcium carbonate and a1 The partial concentration was adjusted to 40% by mass. An aqueous suspension of a1 containing heavy calcium carbonate is shown in Table 2 as S6.
[0022]
(4) Inorganic carrier suspension S7
50 parts of a water-soluble vinyl copolymer a1 to a glass lined reactor 100L, 20 parts hydrofluoric acid gypsum (Central Glass Co., Ltd.), water was charged 30 parts of the solid content of the sum of a1 and hydrofluoric acid plaster Was adjusted to 40% by mass. Table 2 shows an aqueous suspension of a1 containing hydrofluoric gypsum as S7.
[0023]
[Table 2]
Figure 2004299953
[0024]
Drying / pulverization A spray dryer having a tower diameter of 3.2 m and a height of 7.9 m was used as a spray dryer, and a disk atomizer was used as a spray device. While maintaining the temperature at 100 ° C., the inorganic powder suspensions S1 to S7 were sprayed and dried at a flow rate of 90 kg / hr under the condition that the rotation speed of the disk atomizer was 24,000 rpm. Table 3 shows the average particle diameters of the powdery cement dispersants obtained from the inorganic powder suspensions S1 to S7, respectively, as P1 to P7. The average particle size was measured using a particle size distribution analyzer RSP-85P manufactured by Seishin Enterprise.
[0025]
Consolidation test The above-mentioned powdery cement dispersants P1 to P7 were put into a constant temperature / humidity chamber and adjusted to a moisture content of 2% by mass. The water content was measured using an infrared moisture meter FD-600 manufactured by Kett Kagaku KK under the conditions of a sample amount of 5 g, a heating temperature of 110 ° C, and a heating time of 30 minutes. Next, as a model of the bagged state of the product, a chuck-type plastic bag (dimensions: 7 cm × 10 cm) is filled with 50 g of the powdery cement dispersant, and the chuck is closed and sealed. The mixture was heated at 70 ° C. for 5 hours. Next, a plastic bag filled with the powdery cement dispersant is taken out of the dryer, and a metal weight (load 25 g / cm 2 ) is directly placed on the plastic bag and placed in a constant temperature chamber at 20 ° C. It was left for 24 hours. After a lapse of 24 hours, the powdered cement dispersant solidified from the plastic bag is taken out into a metal container, and solidified using a penetration resistance test apparatus used in JIS A 1147-201 “Method of setting time for concrete”. A load was evenly applied to the entire upper surface of the powdered cement dispersant. The load when the consolidated powdery cement dispersant collapsed was defined as the maximum load, and the value obtained by dividing the maximum load by the load area was defined as the consolidation degree. Table 3 shows the results. Incidentally, practically, Katayuido is preferably 2N / cm 2 or less, 1N / cm 2 or less is more preferred value.
[0026]
[Table 3]
Figure 2004299953
[0027]
As can be seen from Table 3, all of the powdery cement dispersants of the present invention (Examples 1 to 5) were harder than the cement dispersants prepared by adding calcium carbonate or gypsum (Comparative Example 1 or 2). The degree of consolidation is reduced to about 1/2 or less, making it difficult to consolidate.
[0028]
【The invention's effect】
The powdery cement dispersant according to the method for producing a powdery cement dispersant of the present invention does not easily solidify.

Claims (2)

下記のA成分の水溶液中で、無機担体を合成した後、該水溶液を乾燥させて粉末化することを特徴とする粉末状セメント分散剤の製造方法。
A成分:下記のA1成分を40〜85モル%、A2成分を15〜60モル%及びA3成分0〜5モル%(合計100モル%)含み、かつ数平均分子量が2000〜50000の水溶性ビニル共重合体。
A1成分:オレフィンモノカルボン酸及びその塩から選ばれる1種又は2種以上
A2成分:アルコキシポリエチレングリコール(メタ)アクリレート及び(メタ)アリルスルホン酸塩から選ばれる1種又は2種以上
A3成分:(メタ)アクリル酸アルキル及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種又は2種以上
A method for producing a powdery cement dispersant, comprising: synthesizing an inorganic carrier in an aqueous solution of the following component A; and drying the aqueous solution to obtain a powder.
A component: a water-soluble vinyl containing 40 to 85 mol% of the following A1 component, 15 to 60 mol% of the A2 component and 0 to 5 mol% of the A3 component (total 100 mol%), and having a number average molecular weight of 2,000 to 50,000. Copolymer.
A1 component: One or more selected from olefin monocarboxylic acids and salts thereof A2 component: One or more selected from alkoxy polyethylene glycol (meth) acrylate and (meth) allyl sulfonate A3 component: ( One or more selected from alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates
前記無機担体が炭酸カルシウム、二水石膏、炭酸リチウム、炭酸マグネシウム及び硫酸バリウムから選ばれる1種又は2種以上であることを特徴とする請求項1に記載の粉末状セメント分散剤の製造方法。The method for producing a powdery cement dispersant according to claim 1, wherein the inorganic carrier is at least one selected from calcium carbonate, gypsum, lithium carbonate, magnesium carbonate, and barium sulfate.
JP2003093656A 2003-03-31 2003-03-31 Method for producing powdery cement dispersant Pending JP2004299953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093656A JP2004299953A (en) 2003-03-31 2003-03-31 Method for producing powdery cement dispersant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093656A JP2004299953A (en) 2003-03-31 2003-03-31 Method for producing powdery cement dispersant

Publications (1)

Publication Number Publication Date
JP2004299953A true JP2004299953A (en) 2004-10-28

Family

ID=33406393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093656A Pending JP2004299953A (en) 2003-03-31 2003-03-31 Method for producing powdery cement dispersant

Country Status (1)

Country Link
JP (1) JP2004299953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173702A (en) * 2011-01-04 2011-09-07 彭野 Microprojectile composite mortar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173702A (en) * 2011-01-04 2011-09-07 彭野 Microprojectile composite mortar

Similar Documents

Publication Publication Date Title
CN103339083B (en) Powdery accelerator
WO2006059723A1 (en) Powdery polycarboxylic-acid cement dispersant and dispersant composition containing the dispersant
EP2699526A1 (en) Accelerator composition
JP7328979B2 (en) Manufacture of calcium hydroxide nanoparticles and their use as hardening accelerators in mineral binder compositions
CN107531568B (en) Method for producing a hardening accelerator comprising calcium silicate hydrate in powder form
US20220185732A1 (en) High water reduction powder preparation for dry mortar
JP2004299953A (en) Method for producing powdery cement dispersant
JP2004299956A (en) Method for producing powdery cement dispersant
JP7120988B2 (en) Powder dispersant composition for hydraulic composition
JP2003206168A (en) Powdery cement dispersing agent composition
JP4212088B2 (en) Method of preventing caking of granulated blast furnace slag or its particle size adjusted product
JP4367842B2 (en) Method for producing powdered cement dispersant
WO2021132317A1 (en) Method for producing powder dispersant composition for hydraulic composition
JP2003277113A (en) Method for producing powdery cement dispersant
JP7286609B2 (en) Method for producing powder dispersant composition for hydraulic composition
JP3703769B2 (en) Method for granulating raw materials for iron making
JP5100934B2 (en) Method for producing powdered cement dispersant
CN114929644A (en) Method for preparing a dispersant in solid form and use thereof in mineral binder compositions
JP2015509037A (en) Improved efficiency of equipment that separates solid particles according to particle size
JP4836261B2 (en) Anti-caking agent of granulated blast furnace slag or its particle size
JPH05319889A (en) Hydraulic cement composition
JP7112606B1 (en) Powder dispersant composition for hydraulic composition
JP2003277112A (en) Method for producing powdery cement dispersant
JP4263039B2 (en) Anti-caking agent and anti-caking method for granulated blast furnace slag or its particle size adjusted product
CN101469040B (en) Polyelectrolyte for dispersing aqueous inorganic color stuffing and preparation thereof