JP2004299923A - Method of manufacturing hardened body using recycled material and having excellent freeze damage resistance and hardened body having excellent freeze damage resistance - Google Patents

Method of manufacturing hardened body using recycled material and having excellent freeze damage resistance and hardened body having excellent freeze damage resistance Download PDF

Info

Publication number
JP2004299923A
JP2004299923A JP2003091732A JP2003091732A JP2004299923A JP 2004299923 A JP2004299923 A JP 2004299923A JP 2003091732 A JP2003091732 A JP 2003091732A JP 2003091732 A JP2003091732 A JP 2003091732A JP 2004299923 A JP2004299923 A JP 2004299923A
Authority
JP
Japan
Prior art keywords
aggregate
amount
cured product
recycled material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003091732A
Other languages
Japanese (ja)
Other versions
JP5052734B2 (en
Inventor
Yoshihiro Takano
良広 高野
Masao Nakagawa
雅夫 中川
Eiji Kiso
英滋 木曽
Hisahiro Matsunaga
久宏 松永
Fumio Kogiku
史男 小菊
Masato Takagi
正人 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nippon Steel Corp
Original Assignee
JFE Steel Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Nippon Steel Corp filed Critical JFE Steel Corp
Priority to JP2003091732A priority Critical patent/JP5052734B2/en
Publication of JP2004299923A publication Critical patent/JP2004299923A/en
Application granted granted Critical
Publication of JP5052734B2 publication Critical patent/JP5052734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a hardened body using a recycled material and having excellent freeze damage resistance and the hardened body having excellent freeze damage resistance. <P>SOLUTION: The method of manufacturing the hardened body is performed by using the recycled material for the whole or a part of respective aggregate and powder the whole or a part of which is a binder, adding water and an admixture into the aggregate and the powder, kneading and hardening by the hydration reaction of water with the binder. At least one of the blending quantity of total of water and the powder per the whole volume of the hardened body, the adding quantity of the admixture and the ratio of water to the binder is controlled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリートに類する硬化体、とりわけ耐凍害性が要求される寒冷地や低温品貯蔵施設に用いる硬化体に関するものである。
【0002】
【従来の技術】
土木建築施設の建設に用いるコンクリートは、その優れた経済性や強度および造形自由度の高さから、これまで多くの適用実積を有する基礎資材である。コンクリート分野では、用途の多様化に伴い、要求性能を具備させるための様々な技術開発がなされている。例えば、超高層建築を可能とする高強度コンクリートや、閉塞空間への充填や充填時の作業負荷軽減が可能な高流動コンクリート等が、最近の技術開発成果として挙げられる。このような技術開発成果の中で、寒冷地や低温品貯蔵施設に用いる、いわゆる耐凍害性が必要なコンクリートについては、古くから多くの研究開発が行われており、その成果として、AE(Air−Entrainment)剤等の混和剤を用いてコンクリート中に、全体の容積率で4〜7%の微細な空気を連行し、凍結に伴う膨張圧を連行した空気の緩衝作用にて抑制する方法や、水セメント比を小さくして硬化体の硬化組織を緻密化する方法などが、凍害性を向上させる汎用的な技術として広く用いられている。
【0003】
しかしコンクリートは、構成材料として、製造過程で大量のCOを発生するセメントや天然資源である砕石や砂を用いるため、昨今の地球温暖化防止や天然資源の保護という観点からは多くの問題を抱える材料である。このため最近では、コンクリートに代わる新しい硬化体の開発と導入が切望されるようになっている。
【0004】
このような状況下、最近、これらの要求に応える技術として、リサイクル材を用いた各種の硬化体に関する技術が提案されている。例えば、(特許文献1)では、鉄鋼スラグと石炭灰を適切な割合で混合したコンクリート用の細骨材が提案されている。また、(特許文献2)では、製鋼スラグを骨材に用い、結合材としてポゾラン反応性を有するシリカ物質を用いる技術が開示されている。さらに、(特許文献3)では、製鋼スラグとポゾラン反応性を有するシリカ含有物質を混合したものを、水と常温で練り混ぜてなる硬化体の製造方法が開示されている。これらは、前記コンクリートが抱える地球温暖化や天然資源保護といった問題に応えうる技術であり、今後、コンクリートに代わる技術として適用が期待されるものである。
【0005】
【特許文献1】
特開平10−287454号公報
【特許文献2】
特開平10−152364号公報
【特許文献3】
特開2001−114547号公報
【0006】
【発明が解決しようとする課題】
前記(特許文献1)〜(特許文献3)のリサイクル材を用いた硬化体に関する技術は、材料の表面に気泡や凹凸の多いスラグを用いること、細骨材やポゾラン反応性を有する物質に石炭灰を用いる場合があること等から、硬化体の性能として耐凍害性が要求される場合、これにかなう硬化体が得られにくいという欠点がある。すなわち、硬化体中の骨材の役割を担うスラグ類は、表面の気泡や凹凸の影響で、吸水率が天然の骨材に比べて大きく、スラグの表面に吸着した水分が、凍結作用を受けることにより膨張し、周囲のペースト部の組織が破壊される。また、細骨材やポゾラン反応性物質として用いる石炭灰は、未燃焼カーボン等の影響により、微細な空気が連行されにくく、凍結時の膨張作用に対する緩衝機能を付与しにくいという課題がある。さらに、これらリサイクル材を用いた硬化体は、配合設計や各材料の配合量が大きく異なるため、これら条件の変化によっても耐凍害性が著しく変化する可能性を有している。これらのことから、リサイクル材を用いた硬化体においては、これまでコンクリートの耐凍害性確保のための手段として用いられてきた、硬化体全体に微細な空気を一定量以上連行する方法や、硬化体の硬化組織を緻密化する方法が、耐凍害性確保の有効な手段となり得ていない。
【0007】
以上の状況から、前記リサイクル材を用いた硬化体においては、耐凍害性を付与するための技術や画一的な方法がいまだ開示されておらず、耐凍害性を保証する硬化体を製造できるに至っていない。このため、適用領域が耐凍害性を必要としない地域や構造物に限られ、環境負荷を低減できる技術として広く利用される状況になっていない。
【0008】
本発明は、前記リサイクル材を用いた硬化体の抱える耐凍害性の問題を鑑み、この解決を図るべく、リサイクル材を用いた耐凍害性に優れる硬化体の製造方法およびリサイクル材を用いた耐凍害性に優れる硬化体を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、前記の課題を解決すべく発明されたものであって、リサイクル材を用いた硬化体の耐凍害性の製造方法および耐凍害性に優れる硬化体を提供するものである。
【0010】
第一の発明は、骨材、および全部または一部が結合材である粉体について、それぞれ全部または一部にリサイクル材を用い、骨材と粉体に水と混和剤を添加して混練することにより、水と結合材との水和反応で硬化させる硬化体の製造方法であって、硬化体全体容積に対する水と粉体の合計の配合量、混和剤の添加量、水結合材比のうち、少なくとも1つを調整することを特徴とするリサイクル材を用いた耐凍害性に優れる硬化体の製造方法。
【0011】
第二の発明は、骨材、および全部または一部が結合材である粉体について、それぞれ全部または一部にリサイクル材を用い、骨材と粉体に水と混和剤を添加して混練することにより、水と結合材との水和反応で硬化させる硬化体の製造方法であって、下記(1)式の左辺の値が所定の値a以上となるように、混和剤により連行されるペースト中の空気量、水結合材比、硬化体全体容積に対するペースト配合量のうち、少なくとも1つを調整することを特徴とするリサイクル材を用いた耐凍害性に優れる硬化体の製造方法。
【式1】

Figure 2004299923
【0012】
第三の発明は、第一の発明または第二の発明により製造される硬化体であって、骨材の全部または一部に用いるリサイクル材が、高炉スラグ、還元スラグを除く製鋼スラグのいずれか一方または双方であることを特徴とするリサイクル材を用いた耐凍害性に優れる硬化体。
【0013】
第四の発明は、第一の発明または第二の発明により製造される硬化体であって、粉体の全部または一部に用いるリサイクル材が、高炉スラグ微粉末、フライアッシュのいずれか一方または双方であることを特徴とするリサイクル材を用いた耐凍害性に優れる硬化体。
【0014】
第五の発明は、第一の発明または第二の発明により製造される硬化体であって、骨材の全部または一部に用いるリサイクル材が、高炉スラグ、還元スラグを除く製鋼スラグのいずれか一方または双方であり、かつ粉体の全部または一部に用いるリサイクル材が、高炉スラグ微粉末、フライアッシュのいずれか一方または双方であることを特徴とするリサイクル材を用いた耐凍害性に優れる硬化体。
【0015】
【発明の実施の形態】
以下、本発明に至った経緯を含め、発明の実施の形態を説明する。
【0016】
骨材の全部または一部、および粉体の全部または一部にリサイクル材を用いる硬化体には、種々の材料が用いられる。骨材としては、コンクリート廃材、ごみ溶融炉スラグおよび鉄鋼スラグ等が用いられ、粉体としては、高炉スラグ微粉末、フライアッシュ、砕石粉および各種集塵粉等が用いられる。粉体の内、高炉スラグ微粉末およびフライアッシュの一部は結合材として見なされ、セメントの代替材料として用いられている。これらリサイクル材を用いた硬化体は、リサイクル材のみで形成する場合と、骨材として天然砕石や天然砂、あるいは粉体としてセメント等と混合して形成される場合とがある。
【0017】
コンクリートのような硬化体の耐凍害性の評価は、JIS A 1148「コンクリートの凍結融解試験方法」による方法が一般に用いられており、本試験による凍結融解の繰り返しサイクルで300サイクル以上に渡り一定以上の相対動弾性係数を維持し、結果として得られる耐久性指数(DF値)が70以上であれば、通常の場合、耐凍害性有りと判断される。
【0018】
前記のリサイクル材を用いた硬化体においても、この試験方法により耐凍害性の評価が行われているが、コンクリートと同様の考え方、すなわち、硬化体全体容積に対して微細な空気を連行する製造方法では、安定的に70以上のDF値を得る硬化体は得られていない。
【0019】
本発明者らは、リサイクル材を用いた硬化体が、コンクリートに較べて耐凍害性に劣る原因を分析するため、凍結融解作用を受けた硬化体の浸食状況を詳細に調査し、次のような、凍結融解作用に対する浸食メカニズムを見出すに至った。
▲1▼スラグのような表面に気泡が多いリサイクル材を骨材として用いると、表面に蓄えられた水分が凍結作用により膨張し、周囲の組織を破壊せしめ、これが浸食の起点となる。この現象は、骨材の実積率より求まる空隙量より、水と粉体により得られるペースト状のもの(以下、「ペースト」と記載する)の量が少ない場合に顕著となる。
▲2▼硬化体中に連行される空気は、主としてペースト部に存在する。従って、凍結作用での水分の膨張によるペースト部の浸食を防止することが、凍結融解作用に対する抵抗性を高める。そのためには、ペースト部を配合上緻密にして水分の膨張に耐えられる様にするために、水結合材比を小さくしつつ、ペースト部中の空気量を制御することが重要である。
▲3▼ペースト部の量が、骨材の空隙量に対して多すぎる場合、粉体の配合量が多くなる分、フレッシュ時の粘性が高くなり、練混ぜ時のエントラップトエアー(巻き込み空気)が増大する。これらのことから、ペースト部に硬化組織が、脆弱化なものになりやすい。
以上の結果から、骨材の空隙量に対するペースト部の量は、多すぎても少なすぎても上記の問題があるため、適正な量を配合すること、ペースト部を配合上緻密になる様に水結合材比を小さくすることを新たに知見した。さらにペースト中の空気量は多いほど、凍結時の膨張作用に対する緩衝機能は向上するものの、硬化体の強度が低下していくため、適正な空気量に調整することが重要である。
すなわち上記は、
(1)骨材の実積率と配合量をもとに骨材の空隙量を求め、これと同じ量のペースト量を適正ペースト量とし、この適正ペースト量と実際のペーストの配合量との差が小さくなる様に配合することで、骨材界面や硬化体としての脆弱化を抑制する。尚、実際には上記の骨材の空隙量より若干多い量のペースト量を適正ペースト量とすることが、現実的である。
(2)ペースト部の空気量を調整することで、凍結時の膨張圧に対する緩衝作用を制御する。
(3)水結合材比を調整することで、ペースト部の硬化組織の緻密さを制御する。
の技術思想のもとに、耐凍害性に優れる硬化体の製造を可能ならしめるものである。
これらの3つの因子の少なくとも1つを調整することで、リサイクル材を用いた骨材と粉体に、水と混和剤を添加して混練することで、耐凍害性に優れる硬化体を得ることができることを見出した。上記3つの因子のうちの1つの因子だけを調整しても、耐凍害性に優れる硬化体を得ることはできるが、複数因子を調整した方が、管理上好ましい。
【0020】
従って、実際に耐凍害性に優れるリサイクル材を用いた硬化体を得る方法としては、以下の様なケースが通常多い。
▲1▼骨材の実積率と配合量をもとに骨材の空隙量を求め、この空隙量に応じた硬化体全体容積に対するペースト部の配合量、ペースト部の空気量、および水結合材比を耐凍害性が得られる範囲に調整する製造方法。
▲2▼骨材とペースト部の配合量が、材料供給事情等により任意に変化する場合の配合の制御方法として、ペースト部の空気量や水結合材比を調整する製造方法。
【0021】
以下に、本発明の実施形態を詳細に説明する。
【0022】
硬化体の製造にあたっては、使用する骨材は、通常与条件となる。骨材の実積率は、JIS A 1104「骨材の単位容積質量及び実積率試験方法」により、
(骨材の実積率=単位容積質量/骨材の密度)により求められる。また、骨材の空隙量は、この骨材の実積率と骨材の配合量をもとに
骨材の空隙量=(骨材の配合量/骨材の密度)×[(1/骨材の実積率)−1]
より求まる。この骨材の空隙量に対し若干割り増したペースト部の全体容積に対する配合量が、適正ペースト量となる。ここで、若干割り増した量は特に規定するものではなく、適宜設定すれば良いものの、3〜6%程度が実績の点から好ましい。
【0023】
一方、ペースト部の空気量は、混和剤であるAE剤等を用いて調整する。混和剤の添加量は、ペースト部の空気量が所望の値になる様に、適宜設定すれば良い。
ペースト部の空気量は、骨材と練混ぜられた状態では直接計量することが困難なため、JIS A 1128「フレッシュコンクリートの空気量の圧力による試験方法」等により硬化体全体の空気量を求め、
(ペースト部の空気量=全体の空気量/ペースト部の配合率)より求める。尚、リサイクル材を骨材として用いる場合、骨材の表面に気泡や凹凸が多いため、JIS A 1128「フレッシュコンクリートの空気量の圧力による試験方法」等により硬化体全体の空気量を求める場合は、同JISに定められている方法により、予め骨材修正係数を測定しておき、試験により求めた空気量から、これを差し引いた値を全体の空気量とすることが必要である。
【0024】
次に水結合材比であるが、これはペースト部中の水と結合材の比で定義される。水結合材比は、硬化体の強度を左右するため、所望の強度となるように水結合材比を決定し、ペースト部の残りを他の粉体材料で構成する。但し、耐凍害性を付与するために、ペースト部に所定量の空気を連行するのに伴い強度低下を併発するため、水結合材比は、耐凍害性を必要としない場合より低めに設定することが望ましい。
【0025】
以上の骨材の実積率と配合量をもとにした骨材の空隙量より求めた適正ペースト量をベースに、ペースト部の全体容積に対する配合量、ペースト部の空気量および水結合材比を耐凍害性が得られる範囲に制御することで、耐凍害性に優れる硬化体の製造が可能となる。
【0026】
次に、上記3つの因子を定量的に規定した式を用いた場合について説明する。
まず、上記3つの因子の特性は以下の通りである。
・適正ペースト量と実際のペーストの配合量との差が小さいほど、硬化体としての脆弱化を抑制できる。
・ペースト部の空気量は大きいほど、凍結時の膨張圧に対する緩衝作用を制御する。
・水結合材比は小さいほど、ペースト部の硬化組織は緻密になる。
これらのことを考慮して、硬化体が耐凍害性を安定的に確保するかどうかを(1)式の形で表現できることを新たに見出した。ここで(1)式中の「適正ペースト量とペースト配合量の差より求まる係数」は、適正ペースト量と実際に配合されるペースト部の配合量の差が大きい程、この係数は小さくなる様にしたものであれば良い。従って(1)式の左辺の値が大きいほど、硬化体の耐凍害性を安定的に確保できていることを示している。
また、(1)式の右辺のaの値は、種々のリサイクル材を用いて得られた硬化体のDF値が70以上となる場合に相当する値であれば、特に規定するものではなく、所定の値を適宜設定すれば良い。
すなわち、(1)式の左辺が所定の値a以上となるよう、ペースト部の配合量、ペースト部の空気量および水結合材比を制御するものである。
【式1】
Figure 2004299923
【0027】
上記(1)式を用いた実施手順の例を以下に示す。
▲1▼.使用する骨材の実積率をもとに、骨材の空隙量を求め、この空隙量よりも3〜6%程度多い量である適正ペースト量を求める。
▲2▼.配合上の制約がない場合は、(全容積−適正ペースト量)から、骨材の配合量を求める。ペースト部や骨材の配合量に制約がある場合は、これら制約をもとに、実際のペースト部の配合量を求め、適正ペースト量との差から求まる係数を求める。
▲3▼.ペースト部の配合は、フレッシュ時の流動性確保のため、まず水の量を決め、これに対して所望の強度となるよう結合材の量を求め、残りをリサイクル材を含む他の粉体で構成する。
▲4▼.最後に(1)式のaの値が、所定の値以上となるように、ペースト部の空気量を求める。
【0028】
これらの方法によれば、配合条件を任意に設定できる場合、あるいは材料供給事情により配合条件の制約がある場合の双方について、ペースト部の配合量や空気量および水結合材比を制御することで、耐凍害性に優れるリサイクル材を用いた硬化体の配合条件を策定することができる。
【0029】
さらにこの方法により、これまで安定的に耐凍害性を得ることができなかった以下のリサイクル材を用いた硬化体も利用できる。すなわち、
▲1▼骨材の全部または一部に、高炉スラグや還元スラグを除く製鋼スラグいずれか一方または双方を用いた硬化体。
▲2▼結合材を含む粉体の全部または一部に、高炉スラグ微粉末およびフライアッシュいずれか一方または双方を用いた硬化体。
▲3▼骨材の全部または一部に、高炉スラグや還元スラグを除く製鋼スラグいずれか一方または双方を用い、かつ結合材を含む粉体の全部または一部に、高炉スラグ微粉末およびフライアッシュいずれか一方または双方を用いた硬化体。
上記▲1▼、▲3▼において、高炉スラグは、高炉スラグ粗骨材や路盤材に用いる徐冷スラグや高炉スラグ細骨材や土工用に用いる水砕スラグを用いる。製鋼スラグは、水和膨張により硬化体に影響を及ぼすfree−CaOやfree−MgOを多量に含有するものがあるため、十分エージング処理を施したものを用いる。尚、還元スラグは、エージング効果が得にくいと想定されるため、本発明への適用には適さない。
また、上記▲2▼、▲3▼において、高炉スラグ微粉末は、JIS A 6206「コンクリート用高炉スラグ微粉末」に規定されるものを用いる。尚、セッコウを添加したもの、しないものいずれも使用可能である。また、フライアッシュは、JIS A 6201「コンクリート用フライアッシュ」に規定される品質を満足するものを用いることが望ましいが、品質が確認されればこれ以外のフライアッシュも適用可能である。但し、フレッシュ時の品質を安定させる観点からは、強熱減量が5%以下のものを用いることが好適である。
【0030】
【実施例】
以下、実施例をもとに本発明を説明する。尚、本発明は、これらに限定されるものではない。
【0031】
まず、比較例、本発明の実施例に使用した材料の物性を一括して以下に示す。
1.高炉スラグ微粉末(BP):JIS A 6206,比表面積4000cm/g,密度2.95g/cm
2.セメント(BB):高炉セメントB種、密度3.05g/cm
3.製鋼スラグ(SS):粒度0〜25mm,絶乾密度3.05g/cm,実積率68%
4.高炉スラグ(BG):粒度5〜25mm,表乾密度2.65g/cm,実積率65%
5.水砕スラグ(BS):JIS 5011−1,粗粒率3.01,表乾密度2.69g/cm,実積率62%
6.フライアッシュ(FA):JIS A 6201(II種相当),比表面積3400 cm/g,
密度2.20g/cm
7.アルカリ刺激材(CA):消石灰(JIS R 9001),密度2.24g/cm
8.天然砕石(NG):粒度5〜25mm,表乾密度2.71g/cm,実積率65%
9.天然砂(NS):粗粒率2.70,表乾密度2.60g/cm,実積率67%
10.混和剤(AD):リグニンスルホン酸系減水剤,変性アルキルカルボン酸系AE
助剤
【0032】
表1に比較例および本発明の実施例の一覧を示す。表1中の配合系統No.1−1〜1−6は、骨材および粉体ともにリサイクル材を用いた例であり、配合設定上の制約がない中で耐凍害性を確保するための方法を検討したものである。No.1−1〜1.5が従来の考え方である硬化体全容積に対して連行空気量を制御する方法にて製造したものであり、No.1−6が本発明、すなわち、骨材である製鋼スラグ、水砕スラグの実積率より求まる空隙率とそれぞれの配合量より、空隙量(31%)を求め、適正ペースト量として、ペースト部の配合量をこれより若干多い35%とし、それをもとにペースト部の空気量と水結合材比を、(1)式の概念をもとにした(2)式による照査式で設定して製造したものである。
【式2】
Figure 2004299923
ここに、 Air:硬化体中の全体の空気量。JIS A 1128により求める(%)
Vp:ペースト部(粉体材料と水)の配合量(m/硬化体1m
VT:連行空気量を除く材料の硬化体1m中の全体積(m
RG:骨材の空隙量=(骨材の配合量/骨材の密度)(1/骨材の実積率−1)(無次元量)
W:硬化体1m中の水の配合質量(kg)
C:硬化体1m中の結合材の配合質量(kg)
【0033】
【表1】
Figure 2004299923
【0034】
また、表1の配合系統No.2−1〜2−5および3−1〜3−5は、リサイクル材の供給制約から、配合制約がある場合の例であり、No.2−1〜2−5がペースト部の配合量が多くなる場合、No.3−1〜3−5がペースト部の配合量が少ない場合を示している。この場合、骨材とペースト部の配合量が与条件となるため、ペースト部の空気量、水結合材を(1)式の概念をもとにした(2)式による照査式にて制御することで、耐凍害性を得た。
【0035】
さらに、表−1中、配合系統No.4−1〜4−5は、前記製造方法により、種々のリサイクル材を用いた硬化体の例である。それぞれについて、以下に説明する。
▲1▼No.4−1は、骨材の一部に高炉スラグと水砕スラグを用いた硬化体である。
▲2▼No.4−2は、骨材の全部に製鋼スラグと水砕スラグを用いた硬化体である。
▲3▼No.4−3は、粉体の一部に高炉スラグ微粉末とフライアッシュを用いた硬化体である。
▲4▼No.4−4は、粉体の全部に高炉スラグ微粉末とアルカリ刺激材である消石灰、およびフライアッシュを用いた硬化体である。
▲5▼No.4−5は、骨材の全てに製鋼スラグと水砕スラグを、粉体の全てに高炉スラグ微粉末とアルカリ刺激材である消石灰、およびフライアッシュを用いた硬化体である。
いずれの硬化体においても、DF値が耐凍害性有りと判断される70以上となっており、本発明により、安定的に耐凍害性を有する硬化体を得ることが可能なことを示している。
【0036】
図1に、比較例として、従来法、すなわち、コンクリートと同様に硬化体全容積に対して空気を連行する方法にて製造したNo.1−1〜1−5、No.2−1〜2−4およびNo.3−1〜3−4の硬化体中の空気量と耐久性指数(DF値)の関係を示す。各配合系統とも空気量増大に伴いDF値の改善は認められるものの、各配合系統とも十分な耐凍害性を得るには至っておらず、また配合系統ごとにDF値が大きく変動することが伺われ、従来法にて安定的に耐凍害性を有する硬化体を製造することは困難であることが分かる。
【0037】
図2に、表1中の全てのデータについて、比較例として、従来法の考え方の延長であるペースト部の空気量と耐久性指数(DF値)との関係を示す。図1に比べ、ある程度相関はよくなるものの、DF値70を与えるペースト部の空気量(15%程度)で大きくばらついており、指標としての信頼性に欠けるため、安定的に耐凍害性を得る方法にはなり得ないことが示唆される。
【0038】
図3に、本発明である、前記(2)式で求めたaの値と耐久性指数(DF値)の関係を示す。これより、材料や配合条件の変動に関係なく、よい相関があることが伺われる。すなわち、本実施例に示したa値を制御パラメータとして、目標とするDF値となるよう配合設定を行うことで、耐凍害性に優れたリサイクル材を用いた硬化体を安定的に製造することが可能となることを示している。
【0039】
【発明の効果】
本発明により、リサイクル材を用いた硬化体について、耐凍害性を安定的に確保した硬化体の製造が可能となる。また、これまで耐凍害性が要求される場合に利用できなかった製鋼スラグ、高炉スラグ等の骨材や高炉スラグ微粉末、フライアッシュ等の粉体を用いた硬化体が提供できる。
【0040】
【図面の簡単な説明】
【図1】従来法による硬化体と耐久性指数(DF値)の関係を示したグラフ(比較例)
【図2】従来法の延長の考え方であるペースト部中の空気量と耐久性指数(DF値)の関係を示したグラフ(比較例)
【図3】本発明による制御パラメータと耐久性指数(DF値)の関係を示したグラフ(実施例)[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a cured product similar to concrete, particularly to a cured product used in a cold region or a low-temperature storage facility where frost damage resistance is required.
[0002]
[Prior art]
Concrete used for the construction of civil engineering and building facilities is a basic material that has been used in many applications so far because of its excellent economy, strength, and high degree of freedom in molding. In the concrete field, with the diversification of applications, various technologies have been developed to provide required performance. For example, high-strength concrete capable of building a high-rise building, high-fluid concrete capable of filling a closed space and reducing the work load at the time of filling, and the like are recent technological development results. Among such technical development results, many researches and developments have been made on concrete that requires so-called frost damage resistance, which is used in cold regions and low-temperature storage facilities, and as a result, AE (Air) A method of entraining fine air of 4 to 7% by volume ratio in concrete by using an admixture such as an entraining agent or the like, and suppressing an expansion pressure caused by freezing by a buffer action of the entrained air; A method of reducing the water-cement ratio and densifying the hardened structure of a hardened body is widely used as a general-purpose technique for improving frost damage.
[0003]
However concrete, as a material, since the use of crushed stone or sand is cement and natural resources for generating a large amount of CO 2 in the manufacturing process, many problems from the viewpoint of protection of the recent global warming and natural resources It is a material to hold. For this reason, there has recently been a growing demand for the development and introduction of a new hardened material that can replace concrete.
[0004]
Under such circumstances, techniques relating to various cured bodies using recycled materials have recently been proposed as techniques that meet these demands. For example, Patent Document 1 proposes a fine aggregate for concrete in which steel slag and coal ash are mixed at an appropriate ratio. Patent Document 2 discloses a technique using steelmaking slag as an aggregate and using a silica material having pozzolan reactivity as a binder. Further, Patent Document 3 discloses a method for producing a cured product obtained by kneading a mixture of steelmaking slag and a silica-containing substance having pozzolan reactivity with water at room temperature. These are technologies capable of responding to the problems of the concrete, such as global warming and protection of natural resources, and are expected to be applied as a technology replacing concrete in the future.
[0005]
[Patent Document 1]
JP-A-10-287454 [Patent Document 2]
JP-A-10-152364 [Patent Document 3]
JP 2001-11447 A
[Problems to be solved by the invention]
The techniques relating to the cured product using the recycled material described in (Patent Document 1) to (Patent Document 3) include the use of slag having many air bubbles and irregularities on the surface of the material, and the use of coal as a fine aggregate or a material having pozzolan reactivity. If ash damage resistance is required as the performance of the cured body, there is a disadvantage that it is difficult to obtain a cured body that meets this requirement, because ash may be used. In other words, the slag that plays the role of the aggregate in the cured body has a greater water absorption than natural aggregate due to the effects of air bubbles and unevenness on the surface, and the water adsorbed on the surface of the slag undergoes a freezing action. As a result, it expands, and the structure of the surrounding paste portion is destroyed. In addition, coal ash used as fine aggregate or pozzolanic reactive substance has a problem that fine air is hardly entrained due to the influence of unburned carbon and the like, and it is difficult to provide a buffer function against an expansion action during freezing. Further, the cured products using these recycled materials have a great possibility of drastically changing the frost resistance due to the change of these conditions because the mixing design and the mixing amount of each material are greatly different. Based on these facts, in the case of a cured product using recycled materials, a method of entraining fine air over a fixed amount over the entire cured product, which has been used as a means to ensure the frost resistance of concrete, The method of densifying the hardened structure of the body cannot be an effective means for securing the frost resistance.
[0007]
From the above situation, in the cured body using the recycled material, a technique or a uniform method for imparting frost damage resistance has not yet been disclosed, and a cured body that guarantees frost damage resistance can be manufactured. Has not been reached. For this reason, the application area is limited to areas and structures that do not require frost damage resistance, and it has not been widely used as a technology capable of reducing environmental load.
[0008]
The present invention has been made in view of the problem of frost damage resistance of a cured product using the recycled material, and in order to solve the problem, a method for producing a cured product having excellent frost resistance using a recycled material and a method of using the recycled material. It is an object of the present invention to provide a cured product having excellent frost resistance.
[0009]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a method for producing a frost-resistant hardened body using a recycled material, and a hardened body excellent in frost-damage resistance.
[0010]
In the first invention, for the aggregate, and for the powder whose whole or part is a binder, a recycled material is used for all or part of the aggregate, and water and an admixture are added to the aggregate and the powder and kneaded. By this, a method for producing a cured product that is cured by a hydration reaction between water and a binder, wherein the total amount of water and powder with respect to the total volume of the cured product, the amount of an admixture added, A method for producing a cured product excellent in frost damage resistance using a recycled material, wherein at least one is adjusted.
[0011]
According to a second aspect of the present invention, the aggregate and the powder whose whole or part is a binder are all or partially made of a recycled material, and water and an admixture are added to the aggregate and the powder and kneaded. This is a method for producing a cured product that is cured by a hydration reaction between water and a binder, and is entrained by an admixture so that the value on the left side of the following equation (1) becomes a predetermined value a or more. A method for producing a cured product excellent in frost damage resistance using a recycled material, wherein at least one of an amount of air in a paste, a water binder ratio, and an amount of a paste relative to the total volume of the cured product is adjusted.
(Equation 1)
Figure 2004299923
[0012]
A third invention is a hardened body produced according to the first invention or the second invention, wherein the recycled material used for all or a part of the aggregate is any one of blast furnace slag and steelmaking slag excluding reduced slag. A cured product excellent in frost damage resistance using a recycled material characterized by one or both.
[0013]
The fourth invention is a cured product produced according to the first invention or the second invention, wherein the recycled material used for all or a part of the powder is one of blast furnace slag fine powder, fly ash or A cured product with excellent frost damage resistance using recycled materials characterized by both.
[0014]
The fifth invention is a cured product produced according to the first invention or the second invention, wherein the recycled material used for all or a part of the aggregate is any one of blast furnace slag and steelmaking slag excluding reduced slag. One or both, and the recycled material used for all or a part of the powder is blast furnace slag fine powder, one or both of fly ash, and is excellent in frost damage resistance using the recycled material. Cured body.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described, including the circumstances that led to the present invention.
[0016]
Various materials are used for a cured body using a recycled material for all or a part of the aggregate and all or a part of the powder. As the aggregate, waste concrete, refuse melting furnace slag, steel slag, and the like are used, and as the powder, blast furnace slag fine powder, fly ash, crushed stone powder, various dust collection powders, and the like are used. Among the powders, some of the blast furnace slag fine powder and fly ash are regarded as binders and are used as substitutes for cement. A cured product using these recycled materials may be formed of only recycled materials, or may be formed by mixing natural crushed stone or natural sand as an aggregate or cement with a powder.
[0017]
The evaluation of frost damage resistance of a hardened material such as concrete is generally performed according to JIS A 1148 “Test method for freezing and thawing concrete”. Is maintained, and if the resulting durability index (DF value) is 70 or more, it is determined that there is frost damage resistance in a normal case.
[0018]
In the case of a cured product using the above-mentioned recycled material, the evaluation of frost damage resistance has been carried out by this test method. According to the method, a cured product that stably obtains a DF value of 70 or more has not been obtained.
[0019]
The present inventors analyzed the erosion status of the hardened body subjected to the freeze-thaw action in detail to analyze the cause of the hardened body using the recycled material being inferior to frost damage resistance as compared with concrete, and as follows. We have now found an erosion mechanism for freeze-thaw.
{Circle around (1)} When a recycled material having many air bubbles on the surface, such as slag, is used as an aggregate, the moisture stored on the surface expands due to the freezing action, destroying the surrounding tissue, and this becomes the starting point of erosion. This phenomenon is remarkable when the amount of a paste-like material (hereinafter, referred to as “paste”) obtained from water and powder is smaller than the void amount obtained from the actual volume ratio of the aggregate.
{Circle around (2)} The air entrained in the cured body mainly exists in the paste portion. Therefore, preventing the erosion of the paste portion due to the expansion of water due to the freezing action increases the resistance to the freezing and thawing action. To this end, it is important to control the amount of air in the paste portion while reducing the water binder ratio in order to make the paste portion dense in composition and to withstand the expansion of moisture.
{Circle around (3)} When the amount of the paste portion is too large with respect to the void amount of the aggregate, the viscosity at the time of freshness becomes higher and the entrapped air at the time of kneading (entrapped air) as the amount of the powder increases. Increase. For these reasons, the hardened structure in the paste portion tends to become brittle.
From the above results, the amount of the paste portion with respect to the void amount of the aggregate is too large or too small because of the above-described problem, so that an appropriate amount is blended, and the paste portion is densely blended. It was newly found that the water binder ratio was reduced. Furthermore, as the amount of air in the paste increases, the buffering function against the expansion effect during freezing improves, but the strength of the cured body decreases. Therefore, it is important to adjust the amount of air to an appropriate amount.
That is,
(1) The amount of voids in the aggregate is determined based on the actual volume ratio and the amount of the aggregate, and the same amount of paste is determined as the appropriate amount of paste. By blending so as to reduce the difference, the interface between the aggregates and the brittleness as a cured product are suppressed. In practice, it is practical to set the paste amount slightly larger than the void amount of the aggregate as the appropriate paste amount.
(2) By controlling the amount of air in the paste portion, the buffering effect on the expansion pressure during freezing is controlled.
(3) The density of the hardened structure in the paste portion is controlled by adjusting the water binder ratio.
Based on the technical idea described above, it is possible to produce a cured product having excellent frost damage resistance.
By adjusting at least one of these three factors, water and an admixture are added to the aggregate and powder using the recycled material and kneaded to obtain a cured product having excellent frost resistance. I can do it. Even if only one of the above three factors is adjusted, a cured product excellent in frost damage resistance can be obtained, but adjusting a plurality of factors is preferable for management.
[0020]
Therefore, as a method of actually obtaining a cured product using a recycled material excellent in frost damage resistance, the following cases are usually common.
{Circle around (1)} The void amount of the aggregate is determined based on the actual volume ratio and the blend amount of the aggregate, and the blend amount of the paste portion, the air amount of the paste portion, and the water binding with respect to the total volume of the cured body according to the void amount. A production method in which the material ratio is adjusted to a range where frost damage resistance can be obtained.
{Circle around (2)} A production method in which the amount of air in the paste portion and the water binder ratio are adjusted as a method of controlling the mixture when the amount of the aggregate and the paste portion is arbitrarily changed depending on the material supply circumstances and the like.
[0021]
Hereinafter, embodiments of the present invention will be described in detail.
[0022]
In the production of the cured product, the aggregate to be used is usually given conditions. According to JIS A 1104 "Aggregate unit volume mass and actual volume ratio test method",
(Actual rate of aggregate = unit volume mass / density of aggregate). The void amount of the aggregate is calculated based on the actual volume ratio of the aggregate and the blended amount of the aggregate, the void amount of the aggregate = (the blended amount of the aggregate / density of the aggregate) × [(1 / bone Actual material rate) -1)
Find more. The blending amount with respect to the total volume of the paste portion slightly increased with respect to the void amount of the aggregate is the appropriate paste amount. Here, the slightly increased amount is not particularly specified, and may be appropriately set. However, about 3 to 6% is preferable from the viewpoint of performance.
[0023]
On the other hand, the amount of air in the paste portion is adjusted using an AE agent or the like as an admixture. The amount of the admixture may be appropriately set so that the amount of air in the paste portion becomes a desired value.
Since it is difficult to directly measure the amount of air in the paste portion while being kneaded with the aggregate, the air amount of the entire cured body is determined according to JIS A 1128 "Test method for air amount of fresh concrete by pressure". ,
(Amount of air in the paste portion = total air amount / mixing ratio of the paste portion). When the recycled material is used as an aggregate, since there are many bubbles and irregularities on the surface of the aggregate, when the air amount of the entire hardened body is obtained by JIS A 1128 "Test method of air amount of fresh concrete by pressure" or the like, It is necessary to measure the aggregate correction coefficient in advance by the method specified in the JIS, and to subtract the value from the air amount obtained by the test to obtain the total air amount.
[0024]
Next, the water binder ratio is defined by the ratio of water to the binder in the paste portion. Since the water binder ratio affects the strength of the cured product, the water binder ratio is determined so as to have a desired strength, and the rest of the paste portion is made of another powder material. However, in order to impart frost damage resistance, the strength of the paste portion is reduced in conjunction with the entrainment of a predetermined amount of air, so the water binder ratio is set lower than when no frost damage resistance is required. It is desirable.
[0025]
Based on the appropriate paste amount obtained from the void volume of the aggregate based on the actual volume ratio and the blend amount of the above aggregate, the blend amount, the air amount of the paste portion and the water binder ratio based on the total volume of the paste portion By controlling the temperature in a range where frost damage resistance can be obtained, it becomes possible to produce a cured product having excellent frost damage resistance.
[0026]
Next, a case where an equation that quantitatively defines the above three factors is used will be described.
First, the characteristics of the above three factors are as follows.
-The smaller the difference between the proper paste amount and the actual paste mixing amount, the more the brittleness of the cured body can be suppressed.
-The larger the amount of air in the paste portion, the more the buffering action against the expansion pressure during freezing is controlled.
-The smaller the water binder ratio, the denser the hardened structure of the paste portion.
In view of these facts, it has been newly found that whether or not the cured body stably secures the frost damage resistance can be expressed in the form of equation (1). Here, the “coefficient obtained from the difference between the proper paste amount and the paste mixing amount” in the equation (1) is such that the larger the difference between the proper paste amount and the actual mixing amount of the paste portion is, the smaller this coefficient is. Anything is acceptable. Therefore, the larger the value on the left side of the equation (1), the more stable the frost damage resistance of the cured product can be secured.
The value of a on the right side of the equation (1) is not particularly limited as long as it is a value corresponding to the case where the DF value of the cured product obtained using various recycled materials is 70 or more. A predetermined value may be set as appropriate.
That is, the blending amount of the paste portion, the air amount of the paste portion, and the water binder ratio are controlled so that the left side of the expression (1) is equal to or larger than the predetermined value a.
(Equation 1)
Figure 2004299923
[0027]
An example of an implementation procedure using the above equation (1) is shown below.
▲ 1 ▼. The void amount of the aggregate is determined based on the actual volume ratio of the aggregate to be used, and an appropriate paste amount that is about 3 to 6% larger than the void amount is determined.
▲ 2 ▼. If there is no restriction on the blending, the blending amount of the aggregate is determined from (total volume-appropriate paste amount). If there are restrictions on the amount of the paste portion and the aggregate, the actual amount of the paste portion is determined based on these restrictions, and the coefficient determined from the difference from the appropriate amount of the paste is determined.
(3). To ensure the fluidity at the time of freshness, first determine the amount of water, then determine the amount of binder to obtain the desired strength, and use the remaining powder with other powders including recycled materials to ensure the desired strength. Constitute.
▲ 4 ▼. Finally, the amount of air in the paste portion is determined so that the value of a in equation (1) is equal to or greater than a predetermined value.
[0028]
According to these methods, both in the case where the mixing conditions can be set arbitrarily or in the case where there are restrictions on the mixing conditions due to the material supply circumstances, by controlling the mixing amount of the paste portion, the air amount and the water binder ratio. In addition, it is possible to formulate the blending conditions of a cured product using a recycled material having excellent frost damage resistance.
[0029]
Furthermore, a cured product using the following recycled material, which has not been able to stably obtain frost damage resistance by this method, can also be used. That is,
(1) A hardened body using one or both of steelmaking slags other than blast furnace slag and reduced slag for all or a part of the aggregate.
{Circle over (2)} A cured product using one or both of blast furnace slag fine powder and fly ash for all or a part of the powder containing the binder.
(3) Use one or both of steelmaking slags other than blast furnace slag and reduced slag for all or part of the aggregate, and use blast furnace slag fine powder and fly ash for all or part of the powder containing the binder. A cured product using either one or both.
In the above (1) and (3), as the blast furnace slag, slow-cooled slag used for blast furnace slag coarse aggregate and roadbed material, blast furnace slag fine aggregate, and granulated slag used for earthworks are used. Since some steelmaking slags contain a large amount of free-CaO or free-MgO that affects the hardened body due to hydration expansion, those that have been subjected to a sufficient aging treatment are used. Note that the reduced slag is not suitable for application to the present invention because it is assumed that the aging effect is difficult to obtain.
In the above (2) and (3), the blast furnace slag fine powder used is that specified in JIS A 6206 “Blast furnace slag fine powder for concrete”. It should be noted that any of those with and without gypsum can be used. It is desirable to use fly ash that satisfies the quality specified in JIS A 6201 “Fly ash for concrete”. However, if the quality is confirmed, other fly ash can be applied. However, from the viewpoint of stabilizing the quality at the time of freshness, it is preferable to use one having a loss on ignition of 5% or less.
[0030]
【Example】
Hereinafter, the present invention will be described based on examples. Note that the present invention is not limited to these.
[0031]
First, physical properties of materials used in comparative examples and examples of the present invention are collectively shown below.
1. Blast furnace slag fine powder (BP): JIS A 6206, specific surface area 4000 cm 2 / g, density 2.95 g / cm 3
2. Cement (BB): Blast furnace cement B type, density 3.05 g / cm 3
3. Steelmaking slag (SS): Particle size 0 to 25 mm, absolute dry density 3.05 g / cm 3 , actual product rate 68%
4. Blast furnace slag (BG): Particle size 5 to 25 mm, surface dry density 2.65 g / cm 3 , actual product rate 65%
5. Granulated slag (BS): JIS 5011-1, coarse grain ratio 3.01, surface dry density 2.69 g / cm 3 , actual product rate 62%
6. Fly ash (FA): JIS A 6201 (equivalent to class II), specific surface area 3400 cm 2 / g,
Density 2.20 g / cm 3
7. Alkali stimulant (CA): slaked lime (JIS R 9001), density 2.24 g / cm 3
8. Natural crushed stone (NG): Particle size 5 to 25 mm, surface dry density 2.71 g / cm 3 , actual product ratio 65%
9. Natural sand (NS): Coarse grain ratio 2.70, surface dry density 2.60 g / cm 3 , actual product ratio 67%
10. Admixture (AD): Lignin sulfonic acid type water reducing agent, modified alkyl carboxylic acid type AE
Auxiliaries [0032]
Table 1 shows a list of comparative examples and examples of the present invention. In Table 1, the blending system No. 1-1 to 1-6 are examples in which a recycled material is used for both the aggregate and the powder, and a method for securing the frost damage resistance without any restriction on the setting of the composition is examined. No. Nos. 1-1 to 1.5 are manufactured by the conventional method of controlling the entrained air amount with respect to the total volume of the cured body. 1-6 is the present invention, that is, the void amount (31%) is obtained from the porosity obtained from the actual volume ratio of the steelmaking slag and the granulated slag as aggregates and the respective blending amounts, and the paste portion is determined as an appropriate paste amount. Is slightly higher than 35%, and based on this, the air content of the paste portion and the water binder ratio are set by the reference formula of the formula (2) based on the concept of the formula (1). It was manufactured.
[Equation 2]
Figure 2004299923
Here, Air: the total amount of air in the cured body. Calculated according to JIS A 1128 (%)
Vp: blending amount of paste part (powder material and water) (m 3 / cured body 1 m 3 )
VT: Total volume (m 3 ) in 1 m 3 of the cured product of the material excluding the amount of entrained air
RG: Void amount of aggregate = (mixed amount of aggregate / density of aggregate) (1 / actual rate of aggregate-1) (dimensionless amount)
W: Compounding mass of water in 1 m 3 of cured product (kg)
C: Compounding mass (kg) of binder in 1 m 3 of cured product
[0033]
[Table 1]
Figure 2004299923
[0034]
In addition, the blending system No. Nos. 2-1 to 2-5 and 3-1 to 3-5 are examples in which there is a mixing restriction due to a supply restriction of the recycled material. Nos. 2-1 to 2-5, when the blending amount of the paste portion is large, 3-1 to 3-5 show cases where the amount of the paste portion is small. In this case, since the blending amount of the aggregate and the paste portion is a given condition, the air amount and the water binder in the paste portion are controlled by the reference formula (2) based on the concept of the formula (1). As a result, frost damage resistance was obtained.
[0035]
Furthermore, in Table 1, the blending system No. 4-1 to 4-5 are examples of cured products using various recycled materials according to the production method. Each is described below.
(1) No. 4-1 is a cured product using blast furnace slag and granulated slag as a part of the aggregate.
(2) No. 4-2 is a hardened body using steelmaking slag and granulated slag for all of the aggregate.
(3) No. 4-3 is a cured product using blast furnace slag fine powder and fly ash as part of the powder.
(4) No. No. 4-4 is a cured product using blast furnace slag fine powder, slaked lime as an alkali stimulant, and fly ash for all of the powder.
(5) No. No. 4-5 is a cured product using steelmaking slag and granulated slag for all of the aggregates, blast furnace slag fine powder, slaked lime as an alkali stimulant, and fly ash for all of the powders.
In any of the cured products, the DF value was 70 or more, which is judged to be freezing-resistant, indicating that the present invention makes it possible to stably obtain a cured product having freezing-resistance. .
[0036]
FIG. 1 shows, as a comparative example, No. 1 manufactured by a conventional method, that is, a method of entraining air to the entire volume of a hardened body similarly to concrete. 1-1 to 1-5; Nos. 2-1 to 2-4 and Nos. The relationship between the amount of air in the cured product and the durability index (DF value) of 3-1 to 3-4 is shown. Although the DF value improved with an increase in the amount of air in each blending system, sufficient frost damage resistance was not obtained in each blending system, and the DF value varied greatly for each blending system. It can be seen that it is difficult to stably produce a cured product having frost damage resistance by a conventional method.
[0037]
FIG. 2 shows the relationship between the amount of air in the paste portion and the durability index (DF value), which is an extension of the conventional method, for all the data in Table 1 as a comparative example. Compared to FIG. 1, although the correlation is improved to some extent, the air amount (about 15%) in the paste portion giving a DF value of 70 greatly varies, and the reliability as an index is lacking. Is not possible.
[0038]
FIG. 3 shows the relationship between the value of a and the durability index (DF value) obtained by the equation (2) according to the present invention. This suggests that there is a good correlation irrespective of the variation of the materials and the blending conditions. In other words, by using the a value shown in the present example as a control parameter and setting the blending so as to obtain the target DF value, it is possible to stably produce a cured body using a recycled material having excellent frost damage resistance. Is possible.
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION By this invention, about the hardened body using a recycled material, manufacture of the hardened body which ensured the frost damage resistance stably is attained. Further, it is possible to provide a hardened body using aggregates such as steelmaking slag and blast furnace slag, and powder such as blast furnace slag fine powder and fly ash, which could not be used when frost damage resistance is required.
[0040]
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a cured product obtained by a conventional method and a durability index (DF value) (comparative example).
FIG. 2 is a graph showing a relationship between the amount of air in a paste portion and a durability index (DF value), which is a concept of extension of the conventional method (comparative example).
FIG. 3 is a graph showing a relationship between a control parameter and a durability index (DF value) according to the present invention (Example).

Claims (5)

骨材、および全部または一部が結合材である粉体について、それぞれ全部または一部にリサイクル材を用い、骨材と粉体に水と混和剤を添加して混練することにより、水と結合材との水和反応で硬化させる硬化体の製造方法であって、硬化体全体容積に対する水と粉体の合計の配合量、混和剤の添加量、水結合材比のうち、少なくとも1つを調整することを特徴とするリサイクル材を用いた耐凍害性に優れる硬化体の製造方法。For the aggregate and the powder that is all or part of the binder, the recycled material is used for all or part of the aggregate, and water and an admixture are added to the aggregate and the powder and kneaded to combine with the water. A method for producing a cured product which is cured by a hydration reaction with a material, wherein at least one of a total blended amount of water and powder, an added amount of an admixture, and a water binder ratio relative to the total volume of the cured product. A method for producing a cured body having excellent frost damage resistance using a recycled material, characterized in that it is adjusted. 骨材、および全部または一部が結合材である粉体について、それぞれ全部または一部にリサイクル材を用い、骨材と粉体に水と混和剤を添加して混練することにより、水と結合材との水和反応で硬化させる硬化体の製造方法であって、下記(1)式の左辺の値が所定の値a以上となるように、混和剤により連行されるペースト中の空気量、水結合材比、硬化体全体容積に対するペースト配合量のうち、少なくとも1つを調整することを特徴とするリサイクル材を用いた耐凍害性に優れる硬化体の製造方法。
【式1】
Figure 2004299923
The aggregate and the powder, which are all or part of the binder, are all or partially made of recycled material, and water and admixture are added to the aggregate and the powder and kneaded to combine with the water. A method for producing a cured product cured by a hydration reaction with a material, wherein the amount of air in the paste entrained by the admixture is set so that the value on the left side of the following equation (1) becomes a predetermined value a or more, A method for producing a cured product excellent in frost damage resistance using a recycled material, wherein at least one of a water binder ratio and a paste compounding amount with respect to a total volume of the cured product is adjusted.
(Equation 1)
Figure 2004299923
請求項1または2に記載された方法により製造される硬化体であって、骨材の全部または一部に用いるリサイクル材が、高炉スラグ、還元スラグを除く製鋼スラグのいずれか一方または双方であることを特徴とするリサイクル材を用いた耐凍害性に優れる硬化体。A hardened material produced by the method according to claim 1 or 2, wherein the recycled material used for all or a part of the aggregate is one or both of blast furnace slag and steelmaking slag excluding reduced slag. A cured product that uses recycled materials and has excellent frost damage resistance. 請求項1または2に記載された方法により製造される硬化体であって、粉体の全部または一部に用いるリサイクル材が、高炉スラグ微粉末、フライアッシュのいずれか一方または双方であることを特徴とするリサイクル材を用いた耐凍害性に優れる硬化体。A cured product produced by the method according to claim 1 or 2, wherein the recycled material used for all or a part of the powder is one or both of blast furnace slag fine powder and fly ash. A cured product with excellent frost damage resistance using a recycled material. 請求項1または2に記載された方法により製造される硬化体であって、骨材の全部または一部に用いるリサイクル材が、高炉スラグ、還元スラグを除く製鋼スラグのいずれか一方または双方であり、かつ粉体の全部または一部に用いるリサイクル材が、高炉スラグ微粉末、フライアッシュのいずれか一方または双方であることを特徴とするリサイクル材を用いた耐凍害性に優れる硬化体。A hardened body produced by the method according to claim 1 or 2, wherein the recycled material used for all or a part of the aggregate is one or both of blast furnace slag and steelmaking slag excluding reduced slag. A cured product excellent in frost damage resistance using a recycled material, characterized in that a recycled material used for all or a part of the powder is one or both of blast furnace slag fine powder and fly ash.
JP2003091732A 2003-03-28 2003-03-28 Manufacturing method of cured body with excellent frost damage resistance using recycled materials and cured body with excellent frost damage resistance using recycled materials Expired - Lifetime JP5052734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091732A JP5052734B2 (en) 2003-03-28 2003-03-28 Manufacturing method of cured body with excellent frost damage resistance using recycled materials and cured body with excellent frost damage resistance using recycled materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091732A JP5052734B2 (en) 2003-03-28 2003-03-28 Manufacturing method of cured body with excellent frost damage resistance using recycled materials and cured body with excellent frost damage resistance using recycled materials

Publications (2)

Publication Number Publication Date
JP2004299923A true JP2004299923A (en) 2004-10-28
JP5052734B2 JP5052734B2 (en) 2012-10-17

Family

ID=33405032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091732A Expired - Lifetime JP5052734B2 (en) 2003-03-28 2003-03-28 Manufacturing method of cured body with excellent frost damage resistance using recycled materials and cured body with excellent frost damage resistance using recycled materials

Country Status (1)

Country Link
JP (1) JP5052734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074603A (en) * 2013-10-11 2015-04-20 ランデス株式会社 Mortar or concrete composition using blast furnace slag fine aggregate, having improved resistance to frost damage, and product molded therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281057A (en) * 1985-06-06 1986-12-11 日鐵セメント株式会社 Composition for high strength high endurance mortar concrete
JP2000264703A (en) * 1999-03-19 2000-09-26 Taiheiyo Cement Corp Frost damage resistant, high strength lightweight concrete
JP2002179451A (en) * 2000-12-08 2002-06-26 Nippon Steel Corp Concrete or mortar using slag aggregate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281057A (en) * 1985-06-06 1986-12-11 日鐵セメント株式会社 Composition for high strength high endurance mortar concrete
JP2000264703A (en) * 1999-03-19 2000-09-26 Taiheiyo Cement Corp Frost damage resistant, high strength lightweight concrete
JP2002179451A (en) * 2000-12-08 2002-06-26 Nippon Steel Corp Concrete or mortar using slag aggregate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074603A (en) * 2013-10-11 2015-04-20 ランデス株式会社 Mortar or concrete composition using blast furnace slag fine aggregate, having improved resistance to frost damage, and product molded therefrom

Also Published As

Publication number Publication date
JP5052734B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP6183571B1 (en) Quick-setting mortar composition
JP3654122B2 (en) Method for producing hardened slag
JP5931317B2 (en) Hydraulic composition and concrete using the hydraulic composition
JP2008184353A (en) Mortar used for repair and tunnel maintenance and repair method using it
US10800701B2 (en) Rapid-hardening cement composition
KR101654568B1 (en) Early strength type shotcrete composite
KR101359187B1 (en) Concrete composition with reduced shrinkage property and concrete structure prepared by the same
JP4906374B2 (en) Secondary concrete product and method for determining its composition
JP6080570B2 (en) Low-carbon three-component mixed binder having long-term high strength and high crack resistance, and concrete using the binder
KR100403831B1 (en) Crack retardant mixture made from flyash and its application to concrete
SK283995B6 (en) Chemical agent for improving the engineering properties of soil
KR101048669B1 (en) Repair mortar and tunnel repair method using the same
JP4462854B2 (en) Method for reducing self-shrinkage of ultra high strength concrete
JP2008230869A (en) Concrete composition
JP5534932B2 (en) Premix mortar composition and premix non-shrink mortar composition
JP3638894B2 (en) Polymer cement composition
JP2004299923A (en) Method of manufacturing hardened body using recycled material and having excellent freeze damage resistance and hardened body having excellent freeze damage resistance
Prem et al. Sustainable production of high performance concrete
KR20160145221A (en) Plain concrete composition without fiber reinfocement using low cement
JPH08277157A (en) Concrete composition
JP4350967B2 (en) Method for producing hardened slag
KR100406218B1 (en) cement blend compound furtherance to do the chief ingredient for slag powder
KR101456024B1 (en) Eco-friendly concrete compostion used basement and shrinkage-reducing construction method using the same
JP7187090B1 (en) concrete composition
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100218

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120316

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5052734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term