JP2004299293A - Recycled extrusion forming and its manufacturing method - Google Patents

Recycled extrusion forming and its manufacturing method Download PDF

Info

Publication number
JP2004299293A
JP2004299293A JP2003095997A JP2003095997A JP2004299293A JP 2004299293 A JP2004299293 A JP 2004299293A JP 2003095997 A JP2003095997 A JP 2003095997A JP 2003095997 A JP2003095997 A JP 2003095997A JP 2004299293 A JP2004299293 A JP 2004299293A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
resin
opening
waste power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003095997A
Other languages
Japanese (ja)
Inventor
Tamio Fujita
民雄 藤田
Yoshihiko Hashimoto
芳彦 橋本
Akira Hosoya
晃 細谷
Hiroaki Machimoto
博明 町元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2003095997A priority Critical patent/JP2004299293A/en
Publication of JP2004299293A publication Critical patent/JP2004299293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain extrusion formed body in which unevenness does not occur on the inner/outer surfaces of the formed body, whose surface state is excellent, and which have almost no variation of the wall thickness and the dimension of the inner/outer diameters while using excellent material performance of a buried pipe. <P>SOLUTION: The recycled extrusion formed body can be obtained as follows. The underground buried pipe of a waste power cable made of a vinyl chloride resin is crushed to the size capable of passing through the opening with the opening of ≤30 mmϕ. A resin composition is composed of 100-5 wt.% of the crushed product and 0-95 wt.% of a vinyl chloride resin. The recycled extrusion can be obtained by executing the extrusion forming to the resin composition. In particular, it is preferable to execute the extrusion forming to the resin compositions by using a constant weight feeder respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、塩化ビニル系樹脂製廃電力ケーブル地中埋設管のリサイクルに関し、更に詳しくは、市場経年した塩化ビニル系樹脂の電力ケーブル地中埋設管、叉は及び、敷設工程で発生する残材、端材等の廃埋設管を原料として用いた押出成形体の技術に関する。
【0002】
【従来の技術】
従来から行われている塩化ビニル系樹脂製廃電力ケーブル地中埋設管の処置は、そのまま又は粗砕を行って焼却処理又は埋立処理が行われていた。しかし、焼却処理は、排ガス中のダイオキシンの問題からダイオキシン対応が取られた炉を使用する必要が生じ、焼却に係わる費用は以前より高くなってきた。また、埋立処理は、環境問題から埋立できる場所が限られ、埋立処理費も高騰し始めている。環境問題への配慮及び環境に優しいという観点から、電力ケーブル地中埋設管の優れた材料性能を活かしたマテリアルリサイクルが望まれている。
【0003】
【発明が解決しようとする課題】
本発明は、このような状況を鑑み、廃塩化ビニル系樹脂製電力ケーブル地中埋設管の処分を焼却処理又は埋立処理ではなく、塩化ビニル系樹脂製電力ケーブル地中埋設管の優れた材料特性を活かしたマテリアルリサイクルするための方法及びそのリサイクル品を実現し、資源の有効利用に寄与することにある。
【0004】
【課題を解決するための手段】
本発明は、塩化ビニル系樹脂製廃電力ケーブル地中埋設管を適正な大きさに砕いた粉砕物に、目的とする押出成形体に求められる品質、特性により塩化ビニル系樹脂0〜95重量%を混合した樹脂組成物を押出成形する事により、塩化ビニル系樹脂製廃電力ケーブル地中埋設管を用いた有用な押出成形体(本発明では、単にリサイクル押出成形体と呼ぶ)を作成する。
【0005】
すなわち、本発明は、
(1)塩化ビニル系樹脂製廃電力ケーブル地中埋設管を目開きが30mmφ以下の開口を通過するように粉砕した粉砕物100〜5重量%と塩化ビニル系樹脂0〜95重量%からなる樹脂組成物を押出成形して得られるリサイクル押出成形体。
(2)塩化ビニル系樹脂製廃電力ケーブル地中埋設管粉砕物100〜5重量%と塩化ビニル系樹脂0〜95重量%からなる樹脂組成物を定重量フィーダーを用いて押出成形して得られることを特徴とするリサイクル押出成形体。
【0006】
(3)塩化ビニル系樹脂製廃電力ケーブル地中埋設管を、目開きが30mmφ以下の開口を通過するように粉砕した粉砕物を使用して得られる(2)記載のリサイクル押出成形体。
(4)塩化ビニル系樹脂製廃電力ケーブル地中埋設管を目開きが10mmφ以下の開口を通過するように粉砕した粉砕物を使用して得られる(1)又は(2)記載のリサイクル押出成形体。
【0007】
(5)塩化ビニル系樹脂製廃電力ケーブル地中埋設管が、市場経年した埋設管、敷設工程で発生する残材、端材のいずれかの1以上である(1)〜(4)のいずれか1記載のリサイクル押出成形体。
(6)塩化ビニル系樹脂製廃電力ケーブル地中埋設管が、ヴィカット軟化温度(B法 50N 荷重)が、78℃〜98℃であって、後塩素化塩化ビニル樹脂および/又は,耐熱性ABS樹脂に代表される塩化ビニル樹脂耐熱性向上改質剤が1種または2種以上配合されたものである(1)〜(5)のいずれか1記載のリサイクル押出成形体。
【0008】
(7)樹脂組成物を予め混練造粒したものを供給して押出成形して得られることを特徴とする(1)〜(6)のいずれか1記載のリサイクル押出成形体。
(8)塩化ビニル系樹脂製廃電力ケーブル地中埋設管を目開きが30mmφ以下の開口を通過するように粉砕した粉砕物100〜5重量%と、塩化ビニル系樹脂0〜95重量%からなる樹脂組成物を押出成形してなる(1)〜(7)のいずれか1記載のリサイクル押出成形体の製造方法。
【0009】
【発明の実施の形態】
本発明でいう塩化ビニル系樹脂製廃電力ケーブル地中埋設管とは、市場経年した埋設管、敷設工程で発生する残材、又は端材のいずれか、又はそれらの1以上の混合物をいう。そしてこの塩化ビニル系樹脂製廃電力ケーブル地中埋設管に付着した泥等の汚れを清掃して目開きが30mmφ以下の開口を通過するように粉砕する、更に高いレベルの特性、成形品を得るためには、目開きが10mmφ以下の開口を通過するように粉砕した粉砕物を用いるのが好ましい。
【0010】
この塩化ビニル系樹脂製電力ケーブル地中埋設管は、1984年頃より多量に敷設工事が進められたものである。これら塩化ビニル系樹脂製電力ケーブル地中埋設管の多くは、ビカット軟化温度(B法50N荷重)が78〜98℃の後塩素化塩化ビニル樹脂が用いられることが多い。後塩素化塩化ビニル樹脂を主成分とした場合にはビカット軟化温度が80℃以上の高い耐熱性を有し、又は、後塩素化塩化ビニル樹脂及び/又は耐熱性ABS樹脂に代表される塩化ビニル樹脂耐熱性向上改質剤が1種または2種以上配合された場合にはビカット軟化温度は78℃〜98℃になる、更には塩化ビニル樹脂衝撃強度改質剤であるMBS樹脂を配合されることもあり、高強度、高耐熱、高性能な材料が使用されている。
【0011】
この事から、塩化ビニル系樹脂製廃電力ケーブル地中埋設管の粉砕物を一般の塩化ビニル系樹脂組成物に旨く配合出来れば成形体の性能向上が期待できることから、その目的を実現することが望まれる。しかしながら、塩化ビニル系樹脂製廃電力ケーブル地中埋設管の粉砕物は、上記のようにビカット軟化温度が高い故に、一般の塩化ビニル系樹脂に多量に、特に塩化ビニル系樹脂製廃電力ケーブル地中埋設管の粉砕物のみを、配合して成形する場合には、その成形性は劣るものと成りやすい。
【0012】
例えば、塩化ビニル系樹脂製廃電力ケーブル地中埋設管の粉砕物を用いて電力ケーブル地中埋設管等を押出成形する場合においては、この管はその内外表面に凹凸が発生し表面状態が劣るものとなる。また、この管の肉厚や内外径の寸法が大きくバラツキ、例えば、納品規格を満たさない等の問題が発生する押出成形体しか得られないと言う問題があった。
【0013】
本発明はこれらの点を解決するものである。特に、定重量フィーダーを用いて押出成形することにより極めて良好な結果が得られる。
【0014】
すなわち塩化ビニル系樹脂製廃電力ケーブル地中埋設管(以下、廃電力埋設管と記す)は、汚泥、モルタル及び接着剤、その他付着異物、汚染物を湿式及び又は、乾式で洗浄、除去、必要によってはグラインダー等の工具、機器を用いて取り除いたものを粉砕するのが好ましい。
【0015】
廃電力埋設管は、具体的には作業遂行に合理的な適当な長さに予め切断し、縦割り等に分割して粉砕される。
【0016】
廃電力埋設管の粉砕には、特定の型式の粉砕機に限定されるものではなく通常一般的に固体物の粉砕に用いられる剪断粉砕機、衝撃粉砕機等の粉砕機を用いて粉砕することが出来る。粉砕は一回目の粉砕で所定の粉砕物を得ても良いし、粗粉砕した後二回以上の粉砕をして所定の大きさに粉砕しても良い。
【0017】
既述したごとく廃埋設管の粉砕物は、目開きが30mmφ以下の開口を通過する大きさに粉砕することが望ましい。目開きが30mmφ以下の開口とは、例えば30mmφないしはそれ以下の開口を持つ、網状物、パンチングメタル等の開口板であって、一般にはストレーナー等と称されるものを通過する大きさであることを意味する。
【0018】
廃電力埋設管の粉砕物は、硬く、強靱で軟化温度が高いため、目開きが30mmφより大きい場合には、押出成形機中で容易に変形、崩壊しない。このことから、押出成形機に供給された廃電力埋設管の粉砕物は、バレル内での軟化溶融に長時間を必要とし、成形材料の溶融、均一混練、混合が不十分となるので、押出成形品の外観不良、物理特性の低下等の不都合が生じる原因となる。さらに粉砕物はフリーフロー性が劣るため、押出成形機に安定して供給する事が難しい。これは成形時の樹脂圧力、モーター負荷、樹脂温度など成形条件の変動となり、安定して良好な押出成形状態が保てない。
【0019】
廃電力埋設管の粉砕物を目開きが30mmφ以下の開口を通過する大きさに粉砕することで、これらの不都合は改善できる。そして更に望ましい態様として、廃電力埋設管の粉砕物を目開きが10mmφ以下の開口を通過する大きさに粉砕する事である。更に品質改善のためには廃電力埋設管粉砕物のサイズを通常市販の塩化ビニル樹脂粉末に近いサイズ、例えば250μm〜50μmとすることも考えられるが、廃電力埋設管を小さく粉砕するに要するコストと押出成形体に要求される品質及び押出成形時の安定状態から合理的なところで判断される。
【0020】
本発明でいう塩化ビニル系樹脂は、塩化ビニル系樹脂更には塩化ビニル系樹脂に通常一般的に知られている衝撃強度改質剤樹脂、耐熱性向上改質剤樹脂、安定剤、滑剤、加工助剤、充填剤、可塑剤、顔料などの配合剤が添加されている塩化ビニル系樹脂配合物いずれをも意味する。
【0021】
塩化ビニル系樹脂としては、従来から知られている公知のものがいずれも使用できる。例えば、塩化ビニル単独の重合体樹脂、塩化ビニルと塩化ビニル以外の重合性モノマーとの共重合体樹脂、塩化ビニル樹脂を後塩素化して得られる塩素化塩化ビニル樹脂、これら何れか一種又は二種以上から選ばれる。
【0022】
塩化ビニル以外の重合性モノマーとしては、例えば、エチレン、プロピレン、ブチレン等のαオレフィン類;酢酸ビニール、プロピオン酸ビニール等のビニルエステル類;ブチルビニルエーテル、セチルビニルエーテル等のビニルエーテル類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等の(メタ)アクリル酸エステル類;その他共重合可能なモノマーが挙げられる。これらは単独で使用されてもよく、二種以上を併用してもよい。
【0023】
塩素化塩化ビニル樹脂の塩素化度は、高くなると流動性が著しく低下して成形性が悪くなるので、57〜70重量%が好ましく、より好ましくは、57〜68重量%が好ましい。
【0024】
耐熱性向上改質剤樹脂は、例えばABS樹脂のスチレン成分の一部又は全部をαメチルスチレン又は、N−フェニルマレイミド又は、N−シクロヘキシルマレイミド等で置換されたABS樹脂が挙げられ、これら一種又は二種以上が併用される。
【0025】
塩化ビニル樹脂の重合度は特に制約は無いが、平均重合度が小さいと得られる成形品の機械的強度、特に衝撃強度が出にくい、大きいと成形時の流動性が低下、成形が困難になるので、平均重合度500〜1800が好ましい。
【0026】
衝撃強度改質剤樹脂は、例えばメチルメタクリレート−ブタジエン−スチレン共重合樹脂(以下、MBS樹脂と記す)、アクリロニトリル−ブタジエン−スチレン共重合樹脂(以下、ABS樹脂と記す)等ブタジエン含有共重合樹脂、塩素化ポリエチレン、アクリル樹脂類に代表される耐衝撃性改質エラストマーなどが挙げられ、これらは一種又は二種以上が併用される。
【0027】
安定剤は、特に制限は無く通常一般的に塩化ビニル樹脂に使用される安定剤が用いられるが、有機スズ系安定剤、カルシウム−亜鉛系安定剤が好ましい。
【0028】
滑剤は、通常一般的に塩化ビニル系樹脂の成形材料に使用される、滑剤が使用される。例えば、ステアリン酸等の脂肪酸、脂肪酸エステル類、オレフィン類等が挙げられる。
【0029】
加工助剤は、アクリル系樹脂が挙げられ、充填剤としては、炭酸カルシウム、タルク等が挙げられ、顔料その他配合剤は、通常一般的に塩化ビニル樹脂の成形材料に使用される顔料や紫外線吸収剤、酸化防止剤等が適量使用される。
【0030】
廃電力埋設管の粉砕物と塩化ビニル系樹脂からなる樹脂組成物の配合に関しては、廃電力埋設管の粉砕物の配合比率が5重量%以下では、廃電力埋設管の資源の有効利用の寄与が少ないという問題がある。
【0031】
廃電力埋設管の粉砕物と塩化ビニル系樹脂からなる樹脂組成物を押出成形機に供給するに当り、安定した良好な押出成形状態を維持するためには、定重量フィーダーを用いるのが好ましい、なぜなら廃電力埋設管の粉砕物は、針状、鱗片状、角柱、多角形と形状が不規則、不定形をしておりフリーフロー性が極めて悪い。更に、塩化ビニル系樹脂が特に粉体である場合は、外形が約350μmから50μmのほぼ球形が大部分を占めており、外観形状、外形寸法が廃電力埋設管の粉砕物と大きく異なり、それぞれの嵩比重、フリーフロー性が大きく異なるため、押出成形材料である廃電力埋設管の粉砕物と塩化ビニル系樹脂粉体が、予め設定された供給量、供給比が安定して維持し難いという傾向がある。このため押出成形機への供給量及び供給比率が極めて不安定と成り易いため目的とする押出成形体の寸法変化などが大きくなり良好な品質の成形品が得られ難い傾向になり易い。特に電力ケーブル地中埋設管等のごとき管状物を成形する場合には、外形や肉厚が大きく変化する可能性を秘めている。これらの問題を解決されるものとして、定重量フィーダーを装備する事が好ましい。
【0032】
押出成形機のフィーダーは、一般的に1軸又は2軸のスクリュウタイプのものが良く使用される。スクリュウタイプフィーダーは、スクリュウの回転によってフライトとフライトの間に成形材料を挟んで押出成形機に供給されるので、材料の供給量は、フィダースクリュウの回転数で設定される。しかし、これらのフィーダーはスクリュウのフライト間の容量によって供給しているので定容量フィーダーと呼ばれるものであって、設定された一定量の成形材料を正確に供給することが難しい場合がある。廃電力埋設管の粉砕物の様に多様な形状の材料、及び/又は大きな比重差を有する材料の混合物などは、フリーフロー性が極めて悪いため、スクリュウのフライト間に一定量を安定して充填されることが難しい為である。
【0033】
これを解決するために、成形材料ホッパーを計重器に載せるなどして成形材料の単位時間当たりの変化量を測定しフィーダースクリュウの回転数等のフィーダー出力と連動させることで単位時間当たりの設定供給量を確保するようにした定重量フィーダーを採用することが望ましい。こうした定重量フィーダーの形式としては、前記スクリュウタイプの他に、供給輸送部分に振動を利用した振動板タイプ、ベルト駆動タイプ等あるが、供給材料に適したタイプの定重量フィーダーが利用される。
【0034】
更に、成形体の品質向上とか、成形体の多様性拡大に、該押出成形材料である廃電力埋設管の粉砕物と塩化ビニル系樹脂からなる組成物を、通常一般的に塩化ビニル系樹脂などで使用されている混練造粒装置を用いて、予め設定された配合比率で混合、混練、造粒したものを押出機に供給して押出成形することも可能である。
【0035】
【実施例】
以下、本発明の実施例を説明する。
【0036】
回収された廃電力埋設管は、塩素化塩化ビニル樹脂が約60〜65重量%、塩化ビニル樹脂が約30〜35重量%、MBS樹脂が4〜8重量%含有と見られ、ビカット軟化温度96℃(B法 50N 荷重 )であった。この廃電力埋設管を長さ方向に約400mm、縦方向に二つ割りに切断し半円形の廃電力埋設管パイプ片を作成する、次にステンレスたわしを用い廃電力埋設管パイプ片内外の汚泥を水洗、清掃した。大型剪断粉砕機(大建精工場製)に清掃した廃電力埋設管パイプ片(以下、清掃廃パイプ片、と記す)を投入し、10mmφストレーナーを通過した廃電力埋設管の粉砕物(A)を採取した。
【0037】
上記、廃電力埋設管の粉砕物(A)を用い、5mmφストレーナーを装備した大型剪断粉砕機(大建精工場製)に投入し、粉砕して平均径約5mm以下の廃電力埋設管粉砕物(B)作成した。
【0038】
50mmφストレーナーを装備した大型剪断粉砕機(大建精工場製)に上記と同様に清掃廃パイプ片を投入して、廃電力埋設管粉砕物(C)を得た。
【0039】
これら使用した廃電力埋設管は、廃電力埋設管の印字表示及び、又は付設テープから1988年〜1992に埋設されたものであった。
【0040】
本発明の実施例、比較例に使用した塩化ビニル系樹脂は、表1に示す配合組成にて作成した。
【0041】
【表1】

Figure 2004299293
【0042】
上記、塩化ビニル系樹脂に使用した各種配合材料を以下に示す。
1.PVC―1 塩化ビニル樹脂 重合度1300(鐘淵化学工業(株)製)
2.PVC―2 塩化ビニル樹脂 重合度1000(鐘淵化学工業(株)製)
3.CPVC 塩素化塩化ビニル樹脂 塩素含量68%(鐘淵化学工業(株)製)
4.MBS MBS樹脂 B−561(鐘淵化学工業(株)製)
5.CPE 塩素化ポリエチレン (ダイソー(株)製)
6.PE−1 酸化ポリエチレンワックス ハイワックス (三井化学(株)製)
7.PE−2 酸化ポリエチレンワックス AC−PE (アライドケミカル(株)製)
【0043】
8.脂肪酸エステル 高級脂肪酸エステル EW−100(理研ビタミン(株)製)
9. SC−100 ステアリン酸カルシウム(堺化学工業(株)製)
10.スズ安定剤―1 TVS−8831(日東化成(株)製)
11.スズ安定剤―2 TVS−N2000K(日東化成(株)製)
12.炭カルーA 軽質炭酸カルシウム (白石工業(株)製)
13.炭カルーB 重質炭酸カルシウム (備北粉化製)
14.顔料 オレンジ色(大日精化工業(株)製)
【0044】
塩化ビニル系樹脂(a)、(b)、(c)は、それぞれ表1の配合表に従って各配合剤を500Lスーパーミキサー(株カワタ製)に仕込み高速回転にて5分間混合して作成した。
【0045】
下記の実施例1〜6、及び比較例1,2、3に於いて実施したパイプ成形装置及び条件は次の通りである。
機種:コニカルスクリュウタイプ異方向二軸押出機、
スクリュウ先端径:60mmφ
スクリュウ回転数:22RPM
ダイス:内径130mmφ塩化ビニル系樹脂製電力ケーブル地中埋設管成形用ダイス。
成形温度設定:バレル部160〜165℃、アダプター部180℃、ダイス部180〜190℃、スクリュウ温度110℃
そして、上記コニカルスクリュウタイプ異方向二軸押出機を用いた各実施例、比較例における130mmφ塩化ビニル系樹脂製電力ケーブル地中埋設管の成形結果を、表2、表3に示す。
【0046】
上記、成形品パイプの外観評価結果は以下の5段階で判定をした。
5:パイプ外観良好で製品相当、規格合格。
4:パイプ内外表面に若干の凹凸があり、但し規格内。
3:パイプ内外表面に凹凸発生、肉厚、内外径の寸法規格内。
2:パイプ内外表面に凹凸発生、肉厚、内外径の寸法規格外、不良。
1:パイプ内外表面に大きく凹凸発生、肉厚、内外径の寸法バラツキ大きく規格外、不良。
判定5〜3=合格内、判定2〜1=不良品、不合格
【0047】
実施例1
上記、廃電力埋設管の粉砕物(A)を50重量部と塩化ビニル系樹脂組成物(a)を50重量部の比率とした樹脂組成物をコニカルスクリュウタイプ二軸異方向回転押出機に定重量フィーダーを介して供給し表2、表3に示す結果を得た。成形時のメインモーター電流、樹脂圧力、樹脂温度等の条件は、廃電力埋設管の粉砕物を用いないバージンの塩化ビニル系樹脂を用いた通常のパイプ成形時よりも成形状態の変動が見られた。そして成形パイプは内外表面に若干の凹凸が発生したものの、肉厚、内外径共に規格内寸法を保持、シャルピー衝撃強度、ビカット軟化温度何れも高レベルの値を示し、実用上、充分使用可能な良好なパイプを得た。
【0048】
実施例2
上記、廃電力埋設管の粉砕物(A)を20重量部と塩化ビニル系樹脂(a)を80重量部の比率の樹脂組成物をコニカルスクリュウタイプ二軸異方向回転押出機に定重量フィーダーで供給して表2、表3に示す結果を得た。成形パイプは内外表面共に綺麗で、肉厚、内外径共に規格内寸法を保持した非常に良好なパイプを得た。
【0049】
実施例3
上記、廃電力埋設管の粉砕物(B)を50重量部と塩化ビニル系樹脂(a)を50重量部の比率の樹脂組成物をコニカルスクリュウタイプ二軸異方向回転押出機に定重量フィーダーで供給して表2、表3に示す結果を得た。実施例1よりパイプ成形状態は安定で変動は小さい、成形パイプは内外表面共に綺麗で、肉厚、内外径共に規格内寸法を保持した良好なパイプを得た。
【0050】
実施例4
上記、廃電力埋設管の粉砕物(B)を50重量部と塩化ビニル系樹脂(b)を50重量部の比率の樹脂組成物をコニカルスクリュウタイプ二軸異方向回転押出機に定重量フィーダーで供給して表2、表3に示す結果を得た。パイプ成形状態良好、成形パイプは内外表面共に綺麗で、肉厚、内外径共に規格内寸法を保持している。
成形パイプのビカット軟化温度は、塩化ビニル系樹脂(b)単独の成形パイプ(比較例3)より7.9℃高い値を示し耐熱特性の向上が確認できた。
【0051】
実施例5
上記、廃電力埋設管の粉砕物(B)を20重量部と塩化ビニル系樹脂(b)を80重量部の比率の樹脂組成物をコニカルスクリュウタイプ二軸異方向回転押出機に定重量フィーダーで供給して表2、表3に示す結果を得た。塩化ビニル系樹脂 (b)単独の成形パイプ(比較例3)とほぼ同様に安定したパイプ成形状態で、成形パイプの内外表面は共に平滑、綺麗で、肉厚、内外径共に規格内寸法を保持している。塩化ビニル系樹脂 (b)単独の成形パイプ(比較例3)より4.7℃高く衝撃強度も向上した値を示し特性の向上が確認できた。
【0052】
実施例6
上記、廃電力埋設管の粉砕物(B)のみ単独でコニカルスクリュウタイプ二軸異方向回転押出機に定重量フィーダーで供給して表2、表3に示す結果を得た。成形時のメインモーター電流、樹脂圧力、樹脂温度等の何れの値も高く、成形状態の変動が見られ、成形パイプ内外表面に小さな凹凸が観察出来た。しかし成形パイプの肉厚、内外径寸法共に規格内寸法を保持していた。又、成形パイプのシャルピー衝撃強度、ビカット軟化温度は何れも高いレベルの値を示した高性能なパイプが出来た。
【0053】
比較例1
上記、目開きが30mmφより大である50mmφの開口を通過した廃電力埋設管の粉砕物(C)を50重量部と塩化ビニル系樹脂(b)を50重量部の比率の樹脂組成物を、コニカルスクリュウタイプ二軸異方向回転押出機に定重量フィーダーで供給して表2、表3に示す結果を得た。成形時のメインモーター電流、樹脂圧力、樹脂温度等の成形条件が大きく変動し継続的に安定した状態でパイプ成形出来なかった。成形パイプは内外表面に大きく凹凸し、波打ち模様が発生し、肉厚、内外径共に大きくバラツキ変動して規格内寸法のパイプを得ることが出来なかった。
【0054】
比較例2
塩化ビニル系樹脂 (a)単独でコニカルスクリュウタイプ二軸異方向回転押出機のホッパーに供給して表2、表3に示す結果を得た。高強度、高耐熱(高耐熱変形)タイプの高性能、高品質な良好パイプを得た。
【0055】
比較例3
塩化ビニル系樹脂(b)単独でコニカルスクリュウタイプ二軸異方向回転押出機のホッパーに供給して表2、表3に示す結果を得た。外形、寸法良好な一般塩化ビニルパイプを得た。
【0056】
【表2】
Figure 2004299293
【0057】
【表3】
Figure 2004299293
【0058】
実施例7、8,9、比較例4,5に使用する小型異形押出成形機の説明。
型式:50mm単軸異形押出成形装置
スクリュウ:フルフライト50mmφ単軸、 L/D=25、CR=2.5。ダイス=L型、 厚み=2.5、長手方向=25mm、短手方向=10mm。
ブレーカープレート=3mmφ 、スクリーン無し
サイジング=真空ブロック及び冷却水槽。其の他、通常一般的な仕様の小型異形押出成形装置。
【0059】
実施例7、8、比較例4、5に使用した塩化ビニル系樹脂の造粒コンパウンド製造装置と条件。
型式:異方向2軸押出ペレット製造装置
異方向2軸GTR−65((株)池貝製)、
スクリュウ:65mmφパラレルタイプ2軸、
ダイレクトカット装置、送風式ペレット冷却装置を装備。
スクリュウ回転数:30RPM
設定温度:バレル部130℃〜160℃、ダイプレート部170℃
上記、廃電力埋設管の粉砕物(A)50重量部と、塩化ビニル系樹脂(c) 50重量部からなる樹脂組成物を100Lスーパーミキサー((株)カワタ製)に仕込み、低速5分間ブレンドした後、異方向2軸押出ペレット製造装置を使用して塩化ビニル系樹脂造粒コンパウンドP−1を作成した。
【0060】
上記、廃電力埋設管の粉砕物(B)50重量部と、塩化ビニル系樹脂(c) 50重量部の樹脂組成物を500Lスーパーミキサー((株)カワタ製)に仕込み、低速5分間ブレンドした後、異方向2軸押出ペレット製造装置を使用して塩化ビニル系樹脂造粒コンパウンドP−2を作成した。
【0061】
上記、目開きが30mmφより大である50mmφの開口を通過した廃電力埋設管の粉砕物(C)50重量部と、塩化ビニル系樹脂樹(c) 50重量部の樹脂組成物を500Lスーパーミキサー((株)カワタ製)に仕込み、低速5分間ブレンドした後、異方向2軸押出ペレット製造装置を使用して塩化ビニル系樹脂造粒コンパウンドを作成した。得られた造粒コンパウンドは、粒の大きさが不揃いで、艶ムラのある造粒コンパウンドP−3を得た。
【0062】
次に上記、塩化ビニル系樹脂(c)を用い、異方向2軸押出ペレット製造装置を使用して塩化ビニル系樹脂造粒コンパウンドP−4を作成した。
【0063】
次に、塩化ビニル系樹脂造粒コンパウンドP−1を用い、50mm小型異形押出成形機を使用して、L字形異形押出成形実験を行った(実施例7)。表面が平滑、外観、寸法良好なL字形異形押出成形品を作成、成形品のシャルピー衝撃強度、ビッカット軟化温度など良好な特性が得られた。結果を表4、表5に示す。
【0064】
次に、塩化ビニル系樹脂造粒コンパウンドP−3を用い、50mm小型異形押出成形機を使用してL字形異形押出成形実験を行った(比較例4)。成形品に割れ、裂け目が発生し、厚みムラが激しく、良好なL字形異形押出成形品が得られない。
【0065】
次に、塩化ビニル系樹脂造粒コンパウンドP−4を用い50mm小型異形押出成形機を使用してL字形異形押出成形実験を行った(比較例5)。光沢があり、表面が平滑、外観、寸法良好なL字形異形押出成形品を作成した。結果を表4、表5に示す。
【0066】
【表4】
Figure 2004299293
【0067】
【表5】
Figure 2004299293
【0068】
【発明の効果】
本発明によれば、塩化ビニル系樹脂製廃電力ケーブル地中埋設管の粉砕物を用い、必要により塩化ビニル系樹脂を混合して押出成形することにより、該埋設管の優れた材料性能を活かしつつ、成形体の内外表面に凹凸の発生がなく、表面状態が優れ、肉厚や内外径の寸法のバラツキが少ない押出成形体が得られる。従って、例えば該廃埋設管をリサイクルして、再度、塩化ビニル系樹脂製電力ケーブル地中埋設管を成形したとしても充分に規格を満たすことのできる押出成形体が得られる。
【0069】
このように、電塩化ビニル系樹脂製廃電力ケーブル地中埋設管の優れた材料性能を活かしたマテリアルリサイクルが可能となることから、環境問題の観点からも非常に好ましい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the recycling of underground pipes of waste power cables made of vinyl chloride resin, and more particularly, to the underground pipes of underground power cables of vinyl chloride resin that have been aged in the market, and the residual material generated in the laying process. The present invention relates to a technique of an extruded body using waste buried pipes such as scrap materials as a raw material.
[0002]
[Prior art]
In the past, treatment of underground pipes of waste electric power cables made of vinyl chloride resin has been incinerated or landfilled as it is or by crushing. However, the incineration process requires the use of a furnace adapted for dioxin due to the problem of dioxin in exhaust gas, and the costs associated with incineration have been higher than before. Further, in the landfill processing, the place where landfill can be performed is limited due to environmental problems, and the cost of the landfill processing has started to rise. From the viewpoint of consideration for environmental issues and environmental friendliness, material recycling utilizing the excellent material performance of the power cable underground pipe is desired.
[0003]
[Problems to be solved by the invention]
In view of such a situation, the present invention is not to incinerate or landfill waste vinyl chloride-based resin power cable buried pipes, but to provide excellent material properties of vinyl chloride-based power cable buried pipes. It is to realize a material recycling method utilizing the above and a recycled product thereof to contribute to effective use of resources.
[0004]
[Means for Solving the Problems]
The present invention relates to a pulverized product obtained by crushing an underground pipe of a waste power cable made of a vinyl chloride resin into an appropriate size, to obtain 0 to 95% by weight of the vinyl chloride resin depending on the quality and characteristics required for the target extruded product. By extruding a resin composition obtained by mixing the above, a useful extruded product (in the present invention, simply referred to as a recycle extruded product) using a vinyl chloride resin waste power cable buried underground pipe is prepared.
[0005]
That is, the present invention
(1) Resin consisting of 100 to 5% by weight of pulverized material obtained by pulverizing an underground pipe of waste power cable made of vinyl chloride resin so as to pass through an opening having an opening of 30 mm or less and 0 to 95% by weight of vinyl chloride resin A recycled extruded product obtained by extruding the composition.
(2) A resin composition consisting of 100 to 5% by weight of ground powder of vinyl chloride resin waste power cable buried underground pipe and 0 to 95% by weight of vinyl chloride resin is obtained by extrusion molding using a constant weight feeder. A recycled extruded product, characterized in that:
[0006]
(3) The recycled extruded product according to (2), which is obtained by using a pulverized material obtained by pulverizing an underground pipe of a waste power cable made of a vinyl chloride resin so as to pass through an opening having an opening of 30 mmφ or less.
(4) Recycling extrusion molding according to (1) or (2), which is obtained by using a pulverized material obtained by pulverizing an underground pipe of a waste power cable made of vinyl chloride resin so as to pass through an opening having an opening of 10 mmφ or less. body.
[0007]
(5) The underground buried pipe of the waste electric power cable made of vinyl chloride resin is at least one of a buried pipe aged in the market, a residual material generated in a laying process, and a scrap material (1) to (4). 2. The recycled extruded product according to item 1.
(6) The underground pipe of waste power cable made of vinyl chloride resin has a Vicat softening temperature (B method, 50N load) of 78 ° C. to 98 ° C., and a post-chlorinated vinyl chloride resin and / or heat-resistant ABS. The recycled extruded product according to any one of (1) to (5), wherein one or more kinds of a vinyl chloride resin heat resistance improving agent represented by a resin are blended.
[0008]
(7) The recycled extruded product according to any one of (1) to (6), which is obtained by supplying a mixture obtained by kneading and granulating the resin composition in advance and performing extrusion molding.
(8) 100 to 5% by weight of pulverized material obtained by pulverizing a vinyl chloride resin waste power cable buried underground pipe through an opening having an opening of 30 mm or less, and 0 to 95% by weight of a vinyl chloride resin. The method for producing a recycled extruded product according to any one of (1) to (7), wherein the resin composition is extruded.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The underground pipe for waste power cable made of vinyl chloride resin referred to in the present invention refers to any one of a buried pipe which has been aged in the market, a residual material generated in a laying process, and a scrap material, or a mixture of at least one of them. Then, dirt such as mud adhering to the underground pipe of the waste power cable made of vinyl chloride resin is cleaned and pulverized so that the opening passes through an opening having a diameter of 30 mm or less. For this purpose, it is preferable to use a pulverized material which has been pulverized so as to pass through an opening having an opening of 10 mmφ or less.
[0010]
The underground pipe of the power cable made of vinyl chloride resin has been laid in large quantities since around 1984. In many of these vinyl chloride resin-based underground pipes, a chlorinated vinyl chloride resin having a Vicat softening temperature (B method, 50N load) of 78 to 98 ° C is often used. When the main component is a post-chlorinated vinyl chloride resin, it has high heat resistance with a Vicat softening temperature of 80 ° C. or higher, or vinyl chloride represented by a post-chlorinated vinyl chloride resin and / or a heat-resistant ABS resin. When one or two or more resin heat resistance improving modifiers are blended, the Vicat softening temperature becomes 78 ° C. to 98 ° C. Further, MBS resin which is a vinyl chloride resin impact strength modifier is blended. In some cases, high-strength, high-heat-resistant, high-performance materials are used.
[0011]
From this fact, if the pulverized material of the underground pipe of waste power cable made of vinyl chloride resin can be successfully blended with a general vinyl chloride resin composition, the performance of the molded body can be expected to be improved, and the purpose can be realized. desired. However, since the crushed material of the PVC resin waste power cable buried underground pipe has a high Vicat softening temperature as described above, a large amount of the PVC resin waste power cable ground, especially the vinyl chloride resin waste power cable ground, is used. When only the pulverized material of the middle buried pipe is blended and molded, the moldability tends to be inferior.
[0012]
For example, in the case of extruding a power cable underground pipe or the like using a crushed material of a waste power cable underground pipe made of a vinyl chloride resin, this pipe has irregularities on its inner and outer surfaces and has a poor surface condition. It will be. In addition, there is a problem in that only an extruded product having a problem that the thickness and inner and outer diameters of the pipe vary greatly, for example, the delivery standard is not satisfied, can be obtained.
[0013]
The present invention solves these points. Particularly good results are obtained by extrusion using a constant weight feeder.
[0014]
In other words, underground pipes of waste power cables made of vinyl chloride resin (hereinafter referred to as waste power buried pipes) are used to wash, remove, and remove sludge, mortar, adhesives, and other foreign substances and contaminants in a wet and / or dry manner. In some cases, it is preferable to grind the material removed using a tool or equipment such as a grinder.
[0015]
Specifically, the waste power buried pipe is cut in advance into an appropriate length that is reasonable for performing the work, and is crushed by dividing the pipe into vertical divisions or the like.
[0016]
The crushing of the waste power buried pipe is not limited to a specific type of crusher, but it should be crushed using a crusher such as a shear crusher or an impact crusher which is generally used for crushing solid materials. Can be done. In the pulverization, a predetermined pulverized product may be obtained by the first pulverization, or coarse pulverization may be performed two or more times to pulverize to a predetermined size.
[0017]
As described above, it is desirable that the crushed material of the waste buried pipe be crushed to a size that passes through an opening having an opening of 30 mmφ or less. The opening having an opening of 30 mmφ or less is, for example, an opening plate made of mesh material, punching metal, or the like having an opening of 30 mmφ or less, and having a size capable of passing an object generally called a strainer or the like. Means
[0018]
Since the crushed material of the waste power buried pipe is hard, tough and has a high softening temperature, if the opening is larger than 30 mmφ, it is not easily deformed or collapsed in the extruder. For this reason, the pulverized waste power buried pipe supplied to the extruder requires a long time for softening and melting in the barrel, and the melting, uniform kneading, and mixing of the molding material become insufficient. This may cause inconveniences such as poor appearance of the molded article and deterioration of physical properties. Furthermore, since the pulverized material has poor free flow property, it is difficult to stably supply the pulverized material to an extruder. This results in fluctuations in molding conditions such as resin pressure, motor load, and resin temperature during molding, and a stable and good extrusion molding state cannot be maintained.
[0019]
These inconveniences can be remedied by crushing the crushed material of the waste power buried pipe so as to pass through an opening having an opening of 30 mmφ or less. As a more desirable aspect, the crushed material of the waste power buried pipe is crushed to a size that allows the opening to pass through an opening having a diameter of 10 mmφ or less. In order to further improve the quality, it is conceivable that the size of the waste power buried pipe crushed product is set to a size close to that of a commercially available vinyl chloride resin powder, for example, 250 μm to 50 μm. And the quality required for the extruded body and the stable state at the time of the extrusion molding are determined at a reasonable point.
[0020]
The vinyl chloride resin referred to in the present invention is a vinyl chloride resin, and further generally an impact strength modifier resin, a heat resistance improving modifier resin, a stabilizer, a lubricant, a processing generally known to the vinyl chloride resin. It means any vinyl chloride-based resin compound to which compounding agents such as auxiliaries, fillers, plasticizers and pigments are added.
[0021]
As the vinyl chloride resin, any known resin can be used. For example, vinyl chloride alone polymer resin, copolymer resin of vinyl chloride and a polymerizable monomer other than vinyl chloride, chlorinated vinyl chloride resin obtained by post-chlorination of vinyl chloride resin, any one or two of these Selected from above.
[0022]
Examples of polymerizable monomers other than vinyl chloride include α-olefins such as ethylene, propylene and butylene; vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers such as butyl vinyl ether and cetyl vinyl ether; methyl (meth) acrylate And (meth) acrylates such as ethyl (meth) acrylate and butyl (meth) acrylate; and other copolymerizable monomers. These may be used alone or in combination of two or more.
[0023]
The chlorination degree of the chlorinated vinyl chloride resin is preferably 57 to 70% by weight, more preferably 57 to 68% by weight.
[0024]
The heat resistance improving modifier resin is, for example, an ABS resin in which part or all of the styrene component of the ABS resin is substituted with α-methylstyrene or N-phenylmaleimide or N-cyclohexylmaleimide. Two or more are used in combination.
[0025]
The degree of polymerization of the vinyl chloride resin is not particularly limited. However, if the average degree of polymerization is small, the mechanical strength of the obtained molded article, particularly the impact strength is hardly obtained, and if the average degree of polymerization is large, the flowability at the time of molding is reduced and molding becomes difficult. Therefore, the average degree of polymerization is preferably from 500 to 1800.
[0026]
Impact strength modifier resins include butadiene-containing copolymer resins such as methyl methacrylate-butadiene-styrene copolymer resin (hereinafter, referred to as MBS resin), acrylonitrile-butadiene-styrene copolymer resin (hereinafter, referred to as ABS resin), Examples include impact-modified elastomers represented by chlorinated polyethylene and acrylic resins, and these may be used alone or in combination of two or more.
[0027]
The stabilizer is not particularly limited, and a stabilizer generally used for a vinyl chloride resin is generally used, but an organic tin stabilizer and a calcium-zinc stabilizer are preferable.
[0028]
As the lubricant, a lubricant generally used for a molding material of a vinyl chloride resin is used. For example, fatty acids such as stearic acid, fatty acid esters, olefins and the like can be mentioned.
[0029]
Processing aids include acrylic resins, fillers include calcium carbonate, talc, and the like, and pigments and other compounding agents include pigments commonly used in molding materials of vinyl chloride resin and ultraviolet absorbers. Agents, antioxidants and the like are used in appropriate amounts.
[0030]
Concerning the blending of the waste power buried pipe with the resin composition composed of vinyl chloride resin, if the compounding ratio of the waste power buried pipe is 5% by weight or less, the effective use of resources of the waste power buried pipe is contributed. There is a problem that there is little.
[0031]
In supplying a resin composition comprising a crushed waste power buried pipe and a vinyl chloride resin to an extruder, it is preferable to use a constant weight feeder in order to maintain a stable and good extruded state. This is because the crushed material of the waste power buried pipe has irregular and irregular shapes such as needles, scales, prisms, and polygons, and has extremely poor free-flow properties. Furthermore, when the vinyl chloride resin is particularly powdery, the outer shape is approximately 350 μm to 50 μm and almost spherical shape occupies a large part, and the outer shape and outer dimensions are significantly different from the crushed material of the waste power buried pipe. Because the bulk specific gravity and the free flow property of the material differ greatly, it is difficult to stably maintain the preset supply amount and supply ratio of the pulverized waste power buried pipe and the vinyl chloride resin powder, which are extrusion molding materials. Tend. For this reason, the supply amount and the supply ratio to the extruder tend to be extremely unstable, so that the dimensional change of the target extruded product becomes large, and it tends to be difficult to obtain a molded product of good quality. In particular, when a tubular article such as a power cable underground pipe is formed, there is a possibility that the outer shape and the wall thickness may change significantly. As a solution to these problems, it is preferable to equip a constant weight feeder.
[0032]
As the feeder of the extruder, generally, a single-screw or twin-screw type feeder is often used. The screw type feeder is supplied to an extruder by sandwiching a molding material between flights by rotation of the screw, so that the material supply amount is set by the number of rotations of the feeder screw. However, since these feeders are supplied by the capacity between screw flights, they are called constant volume feeders, and it may be difficult to accurately supply a set fixed amount of molding material. Materials of various shapes, such as crushed waste power buried pipes, and / or mixtures of materials with a large specific gravity difference, have extremely poor free-flow properties, so a fixed amount is stably filled between screw flights. Because it is difficult to be done.
[0033]
To solve this, measure the amount of change in the molding material per unit time by placing the molding material hopper on a weigher, etc., and set it per unit time by linking it with the feeder output such as the number of rotations of the feeder screw. It is desirable to employ a constant weight feeder that ensures the supply amount. As a form of such a constant weight feeder, in addition to the screw type, there are a diaphragm type using vibration in a supply / transport portion, a belt drive type, and the like. A constant weight feeder suitable for a supply material is used.
[0034]
Furthermore, in order to improve the quality of the molded article or to expand the variety of the molded article, the composition comprising the pulverized waste power buried pipe and the vinyl chloride resin, which is the extrusion molding material, is generally used in general. It is also possible to extrude the mixture obtained by mixing, kneading and granulating at a preset mixing ratio to an extruder using the kneading and granulating apparatus used in the above.
[0035]
【Example】
Hereinafter, examples of the present invention will be described.
[0036]
The recovered waste electric power buried pipe contains about 60 to 65% by weight of chlorinated vinyl chloride resin, about 30 to 35% by weight of vinyl chloride resin, and 4 to 8% by weight of MBS resin. ° C (Method B 50N load). The waste power buried pipe is cut into about 400 mm lengthwise and two halves in the vertical direction to create a semicircular waste power buried pipe pipe piece. Then, the sludge inside and outside the waste power buried pipe piece is washed with a stainless steel scrubber. , Cleaned. A waste power buried pipe piece (hereinafter referred to as “cleaned waste pipe piece”) was put into a large-sized shear crusher (manufactured by Daiken Seisakusho), and the crushed waste power buried pipe (A) passed through a 10 mmφ strainer. Was collected.
[0037]
Using the crushed waste power buried pipe (A), the crushed waste power buried pipe having an average diameter of about 5 mm or less is put into a large shear crusher (manufactured by Daiken Seisakusho) equipped with a 5 mm φ strainer and crushed. (B) Created.
[0038]
The cleaning waste pipe pieces were put into a large-sized shear crusher (manufactured by Daiken Seisakusho) equipped with a 50 mm φ strainer in the same manner as above to obtain a crushed waste power buried pipe (C).
[0039]
These used waste power buried pipes were buried from 1988 to 1992 from the printed display of the waste power buried pipe and / or the attached tape.
[0040]
The vinyl chloride resins used in Examples and Comparative Examples of the present invention were prepared according to the composition shown in Table 1.
[0041]
[Table 1]
Figure 2004299293
[0042]
The various compounding materials used for the vinyl chloride resin are shown below.
1. PVC-1 vinyl chloride resin, degree of polymerization 1300 (manufactured by Kanegafuchi Chemical Industry Co., Ltd.)
2. PVC-2 vinyl chloride resin Polymerization degree 1000 (manufactured by Kanegafuchi Chemical Industry Co., Ltd.)
3. CPVC chlorinated vinyl chloride resin 68% chlorine content (Kanebuchi Chemical Industry Co., Ltd.)
4. MBS MBS resin B-561 (manufactured by Kanegafuchi Chemical Industry Co., Ltd.)
5. CPE Chlorinated polyethylene (Daiso Co., Ltd.)
6. PE-1 Oxidized polyethylene wax High wax (manufactured by Mitsui Chemicals, Inc.)
7. PE-2 Oxidized polyethylene wax AC-PE (made by Allied Chemical Co., Ltd.)
[0043]
8. Fatty acid ester Higher fatty acid ester EW-100 (manufactured by RIKEN Vitamin Co., Ltd.)
9. SC-100 Calcium stearate (manufactured by Sakai Chemical Industry Co., Ltd.)
10. Tin stabilizer-1 TVS-8831 (manufactured by Nitto Kasei Co., Ltd.)
11. Tin stabilizer-2 TVS-N2000K (Nitto Kasei Co., Ltd.)
12. Charcoal Caru A Light calcium carbonate (Shiraishi Industry Co., Ltd.)
13. Charcoal Caro B Heavy Calcium Carbonate (Bihoku Powder Chemical)
14. Pigment orange (Dainichi Seika Industry Co., Ltd.)
[0044]
Each of the vinyl chloride resins (a), (b) and (c) was prepared by charging each compounding agent in a 500 L super mixer (manufactured by Kawata Corporation) according to the compounding table in Table 1 and mixing at high speed for 5 minutes.
[0045]
The pipe forming apparatus and conditions performed in the following Examples 1 to 6 and Comparative Examples 1, 2, and 3 are as follows.
Model: Conical screw type bidirectional twin screw extruder,
Screw tip diameter: 60mmφ
Screw rotation speed: 22 RPM
Dies: Dies for forming underground pipes for power cables made of vinyl chloride resin with an inner diameter of 130 mmφ.
Molding temperature setting: barrel part 160-165 ° C, adapter part 180 ° C, die part 180-190 ° C, screw temperature 110 ° C
Tables 2 and 3 show the results of forming 130 mmφ vinyl chloride resin power cable buried underground pipes in each of Examples and Comparative Examples using the conical screw type bidirectional twin screw extruder.
[0046]
The appearance evaluation result of the molded product pipe was determined in the following five stages.
5: Good pipe appearance, equivalent to product, passed standard.
4: There are some irregularities on the inner and outer surfaces of the pipe, but within the standard.
3: Irregularities occur on the inner and outer surfaces of the pipe, within the wall thickness and inner and outer diameters.
2: Irregularities occur on the inner and outer surfaces of the pipe, wall thickness, inner and outer diameters are out of dimensional specifications, and defective.
1: Large irregularities occurred on the inner and outer surfaces of the pipe, large variations in wall thickness, inner and outer diameters, nonstandard and defective.
Judgment 5-3 = In pass, Judgment 2-1 = defective, reject
[0047]
Example 1
The above resin composition having a ratio of 50 parts by weight of the crushed waste electric power buried pipe (A) to 50 parts by weight of the vinyl chloride resin composition (a) was set on a conical screw type twin-screw opposite direction rotary extruder. Feeding through a weight feeder gave the results shown in Tables 2 and 3. The conditions of the main motor current, resin pressure, resin temperature, etc. during molding show more fluctuations in the molding state than during normal pipe molding using virgin vinyl chloride resin, which does not use crushed waste power buried pipes. Was. And although the formed pipe has some irregularities on the inner and outer surfaces, it keeps the specified dimensions for both the wall thickness and the inner and outer diameters, shows high levels of Charpy impact strength and Vicat softening temperature, and can be used practically enough. Good pipe got.
[0048]
Example 2
The above resin composition in a ratio of 20 parts by weight of the crushed waste electric power buried pipe (A) and 80 parts by weight of the vinyl chloride resin (a) is fed to a conical screw type biaxially different direction rotary extruder with a constant weight feeder. The results shown in Tables 2 and 3 were obtained by supplying. The formed pipe was very clean on both the inner and outer surfaces, and obtained a very good pipe having both the wall thickness and the inner and outer diameters within the standard.
[0049]
Example 3
The above resin composition in a ratio of 50 parts by weight of the crushed waste power buried pipe (B) and 50 parts by weight of the vinyl chloride resin (a) was fed to a conical screw type biaxially different direction rotary extruder with a constant weight feeder. The results shown in Tables 2 and 3 were obtained by supplying. From Example 1, the pipe formed condition was stable and the fluctuation was small, and the formed pipe was good in both inner and outer surfaces, and obtained a good pipe having both the wall thickness and the inner and outer diameters within the standard dimensions.
[0050]
Example 4
The above resin composition having a ratio of 50 parts by weight of the crushed waste power buried pipe (B) and 50 parts by weight of the vinyl chloride resin (b) is fed to a conical screw type biaxially different direction rotary extruder with a constant weight feeder. The results shown in Tables 2 and 3 were obtained by supplying. The molded pipe is in good condition. The molded pipe is clean on both the inner and outer surfaces, and the thickness and inner and outer diameters are within the standard.
The Vicat softening temperature of the molded pipe was 7.9 ° C. higher than that of the molded pipe made of the vinyl chloride resin (b) alone (Comparative Example 3), and improvement in heat resistance was confirmed.
[0051]
Example 5
The above resin composition having a ratio of 20 parts by weight of the crushed waste electric power buried pipe (B) and 80 parts by weight of the vinyl chloride resin (b) is fed to a conical screw type biaxially different-direction rotary extruder with a constant weight feeder. The results shown in Tables 2 and 3 were obtained by supplying. Vinyl chloride resin (b) In the same stable state as the single molded pipe (Comparative Example 3), the inner and outer surfaces of the molded pipe are both smooth and clean, and the wall thickness and inner and outer diameters are within the specified dimensions. are doing. The value was 4.7 ° C. higher than that of the vinyl chloride resin (b) alone (Comparative Example 3), and the impact strength was also improved.
[0052]
Example 6
The crushed waste power buried pipe (B) alone was supplied alone to a conical screw type biaxially different-direction rotary extruder with a constant weight feeder, and the results shown in Tables 2 and 3 were obtained. The values of the main motor current, the resin pressure, the resin temperature, and the like during molding were all high, and the molding state fluctuated. Small irregularities were observed on the inner and outer surfaces of the molded pipe. However, both the wall thickness and the inner and outer diameters of the formed pipe kept within the standard. In addition, a high-performance pipe was obtained in which both the Charpy impact strength and the Vicat softening temperature of the molded pipe showed high values.
[0053]
Comparative Example 1
A resin composition having a ratio of 50 parts by weight of the pulverized waste power buried pipe (C) and 50 parts by weight of the vinyl chloride resin (b) having passed through an opening of 50 mmφ having an opening larger than 30 mmφ, The conical screw type twin-screw bidirectional rotary extruder was fed with a constant weight feeder to obtain the results shown in Tables 2 and 3. Molding conditions such as the main motor current, resin pressure, and resin temperature during molding varied greatly, and the pipe could not be molded in a continuously stable state. The molded pipe had large irregularities on the inner and outer surfaces, a wavy pattern was generated, and both the wall thickness and the inner and outer diameters fluctuated greatly, so that a pipe having a standard size could not be obtained.
[0054]
Comparative Example 2
The vinyl chloride resin (a) alone was supplied to the hopper of a conical screw type twin screw different direction rotary extruder to obtain the results shown in Tables 2 and 3. A high-strength, high-heat-resistant (high-heat-resistant deformation) type high-performance, high-quality good pipe was obtained.
[0055]
Comparative Example 3
The vinyl chloride resin (b) alone was supplied to a hopper of a conical screw type twin screw different direction rotary extruder to obtain the results shown in Tables 2 and 3. A general PVC pipe with good external shape and dimensions was obtained.
[0056]
[Table 2]
Figure 2004299293
[0057]
[Table 3]
Figure 2004299293
[0058]
Description of a small profile extruder used in Examples 7, 8, 9 and Comparative Examples 4, 5.
Model: 50mm single screw profile extrusion equipment
Screw: Full flight 50mmφ single axis, L / D = 25, CR = 2.5. Die = L shape, thickness = 2.5, longitudinal direction = 25 mm, transverse direction = 10 mm.
Breaker plate = 3mmφ, without screen
Sizing = vacuum block and cooling water tank. In addition, a small profile extrusion machine with general specifications.
[0059]
Equipment and conditions for producing granulated compound of vinyl chloride resin used in Examples 7 and 8 and Comparative Examples 4 and 5.
Model: Different direction biaxial extruded pellet manufacturing equipment
Different direction biaxial GTR-65 (Ikegai Co., Ltd.),
Screw: 65mmφ parallel type 2 axis,
Equipped with a direct cut device and a blown pellet cooling device.
Screw rotation speed: 30 RPM
Set temperature: 130 ° C to 160 ° C in barrel section, 170 ° C in die plate section
The above resin composition comprising 50 parts by weight of the crushed waste power buried pipe (A) and 50 parts by weight of vinyl chloride resin (c) is charged into a 100 L supermixer (manufactured by Kawata Corporation) and blended at a low speed for 5 minutes. After that, a vinyl chloride resin granulation compound P-1 was prepared using a different direction biaxial extruded pellet manufacturing apparatus.
[0060]
50 parts by weight of the crushed waste power buried pipe (B) and 50 parts by weight of the vinyl chloride resin (c) were charged into a 500 L super mixer (manufactured by Kawata Corporation) and blended at a low speed for 5 minutes. Then, a vinyl chloride resin granulation compound P-2 was prepared using a different direction biaxially extruded pellet manufacturing apparatus.
[0061]
A 500 L supermixer was prepared by mixing 50 parts by weight of the crushed waste electric power buried pipe (C) and 50 parts by weight of the vinyl chloride resin tree (c) through a 50 mmφ opening having an opening larger than 30 mmφ. (Kawata Co., Ltd.), and after blending for 5 minutes at a low speed, a vinyl chloride-based resin granulation compound was prepared using a biaxially extruded pellet manufacturing apparatus in different directions. The obtained granulated compound was a granulated compound P-3 having irregular sizes and uneven gloss.
[0062]
Next, a vinyl chloride-based resin granulation compound P-4 was prepared using the vinyl chloride-based resin (c) and a different direction twin-screw extruded pellet manufacturing apparatus.
[0063]
Next, an L-shaped profile extrusion experiment was performed using a vinyl chloride resin granulation compound P-1 and a 50 mm small profile extrusion machine (Example 7). An L-shaped irregularly shaped extruded product having a smooth surface, good appearance and good dimensions was prepared, and good characteristics such as Charpy impact strength of the molded product and Biccat softening temperature were obtained. The results are shown in Tables 4 and 5.
[0064]
Next, an L-shaped profile extrusion molding experiment was performed using a vinyl chloride resin granulation compound P-3 and a 50 mm small profile extrusion machine (Comparative Example 4). Cracks and tears occur in the molded product, thickness unevenness is severe, and a good L-shaped profile extruded product cannot be obtained.
[0065]
Next, an L-shaped profile extrusion molding experiment was conducted using a vinyl chloride resin granulation compound P-4 and a 50 mm compact profile extrusion machine (Comparative Example 5). An L-shaped profile extruded product having gloss, smooth surface, good appearance and good dimensions was prepared. The results are shown in Tables 4 and 5.
[0066]
[Table 4]
Figure 2004299293
[0067]
[Table 5]
Figure 2004299293
[0068]
【The invention's effect】
According to the present invention, the ground material of the buried pipe is utilized by using a crushed material of the buried pipe of the waste power cable made of the vinyl chloride resin and mixing and extruding the vinyl chloride resin as necessary. On the other hand, an extruded body having no irregularities on the inner and outer surfaces of the formed body, having an excellent surface condition, and having less variation in the thickness and inner and outer diameters can be obtained. Therefore, for example, even if the waste buried pipe is recycled and the power cable underground pipe made of a vinyl chloride resin is molded again, an extruded body which can sufficiently satisfy the standard can be obtained.
[0069]
As described above, since material recycling utilizing the excellent material performance of the underground pipe of the waste electric power cable made of polyvinyl chloride resin can be performed, it is very preferable from the viewpoint of environmental problems.

Claims (8)

塩化ビニル系樹脂製廃電力ケーブル地中埋設管を目開きが30mmφ以下の開口を通過するように粉砕した粉砕物100〜5重量%と塩化ビニル系樹脂0〜95重量%からなる樹脂組成物を押出成形して得られるリサイクル押出成形体。A resin composition consisting of 100 to 5% by weight of a crushed material obtained by crushing a vinyl chloride resin waste power cable buried underground pipe through an opening having an opening of 30 mmφ or less and 0 to 95% by weight of a vinyl chloride resin. A recycled extruded product obtained by extrusion molding. 塩化ビニル系樹脂製廃電力ケーブル地中埋設管粉砕物100〜5重量%と塩化ビニル系樹脂0〜95重量%からなる樹脂組成物を定重量フィーダーを用いて押出成形して得られることを特徴とするリサイクル押出成形体。It is obtained by extrusion-molding a resin composition comprising 100 to 5% by weight of a ground power pipe made of a vinyl chloride resin waste power cable and 0 to 95% by weight of a vinyl chloride resin using a constant weight feeder. Recycled extrusions. 塩化ビニル系樹脂製廃電力ケーブル地中埋設管を、目開きが30mmφ以下の開口を通過するように粉砕した粉砕物を使用して得られる請求項2記載のリサイクル押出成形体。The recycled extruded product according to claim 2, which is obtained by using a pulverized product obtained by pulverizing an underground pipe made of a vinyl chloride-based resin waste power cable so as to pass through an opening having an opening of 30 mmφ or less. 塩化ビニル系樹脂製廃電力ケーブル地中埋設管を目開きが10mmφ以下の開口を通過するように粉砕した粉砕物を使用して得られる請求項1又は請求項2記載のリサイクル押出成形体。The recycled extruded product according to claim 1 or 2, which is obtained by using a pulverized product obtained by pulverizing an underground pipe made of a vinyl chloride-based resin waste power cable so as to pass through an opening having an opening of 10 mmφ or less. 塩化ビニル系樹脂製廃電力ケーブル地中埋設管が、市場経年した埋設管、敷設工程で発生する残材、端材のいずれかの1以上である請求項1〜4のいずれか1項記載のリサイクル押出成形体。5. The underground buried pipe made of vinyl chloride resin waste power cable is one or more of a buried pipe aged in the market, a residual material generated in a laying process, and offcuts. 6. Recycled extruded body. 塩化ビニル系樹脂製廃電力ケーブル地中埋設管が、ヴィカット軟化温度(B法 50N 荷重)が、78℃〜98℃であって、後塩素化塩化ビニル樹脂および/又は,耐熱性ABS樹脂に代表される塩化ビニル樹脂耐熱性向上改質剤が1種または2種以上配合されたものである請求項1〜5のいずれか1項記載のリサイクル押出成形体。The underground pipe of waste power cable made of vinyl chloride resin has a Vicat softening temperature (Method B, 50N load) of 78 ° C to 98 ° C, and is represented by post-chlorinated vinyl chloride resin and / or heat-resistant ABS resin. The recycled extrusion molded article according to any one of claims 1 to 5, wherein one or more kinds of the vinyl chloride resin heat resistance improving modifier to be used are compounded. 樹脂組成物を予め混練造粒したものを供給して押出成形して得られることを特徴とする請求項1〜6のいずれか1項記載のリサイクル押出成形体。The recycled extruded product according to any one of claims 1 to 6, which is obtained by supplying a resin composition which has been kneaded and granulated in advance and extruding the resin composition. 塩化ビニル系樹脂製廃電力ケーブル地中埋設管を目開きが30mmφ以下の開口を通過するように粉砕した粉砕物100〜5重量%と、塩化ビニル系樹脂0〜95重量%からなる樹脂組成物を押出成形してなる請求項1〜7のいずれか1項記載のリサイクル押出成形体の製造方法。Resin composition composed of 100 to 5% by weight of a crushed material of a vinyl chloride resin waste power cable buried underground cable passing through an opening having an opening of 30 mm or less, and 0 to 95% by weight of a vinyl chloride resin. The method for producing a recycled extruded product according to any one of claims 1 to 7, wherein the extruded product is extruded.
JP2003095997A 2003-03-31 2003-03-31 Recycled extrusion forming and its manufacturing method Pending JP2004299293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095997A JP2004299293A (en) 2003-03-31 2003-03-31 Recycled extrusion forming and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095997A JP2004299293A (en) 2003-03-31 2003-03-31 Recycled extrusion forming and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004299293A true JP2004299293A (en) 2004-10-28

Family

ID=33408191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095997A Pending JP2004299293A (en) 2003-03-31 2003-03-31 Recycled extrusion forming and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004299293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328313A (en) * 2005-05-30 2006-12-07 Sekisui Chem Co Ltd Vinyl chloride based resin compound and power cable protecting duct using the same
WO2006129624A1 (en) * 2005-05-30 2006-12-07 Suminoe Textile Co., Ltd. Recyclable vinyl chloride carpet and process for production thereof
CN103128945A (en) * 2013-03-19 2013-06-05 佛山顾地塑胶有限公司 Preparation method of heat-resistant PVC (polyvinyl chloride) casing pipe for buried high-voltage power cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328313A (en) * 2005-05-30 2006-12-07 Sekisui Chem Co Ltd Vinyl chloride based resin compound and power cable protecting duct using the same
WO2006129624A1 (en) * 2005-05-30 2006-12-07 Suminoe Textile Co., Ltd. Recyclable vinyl chloride carpet and process for production thereof
US8404067B2 (en) 2005-05-30 2013-03-26 Suminoe Textile Co., Ltd. Recyclable vinyl chloride carpet and process for producing thereof
CN103128945A (en) * 2013-03-19 2013-06-05 佛山顾地塑胶有限公司 Preparation method of heat-resistant PVC (polyvinyl chloride) casing pipe for buried high-voltage power cable

Similar Documents

Publication Publication Date Title
CN1202943C (en) High smelting point resin dewatering device of double screw extruder rotating in the same direction
JP5804932B2 (en) Method for producing molded vinyl chloride resin
JP2004299293A (en) Recycled extrusion forming and its manufacturing method
JPH09263667A (en) Vinyl chloride resin composition
JP5446105B2 (en) Soft vinyl chloride resin composition and method for producing molded article
KR0139884B1 (en) Waste-crosslink-polyethylene resin composition
JPH09123169A (en) Thermoplastic resin synthetic material with plastic bottle as material, manufacture thereof, thermoplastic resin molding using the material and manufacture thereof
JP2002187990A (en) Resin composition reusing vinyl chloride wall paper and woody composite molding prepared therefrom
JP5165271B2 (en) Coking method for metallurgy using waste plastic molding
JP5367456B2 (en) Rigid polyvinyl chloride resin composition for injection molding and use thereof
CN207310316U (en) Twin-screw extrusion water spray Water ring granulator
CN106046470A (en) Methods to reprocess cross-linked foam and product
JP4559391B2 (en) Compound manufacturing apparatus, mold for extruder and method for manufacturing compound
JP2006315388A (en) Method for producing vinyl chloride-based resin foam
US8309223B2 (en) Polyimide based purge media and methods relating thereto
JP2015232102A (en) Soft vinyl chloride resin composition
CN105111569A (en) Preparation method of antimony trioxide flame-retardant master batch
CN115742239A (en) Method for cleaning PVC screw extruder
US20130029154A1 (en) Polyimide based purge media and methods relating thereto
JP4963273B2 (en) Manufacturing method of wooden molded product and wooden molded product
WO1995033002A1 (en) Process for reclaiming crosslinked acrylic scrap
JP4092218B2 (en) Wood-like molded product manufacturing equipment
CN102766291A (en) Stone pipe and preparation method thereof
KR102398913B1 (en) Manufacturing apparatus for molded articles, method thereof and molded articles
JPH0730211B2 (en) Method for producing thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080528