JP2004298936A - Supporting structure of dehydration plate for sludge treatment apparatus - Google Patents

Supporting structure of dehydration plate for sludge treatment apparatus Download PDF

Info

Publication number
JP2004298936A
JP2004298936A JP2003095681A JP2003095681A JP2004298936A JP 2004298936 A JP2004298936 A JP 2004298936A JP 2003095681 A JP2003095681 A JP 2003095681A JP 2003095681 A JP2003095681 A JP 2003095681A JP 2004298936 A JP2004298936 A JP 2004298936A
Authority
JP
Japan
Prior art keywords
movable
sludge
shaft
dehydration
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003095681A
Other languages
Japanese (ja)
Inventor
Akihiko Kanda
明比古 神田
Hirotada Hayashi
弘忠 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2003095681A priority Critical patent/JP2004298936A/en
Publication of JP2004298936A publication Critical patent/JP2004298936A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a dehydration plate supporting structure which can suppress increase of friction resistance by supporting a movable dehydration plate with bearings and can reduce driving energy, in the dehydration plate supporting structure equipped with a sludge treatment mechanism having the movable dehydration plate. <P>SOLUTION: A sludge concentration apparatus is equipped with a concentration mechanism which applies gravitational natural dehydration to remove water from the sludge and concentrates it. The concentration mechanism is composed of a plurality of dehydration plate groups each of which has a plurality of vertical dehydration plates 2, 3 set parallel to each other at a designated interval, and has the dehydration plate supporting structure. The upper face of each dehydration plate group of the concentration mechanism has an upward slope toward an exit side. One group of a plurality of dehydration plates 2, 3 is made movable while the other are made stationary. Sludge transfer elements 4 are formed on the upper face of the movable dehydration plates 3, and a driving unit is attached to give each motion of upward, forward, downward and backward in series to the movable dehydration plates 3. The dehydration plate supporting structure is constituted by connecting a movable shaft 3x with a crank shaft 13, and the movable shaft 3x composed of a center shaft 3xa and a hollow shaft 3xb. The center shaft 3xa is connected to the crank shaft 13 while the hollow shaft 3xb supports the movable dehydration plates 3 rotationally so that the friction of the movable shaft 3x is reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、汚泥の水分を濃縮又は脱水する汚泥処理装置の脱水板群を回転自在に支持する脱水板支持構造に関する。
【0002】
【従来の技術】
汚泥の含水率を低下させることは、屎尿処理施設等において汚泥の濃縮を行なった後、濃縮汚泥からさらに水分を脱水し、分離液と脱水ケーキに固液分離することが行なわれるように、汚泥処理工程では必ず必要な処理である。汚泥の水分を脱水する脱水装置の形式として、濾布を用いた濾過脱水機が代表的なものであるが、その例として加圧容器型濾過機、回転式真空型濾過機、遠心式脱水機、ベルトプレスなどが挙げられる。そして、ベルトプレスの一例として特許文献1の「汚泥脱水装置」が知られている。この汚泥脱水装置は、汚泥中の水分を濾過する無端スクリーニングベルトに水分を吸引するための吸引チャンバを接して設け、吸引チャンバに吸引手段を接続して吸引チャンバ内を負圧状態に設定するように構成されている。
【0003】
濾布式以外にもパンチプレート方式のものもあるが、その変形例として、特許文献2の「脱水装置」が知られている。この脱水装置は、スラリーを供給するスラリー供給部と、スラリーから脱水する脱水部と、脱水後のケーキを排出するケーキ排出部と、脱水部の上方に配置され脱水途中のケーキを脱水部に押し付ける加圧部とを備え、脱水部は板面を鉛直方向に所定間隔毎に平行に配置される複数の平板より成る脱水板群を複数群備え、各脱水板群のそれぞれの平板が交互にかつ隣接する平板が互いに所定間隔に配置され、各脱水板群の位相が相対的にずれるように各脱水板群のうちの少なくとも1つに順次上昇、前進、下降、後退の各運動を行わせる駆動部を備えて成るものである。
【0004】
上記脱水装置では、垂直に立てて所定間隔に置かれた平板状の脱水板群の上に投入される汚泥から、脱水板群のそれぞれの隙間を通って重力で水分を落下させて脱水させる方式が採用されている。一方、汚泥を濃縮する方式としては、一般に沈殿槽又は濃縮槽に汚泥を入れ、重力を利用して上層の液部と下層の濃縮汚泥に分離する自然沈降による沈殿法や、汚泥に機械的な攪拌あるいは空気を加圧状態で吹き込んで微小気泡を生じさせ、気泡に汚泥を付着させて浮上、分離させる浮上分離法などが採用される。
【0005】
【特許文献1】
特開昭58−17810号公報
【特許文献2】
特開平6−155090号公報
【0006】
【発明が解決しようとする課題】
ところで、汚泥の含水率を数%減少させることは、余剰汚泥の体積が大幅に減少するため、例えば農業集落排水処理場で発生する余剰汚泥等を屎尿処理施設へ運搬する作業や汚泥処分費用の軽減等で有利であるため、このような処理経過を経る汚泥については汚泥濃縮処理が要望されている。特に、余剰汚泥の運搬では体積の減少が有効であるが、上述した脱水装置は、屎尿処理施設等に設置される形式であるため、規模が大きく、装置が大型、複雑であって、運転に要する動力も大きい。従って、これら装置を農業集落で発生する汚泥の運搬のために濃縮処理するような汚泥の簡易濃縮処理に利用することはできないし、又そのような提案が行なわれた例もない。
【0007】
そこで、このような要望に適合する汚泥濃縮装置として特許文献2に記載された汚泥脱水装置を、その加圧部を省略し、2つの可動脱水板群のうち一方を固定脱水板群とすることにより汚泥濃縮装置として構成し、小型、省略化、重量軽減化し、経済的コストの装置を得ることが考えられる。しかし、このような装置を構成する場合、可動脱水板群はクランク軸の偏心位置に設けたベアリングを介して連結される可動軸により回転自在に支持され、クランク軸の回転により可動軸を円運動させる構成となる。
【0008】
このような駆動機構を採用した場合、クランク軸を回転させるとベアリングの自動調心作用により可動軸が両側のベアリング内ですりこぎ運動し、摩擦が増大してベアリングの摩耗が早く進み、その結果駆動エネルギが増大する。このため、これに十分耐え得る構成とするには、ベアリングとして高い耐摩耗性能を有する特殊なベアリングが要求されることとなり、製作コストの上昇を招く。
【0009】
この発明は、上記従来の装置の問題点に留意して、可動脱水板を有する汚泥処理機構を備えた脱水板支持構造において可動脱水板をベアリングで支持することによる摩擦抵抗の増大を抑制し、駆動エネルギを減少させることができる脱水板支持構造を提供することを課題とする。
【0010】
【課題を解決するための手段】
この発明は、上記の課題を解決する手段として、一端から供給される汚泥の水分を重力により自然脱水し、又は加圧脱水して他端から排出する汚泥処理機構を、板面を鉛直向きにした複数の平板を互いに平行に所定間隔に配置した脱水板群により構成し、脱水板群のうち可動の脱水板群を回転自在に支持する可動軸を中軸とその外周に嵌挿される中空軸とから成る複軸として形成し、中空軸に可動脱水板群を回転自在に取付け、中軸をクランク軸の偏心位置に連結して支持するようにした汚泥処理装置用脱水板支持構造としたのである。
【0011】
上記の構成としたこの発明の脱水板支持構造によれば、可動脱水板をスムーズに効率よく動作させて汚泥処理が有効に行なわれることとなる。対象となる汚泥処理装置には、汚泥濃縮装置と、汚泥脱水装置が含まれるが、いずれの型式の装置も可動脱水板を有する。この可動脱水板は、クランク軸に偏心状に連結した可動軸に回転自在に取付け、クランク軸を駆動部により回転させることによって可動軸を円運動させ、可動脱水板を上昇、前進、下降、後退の各運動を行なわせ、濃縮又は脱水処理を行なう。
【0012】
上記濃縮又は脱水処理の際、脱水板上には汚泥が載置され、その負荷が脱水板に作用する。しかし、可動軸は中軸とこれに外嵌される中空軸から成る複軸として形成されているため、中軸をクランク軸に固定し、中空軸で脱水板を回転自在に支持することにより負荷を軸方向に分布荷重として分散させることができる。従って、クランク軸を回転させると、可動軸は円運動して可動脱水板を上昇、前進、下降、後退の各運動を小さい摩擦で効率よく行なうことができる。可動軸をクランク軸にベアリングで支持する従来の支持構造ではベアリング内で上記可動軸の円運動の際にすりこぎ運動が生じるのを上記構成によって防止するのである。当然、すりこぎ運動が生じなくなることによって駆動エネルギも小さくて済む。
【0013】
【実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。図1は、実施形態の脱水板支持構造を備えた汚泥濃縮装置の要部斜視図、図2は図1の矢視II−IIから見た同装置の正面図、図3は平面図である。図示のように、汚泥濃縮装置は、板面を鉛直向きにした複数の平板を2つの内側板1、1間に配置した固定脱水板群2と、可動脱水板群3との2つの群から成る濃縮機構Aと、その可動脱水板群3をクランク軸13を介して駆動する駆動部Bとを備えている。
【0014】
固定脱水板群2及び可動脱水板群3のそれぞれの脱水板は板面を鉛直向きにした細長い複数の平板を互いに所定間隔に配置し、かつ固定脱水板2と可動脱水板3が交互に、かつ隣接する平板相互を所定間隔に配置されている。なお、固定脱水板群2と固定脱水板2、可動脱水板群3と可動脱水板3は、それぞれ同じ部材のグループとその1枚の板という関係であるため同じ符号を付しているが、以下では特に区別しない限り単一の脱水板2、3を代表させて説明する。
【0015】
固定脱水板2、可動脱水板3のいずれもその一端に立上り片2、3が設けられ、この一端側を汚泥の供給位置Sとして、汚泥が後方へ流出しないように形成されている。固定脱水板2は、その両端及び立上り片を貫通する固定軸2xで内側板1、1に固定され、可動脱水板3はその両端付近で下方へ延びる支持片3a、3aに挿通された可動軸3x、3xで支持され、後述するように可動軸3x、3xをクランク軸13で円運動させることにより駆動される。なお、1xは内側板1、1を連結する連結軸である。
【0016】
両脱水板2、3は、可動脱水板3の上面を固定脱水板2の上面と揃えて停止させたとき、両群の脱水板2、3の上面が略平面状をなし、かつその平面が他端の前方の排出部Tへ向って所定角度で上向きの傾斜を成すように設けられる。又、可動脱水板3の上面には、汚泥に対する送りを促進するための汚泥送り素子4として多数のノコ歯状の歯形片(突起)が連続状に設けられている。5はスペーサである。
【0017】
図2に示すように、上記濃縮機構Aは、クランク軸(偏心軸)13を介して外側板10、10に支持されている。クランク軸13は、図3の平面図から分かるように、装置の長手方向の前、後端寄りで左右両側に設けられ(合計4箇所)、各クランク軸13は、外側板10、10に取付けた軸受ユニット11で支持される回転軸11xに連結されている。回転軸11x上にはスプロケット12a、12bが設けられ、スプロケット12aには、駆動部Bのアクチュエータである電動モータ15の出力軸に連結された動力軸15xの両端寄りに設けられているスプロケット15a、15aとの間にチェーン14aが掛け回されており、これによってクランク軸13が回転される。スプロケット12bには前後のスプロケット12b、12b間にチェーン14bが掛け回されて同期駆動される。
【0018】
図5に示すように、可動脱水板3は可動軸3xに対し回転自在に取付けられており、可動軸3xはその両端がクランク軸13に連結、固定されている。クランク軸13は、左右一対の外側板10、10に取付けた軸受ユニット(部材)11で支持され、可動軸は中軸3xaとその外周に回転自在に挿通される中空軸3xbから成る複軸とされ、中軸3xaをクランク軸13に偏心状に固定し、中空軸3xbに可動脱水板3を回転自在に取付けている。上記偏心状のクランク軸をモータ15の動力により回転させ、複軸の可動軸3xを円運動させ、これにより可動脱水板3を上昇、前進、下降、後退の各運動ができるように形成されている。
【0019】
上記の構成としたこの実施形態の汚泥濃縮装置は、農業集落等で発生する屎尿等の汚泥を運搬する際の運搬の便宜、その後の処理作業の効率化のため汚泥を濃縮するのに用いられる。この装置に投入される汚泥は濃縮を効果的に実施するため、予め貯留槽内に凝集剤を投入して凝集汚泥とされ、この凝集汚泥が装置の供給位置Sから投入される。凝集汚泥が投入されると、固定脱水板2、可動脱水板3の成す傾斜面上で水分が所定の含水率に濃縮されて前端の排出部Tへと排出される。
【0020】
汚泥を濃縮することは、周知の通り汚泥の体積を大きく減少させるためであり、含水率が数%低下するだけでも体積は数分の1となる。これは、例えば含水率98%の汚泥を96%に濃縮した場合、水分割合Pの汚泥の容量Vと水分割合P’の汚泥の容量V’の関係がV’=V・(1−P)/(1−P’)と表わされることから、V’=V・(1−0.98)/(1−0.96)=V・0.02/0.04=1/2Vとなり、1/2の体積となることから簡単に理解される。図示の例の装置は、含水率98.5〜98%の汚泥に対し3〜5%の含水率の濃縮をし、体積を1/2〜1/3となる機能を果たすことを目標として開発されたものである。
【0021】
さて、濃縮装置の供給位置Sへの汚泥の投入は、図6Aの(a)図の状態のタイミングで行なう。なお、汚泥の投入は図6Aの(a)図から後述する図6Bの(h)図までのどのタイミングで投入してもよいが、便宜上(a)図の状態で投入することを前提として説明する。(b)図では可動脱水板3は、さらに沈み込んで固定脱水板2の高さの略1/2程度まで可動脱水板3は下がり最下位置になる。図6Bの(h)図、図6Aの(a)図での固定脱水板2、可動脱水板3の関係の断面状態を、図7の(a)図、(b)図に示す。
【0022】
図6Aの(a)図から(b)図の状態に固定脱水板2と可動脱水板3の重なりが変化した場合、固定脱水板2と可動脱水板3の間には予め所定の隙間がスペーサ5によって設けられているから、汚泥に含まれる水分は重力による自然落下で隙間から下方へ落ちるが、両脱水板の重なりが図6Aの(a)図では固定脱水板2の上面よりやや下方へ、(b)図では脱水板2の高さの約半分と変化するため、固定脱水板2から可動脱水板3の下方へと脱離液が通過する際の隙間による抵抗が少しずつ小さくなり、脱離液は図6Aの(a)図から(b)図の状態に変化する間に脱離し得る液の大部分が落下して脱離される(図7も参照)。
【0023】
図6Aの(c)図の中間位置の状態では、可動脱水板3が最下位置から上昇して固定脱水板2の上面のやや下方まで上昇して重なるため、両者間の隙間の重なりは脱離液の落下方向と逆向きに大きくなり、隙間の脱離液に対する抵抗が増大し、脱離液は極くわずかしか落下できなくなる。
【0024】
図6Aの(d)図では可動脱水板3は、円運動によって(c)図の状態よりさらに上昇すると共に最後方位置に位置し、可動脱水板3の上面が固定脱水板2の上面よりやや上昇する。従って、汚泥は両脱水板3の上面で支持される。図6Bの(e)図の中間位置では、(a)図や(c)図の中間位置とは反対に、可動脱水板3の上面が固定脱水板2の上面より上方へ昇り、脱水板の重なりは可動脱水板3の高さの略1/2近くとなる。従って、固定脱水板2上に支持されていた汚泥は可動脱水板3上に移乗され、持上げられる。
【0025】
図6Bの(f)図では可動脱水板3は固定脱水板2の上面より上に出て最上位置となり、汚泥は最上位置まで持上げられると共に(d)図の位置より前方へと移動される。(g)図の中間位置では、(f)図より可動脱水板3の高さ位置が低くなるが、(f)図よりさらに前方へと汚泥を移動させる。(h)図の最前方位置では可動脱水板3は固定脱水板2と上面が同一レベル近くに下がるが、汚泥を最前位置へと送り、汚泥を固定脱水板2へと移乗させる。なお、図6A(d)〜図6B(h)の可動脱水板3の回転中にも隙間の離脱液への抵抗の変化に伴い脱水が行われる。
【0026】
(h)図の状態で汚泥を最前位置へ送った後、可動脱水板3は再び下降して(a)図の中間位置へと状態が変化するが、以上の1サイクルの運動の間に汚泥から水分が離脱されると共に、汚泥を投入位置から前方へと送る作用が行なわれるから、可動脱水板3が最前位置の状態となった際に前方の排出部Tへ汚泥を排出できれば、1回のサイクルで汚泥は排出されるが、1回のサイクルで汚泥が排出できなければ、上記サイクルを2回、3回と複数回繰り返すことにより汚泥を前へ前へと送り、排出されることとなる。なお、上記排出サイクルにおいて、固定脱水板2、可動脱水板3の上面を前方へ向って上向きの傾斜状とすることにより汚泥を脱水板上に一定時間滞留させ、汚泥送り素子によって強制的に前方へ送るようにしている。
【0027】
上記の作動サイクルを繰り返して汚泥の濃縮作用をする際に、固定脱水板2、可動脱水板3上に汚泥が投入され、この汚泥負荷は両脱水板2、3に作用するが、このうち可動脱水板3に作用する負荷は可動軸3xの長さ方向に分布して作用する。そして、可動軸3xは、中軸3xaと中空軸3xbから成り、中軸3xaはクランク軸13に固定され、可動脱水板3は中空軸3xbに回転自在に支持されている。従って、可動軸3xに作用する分布荷重は中軸3xaと中空軸3xbによって支持され、クランク軸13を回転させることにより中軸3xaが円運動しても、中空軸3xbとの間の摩擦力が小さくなり、可動軸3xがスムーズに回転し、従って駆動エネルギも減少する。
【0028】
一方、このように可動軸3xとして複軸の構成を採用しない従来の構成では、可動軸3xをクランク軸13に回転自在に支持するため当然ベアリングで支持することとなるが、ベアリングで支持する場合ベアリングの自動調心作用により可動軸はベアリング内ですりこぎ運動をすることとなり、その結果摩擦が増大し、駆動エネルギが増大することとなる。しかし、この実施形態では複軸の構成を採用したため、すりこぎ運動がなくなり、摩擦が大きくなることもなく、駆動エネルギが減少する。又、中空軸を使用することにより可動軸の剛性が増大し、耐久性がさらに改善される。
【0029】
上述した実施形態では汚泥送り素子4として、ノコ歯状の歯形片から成る例を示したが、これに限らず汚泥の送りが有効に行なえる形状であれば他のどんな形状でもよい。又、固定脱水板2は上面の傾斜を微調整できるように固定軸2xは位置調整自在に設けられている。なお、固定脱水板2、可動脱水板3の上方には加圧部材は設けられていない。
【0030】
さらに、図示の例ではクランク軸13とモータ15により可動脱水板3を上昇、前進、下降、後退の各動作をさせるようにしたが、上記各動作をさせる機構としては、例えば昇降用のシリンダ、水平方向に移動させるシリンダをリンク機構を介して可動脱水板3に取付ける構成としてもよく、上記各動作をし得るものであればよい。
【0031】
又、上記実施形態では、汚泥濃縮装置の例を示したが、可動脱水板を有する脱水板支持構造は、特開平6−155090号公報に開示されている脱水装置にも適用できる。この脱水装置は、上述した汚泥濃縮装置に対し、加圧部を設け、2つの脱水板群を共に可動脱水板としたものであり、汚泥に含まれる水分を大部分離脱させる装置である。この脱水装置の可動脱水板も上記実施形態の可動軸で支持するように構成すれば、脱水装置の作動がスムーズとなり、駆動エネルギの減少を図ることができる。
【0032】
【発明の効果】
以上、詳細に説明したように、この発明の脱水板支持構造は、汚泥処理機構の可動脱水板を可動軸で回転自在に支持し、可動軸を中軸と中空軸から形成し、中軸をクランク軸の偏心位置に連結し、中空軸に可動脱水板を回転自在に取付けるようにしたから、可動脱水板に汚泥負荷が作用してもその負荷を軸方向に分布させることができ、このため中軸と中空軸間の小さい摩擦で回転を支持することとなり、作動がスムーズで駆動エネルギが減少するという効果が得られる。
【図面の簡単な説明】
【図1】実施形態の汚泥濃縮装置の要部内側斜視図
【図2】図1の矢視II−IIから見た正面図
【図3】同上装置の平面図
【図4】図3の矢視IV−IVから見た断面図
【図5】図4の矢視V−Vから見た拡大断面図(可動軸とクランク軸の詳細断面図)
【図6A】汚泥濃縮機構による濃縮作用の説明図
【図6B】汚泥濃縮機構による濃縮作用の説明図
【図7】濃縮作用の拡大断面による説明図
【図8】図4の矢視VIII−VIIIから見た拡大底面図
【符号の説明】
1 内側板
2 固定脱水板(群)
3 可動脱水板(群)
4 汚泥送り素子
5 スペーサ
10 外側板
13 クランク軸
15 モータ
S 供給位置
T 排出部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dewatering plate support structure that rotatably supports a dewatering plate group of a sludge treatment device that concentrates or dewaters sludge water.
[0002]
[Prior art]
Decreasing the water content of the sludge is performed by concentrating the sludge in a human waste treatment facility or the like, and then dehydrating the water from the concentrated sludge, and performing solid-liquid separation into a separated liquid and a dewatered cake. This is a necessary process in the processing step. A typical example of a dehydrator for dewatering sludge is a filter dehydrator using a filter cloth. Examples of the dehydrator include a pressurized container type filter, a rotary vacuum type filter, and a centrifugal type dehydrator. And a belt press. As an example of the belt press, a “sludge dewatering device” of Patent Document 1 is known. In this sludge dewatering device, a suction chamber for sucking moisture is provided in contact with an endless screening belt that filters moisture in sludge, and a suction unit is connected to the suction chamber to set the inside of the suction chamber to a negative pressure state. Is configured.
[0003]
In addition to the filter cloth type, there is also a punch plate type, and as a modified example thereof, a “dehydrating device” of Patent Document 2 is known. The dewatering device includes a slurry supply unit that supplies slurry, a dewatering unit that dewaters the slurry, a cake discharge unit that discharges cake after dewatering, and a cake that is arranged above the dewatering unit and that is being dewatered and is pressed against the dewatering unit. A pressurizing unit, and the dewatering unit includes a plurality of dewatering plate groups each including a plurality of flat plates whose plate surfaces are arranged in parallel at predetermined intervals in a vertical direction, and each flat plate of each dewatering plate group is alternately and Adjacent flat plates are arranged at a predetermined distance from each other, and at least one of the dehydrating plate groups sequentially performs ascending, advancing, descending, and retreating so that the phases of the dehydrating plate groups are relatively shifted. It comprises a part.
[0004]
In the above dewatering device, a method of dewatering by dropping water by gravity through the respective gaps of the dewatering plate group, from sludge thrown on a plate-shaped dewatering plate group vertically arranged at predetermined intervals. Has been adopted. On the other hand, as a method of condensing sludge, generally, sludge is put into a sedimentation tank or a concentration tank, and gravity is used to separate the liquid into an upper layer and a lower layer of concentrated sludge. A flotation method or the like is employed in which fine bubbles are generated by stirring or blowing air under pressure, and sludge is attached to the bubbles to float and separate.
[0005]
[Patent Document 1]
JP-A-58-17810 [Patent Document 2]
JP-A-6-155090
[Problems to be solved by the invention]
By the way, reducing the water content of sludge by several percent significantly reduces the volume of surplus sludge. For example, the operation of transporting surplus sludge and the like generated in agricultural settlement drainage treatment plants to human waste treatment facilities and the disposal cost of sludge are reduced. Since it is advantageous in reduction and the like, sludge concentration treatment is required for sludge that has undergone such treatment. In particular, although the reduction of the volume is effective in transporting excess sludge, the above-mentioned dewatering device is of a type that is installed in a human waste treatment facility or the like. The required power is also large. Therefore, these devices cannot be used for a simple thickening treatment of sludge such as a thickening treatment for transporting sludge generated in an agricultural settlement, and there is no example in which such a proposal has been made.
[0007]
Therefore, the sludge dewatering device described in Patent Literature 2 as a sludge concentrating device meeting such a demand is to omit the pressurizing section and to make one of the two movable dewatering plate groups a fixed dewatering plate group. Thus, it is conceivable to obtain a sludge concentrating apparatus which is compact, omitted, reduced in weight, and economical in cost. However, when such a device is configured, the movable dewatering plate group is rotatably supported by a movable shaft connected via a bearing provided at an eccentric position of the crankshaft, and the movable shaft is caused to circularly move by rotation of the crankshaft. Configuration.
[0008]
When such a drive mechanism is adopted, when the crankshaft is rotated, the self-aligning action of the bearing causes the movable shaft to pry in the bearings on both sides, increasing the friction and increasing the wear of the bearing. The driving energy increases. For this reason, a special bearing having high wear resistance is required as a bearing in order to have a structure that can sufficiently withstand this, and the production cost is increased.
[0009]
The present invention suppresses an increase in frictional resistance by supporting a movable dewatering plate with a bearing in a dehydrating plate supporting structure including a sludge treatment mechanism having a movable dewatering plate, noting the problems of the above-described conventional device, An object of the present invention is to provide a dehydrating plate supporting structure capable of reducing driving energy.
[0010]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the present invention provides a sludge treatment mechanism that naturally dehydrates the water of sludge supplied from one end by gravity, or dewaters under pressure and discharges it from the other end, with the plate surface oriented vertically. A plurality of flat plates are constituted by a dehydration plate group arranged at predetermined intervals in parallel with each other, and a movable shaft that rotatably supports the movable dehydration plate group among the dehydration plate groups is a central shaft and a hollow shaft inserted into the outer periphery thereof. , And a movable dewatering plate group is rotatably mounted on the hollow shaft, and the dewatering plate supporting structure for the sludge treatment apparatus is configured so that the center shaft is connected to and supported at the eccentric position of the crankshaft.
[0011]
According to the dewatering plate support structure of the present invention having the above-described structure, the movable dewatering plate is operated smoothly and efficiently, and sludge treatment is effectively performed. The target sludge treatment apparatus includes a sludge thickening apparatus and a sludge dewatering apparatus, and both types of apparatuses have a movable dewatering plate. The movable dewatering plate is rotatably mounted on a movable shaft eccentrically connected to the crankshaft, and the crankshaft is rotated by a drive unit to make the movable shaft circularly move, thereby raising, moving forward, descending, and retreating the movable dewatering plate. Are performed, and a concentration or dehydration treatment is performed.
[0012]
During the concentration or dehydration treatment, sludge is placed on the dehydration plate, and the load acts on the dehydration plate. However, since the movable shaft is formed as a double shaft consisting of a middle shaft and a hollow shaft fitted to the outside, the load is increased by fixing the middle shaft to the crankshaft and rotatably supporting the dewatering plate with the hollow shaft. It can be distributed as a distributed load in the direction. Therefore, when the crankshaft is rotated, the movable shaft moves circularly, and each of the upward, forward, downward, and backward movements of the movable dewatering plate can be efficiently performed with small friction. In the conventional support structure in which the movable shaft is supported on the crankshaft by the bearing, the above configuration prevents the occurrence of the rubbing motion during the circular motion of the movable shaft in the bearing. As a matter of course, the driving energy can be reduced by eliminating the rubbing motion.
[0013]
Embodiment
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an essential part of a sludge concentrating apparatus provided with a dewatering plate support structure of an embodiment, FIG. 2 is a front view of the same apparatus as viewed from an arrow II-II in FIG. 1, and FIG. . As shown in the figure, the sludge concentrator comprises a fixed dewatering plate group 2 in which a plurality of flat plates whose plate surfaces are oriented vertically are arranged between two inner plates 1 and 1 and a movable dewatering plate group 3. And a driving unit B for driving the movable dehydrating plate group 3 via the crankshaft 13.
[0014]
Each dehydration plate of the fixed dehydration plate group 2 and the movable dehydration plate group 3 has a plurality of elongated flat plates whose plate surfaces are vertically oriented at predetermined intervals, and the fixed dehydration plate 2 and the movable dehydration plate 3 are alternately arranged. Adjacent flat plates are arranged at predetermined intervals. The fixed dewatering plate group 2 and the fixed dewatering plate 2 and the movable dehydration plate group 3 and the movable dewatering plate 3 are denoted by the same reference numerals because they have the same group of members and one plate. Hereinafter, the single dewatering plates 2 and 3 will be described as representatives unless otherwise specified.
[0015]
Fixed dewatering plate 2, none of the movable dewatering plate 3 rising piece 2 H, 3 H is provided at its one end, this one end as a supply position S of the sludge, is formed so as sludge does not flow out to the rear. The fixed dewatering plate 2 is fixed to the inner plates 1 and 1 by fixed shafts 2x penetrating both ends and rising pieces, and the movable dewatering plate 3 is a movable shaft inserted through support pieces 3a and 3a extending downward near both ends. It is supported by 3x, 3x, and is driven by making the movable shafts 3x, 3x circularly move on the crankshaft 13 as described later. In addition, 1x is a connection shaft that connects the inner plates 1 and 1.
[0016]
When the upper surfaces of the movable dehydrator plates 3 and the upper surfaces of the fixed dehydrator plates 2 are stopped, the upper surfaces of the dehydrator plates 2 and 3 in both groups form a substantially planar shape. It is provided so as to form an upward inclination at a predetermined angle toward the discharge section T in front of the other end. Further, on the upper surface of the movable dewatering plate 3, a large number of saw-tooth-shaped tooth pieces (projections) are continuously provided as sludge feed elements 4 for promoting feed to sludge. 5 is a spacer.
[0017]
As shown in FIG. 2, the enrichment mechanism A is supported on outer plates 10 and 10 via a crankshaft (eccentric shaft) 13. As can be seen from the plan view of FIG. 3, the crankshafts 13 are provided on the left and right sides near the front and rear ends in the longitudinal direction of the apparatus (total of four places). The bearing unit 11 is connected to a rotating shaft 11x supported by the bearing unit 11. Sprockets 12a and 12b are provided on the rotating shaft 11x, and the sprockets 12a are provided near both ends of a power shaft 15x connected to an output shaft of an electric motor 15 which is an actuator of the driving unit B. A chain 14a is wound around the shaft 15a, and the crankshaft 13 is rotated. A chain 14b is wound around the sprocket 12b between the front and rear sprockets 12b, 12b and is driven synchronously.
[0018]
As shown in FIG. 5, the movable dehydrating plate 3 is rotatably attached to the movable shaft 3x, and both ends of the movable shaft 3x are connected to and fixed to the crankshaft 13. The crankshaft 13 is supported by a bearing unit (member) 11 attached to a pair of left and right outer plates 10 and 10, and the movable shaft is a double shaft composed of a central shaft 3xa and a hollow shaft 3xb rotatably inserted around its outer periphery. The central shaft 3xa is eccentrically fixed to the crankshaft 13, and the movable dewatering plate 3 is rotatably mounted on the hollow shaft 3xb. The eccentric crankshaft is rotated by the power of the motor 15 to move the multi-axis movable shaft 3x in a circular motion, whereby the movable dewatering plate 3 is formed so as to be able to move upward, forward, downward and backward. I have.
[0019]
The sludge concentrating apparatus of this embodiment having the above-described configuration is used for condensing sludge for the convenience of transporting sludge such as human waste generated in agricultural settlements and the like, and for increasing the efficiency of subsequent processing operations. . In order to effectively concentrate the sludge fed into this apparatus, a flocculant is previously charged into a storage tank to form flocculated sludge, and this flocculated sludge is fed from a supply position S of the apparatus. When the coagulated sludge is introduced, the water is concentrated to a predetermined moisture content on the inclined surface formed by the fixed dewatering plate 2 and the movable dewatering plate 3 and is discharged to the discharge part T at the front end.
[0020]
As is well known, the concentration of sludge is for greatly reducing the volume of sludge. Even if the water content is reduced by only a few percent, the volume is reduced to a fraction. This is because, for example, when sludge having a water content of 98% is concentrated to 96%, the relationship between the volume V of the sludge having the water ratio P and the volume V 'of the sludge having the water ratio P ′ is V ′ = V · (1−P). / (1−P ′), V ′ = V · (1−0.98) / (1−0.96) = V · 0.02 / 0.04 = 1 / 2V. It is easily understood from the fact that the volume is / 2. The apparatus in the illustrated example is developed with the objective of concentrating the sludge having a water content of 98.5 to 98% to a water content of 3 to 5% and achieving a function of reducing the volume to 1/2 to 1/3. It was done.
[0021]
Now, sludge is supplied to the supply position S of the concentrator at the timing shown in FIG. 6A (a). The sludge may be charged at any timing from the diagram (a) of FIG. 6A to the diagram (h) of FIG. 6B described later, but for convenience, the description will be made on the assumption that the sludge is charged in the state of the diagram (a). I do. (B) In the figure, the movable dewatering plate 3 further sinks down to approximately half the height of the fixed dewatering plate 2 and the movable dewatering plate 3 is lowered to the lowermost position. FIGS. 7A and 7B show cross-sectional states of the relationship between the fixed dewatering plate 2 and the movable dewatering plate 3 in FIG. 6B (h) and FIG. 6A (a).
[0022]
When the overlap between the fixed dewatering plate 2 and the movable dewatering plate 3 changes from the state shown in FIG. 6A to the state shown in FIG. 6B, a predetermined gap is previously provided between the fixed dewatering plate 2 and the movable dewatering plate 3. 5, the water contained in the sludge falls downward from the gap by natural fall due to gravity, but the overlap of both dewatering plates is slightly lower than the upper surface of the fixed dewatering plate 2 in FIG. (B), the height of the dewatering plate 2 changes to about half of the height, so that the resistance due to the gap when the desorbed liquid passes from the fixed dewatering plate 2 to below the movable dewatering plate 3 gradually decreases, While the desorbed liquid changes from the state shown in FIG. 6A to the state shown in FIG. 6B, most of the liquid that can be desorbed drops and is desorbed (see also FIG. 7).
[0023]
In the state of the intermediate position in FIG. 6C (c), the movable dewatering plate 3 rises from the lowermost position and rises slightly below the upper surface of the fixed dewatering plate 2 and overlaps. It increases in the direction opposite to the direction in which the liquid is dropped, the resistance of the gap to the liquid to be removed increases, and the liquid to be released can only fall very slightly.
[0024]
In FIG. 6D, the movable dewatering plate 3 further rises from the state shown in FIG. 6C by circular motion and is located at the rearmost position, and the upper surface of the movable dewatering plate 3 is slightly higher than the upper surface of the fixed dewatering plate 2. To rise. Therefore, the sludge is supported on the upper surfaces of both dewatering plates 3. At the intermediate position in FIG. 6E (e), the upper surface of the movable dewatering plate 3 rises above the upper surface of the fixed dewatering plate 2, as opposed to the intermediate position in FIG. 6A and FIG. The overlap is approximately half of the height of the movable dewatering plate 3. Therefore, the sludge supported on the fixed dewatering plate 2 is transferred onto the movable dewatering plate 3 and lifted.
[0025]
In FIG. 6F, the movable dewatering plate 3 comes out above the upper surface of the fixed dewatering plate 2 to be at the uppermost position, and the sludge is lifted to the uppermost position and moved forward from the position shown in FIG. 6D. (G) At the intermediate position in the figure, the height position of the movable dewatering plate 3 is lower than in the figure (f), but the sludge is moved further forward than in the figure (f). (H) Although the movable dewatering plate 3 has an upper surface near the same level as the fixed dewatering plate 2 at the foremost position in the figure, the sludge is sent to the frontmost position and the sludge is transferred to the fixed dewatering plate 2. 6A (d) to 6B (h), dehydration is performed during rotation of the movable dehydrating plate 3 due to a change in resistance to liquid leaving the gap.
[0026]
(H) After the sludge is sent to the foremost position in the state shown in the figure, the movable dewatering plate 3 is lowered again and the state changes to the intermediate position in the figure (a). When the movable dewatering plate 3 is brought to the frontmost position, the sludge can be discharged to the front discharge section T once the water is released from the water and the sludge is sent forward from the charging position. The sludge is discharged in the cycle, but if the sludge cannot be discharged in one cycle, the above cycle is repeated a plurality of times, two or three times, to send the sludge forward and discharge. Become. In the discharge cycle, the upper surfaces of the fixed dewatering plate 2 and the movable dewatering plate 3 are inclined upward and forward so that the sludge stays on the dewatering plate for a certain period of time and is forced forward by the sludge feed element. I send it to
[0027]
When the above operation cycle is repeated to condense sludge, sludge is thrown into the fixed dewatering plate 2 and the movable dewatering plate 3, and this sludge load acts on both dewatering plates 2 and 3. The load acting on the dehydrating plate 3 acts in a distributed manner in the length direction of the movable shaft 3x. The movable shaft 3x includes a center shaft 3xa and a hollow shaft 3xb. The center shaft 3xa is fixed to the crankshaft 13, and the movable dewatering plate 3 is rotatably supported by the hollow shaft 3xb. Therefore, the distributed load acting on the movable shaft 3x is supported by the central shaft 3xa and the hollow shaft 3xb, and even if the central shaft 3xa makes a circular motion by rotating the crankshaft 13, the frictional force between the movable shaft 3x and the hollow shaft 3xb decreases. , The movable shaft 3x rotates smoothly, and therefore the driving energy also decreases.
[0028]
On the other hand, in the conventional configuration in which the movable shaft 3x does not employ a multi-shaft configuration as described above, the movable shaft 3x is rotatably supported on the crankshaft 13 so that it is naturally supported by bearings. The self-aligning action of the bearing causes the movable shaft to make a rubbing motion within the bearing, resulting in increased friction and increased drive energy. However, in this embodiment, a double-shaft configuration is employed, so that the sliding motion is eliminated, the friction is not increased, and the driving energy is reduced. Further, the use of the hollow shaft increases the rigidity of the movable shaft and further improves the durability.
[0029]
In the above-described embodiment, the sludge feed element 4 has been described as an example including saw-tooth-shaped tooth pieces. However, the present invention is not limited to this, and any other shape may be used as long as sludge can be fed effectively. The fixed shaft 2x is provided so as to be adjustable in position so that the inclination of the upper surface of the fixed dewatering plate 2 can be finely adjusted. Note that no pressurizing member is provided above the fixed dewatering plate 2 and the movable dewatering plate 3.
[0030]
Further, in the illustrated example, the movable dehydrating plate 3 is moved upward, forward, downward, and backward by the crankshaft 13 and the motor 15. However, as a mechanism for performing each of the above operations, for example, a lifting cylinder, A configuration may be adopted in which a cylinder that moves in the horizontal direction is attached to the movable dehydrating plate 3 via a link mechanism, and any cylinder capable of performing the above operations may be used.
[0031]
Further, in the above embodiment, the example of the sludge concentrating device is shown, but the dehydrating plate supporting structure having the movable dehydrating plate can be applied to the dehydrating device disclosed in Japanese Patent Application Laid-Open No. 6-155090. This dewatering device is a device in which a pressurizing section is provided to the above-mentioned sludge concentrating device, and two dewatering plate groups are both movable dewatering plates, and is a device for separating and removing most of the water contained in the sludge. If the movable dehydrating plate of this dehydrating device is also supported by the movable shaft of the above embodiment, the operation of the dehydrating device becomes smooth and the driving energy can be reduced.
[0032]
【The invention's effect】
As described in detail above, the dewatering plate support structure of the present invention supports the movable dewatering plate of the sludge treatment mechanism rotatably on the movable shaft, the movable shaft is formed from a center shaft and a hollow shaft, and the center shaft is a crankshaft. And the movable dewatering plate is rotatably mounted on the hollow shaft, so that even if a sludge load acts on the movable dewatering plate, the load can be distributed in the axial direction. The rotation is supported by the small friction between the hollow shafts, so that the effect is obtained that the operation is smooth and the driving energy is reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the inside of a main part of a sludge concentrating apparatus according to an embodiment; FIG. 2 is a front view as viewed from an arrow II-II in FIG. 1; FIG. 3 is a plan view of the same apparatus; FIG. FIG. 5 is an enlarged cross-sectional view taken along line VV in FIG. 4 (a detailed cross-sectional view of the movable shaft and the crankshaft).
FIG. 6A is an explanatory view of a thickening action by a sludge thickening mechanism. FIG. 6B is an explanatory view of a thickening action by a sludge thickening mechanism. FIG. 7 is an explanatory view of an enlarged cross section of the thickening action. FIG. 8 is an arrow VIII-VIII in FIG. Bottom view as seen from above [Explanation of symbols]
1 inner board 2 fixed dewatering board (group)
3 movable dehydration board (group)
4 Sludge feed element 5 Spacer 10 Outer plate 13 Crank shaft 15 Motor S Supply position T Discharge section

Claims (3)

一端から供給される汚泥の水分を重力により自然脱水し、又は加圧脱水して他端から排出する汚泥処理機構を、板面を鉛直向きにした複数の平板を互いに平行に所定間隔に配置した脱水板群により構成し、脱水板群のうち可動の脱水板群を回転自在に支持する可動軸を中軸とその外周に嵌挿される中空軸とから成る複軸として形成し、中空軸に可動脱水板群を回転自在に取付け、中軸をクランク軸の偏心位置に連結して支持するようにした汚泥処理装置用脱水板支持構造。A sludge treatment mechanism that naturally dehydrates the water of the sludge supplied from one end by gravity, or dewaters under pressure and discharges from the other end, has a plurality of flat plates whose plate surfaces are vertically arranged at predetermined intervals in parallel with each other. A movable shaft for rotatably supporting the movable dehydrating plate group of the dehydrating plate group is formed as a double shaft composed of a central shaft and a hollow shaft inserted around its outer periphery. A dewatering plate support structure for a sludge treatment device in which a plate group is rotatably mounted and a center shaft is connected and supported at an eccentric position of a crankshaft. 前記可動脱水板群を、クランク軸を介して駆動部に連結し、上昇、前進、下降、後退の各運動を行わせるようにしたことを特徴とする請求項1に記載の汚泥処理装置用脱水板支持構造。The dewatering device for a sludge treatment apparatus according to claim 1, wherein the movable dewatering plate group is connected to a driving unit via a crankshaft so as to perform ascent, forward, descend, and retreat movements. Board support structure. 前記汚泥処理機構が可動脱水板群の複数群と加圧部を備え、それぞれの可動脱水板の可動軸を複軸として形成したことを特徴とする請求項1又は2に記載の汚泥処理装置用脱水板支持構造。The sludge treatment apparatus according to claim 1, wherein the sludge treatment mechanism includes a plurality of groups of movable dewatering plates and a pressing unit, and a movable shaft of each movable dehydration plate is formed as a double shaft. Dehydration plate support structure.
JP2003095681A 2003-03-31 2003-03-31 Supporting structure of dehydration plate for sludge treatment apparatus Pending JP2004298936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095681A JP2004298936A (en) 2003-03-31 2003-03-31 Supporting structure of dehydration plate for sludge treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095681A JP2004298936A (en) 2003-03-31 2003-03-31 Supporting structure of dehydration plate for sludge treatment apparatus

Publications (1)

Publication Number Publication Date
JP2004298936A true JP2004298936A (en) 2004-10-28

Family

ID=33407948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095681A Pending JP2004298936A (en) 2003-03-31 2003-03-31 Supporting structure of dehydration plate for sludge treatment apparatus

Country Status (1)

Country Link
JP (1) JP2004298936A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200650A (en) * 2007-02-22 2008-09-04 Nakatomi Kogyo Kk Solid/liquid separator
US20110114550A1 (en) * 2008-04-04 2011-05-19 Yoshiaki Murota Solid-liquid separating system
JP2014001503A (en) * 2012-06-15 2014-01-09 Osaka City Univ Screen device and sewage heat utilization system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200650A (en) * 2007-02-22 2008-09-04 Nakatomi Kogyo Kk Solid/liquid separator
US20110114550A1 (en) * 2008-04-04 2011-05-19 Yoshiaki Murota Solid-liquid separating system
US8672141B2 (en) * 2008-04-04 2014-03-18 Justec Corporation Solid-liquid separating system
JP2014001503A (en) * 2012-06-15 2014-01-09 Osaka City Univ Screen device and sewage heat utilization system

Similar Documents

Publication Publication Date Title
US9944549B1 (en) De-watering machine
CN110397012A (en) A kind of ocean surface floating refuse cleaning unmanned boat
KR101801816B1 (en) Dewatering, dry and transfer apparatus for sludge
JP2004298936A (en) Supporting structure of dehydration plate for sludge treatment apparatus
JP4143457B2 (en) Sludge concentrator
JP4585044B1 (en) Solid-liquid separator
JP3894366B2 (en) Solid-liquid separator
JP2011083668A (en) Sludge thickener and solid-liquid separation system
JP5490232B2 (en) Electroosmotic sludge weight loss device
JP2015147169A (en) Precipitation plate device and operation method of precipitation plate
CN102225375B (en) Elutriation flotation device for rubbish
US4853115A (en) Rake classifier
CN113511743A (en) Industrial sewage treatment equipment
CN106733665A (en) A kind of garbage jumping sorting belt conveyor
CN202052629U (en) Garbage elutriation and flotation apparatus
CN206896969U (en) Large belt filter press press filtration processing system
KR100710824B1 (en) Sludge thickener and dehydrator
CN216191825U (en) Sludge separation treatment device
CN105819662A (en) Electroosmosis belt type sludge squeezing and dewatering equipment
CN2334749Y (en) Automatic collector for float articles of concentrator
KR100642202B1 (en) A scroll type sludge collector travel a cart
CN212246736U (en) Sludge drying device
CN117843069B (en) Industrial wastewater treatment device and treatment method thereof
KR100737416B1 (en) Float Matter Terminating Apparatus of Wastewater Rise Tank
CN218620575U (en) Sludge extraction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930