JP2004298743A - Biofiltration method - Google Patents

Biofiltration method Download PDF

Info

Publication number
JP2004298743A
JP2004298743A JP2003094465A JP2003094465A JP2004298743A JP 2004298743 A JP2004298743 A JP 2004298743A JP 2003094465 A JP2003094465 A JP 2003094465A JP 2003094465 A JP2003094465 A JP 2003094465A JP 2004298743 A JP2004298743 A JP 2004298743A
Authority
JP
Japan
Prior art keywords
biological filtration
water
treated
tank
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003094465A
Other languages
Japanese (ja)
Other versions
JP4205468B2 (en
Inventor
Yoshiko Shishido
美子 宍戸
Masanobu Koseki
正信 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003094465A priority Critical patent/JP4205468B2/en
Publication of JP2004298743A publication Critical patent/JP2004298743A/en
Application granted granted Critical
Publication of JP4205468B2 publication Critical patent/JP4205468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biofiltration method which can repress an increase in backward washing frequency by controlling a rise in pressure loss and improve a treatment efficiency without causing a remarkable deterioration in treated water quality. <P>SOLUTION: In this biofiltration method, biofiltration equipment 10 having a descending flow biofiltration tank 12 and an aeration mean 24, L4 for aerating the inside of the biofiltration tank 12 is used, and water to be treated is biofiltered in the biofiltration tank 12 while aerating it by the aeration means 24, L4. In this method, when the amount of water to be treated flowing into the biofiltration tank 12 exceeds a prescribed value, the aeration by the aeration means 24, L4 is stopped. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生物ろ過方法に関する。
【0002】
【従来の技術】
下水中の懸濁物質(SS)や溶解性有機物などを高度に除去するため、従来より生物ろ過設備が利用される。この生物ろ過設備として、例えば特許文献1に開示のように、下向流式の生物ろ過槽を備えた設備がある。この下向流式の生物ろ過槽を利用した生物ろ過では、槽上部から流入された被処理水は、ろ材を充填したろ床に下向に通水され、ろ材間を通過するときにろ材表面に付着した生物膜によりSSの捕捉と溶解性有機物の分解が行われる。ろ床の下方にはブロワから供給される加圧空気が導入され、この加圧空気が集水ノズルを通して生物ろ過槽内のろ床に散気されることで、生物膜中の微生物の呼吸や有機物の代謝、酸化分解に必要な酸素の供給が行われる。
【0003】
このような生物ろ過設備を利用した従来の生物ろ過方法では、下水処理中は生物膜に含まれる好気性細菌を活性化するため、常にブロワからの散気が行われていた。
【0004】
【特許文献1】
特開平11−319865号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記した従来の生物ろ過方法では、例えば降雨時等において生物ろ過槽に流入する下水量が増加し、ろ過速度が大きくなって高負荷運転になると、圧損上昇が大きくなってろ過水位が上昇していた。そして、下水量が通常の状態に戻っても一度上昇した圧損が下がらなかったため、それ以降はろ過水位が上昇し易くなってしてしまい、次の逆洗までの時間が短くなって処理効率の低下を招いてしまうという問題があった。
【0006】
本発明は、上記した課題を解決するために為されたものであり、圧損上昇を抑制して逆洗頻度の増加を抑制し、処理水質の著しい低下を招くことなく処理効率の向上を図ることを可能とする生物ろ過方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
発明者は、上記目的を達成するため、生物ろ過槽に流入する下水量が増加するときに圧損上昇が起こる原因について鋭意検討した。そして、ろ過水位が上昇した生物ろ過槽100を点検したところ、図12に示すように、ろ床102内に広く空気の層104が形成されていることを見出した。この空気の層104は、生物ろ過槽100に流入する下水量が増加したことに伴う水位の上昇(ΔH)により、ブロワ106から下部空間108を通してろ床102に散気された空気が上昇しようとする上向きの力Uと、この空気の上昇を妨げる下向の力Dとが均衡して形成されたものと推測された。そして、この空気の層104が被処理水のろ床102の通過を妨げ、これにより圧損上昇が起こると考えられた。
【0008】
そこで発明者は、生物ろ過槽100に流入する下水量が増加するとき、ブロワ106からの散気を停止すると、このような空気の層104が形成されることなく、圧損上昇が生じなくなることを見出した。ここで、処理水質を高く維持するためには、生物ろ過槽100内は散気により好気性環境下に維持する必要があり、長時間の散気の停止は処理水質の著しい劣化を招くと常識的には考えられていたが、比較的長時間散気を停止しても、処理水質の著しい劣化は生じないことが分かった。本発明は、このような知見に基づいてなされたものである。
【0009】
本発明に係る生物ろ過方法は、下向流式の生物ろ過槽と生物ろ過槽内に散気するための散気手段とを備えた生物ろ過設備を利用し、散気手段により散気しながら生物ろ過槽内で被処理水を生物ろ過する生物ろ過方法である。この方法では、生物ろ過槽内に流入する被処理水の流入量が所定値を超えるときに、散気手段による散気を停止することを特徴とする。
【0010】
この方法によれば、生物ろ過槽に流入する被処理水の量が所定値を越えて増加し、ろ過速度が大きくなって高負荷運転になっても、圧損上昇によりろ過水位が上昇することを回避することができる。従って、逆洗頻度の上昇が抑制され、処理効率の上昇が図られる。しかも、処理水質の著しい劣化を招くおそれもない。
【0011】
また本発明に係る生物ろ過方法は、下向流式の複数の生物ろ過槽と、複数の生物ろ過槽内に散気するための散気手段とを備えた生物ろ過設備を利用し、散気手段により散気しながら複数の生物ろ過槽内で被処理水を生物ろ過する生物ろ過方法である。この方法では、複数の生物ろ過槽のうち少なくとも一つの生物ろ過槽を逆洗するときに、逆洗する生物ろ過槽以外の槽の少なくとも一つについて散気手段による散気を停止することを特徴とする。
【0012】
この方法によれば、複数の生物ろ過槽のうち少なくとも一つの生物ろ過槽の逆洗により、他の生物ろ過槽に流入する被処理水の量が所定値を越えて増加して、ろ過速度が大きくなって高負荷運転になっても、他の生物ろ過槽において圧損上昇によりろ過水位が上昇することを回避することができる。従って、全体として逆洗頻度の上昇が抑制され、処理効率の上昇が図られる。しかも、処理水質の著しい劣化を招くおそれもない。
【0013】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
図1は、第1実施形態に係る生物ろ過方法を実施するのに好適な生物ろ過設備の構成を模式的に示す図である。図1に示すように、生物ろ過設備10は下向流式の生物ろ過槽12を備えている。
【0014】
生物ろ過槽12は、仕切り板14により上部空間16と下部空間18とに分割されている。図1に示すように、仕切り板14には、上部空間16と下部空間18とを連通する複数の集水ノズル20が貫通形成されている。この集水ノズル20は、ろ床22において処理した処理水を下部空間18に送り出すと共に、散気ブロワ24から下部空間18を通して送られてくる散気用空気を上部空間16に案内する。また集水ノズル20は、逆洗時に下部空間18を通して逆洗ブロワ26及び逆洗水槽30から送られてくる逆洗用空気及び逆洗水を上部空間16に案内する。このように、この生物ろ過槽12は槽上部から導入された被処理水をろ床に22おいてろ過処理し、槽下部から取り出す構成となっており、これを下向流式と呼ぶ。
【0015】
仕切り板14上には、ろ床22が設けられている。ろ床22は、被処理水中の溶解性有機物を酸化・分解するための生物膜が付着可能な複数の粒子(ろ材)から構成されている。ろ床22を構成する粒子としては、例えば多孔質セラミック(焼結粘土を含む)、ゼオライト、プラスチックろ材などが挙げられる。これらのうち、安価でかつ最適比重を有することから、多孔質セラミック粒子が好ましい。ここで、多孔質セラミック粒子としては、空隙率が40〜50%で、SiOなどを成分として含むものが好適に用いられる。ろ床22を構成する粒子の平均粒径は、0.5〜10mm程度であると好ましく、5〜7mm程度であるとより好ましい。また、ろ床22を構成する粒子32としては、水より大きなの真比重を有するものが用いると好ましい。ろ床22の厚さは2〜3m程度とすると好ましい。
【0016】
このろ床22の上方には、ろ床22に向かって被処理水を均等に分配供給するための分配管34が設けられている。
【0017】
また、生物ろ過槽12の側壁部外面には、被処理水受入ラインL1を通して被処理水を受け入れ、生物ろ過槽12内に供給するための被処理水受入部36が設けられおり、上記した分配管34とは、被処理水供給ラインL2により接続されている。
【0018】
また、生物ろ過槽12内の上部には、逆洗時の逆洗排水を排出するための排水トラフ44が配置されている。この排水トラフ44は、生物ろ過槽12の側壁部外面に設けられた逆洗排水を受け入れる逆洗排水受入部46と連通されている。
【0019】
また生物ろ過設備10は、逆洗時の逆洗排水を貯留する逆洗排水槽48を備えている。この逆洗排水槽48は、上記した逆洗排水受入部46と逆洗排水ラインL3を介して接続されている。
【0020】
また生物ろ過設備10は、生物ろ過槽12内でろ床22に散気するための散気ブロワ24を備えている。この散気ブロワ24は、散気ラインL4を介して生物ろ過槽12の下部空間18と接続されている。なお、散気ブロワ24と散気ラインL4とにより散気手段が構成される。
【0021】
また生物ろ過設備10は、ろ床22の逆洗時に使用する逆洗用空気を送り出すための逆洗ブロワ26を備えている。この逆洗ブロワ26は、逆洗ラインL5を介して生物ろ過槽12の下部空間18と接続されている。
【0022】
また生物ろ過設備10は、生物ろ過槽12で処理された処理水を貯留して分水するための分水槽50を備えている。分水槽50と生物ろ過槽12の下部空間18とは、集水ラインL6を介して接続されている。また分水槽50には処理水排出ラインL7が設けられており、生物ろ過された処理水が系外に排出されるようになっている。
【0023】
また生物ろ過設備10は、ろ床22の逆洗時に使用する逆洗水を貯留する逆洗水槽30を備えている。この逆洗水槽30は、逆洗水受入ラインL8を介して分水槽50と接続されている。また、逆洗水槽30は逆洗水供給ラインL9を介して生物ろ過槽12の下部空間18と接続されている。逆洗水供給ラインL9上には逆洗ポンプ58が設けられており、高い水圧で逆洗水を生物ろ過槽12へ供給できるようになっている。
【0024】
次に、上記した構成の生物ろ過設備10を使用した本実施形態に係る生物ろ過方法について説明する。
【0025】
被処理水は、被処理水受入ラインL1を通して被処理水受入部36に受け入れられる。被処理水は、例えば下水管から送られてきた下水に対し複数回の沈澱処理を施した二次処理水である。
【0026】
被処理水受入部36に受け入れられた被処理水は、被処理水供給ラインL2を通して生物ろ過槽12内に供給される。生物ろ過槽12内に供給された被処理水は、分配管34により下向流でろ床22上に均等に供給される。
【0027】
そして、ろ床22を通過するときにろ材表面に付着した生物膜により、懸濁物質(SS)の捕捉と溶解性有機物の酸化・分解が行われる。ろ床22においてろ過処理された処理水は、集水ノズル20を通して生物ろ過槽12の下部空間18に流出される。
【0028】
下部空間18に溜まった処理水は、集水ラインL6を通して分水槽50に送られ、処理水の一部は処理水排出ラインL7を通して系外に排出され、また処理水の他の一部は逆洗水受入ラインL8を通して逆洗水槽30に送られる。
【0029】
このような被処理水のろ過処理時においては、生物ろ過槽12内のろ床22は、散気ラインL4を通して散気ブロワ24から送られてくる散気用空気により、集水ノズル20を通して常時散気され、好気状態が維持される。これにより、ろ材32に付着した生物膜中の微生物の呼吸や有機物の代謝、酸化分解に必要な酸素の供給が行われる。被処理水のろ過速度は、通常120〜240m/日程度であり、散気時の空気の量は、被処理水中のBOD濃度によるが、0.2〜0.4Nm/m程度である。
【0030】
ろ床22を構成するろ材間に懸濁物質が目詰まりし、生物ろ過槽12内の水位(ろ抗)が上昇して限界値を超えたとき、ろ床22の逆洗が行われる。この逆洗時には、逆洗ブロワ26から逆洗ラインL5を通して逆洗用空気が生物ろ過槽12の下部空間18に送られると共に、逆洗水槽30からの逆洗水が逆洗水供給ラインL9を通して生物ろ過槽12の下部空間18に送られる。この逆洗用空気及び/又は逆洗水からなる逆洗流体は、集水ノズル20を通して生物ろ過槽12の上部空間16に導入され、ろ材の間に目詰まりした懸濁物質などが剥離されて、ろ床22の上方に排出される。ろ床22から排出された懸濁物質を含む水は、水位の上昇に伴って排水トラフ44に流入され、逆洗排水受入部46を通って逆洗排水ラインL3を介して逆洗排水として逆洗排水槽48に送られる。なお、逆洗条件は、被処理水の水質、要求される処理水の水質、水温などに依存するが、例えば以下の通りである。即ち、空気及び水を用いた同時逆洗においては、空気の流量が50〜60Nm/m/時、水の流量が25〜30m/m/時程度であり、水を用いた逆洗においては、水の流量が50〜60m/m/時程度である。また、逆洗頻度は、被処理水の水質、および最大水位(ろ抗)によるが、1〜2回/日である。
【0031】
ここで、本実施形態に係る生物ろ過方法では、通常運転時において降雨等により生物ろ過槽12内に流入する被処理水の流入量が所定値を越えるとき、散気ブロワ24による散気を停止することが極めて特徴的である。
【0032】
生物ろ過槽12内に流入する被処理水の流入量が所定値を越えるか否かは、例えば被処理水受入ラインL1上に設けられた流量センサ等により自動で検出してもよいし、生物ろ過設備10の運転者が人為的に判断してもよい。また、散気ブロワ24は、例えば流量センサからの信号に基づいて自動で停止してもよいし、運転者が人為的に停止しても良い。なお、散気ブロワ24を停止する基準としての被処理水の流入量の所定値は、例えば通常の流入量を180m/日(ろ過速度)としたとき、220m/日(ろ過速度)と定められる。
【0033】
そして、降雨等が止んで被処理水の流入量が上記所定値を下回り、生物ろ過槽12内の水位が通常運転状態の水位に戻ったとき、散気ブロワ24を再起動して、ろ床22への散気を再開する。
【0034】
以上詳述したように、本実施形態に係る生物ろ過方法では、生物ろ過槽12に流入する被処理水の量が所定値を越えて増加し、ろ過速度が大きくなって高負荷運転になったとき、散気ブロワ24による散気を停止している。このように、被処理水の流入量に基づいて散気ブロワ24のオン・オフを制御することで、ろ床22内で空気の層が形成されることに基づく圧損上昇がなくなり、水位(ろ抗)が上昇することを回避することができる。その結果、逆洗頻度の上昇が抑制され、被処理水の処理効率の上昇を図ることが可能となる。しかも、この散気ブロワ24の停止期間中に処理された処理水の水質の著しい劣化を招くおそれもない。
【0035】
図2〜図4は、ろ床におけるろ過速度及び散気ブロワ24からの曝気速度(散気速度)を種々変化させたときの、生物ろ過槽12におけるろ過処理の経過時間と水位との関係を示すグラフである。ここで図2〜図4は、それぞれろ床22の高さが2m、1.5m、及び1mのときの結果を示している。
【0036】
図2において丸印、三角印、及び四角印にて示すように、曝気速度が一定のとき、ろ過速度が大きくなるに伴って水位の上昇が早くなることが分かる。これは、通常のろ材間の目詰まりの他にろ床22内で空気の層が形成され、被処理水が通水され難くなったことによるものである。なお、図2において菱形印は、通常のろ材間の目詰まりに基づく水位の上昇具合を示している。
【0037】
また図3及び図4に示すように、曝気速度が高くなると水位が上昇し易くなることが分かる。また曝気を停止するとろ過速度が高くても水位が上昇し難くなることが分かる。これらの結果から、生物ろ過槽12に流入する被処理水の流入量が所定値を越え、ろ過速度が高くなって高負荷運転になるようなときに、散気ブロワ24からの散気を停止することは、水位の上昇を抑制する上で極めて効果的であることが分かる。
【0038】
また図5は、ろ過速度及び曝気速度の違いによる処理水の水質への影響を示すグラフである。図5に示すように、ろ過速度が高くなると処理水の水質が低下することが分かる。ただし、ろ過速度が高い場合は、曝気のある無しで処理水の水質は同程度で、水質の著しい低下は見られないことが分かる。従って、生物ろ過槽12に流入する被処理水の流入量が所定値を越え、ろ過速度が高くなって高負荷運転になるようなときに、散気ブロワ24からの散気を停止しても処理水の水質の著しい低下は起こらないことが分かる。
(第2実施形態)
次に、本発明の第2実施形態について説明する。なお、第1実施形態で説明したのと同一の要素には同一の符号を附し、重複する説明を省略する。
【0039】
本実施形態に係る生物ろ過方法を実施するのに好適な生物ろ過設備70は、上記した第1実施形態に係る生物ろ過設備10を複数備えたものである。本実施形態では、特に生物ろ過設備が3つの場合について説明する。このとき、分水槽50や逆洗水槽30、逆洗排水槽48など3つの設備で共通化できるものは共通化されていてもよい。そして、3つの生物ろ過槽12には、共通の被処理水受入ラインL1を通して、被処理水が供給されるようになっている(いわゆるメリーゴーランド方式)。
【0040】
図6〜8は、本実施形態に係る生物ろ過方法において、生物ろ過設備70の運転状態と生物ろ過槽12a〜12c内の水位の様子を模式的に示す図である。
【0041】
図6(a)〜(c)に示すように、通常の運転状態では、第1〜第3の生物ろ過槽12a〜12cに被処理水受入ラインL1を介して被処理水が同量Qで供給される。また第1〜第3の生物ろ過槽12a〜12cには、散気ブロワ24から散気速度Qで散気用空気が供給される。
【0042】
このような通常運転状態で、例えば図6(c)に示すように、第3の生物ろ過槽12cのろ床が目詰まりを起し、水位が限度位置を越えたとき、その槽12cについてろ床22の逆洗を行う。
【0043】
図7(c)に示すように、逆洗時には逆洗が行われる第3の生物ろ過槽12cへの被処理水の供給及び散気用空気の供給は停止される。代わりに、第3の生物ろ過槽12cには所定量QrWの逆洗水と所定量Qraの逆洗用空気の供給が行われる。これにより、第3の生物ろ過槽12cにおいてろ床22のろ材32間に目詰まりした懸濁物質等が剥離され、水位の上昇に伴って逆洗水と共に逆洗排水として、排水トラフ44から逆洗排水受入部(ここでは図示しない)46に送られる。
【0044】
第3の生物ろ過槽12cについて逆洗を行うときは、図7(a)及び7(b)に示すように、第3の生物ろ過槽12cに供給されていた分の被処理水を均等に分配し、第1及び第2の生物ろ過槽12a,12bにはそれぞれ1.5Qの被処理水を供給する。また、第1及び第2の生物ろ過槽12a,12bへの散気用空気の供給を停止する。
【0045】
第3の生物ろ過槽12cについて逆洗が終了すると、図8(a)〜8(c)に示すように、第1〜第3の生物ろ過槽12a〜12cに供給する被処理水量をそれぞれ通常運転時の量Qに戻す。また、第1〜第3のろ過槽12a〜12cへの所定量Qの散気用空気の供給を開始する。このとき、図8(a)及び8(b)に示すように、第1及び第2の生物ろ過槽12a,12bについて、通常運転モードに戻った状態において水位の上昇はなく、この状態からろ過処理が継続されるため、逆洗の頻度が少なくなる。
【0046】
以上図6〜図8を参照して説明したように、第3の生物ろ過槽12cについて逆洗を行うとき、第1及び第2の生物ろ過槽12a,12bに流入する被処理水の量が増加し、ろ過速度が大きくなって高負荷運転になるが、第1及び第2の生物ろ過槽12a,12bへの散気用空気の供給を停止している。従って、ろ床22内で空気の層が形成されることがなく圧損上昇が生じることがないため、第1及び第2の生物ろ過槽12a,12b内の水位(ろ抗)が上昇することを回避することができる。その結果、逆洗頻度の上昇が抑制され、被処理水の処理効率の上昇を図ることが可能となる。しかも、第3の生物ろ過槽12cの逆洗時に第1及び第2の生物ろ過槽12a,12bで処理された処理水の水質の著しい劣化を招くおそれもない。また、逆洗の頻度が少なくなることから、逆洗排水量が減少して設備70の運転維持管理が容易になる。
【0047】
なお比較のため、従来の生物ろ過方法について図9〜図11を参照して説明する。図9〜11は、従来の生物ろ過方法において、生物ろ過設備70の運転状態と生物ろ過槽12a〜12c内の水位の様子を模式的に示す図である。
【0048】
図9(a)〜(c)に示すように、通常の運転状態では、第1〜第3の生物ろ過槽12a〜12cに被処理水受入ラインL1を介して被処理水が同量Qで供給される。また第1〜第3の生物ろ過槽12a〜12cには、散気ブロワ24から散気速度Qで散気用空気が供給される。
【0049】
このような通常運転状態で、例えば図9(c)に示すように、第3の生物ろ過槽12cのろ床22が目詰まりを起し、水位が限度位置を越えたとき、その槽12cについてろ床22の逆洗を行う。
【0050】
図10(c)に示すように、逆洗時には逆洗が行われる第3の生物ろ過槽12cへの被処理水の供給及び散気用空気の供給は停止される。代わりに、第3の生物ろ過槽12cには所定量QrWの逆洗水と所定量Qraの逆洗用空気の供給が行われる。これにより、第3の生物ろ過槽12cにおいてろ床22のろ材32間に目詰まりした懸濁物質等が剥離され、水位の上昇に伴って逆洗水と共に逆洗排水として、排水トラフ44から逆洗排水受入部(ここでは図示しない)46に送られる。
【0051】
第3の生物ろ過槽12cについて逆洗を行うときは、図10(a)及び10(b)に示すように、第3の生物ろ過槽12cに供給されていた分の被処理水を均等に分配し、第1及び第2の生物ろ過槽12a,12bにはそれぞれ1.5Qの被処理水を供給する。このとき、従来の生物ろ過方法では、第1及び第2の生物ろ過槽12a,12bへの散気用空気の供給は継続されている。従って、ろ床22内に空気の層72が形成され、これにより目詰まりが生じて水位が上昇(ΔH)する。
【0052】
第3の生物ろ過槽12cについて逆洗が終了すると、図11(a)〜11(c)に示すように、第1〜第3の生物ろ過槽12a〜12cに供給する被処理水量をそれぞれ通常運転時の量Qに戻す。また、第3のろ過槽12cへの所定量Qの散気用空気の供給を開始する。このとき、図11(a)及び11(b)に示すように、第1及び第2の生物ろ過槽12a,12bについて、ろ床22内に空気の層72が形成されているため、通常運転モードに戻った状態でも、上昇した水位が下がることなく、この状態からろ過処理が継続されるため、逆洗が必要となる水位まで水位が容易に上昇し易くなって、次の逆洗までの時間が短くなる。
【0053】
なお、本発明は上記した実施形態に限定されることなく種々の変形が可能である。例えば、第1実施形態に係る生物ろ過方法を実施するための生物ろ過設備10は、図1に示される構成に限定されるものではなく、種々の変更が可能である。
【0054】
また、第2実施形態に係る生物ろ過方法において、生物ろ過槽12は3つに限定されることなく、2つ或いは4つ以上であってもよい。但し、生物ろ過槽12は6つ以下であると好ましい。
【0055】
また、上記した第2実施形態に係る生物ろ過方法では、第3の生物ろ過槽12cの逆洗時に、第3の生物ろ過槽12cに供給されていた分の被処理水を第1及び第2の生物ろ過槽12a,12bへ均等に分配していたが、例えば第1の生物ろ過槽12aのみに分配してこの槽の被処理水の供給量を2Qとしてもよい。この場合、逆洗時に第1の生物ろ過槽12aは散気を停止し、第2の生物ろ過槽12bは散気を継続してもよい。すなわち、一の槽の逆洗により被処理水の供給量が所定値を越える他の槽について散気を停止するようにすればよい。
【0056】
【発明の効果】
本発明によれば、圧損上昇を抑制して逆洗頻度の増加を抑制し、処理水質の著しい低下を招くことなく処理効率の向上を図ることを可能とする生物ろ過方法が提供される。
【図面の簡単な説明】
【図1】第1実施形態に係る生物ろ過方法の実施に好適な生物ろ過設備の構成を模式的に示す図である。
【図2】ろ床におけるろ過速度及び散気ブロワからの曝気速度(散気速度)を種々変化させたときの、生物ろ過槽におけるろ過処理の経過時間と水位との関係を示すグラフである(ろ床の高さが2mのとき)。
【図3】ろ床におけるろ過速度及び散気ブロワからの曝気速度(散気速度)を種々変化させたときの、生物ろ過槽におけるろ過処理の経過時間と水位との関係を示すグラフである(ろ床の高さが1.5mのとき)。
【図4】ろ床におけるろ過速度及び散気ブロワからの曝気速度(散気速度)を種々変化させたときの、生物ろ過槽におけるろ過処理の経過時間と水位との関係を示すグラフである(ろ床の高さが1mのとき)。
【図5】ろ過速度及び曝気速度の違いによる処理水の水質への影響を示すグラフである。
【図6】第2実施形態に係る生物ろ過方法において、生物ろ過設備の運転状態と生物ろ過槽内の水位の様子を模式的に示す図である(通常運転時)。
【図7】第2実施形態に係る生物ろ過方法において、生物ろ過設備の運転状態と生物ろ過槽内の水位の様子を模式的に示す図である(逆洗時)。
【図8】第2実施形態に係る生物ろ過方法において、生物ろ過設備の運転状態と生物ろ過槽内の水位の様子を模式的に示す図である(逆洗時から通常運転に戻った時)。
【図9】従来の生物ろ過方法において、生物ろ過設備の運転状態と生物ろ過槽内の水位の様子を模式的に示す図である(通常運転時)。
【図10】従来の生物ろ過方法において、生物ろ過設備の運転状態と生物ろ過槽内の水位の様子を模式的に示す図である(逆洗時)。
【図11】従来の生物ろ過方法において、生物ろ過設備の運転状態と生物ろ過槽内の水位の様子を模式的に示す図である(逆洗時から通常運転に戻った時)。
【図12】従来の生物ろ過方法において、水位が上昇する要因を説明するための図である。
【符号の説明】
10…生物ろ過設備、12…生物ろ過槽、20…集水ノズル、22…ろ床、24…散気ブロワ、26…逆洗ブロワ、30…逆洗水槽、44…排水トラフ、48…逆洗排水槽、50…分水槽、58…逆洗ポンプ、L1…被処理水受入ライン、L2…被処理水供給ライン、L3…逆洗水排出ライン、L4…散気ライン、L5…逆洗ライン、L6…集水ライン、L7…処理水排出ライン、L8…逆洗水受入ライン、L9…逆洗水供給ライン。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a biological filtration method.
[0002]
[Prior art]
BACKGROUND ART Biological filtration equipment has been conventionally used to remove suspended substances (SS) and soluble organic substances in sewage to a high degree. As this biological filtration equipment, for example, as disclosed in Patent Document 1, there is equipment provided with a downward-flow type biological filtration tank. In biofiltration using a downward-flow type biofiltration tank, the water to be treated that has flowed in from the upper part of the tank is passed downward through a filter bed filled with filter media, and when passing between filter media, the surface of the filter media The SS captures and decomposes soluble organic matter by the biofilm attached to the surface. Pressurized air supplied from a blower is introduced below the filter bed, and this pressurized air is diffused through a water collecting nozzle to a filter bed in a biological filtration tank, thereby breathing microorganisms in the biofilm and reducing the like. The supply of oxygen necessary for metabolism and oxidative decomposition of organic substances is performed.
[0003]
In a conventional biofiltration method using such a biofiltration facility, air is constantly diffused from a blower during sewage treatment in order to activate aerobic bacteria contained in a biofilm.
[0004]
[Patent Document 1]
JP-A-11-319865
[0005]
[Problems to be solved by the invention]
However, in the conventional biological filtration method described above, for example, when the amount of sewage flowing into the biological filtration tank increases during rainfall and the like, and when the filtration speed is increased and a high-load operation is performed, the pressure drop increases and the filtrate water level increases. Was. Then, even if the amount of sewage returned to the normal state, the pressure loss that had risen once did not decrease, so that the filtered water level was likely to rise thereafter, shortening the time until the next backwash and reducing the processing efficiency. There has been a problem that it causes a decrease.
[0006]
The present invention has been made in order to solve the above-described problems, and aims to improve the treatment efficiency without suppressing the increase in the pressure loss, suppressing the increase in the frequency of backwashing, and without causing a significant decrease in the quality of treated water. It is an object of the present invention to provide a biofiltration method that enables the following.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the inventor has studied diligently about the cause of an increase in pressure drop when the amount of sewage flowing into a biological filtration tank increases. Inspection of the biological filtration tank 100 in which the filtration water level had risen revealed that the air layer 104 was formed widely in the filter bed 102 as shown in FIG. This air layer 104 tends to increase the air diffused from the blower 106 to the filter bed 102 through the lower space 108 due to a rise in water level (ΔH) caused by an increase in the amount of sewage flowing into the biological filtration tank 100. It is presumed that the upward force U and the downward force D that hinders the rise of the air are formed in a balanced manner. Then, it was considered that the layer of air 104 prevented passage of the water to be treated through the filter bed 102, thereby causing an increase in pressure loss.
[0008]
Therefore, the present inventor considers that when the amount of sewage flowing into the biological filtration tank 100 increases, if the air diffusion from the blower 106 is stopped, such an air layer 104 is not formed, and the pressure loss rise does not occur. I found it. Here, in order to maintain the treated water quality high, it is necessary to maintain the inside of the biological filtration tank 100 in an aerobic environment by aeration, and it is common knowledge that stopping the aeration for a long time leads to a significant deterioration of the treated water quality. However, it was found that even if the aeration was stopped for a relatively long time, the treated water quality did not significantly deteriorate. The present invention has been made based on such findings.
[0009]
The biological filtration method according to the present invention utilizes a biological filtration facility equipped with a downward-flow type biological filtration tank and a diffuser for diffusing air into the biological filtration tank, while diffusing air by the diffuser. This is a biological filtration method for biologically filtering water to be treated in a biological filtration tank. In this method, when the inflow amount of the water to be treated flowing into the biological filtration tank exceeds a predetermined value, the air diffusion by the air diffusion means is stopped.
[0010]
According to this method, even if the amount of the water to be treated flowing into the biological filtration tank exceeds a predetermined value and the filtration speed increases and the operation becomes a high-load operation, the filtration water level rises due to an increase in pressure loss. Can be avoided. Therefore, an increase in the frequency of backwashing is suppressed, and an increase in processing efficiency is achieved. Moreover, there is no possibility that the quality of the treated water is significantly deteriorated.
[0011]
Further, the biological filtration method according to the present invention uses a biological filtration facility including a plurality of downward-flow-type biological filtration tanks and a diffuser for diffusing air into the plurality of biological filtration tanks. This is a biological filtration method for biologically filtering the water to be treated in a plurality of biological filtration tanks while diffusing by means. In this method, when backwashing at least one biological filtration tank among the plurality of biological filtration tanks, the air diffusion by the air diffusing means is stopped for at least one of the tanks other than the biological filtration tank to be backwashed. And
[0012]
According to this method, by backwashing at least one of the biological filtration tanks, the amount of water to be treated that flows into another biological filtration tank exceeds a predetermined value, and the filtration speed is increased. Even if it becomes large and becomes a high-load operation, it is possible to avoid an increase in the filtered water level due to an increase in pressure loss in another biological filtration tank. Accordingly, an increase in the frequency of backwashing is suppressed as a whole, and an increase in processing efficiency is achieved. Moreover, there is no possibility that the quality of the treated water is significantly deteriorated.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
(1st Embodiment)
FIG. 1 is a diagram schematically illustrating a configuration of a biological filtration facility suitable for performing the biological filtration method according to the first embodiment. As shown in FIG. 1, the biological filtration equipment 10 includes a downward-flow type biological filtration tank 12.
[0014]
The biological filtration tank 12 is divided into an upper space 16 and a lower space 18 by a partition plate 14. As shown in FIG. 1, a plurality of water collecting nozzles 20 that communicate the upper space 16 and the lower space 18 are formed through the partition plate 14. The water collecting nozzle 20 sends out the treated water treated in the filter bed 22 to the lower space 18, and guides the diffuser air sent from the diffuser blower 24 through the lower space 18 to the upper space 16. Further, the water collecting nozzle 20 guides the backwash air and the backwash water sent from the backwash blower 26 and the backwash water tank 30 through the lower space 18 to the upper space 16 during the backwash. As described above, the biological filtration tank 12 is configured such that the water to be treated introduced from the upper part of the tank is filtered on the filter bed 22 and taken out from the lower part of the tank, and this is called a downflow type.
[0015]
A filter bed 22 is provided on the partition plate 14. The filter bed 22 is composed of a plurality of particles (filter medium) to which a biofilm for oxidizing and decomposing soluble organic substances in the water to be treated can adhere. Examples of the particles constituting the filter bed 22 include porous ceramics (including sintered clay), zeolite, and plastic filter media. Of these, porous ceramic particles are preferred because they are inexpensive and have an optimum specific gravity. Here, the porous ceramic particles have a porosity of 40 to 50% and are made of SiO 2. 2 Those containing such as components are suitably used. The average particle size of the particles constituting the filter bed 22 is preferably about 0.5 to 10 mm, and more preferably about 5 to 7 mm. Further, it is preferable to use particles having a true specific gravity larger than that of water as the particles 32 constituting the filter bed 22. It is preferable that the thickness of the filter bed 22 be about 2 to 3 m.
[0016]
Above the filter bed 22, a distribution pipe 34 for evenly distributing and supplying the water to be treated toward the filter bed 22 is provided.
[0017]
Further, on the outer surface of the side wall portion of the biological filtration tank 12, a treated water receiving portion 36 for receiving the treated water through the treated water receiving line L1 and supplying the treated water into the biological filtration tank 12 is provided. The pipe 34 is connected to the water supply line L2.
[0018]
In addition, a drain trough 44 for discharging backwash wastewater at the time of backwash is disposed in the upper part of the biological filtration tank 12. The drainage trough 44 communicates with a backwash wastewater receiving portion 46 provided on the outer surface of the side wall portion of the biological filtration tank 12 for receiving backwash wastewater.
[0019]
In addition, the biological filtration equipment 10 includes a backwash drainage tank 48 for storing backwash wastewater during backwash. The backwash drain tank 48 is connected to the above-described backwash drain receiving section 46 via a backwash drain line L3.
[0020]
Further, the biological filtration equipment 10 includes an air diffuser blower 24 for diffusing air into the filter bed 22 in the biological filtration tank 12. The diffuser blower 24 is connected to the lower space 18 of the biological filtration tank 12 via the diffuser line L4. The air diffuser 24 and the air diffusion line L4 constitute an air diffuser.
[0021]
The biological filtration equipment 10 also includes a backwash blower 26 for sending backwash air used for backwashing the filter bed 22. The backwash blower 26 is connected to the lower space 18 of the biological filtration tank 12 via the backwash line L5.
[0022]
Further, the biological filtration equipment 10 includes a water separation tank 50 for storing and separating the treated water treated in the biological filtration tank 12. The water separation tank 50 and the lower space 18 of the biological filtration tank 12 are connected via a water collection line L6. Further, the water separation tank 50 is provided with a treated water discharge line L7, and the treated water subjected to biological filtration is discharged out of the system.
[0023]
In addition, the biological filtration equipment 10 includes a backwash water tank 30 that stores backwash water used when the filter bed 22 is backwashed. The backwash water tank 30 is connected to the water separation tank 50 via a backwash water receiving line L8. The backwash water tank 30 is connected to the lower space 18 of the biological filtration tank 12 via a backwash water supply line L9. A backwash pump 58 is provided on the backwash water supply line L9 so that the backwash water can be supplied to the biological filtration tank 12 at a high water pressure.
[0024]
Next, a biological filtration method according to the present embodiment using the biological filtration equipment 10 having the above-described configuration will be described.
[0025]
The treated water is received by the treated water receiving unit 36 through the treated water receiving line L1. The water to be treated is, for example, secondary treated water obtained by subjecting sewage sent from a sewage pipe to precipitation treatment a plurality of times.
[0026]
The treated water received by the treated water receiving unit 36 is supplied into the biological filtration tank 12 through the treated water supply line L2. The water to be treated supplied into the biological filtration tank 12 is evenly supplied onto the filter bed 22 in a downward flow by the distribution pipe 34.
[0027]
Then, the suspended solids (SS) are captured and the soluble organic matter is oxidized and decomposed by the biofilm attached to the surface of the filter medium when passing through the filter bed 22. The treated water filtered in the filter bed 22 flows out to the lower space 18 of the biological filtration tank 12 through the water collecting nozzle 20.
[0028]
The treated water collected in the lower space 18 is sent to the water separation tank 50 through the water collecting line L6, a part of the treated water is discharged out of the system through the treated water discharge line L7, and another part of the treated water is reversed. The water is sent to the backwash water tank 30 through the washwater receiving line L8.
[0029]
At the time of such filtration of the water to be treated, the filter bed 22 in the biological filtration tank 12 is constantly passed through the water collecting nozzle 20 by the aeration air sent from the aeration blower 24 through the aeration line L4. Air is diffused and the aerobic state is maintained. As a result, oxygen necessary for respiration of microorganisms in the biofilm attached to the filter medium 32, metabolism of organic matter, and oxidative decomposition is supplied. The filtration rate of the water to be treated is usually about 120 to 240 m / day, and the amount of air at the time of aeration depends on the BOD concentration in the water to be treated, but is 0.2 to 0.4 Nm. 3 / M 3 It is about.
[0030]
When the suspended solid is clogged between the filter media constituting the filter bed 22 and the water level (filter resistance) in the biological filtration tank 12 rises and exceeds a limit value, the backwash of the filter bed 22 is performed. During this backwash, the backwash air is sent from the backwash blower 26 to the lower space 18 of the biological filtration tank 12 through the backwash line L5, and the backwash water from the backwash water tank 30 is passed through the backwash water supply line L9. It is sent to the lower space 18 of the biological filtration tank 12. The backwashing fluid composed of the backwashing air and / or backwashing water is introduced into the upper space 16 of the biological filtration tank 12 through the water collecting nozzle 20, and the suspended substances and the like clogged between the filter media are peeled off. Is discharged above the filter bed 22. The water containing the suspended solids discharged from the filter bed 22 flows into the drain trough 44 as the water level rises, passes through the backwash drain receiving section 46, and flows back through the backwash drain line L3 as backwash drain. It is sent to the washing and draining tank 48. The backwash conditions depend on the quality of the water to be treated, the required quality of the treated water, the water temperature, and the like, and are, for example, as follows. That is, in the simultaneous backwashing using air and water, the flow rate of air is 50 to 60 Nm. 3 / M 2 / Hour, water flow is 25-30m 3 / M 2 / Hour, and in the case of backwashing with water, the flow rate of water is 50 to 60 m. 3 / M 2 / Hour. The backwash frequency is 1-2 times / day, depending on the quality of the water to be treated and the maximum water level (filtration resistance).
[0031]
Here, in the biological filtration method according to the present embodiment, when the inflow of the water to be treated flowing into the biological filtration tank 12 due to rainfall or the like exceeds the predetermined value during normal operation, the air diffusion by the air diffusion blower 24 is stopped. Is very characteristic.
[0032]
Whether or not the inflow amount of the water to be treated flowing into the biological filtration tank 12 exceeds a predetermined value may be automatically detected by, for example, a flow rate sensor provided on the treated water receiving line L1, The driver of the filtration facility 10 may make an artificial determination. The air blower 24 may be automatically stopped based on, for example, a signal from a flow sensor, or may be artificially stopped by a driver. The predetermined value of the inflow amount of the water to be treated as a reference for stopping the aeration blower 24 is, for example, 220 m / day (filtration speed) when the normal inflow amount is 180 m / day (filtration speed). .
[0033]
Then, when the rainfall or the like stops and the inflow of the water to be treated falls below the predetermined value, and the water level in the biological filtration tank 12 returns to the water level in the normal operation state, the diffusing blower 24 is restarted, Resume aeration to 22.
[0034]
As described in detail above, in the biological filtration method according to the present embodiment, the amount of the water to be treated flowing into the biological filtration tank 12 increases beyond a predetermined value, and the filtration speed increases, resulting in high load operation. At this time, the air diffusion by the air blower 24 is stopped. As described above, by controlling the on / off of the air diffuser blower 24 based on the inflow amount of the water to be treated, the pressure drop rise due to the formation of the air layer in the filter bed 22 is eliminated, and the water level (filter Anti) can be prevented from rising. As a result, an increase in the frequency of backwashing is suppressed, and it is possible to increase the treatment efficiency of the water to be treated. Moreover, there is no possibility that the quality of the treated water treated during the period during which the diffuser blower 24 is stopped is significantly deteriorated.
[0035]
FIGS. 2 to 4 show the relationship between the elapsed time of the filtration treatment in the biological filtration tank 12 and the water level when the filtration speed in the filter bed and the aeration speed (aeration speed) from the aeration blower 24 are variously changed. It is a graph shown. 2 to 4 show the results when the height of the filter bed 22 is 2 m, 1.5 m, and 1 m, respectively.
[0036]
As shown by circles, triangles, and squares in FIG. 2, when the aeration rate is constant, it can be seen that the water level rises faster as the filtration rate increases. This is due to the fact that an air layer is formed in the filter bed 22 in addition to the usual clogging between the filter media, making it difficult for the water to be treated to pass through. Note that, in FIG. 2, rhombic marks indicate how the water level rises due to clogging between ordinary filter media.
[0037]
Also, as shown in FIGS. 3 and 4, it can be seen that the water level tends to rise as the aeration rate increases. Also, it can be seen that when the aeration is stopped, the water level does not easily rise even if the filtration speed is high. From these results, when the inflow amount of the water to be treated flowing into the biological filtration tank 12 exceeds a predetermined value and the filtration speed becomes high and the operation becomes high load, the air diffusion from the air blower 24 is stopped. It can be seen that this is extremely effective in suppressing the rise in water level.
[0038]
FIG. 5 is a graph showing the influence on the water quality of the treated water due to the difference between the filtration rate and the aeration rate. As shown in FIG. 5, it is found that the quality of the treated water decreases as the filtration rate increases. However, when the filtration rate is high, the water quality of the treated water is almost the same without aeration, and it can be seen that the water quality does not significantly decrease. Therefore, when the inflow amount of the water to be treated flowing into the biological filtration tank 12 exceeds a predetermined value, and the filtration speed is increased to perform a high-load operation, the air diffusion from the air diffusion blower 24 may be stopped. It can be seen that the water quality of the treated water does not significantly decrease.
(2nd Embodiment)
Next, a second embodiment of the present invention will be described. The same elements as those described in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted.
[0039]
A biological filtration facility 70 suitable for performing the biological filtration method according to the present embodiment includes a plurality of the biological filtration facilities 10 according to the above-described first embodiment. In the present embodiment, a case where there are three biological filtration facilities will be particularly described. At this time, what can be shared by the three facilities, such as the water separation tank 50, the backwash water tank 30, and the backwash drain tank 48, may be shared. The three biological filtration tanks 12 are supplied with the water to be treated through a common water receiving line L1 (a so-called merry-go-round system).
[0040]
6 to 8 are diagrams schematically illustrating the operation state of the biological filtration equipment 70 and the state of the water level in the biological filtration tanks 12a to 12c in the biological filtration method according to the present embodiment.
[0041]
As shown in FIGS. 6A to 6C, in the normal operation state, the same amount Q of the water to be treated is supplied to the first to third biological filtration tanks 12a to 12c via the water to be treated receiving line L1. W Supplied with. In addition, the first to third biological filtration tanks 12a to 12c are provided with an air diffusion speed Q from the air diffusion blower 24. a To supply air for aeration.
[0042]
In such a normal operation state, for example, as shown in FIG. 6C, when the filter bed of the third biological filtration tank 12c is clogged and the water level exceeds the limit position, the filtration is performed on the tank 12c. The floor 22 is backwashed.
[0043]
As shown in FIG. 7C, at the time of backwashing, the supply of the water to be treated and the supply of the air for aeration to the third biological filtration tank 12c where the backwashing is performed are stopped. Instead, the third biological filtration tank 12c contains a predetermined amount Q rW Backwash water and predetermined amount Q ra Is supplied. As a result, suspended substances and the like clogged between the filter media 32 of the filter bed 22 in the third biological filtration tank 12c are separated, and as the water level rises, backwash water and backwash water are drained from the drain trough 44. The water is sent to a washing and drainage receiving section (not shown) 46.
[0044]
When backwashing is performed on the third biological filtration tank 12c, as shown in FIGS. 7A and 7B, the water to be treated that has been supplied to the third biological filtration tank 12c is evenly distributed. And the first and second biological filtration tanks 12a, 12b each have 1.5 Q W Of water to be treated. In addition, the supply of air for aeration to the first and second biological filtration tanks 12a and 12b is stopped.
[0045]
When the backwash is completed for the third biological filtration tank 12c, as shown in FIGS. 8 (a) to 8 (c), the amount of water to be supplied to each of the first to third biological filtration tanks 12a to 12c is normally set. Operational quantity Q W Return to In addition, a predetermined amount Q to the first to third filtration tanks 12a to 12c. a The supply of air for aeration is started. At this time, as shown in FIGS. 8 (a) and 8 (b), the water level of the first and second biological filtration tanks 12a and 12b does not rise in the state returned to the normal operation mode. Since the processing is continued, the frequency of backwashing is reduced.
[0046]
As described above with reference to FIGS. 6 to 8, when backwashing the third biological filtration tank 12c, the amount of the water to be treated flowing into the first and second biological filtration tanks 12a and 12b is reduced. Although the filtration rate increases and the operation becomes a high-load operation, the supply of air for aeration to the first and second biological filtration tanks 12a and 12b is stopped. Accordingly, since no air layer is formed in the filter bed 22 and no pressure loss rises, the water level (filtration resistance) in the first and second biological filtration tanks 12a and 12b rises. Can be avoided. As a result, an increase in the frequency of backwashing is suppressed, and it is possible to increase the treatment efficiency of the water to be treated. In addition, there is no fear that the quality of the treated water treated in the first and second biological filtration tanks 12a and 12b will be significantly deteriorated when the third biological filtration tank 12c is backwashed. Further, since the frequency of backwashing is reduced, the amount of backwash wastewater is reduced, and the operation and maintenance of the facility 70 is facilitated.
[0047]
For comparison, a conventional biological filtration method will be described with reference to FIGS. 9 to 11 are diagrams schematically showing the operation state of the biological filtration equipment 70 and the state of the water level in the biological filtration tanks 12a to 12c in the conventional biological filtration method.
[0048]
As shown in FIGS. 9A to 9C, in a normal operation state, the same amount Q of the water to be treated is supplied to the first to third biological filtration tanks 12a to 12c via the water to be treated receiving line L1. W Supplied with. In addition, the first to third biological filtration tanks 12a to 12c are provided with an air diffusion speed Q from the air diffusion blower 24. a To supply air for aeration.
[0049]
In such a normal operation state, for example, as shown in FIG. 9 (c), when the filter bed 22 of the third biological filtration tank 12c is clogged and the water level exceeds the limit position, The filter bed 22 is backwashed.
[0050]
As shown in FIG. 10 (c), the supply of the water to be treated and the supply of the air for aeration to the third biological filtration tank 12c where the backwash is performed during the backwash are stopped. Instead, the third biological filtration tank 12c contains a predetermined amount Q rW Backwash water and predetermined amount Q ra Is supplied. As a result, suspended substances and the like clogged between the filter media 32 of the filter bed 22 in the third biological filtration tank 12c are separated, and as the water level rises, backwash water and backwash water are drained from the drain trough 44. The water is sent to a washing and drainage receiving section (not shown) 46.
[0051]
When backwashing is performed on the third biological filtration tank 12c, as shown in FIGS. 10A and 10B, the water to be treated that has been supplied to the third biological filtration tank 12c is evenly distributed. And the first and second biological filtration tanks 12a and 12b each have 1.5 Q W Of water to be treated. At this time, in the conventional biological filtration method, the supply of air for aeration to the first and second biological filtration tanks 12a and 12b is continued. Therefore, a layer of air 72 is formed in the filter bed 22, which causes clogging and raises the water level (ΔH).
[0052]
When the backwash is completed for the third biological filtration tank 12c, as shown in FIGS. 11 (a) to 11 (c), the amounts of water to be treated to be supplied to the first to third biological filtration tanks 12a to 12c are respectively reduced. Operational quantity Q W Return to In addition, a predetermined amount Q to the third filtration tank 12c. a The supply of air for aeration is started. At this time, as shown in FIGS. 11A and 11B, the first and second biological filtration tanks 12a and 12b have the air layer 72 formed in the filter bed 22. Even in the state returned to the mode, since the rising water level does not drop and the filtration process is continued from this state, the water level easily rises to the water level where backwashing is required, and until the next backwashing Time is shortened.
[0053]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the biological filtration equipment 10 for performing the biological filtration method according to the first embodiment is not limited to the configuration illustrated in FIG. 1, and various modifications are possible.
[0054]
In the biological filtration method according to the second embodiment, the number of biological filtration tanks 12 is not limited to three, and may be two or four or more. However, it is preferable that the number of the biological filtration tanks 12 is six or less.
[0055]
Further, in the biological filtration method according to the above-described second embodiment, at the time of back washing of the third biological filtration tank 12c, the water to be treated that has been supplied to the third biological filtration tank 12c is first and second. Were equally distributed to the biological filtration tanks 12a and 12b, but for example, distributed only to the first biological filtration tank 12a and the supply amount of the water to be treated in this tank was 2Q. W It may be. In this case, the first biological filtration tank 12a may stop diffusion while backwashing, and the second biological filtration tank 12b may continue diffusion. That is, it is only necessary to stop the air diffusion for the other tank in which the supply amount of the water to be treated exceeds a predetermined value by the backwashing of one tank.
[0056]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the biological filtration method which can suppress the increase of a pressure loss, suppresses the increase of the frequency of backwashing, and can improve a processing efficiency, without causing the remarkable fall of a treated water quality is provided.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a configuration of a biological filtration facility suitable for performing a biological filtration method according to a first embodiment.
FIG. 2 is a graph showing the relationship between the elapsed time of the filtration treatment in the biological filtration tank and the water level when the filtration rate in the filter bed and the aeration rate (aeration rate) from the aeration blower are variously changed ( When the height of the filter bed is 2m).
FIG. 3 is a graph showing the relationship between the elapsed time of the filtration treatment in the biological filtration tank and the water level when the filtration rate in the filter bed and the aeration rate from the aeration blower (aeration rate) are variously changed ( When the height of the filter bed is 1.5 m).
FIG. 4 is a graph showing the relationship between the elapsed time of the filtration treatment in the biological filtration tank and the water level when the filtration rate in the filter bed and the aeration rate (aeration rate) from the aeration blower are variously changed ( (When the height of the filter bed is 1 m).
FIG. 5 is a graph showing the effect on water quality of treated water due to differences in filtration rate and aeration rate.
FIG. 6 is a diagram schematically showing an operation state of a biological filtration facility and a state of a water level in a biological filtration tank in a biological filtration method according to a second embodiment (during normal operation).
FIG. 7 is a diagram schematically showing an operation state of a biological filtration facility and a state of a water level in a biological filtration tank in a biological filtration method according to a second embodiment (at the time of backwashing).
FIG. 8 is a diagram schematically showing the operation state of the biological filtration equipment and the state of the water level in the biological filtration tank in the biological filtration method according to the second embodiment (when returning to the normal operation from the time of backwashing). .
FIG. 9 is a diagram schematically showing an operation state of a biological filtration facility and a state of a water level in a biological filtration tank in a conventional biological filtration method (during normal operation).
FIG. 10 is a diagram schematically showing an operation state of a biological filtration facility and a state of a water level in a biological filtration tank in a conventional biological filtration method (at the time of backwashing).
FIG. 11 is a diagram schematically showing an operation state of a biological filtration facility and a state of a water level in a biological filtration tank in a conventional biological filtration method (when returning to normal operation from backwashing).
FIG. 12 is a diagram for explaining a cause of an increase in water level in a conventional biological filtration method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Biological filtration equipment, 12 ... Biological filtration tank, 20 ... Water collecting nozzle, 22 ... Filter bed, 24 ... Aeration blower, 26 ... Backwashing blower, 30 ... Backwashing water tank, 44 ... Drain trough, 48 ... Backwashing Drainage tank, 50: water separation tank, 58: backwash pump, L1: treated water receiving line, L2: treated water supply line, L3: backwash water discharge line, L4: diffuser line, L5: backwash line, L6: water collecting line, L7: treated water discharge line, L8: backwash water receiving line, L9: backwash water supply line.

Claims (2)

下向流式の生物ろ過槽と該生物ろ過槽内に散気するための散気手段とを備えた生物ろ過設備を利用し、該散気手段により散気しながら該生物ろ過槽内で被処理水を生物ろ過する生物ろ過方法であって、
前記生物ろ過槽内に流入する前記被処理水の流入量が所定値を超えるときに、前記散気手段による散気を停止することを特徴とする生物ろ過方法。
Utilizing a biological filtration facility equipped with a downward-flow type biological filtration tank and an air diffusion means for diffusing air into the biological filtration tank, the gas is covered in the biological filtration tank while diffusing with the air diffusion means. A biological filtration method for biologically filtering the treated water,
The biological filtration method, wherein when the inflow of the water to be treated flowing into the biological filtration tank exceeds a predetermined value, the air diffusion by the air diffuser is stopped.
下向流式の複数の生物ろ過槽と、該複数の生物ろ過槽内に散気するための散気手段とを備えた生物ろ過設備を利用し、該散気手段により散気しながら該複数の生物ろ過槽内で被処理水を生物ろ過する生物ろ過方法であって、
前記複数の生物ろ過槽のうち少なくとも一つの生物ろ過槽を逆洗するときに、逆洗する生物ろ過槽以外の槽の少なくとも一つについて前記散気手段による散気を停止することを特徴とする生物ろ過方法。
Utilizing a biological filtration facility comprising a plurality of downward-flow-type biological filtration tanks and an air diffuser for diffusing air into the plurality of biological filtration tanks, A biological filtration method for biologically filtering the water to be treated in a biological filtration tank,
When backwashing at least one biological filtration tank among the plurality of biological filtration tanks, the air diffusion by the air diffusing means is stopped for at least one of the tanks other than the biological filtration tank to be backwashed. Biological filtration method.
JP2003094465A 2003-03-31 2003-03-31 Biological filtration method Expired - Fee Related JP4205468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094465A JP4205468B2 (en) 2003-03-31 2003-03-31 Biological filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094465A JP4205468B2 (en) 2003-03-31 2003-03-31 Biological filtration method

Publications (2)

Publication Number Publication Date
JP2004298743A true JP2004298743A (en) 2004-10-28
JP4205468B2 JP4205468B2 (en) 2009-01-07

Family

ID=33407025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094465A Expired - Fee Related JP4205468B2 (en) 2003-03-31 2003-03-31 Biological filtration method

Country Status (1)

Country Link
JP (1) JP4205468B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196162A (en) * 1975-02-05 1976-08-23
JPS56168883A (en) * 1980-05-29 1981-12-25 Ebara Infilco Co Ltd Treatment of waste water
JPS61291098A (en) * 1985-06-15 1986-12-20 Shinko Fuaudoraa Kk Apparatus for biological filtering of organic sewage
JPS63240994A (en) * 1987-03-26 1988-10-06 Kubota Ltd Treatment of water
JPH05185081A (en) * 1992-01-13 1993-07-27 Ebara Infilco Co Ltd Purifying treatment of organic sewage water
JPH10296238A (en) * 1997-04-24 1998-11-10 Yamaha Motor Co Ltd Pressure type circulation filter
JPH11300389A (en) * 1998-04-22 1999-11-02 Kubota Corp Water treating method and device therefor
JP2000005784A (en) * 1998-06-18 2000-01-11 Kantou Regional Constr Bureau Ministry Of Constr Cleaning treatment of river water and device therefor
JP2004113940A (en) * 2002-09-26 2004-04-15 Tatsuya Sakamoto Moving bed type filtration equipment and its operation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196162A (en) * 1975-02-05 1976-08-23
JPS56168883A (en) * 1980-05-29 1981-12-25 Ebara Infilco Co Ltd Treatment of waste water
JPS61291098A (en) * 1985-06-15 1986-12-20 Shinko Fuaudoraa Kk Apparatus for biological filtering of organic sewage
JPS63240994A (en) * 1987-03-26 1988-10-06 Kubota Ltd Treatment of water
JPH05185081A (en) * 1992-01-13 1993-07-27 Ebara Infilco Co Ltd Purifying treatment of organic sewage water
JPH10296238A (en) * 1997-04-24 1998-11-10 Yamaha Motor Co Ltd Pressure type circulation filter
JPH11300389A (en) * 1998-04-22 1999-11-02 Kubota Corp Water treating method and device therefor
JP2000005784A (en) * 1998-06-18 2000-01-11 Kantou Regional Constr Bureau Ministry Of Constr Cleaning treatment of river water and device therefor
JP2004113940A (en) * 2002-09-26 2004-04-15 Tatsuya Sakamoto Moving bed type filtration equipment and its operation method

Also Published As

Publication number Publication date
JP4205468B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
GB2521033A (en) Upflow continuous backwash filter
JP3652557B2 (en) Filtration equipment backwash method
JPH07155758A (en) Waste water treating device
JP5989437B2 (en) Water treatment system and water treatment method
JP2005246307A (en) Method for treating activated sludge by membrane separation
JP3652567B2 (en) Cleaning method for filtration equipment
US3482695A (en) Package water treatment plant
JPH05154476A (en) Membrane filter
JP2795620B2 (en) Biological water treatment apparatus using floating filter medium and backwashing method thereof
JP3700932B2 (en) Method and apparatus for cleaning filter using ozone
JP4205468B2 (en) Biological filtration method
JP3773360B2 (en) Septic tank with membrane separation
JPH1119672A (en) Activated sludge filter
JP4046445B2 (en) Wastewater treatment method
JP3654799B2 (en) Nitrogen-containing wastewater treatment equipment
JPH11104684A (en) Apparatus for treating oxidation ditch type activated sludge
JPH11319865A (en) Biological filter facility
JPH04244294A (en) Sewage treatment apparatus
JPS60212292A (en) Apparatus for high degree treatment of sewage
JP2003260486A (en) Sewage treatment method
JP2518743B2 (en) Downflow biofilter for organic wastewater
JPH09276885A (en) Biological membrane filter apparatus using foldable filter material
JP2022142977A (en) Water sprinkling biofiltration apparatus, water sprinkling biofiltration method of water to be treated, and sewage treatment method
JP2022147719A (en) Water sprinkling biofiltration method
JP2002361248A (en) Waste water treatment apparatus for vehicle washer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4205468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees