JP2004298572A - Blood fatigue degree sensor - Google Patents

Blood fatigue degree sensor Download PDF

Info

Publication number
JP2004298572A
JP2004298572A JP2003098339A JP2003098339A JP2004298572A JP 2004298572 A JP2004298572 A JP 2004298572A JP 2003098339 A JP2003098339 A JP 2003098339A JP 2003098339 A JP2003098339 A JP 2003098339A JP 2004298572 A JP2004298572 A JP 2004298572A
Authority
JP
Japan
Prior art keywords
light
wavelength
light source
transmittance
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003098339A
Other languages
Japanese (ja)
Inventor
Atsushi Fujimoto
淳 富士本
Masayuki Nonaka
誠之 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Entertainment Corp
Seta Corp
Original Assignee
Seta Corp
Aruze Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seta Corp, Aruze Corp filed Critical Seta Corp
Priority to JP2003098339A priority Critical patent/JP2004298572A/en
Publication of JP2004298572A publication Critical patent/JP2004298572A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood fatigue degree sensor by which the degree of fatigue is known simply and wherein a fluctuation in precision is hardly caused by the movement etc. of a patient. <P>SOLUTION: The sensor is provided with: a first light source 4 for emitting light of a 760±5 nm wavelength; a second light source 5 for emitting light of a 840±5 nm wavelength; a photodetection part 6 opposing the first light source 4 and the second light source 5 at an interval; an arithmetic means 11 which calculates the light transmittance of the light of the 760±5 nm wavelength and the light transmittance of the light of the 840±5 nm wavelength by a light quantity emitted from the first light source 4 and the second light source 5 and a light quantity photodetected by the photodetection part 6 to obtain the ratio of the light transmittance of the light of the 760±5 nm wavelength to the light transmittance of the light of the 840±5 nm wavelength as an arithmetic result; and a display part 14 for displaying the degree of fatigue based on the arithmetic result. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、疲労すると血液中の脱酸素化ヘモグロビンが増加することを利用した血液疲労度センサに関する。
【0002】
【従来の技術】
近年、人員削減に伴う人手不足等により、疲労が蓄積して心身が病に犯されたり、甚だしい場合には過労死に至るケースが増加している。
しかしながら、過労による疾病を避けるために頻繁に医師の検診を受けるのは面倒なので、通常は、心身の健康状態がかなり悪化するまで疲労を見過ごしがちであった。
そこで、一般人でも自分自身で簡単に疲労度を判定することのできる装置が切望されている。
【0003】
一般人が自らの健康状態を診断できる装置として、光を血管に照射して検出した脈波の挙動から、被験者の健康状態に関する情報、例えば、末梢循環の状態、血中酸素濃度、身体の疲労や緊張度を評価し、その結果を被験者に提示する健康状態解析装置が知られている(特許文献1参照)。
しかし、上記従来の健康状態解析装置は、光を指等の血管に照射して、血管によって反射された反射光を受光することにより脈波を検出しているので、指を押し付ける押圧力によって精度が変わってしまい、このため、被験者が適正な押圧力を加えないと測定不能となる虞がある。
【0004】
【特許文献1】
特開平8−299292号公報
【0005】
【発明が解決しようとする課題】
この発明は、疲労度を簡単に知ることができ、被験者の動作等によって精度の変動が生じにくい血液疲労度センサを提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明の血液疲労度センサは、波長760nm±5nmの光を照射する第1の光源と、波長840nm±5nmの光を照射する第2の光源と、前記第1の光源及び第2の光源に対して間隔をあけて対向した受光部と、前記第1の光源及び第2の光源から照射された光量と前記受光部が受光した光量によって、波長760nm±5nmの光の透過率及び波長840nm±5nmの光の透過率を算出し、この結果から波長760nm±5nmの光の透過率と波長840nm±5nmの光の透過率との比を演算結果として得る演算手段と、該演算結果に基づく疲労度を表示する表示部とを備える。
【0007】
または、波長905nm±5nmの光を照射する第1の光源と、波長840nm±5nmの光を照射する第2の光源と、前記第1の光源及び第2の光源に対して間隔をあけて対向した受光部と、前記第1の光源及び第2の光源から照射された光量と前記受光部が受光した光量によって、波長905nm±5nmの光の透過率及び波長840nm±5nmの光の透過率を算出し、この結果から波長905nm±5nmの光の透過率と波長840nm±5nmの光の透過率との比を演算結果として得る演算手段と、該演算結果に基づく疲労度を表示する表示部とを備える。
【0008】
波長760nm±5nm或いは波長905nm±5nmの光と波長840nm±5nmの光を血管に照射すると、波長760nm±5nm或いは波長905nm±5nmの光は、血液中の脱酸素化ヘモグロビンによって透過率が変動し、波長840nm±5nmの光は、血液中の溶血中性脂肪によって透過率が変わる。
疲労すると血液中のヘモグロビンが増加するため、波長760nm±5nm或いは波長905nm±5nmの光の透過率は下がるが、波長840nm±5nmの光の透過率は変化が少ない。
従って、波長840nm±5nmの光の透過率に対する、波長760nm±5nm或いは波長905nm±5nmの光の透過率の比が大きく低下すると、疲労の蓄積が進む傾向にあることがわかるので、表示部に表示して知らせる。
【0009】
本発明の血液疲労度センサは、波長760nm±5nmの光を照射する光源と、該光源に対して間隔をあけて対向した受光部と、前記光源から照射された光量と前記受光部が受光した光量によって波長760nm±5nmの光の透過率を算出し、この結果から波長760nm±5nmの光の透過率の経時変化を演算結果として得る演算手段と、該演算結果に基づく疲労度を表示する表示部とを備えることもある。
【0010】
若しくは、波長905nm±5nmの光を照射する光源と、該光源に対して間隔をあけて対向した受光部と、前記光源から照射された光量と前記受光部が受光した光量によって波長905nm±5nmの光の透過率を算出し、この結果から波長905nm±5nmの光の透過率の経時変化を演算結果として得る演算手段と、該演算結果或いは演算結果に基づく疲労度を表示する表示部とを備える。
波長760nm±5nm或いは波長905nm±5nmの光の透過率が急激に低下すると、疲労が進んで血液中のヘモグロビンが増加していることがわかるので、表示部に表示して知らせる。
【0011】
光源及び受光部を指挿入筒の内面に設けても良い。この構成により、指挿入筒へ指を差し込むだけで、血液を通過した光の透過性を測定できる。
指紋認証装置の指紋認識部を利用し、ここに光源及び受光部を設置することもできる。
演算結果が所定値に達した時に警報を発するようにすると、表示内容を理解できない被験者でも、疲労が進んでいることを認識できる。
いつでも手軽に利用できるように、携帯電話、コンピュータの端末装置(例えば、キーボード)等の電子機器に搭載すると良い。
正確に光の透過率を測定して疲労度を知ることができるように、光源及び受光部は、指先から11.5mm±0.5mmの距離に相当する位置に設置するのが望ましい。
【0012】
【発明の実施の形態】
図1乃至図は、本発明の第1の実施形態を示す。
血液疲労度センサは、図1に示すように、センサ部1と、測定器本体2とを備える。
センサ部1は、指挿入筒3(図2、図3)と、波長760nm±5nmの光又は波長905nm±5nmの光を照射する発光ダイオード4より成る第1の光源と、波長840nm±5nmの光を照射する発光ダイオード5より成る第2の光源と、フォトダイオード6より成る受光部とを有する。
【0013】
指挿入筒3は、図2及び図3に示すように、指先の形状に合わせて、奥端がやや細い筒状に形成される。
指挿入筒3の奥端から11.5mm±0.5mmの距離において、内面の一側には、発光ダイオード4及び発光ダイオード5が装着され、内面他側には、フォトダイオード6が発光ダイオード4,5と対向するよう設置されている。
さらに、指挿入筒3から延びるリード線9の先端にコネクタ10が装着されている。
【0014】
測定器本体2は、ケースに組み込まれ、コネクタ10を介してメモリ部1と係脱可能に接続される。
また、測定器本体2は、図1に示すように、血液疲労度センサの回路全体を制御し、演算手段となるCPU11と、CPU11の制御プログラム等を記憶したROM12と、CPU11の演算結果等を記憶するデータメモリ13と、ケースの外面に設置された表示部となるディスプレイ14と、CPU11の演算結果に基づいてディスプレイ14への表示内容を制御する表示制御回路15と、メモリ部1から送信された信号をデジタル変換するA/D変換器16とを有する。
なお、測定器本体2のケースには電源スイッチが設置されている。
【0015】
本実施形態の血液疲労度センサは、次のように疲労度を測定する。
被験者は、手の指を指挿入筒3内へその奥端まで差し込む。すると、発光ダイオード4,5とフォトダイオード6とが、指先から11.5mm±0.5mmの部分を挟んで対向する。
この状態で被験者が電源スイッチを入れると、発光ダイオード4,5がフォトダイオード6に向かって発光を開始する。
【0016】
発光ダイオード4,5はCPU11に制御されてパルス駆動する。発光ダイオード4は波長760nm±5nmの光、又は、波長905nm±5nmの光を40ms点灯して200ms消灯することを繰り返し(図4のイ)、発光ダイオード5は波長840nm±5nmの光を40ms点灯して200ms消灯することを繰り返す(図4のロ)。また、発光ダイオード4が消灯すると同時に発光ダイオード5が点灯するように、発光ダイオード4と発光ダイオード5の点灯タイミングをずらしてある。
なお、発光ダイオード4,5は、使用するデバイスによっても異なるが、例えば、最大電流20mAとし、通常は7mAから発光を開始して、発光ダイオード4,5の劣化に応じて20mAまで変化させる。
【0017】
発光ダイオード4,5から照射された光は、その一部が指を透過してフォトダイオード6に受光される。
フォトダイオード6は、受光した光量に応じた検知信号をA/D変換器16に発信し、A/D変換器16は受信した信号をデジタル信号に変換する。このデジタル信号をCPU11が読み取って、発光ダイオード4,5から発光した光量との差から、波長760nm±5nmの光、又は、波長905nm±5nmの光の透過率と、波長840nm±5nmの光の透過率とをそれぞれ算出する。
【0018】
ところで、発光ダイオード4から照射される波長760nm±5nmの光、又は、波長905nm±5nmの光は、血液中の脱酸素化ヘモグロビンによって透過率が変化し、発光ダイオード5から照射される波長840nm±5nmの光は、血中溶血中性脂肪によって透過率が変化する。
また、疲労すると血液中のヘモグロビンが増加するのに対して、中性脂肪濃度はほとんど変化がない。
図5には、実線で常態(疲労していない状態)における光の透過率を示し、破線で疲労時の光の透過率を示してある。この図5から、疲労すると波長760nm±5nmの光、又は、波長905nm±5nmの光の透過率は低下するが、波長840nm±5nmの光の透過率は変化しにくいことがわかる。
【0019】
従って、例えば、波長760nm±5nmの光の透過率を用いる場合、CPU11によって、波長840nm±5nmの光の透過率(Δ840)に対する波長760nm±5nmの光の透過率(Δ760)の比(Δ760/Δ840)を求め、この透過率の比に基づいて傾き量であるlog(Δ760/Δ840)を得ると、傾き量が大きいほど疲労度が進行していることになる。
CPU11で求めたΔ760/Δ840及びlog(Δ760/Δ840)はデータメモリ13に記憶され、さらにCPU11によってデータメモリ13から取り出され、表示情報として表示制御回路15に受け渡される。表示制御回路15は、表示情報を予め設定された形式の表示データに変換して、ディスプレイ14に疲労度として表示する。
【0020】
ディスプレイ14には、算出したlog(Δ760/Δ840)を斜線として表し、常態におけるlog(Δ760/Δ840)を示す斜線と共に表示しても良いし、Δ760/Δ840をそのまま数値として平常時の数値と比較して表示しても良い。すると、被験者は、測定結果が平常時から大きく隔たっている場合に、疲労していることを認識できる。
また、Δ760/Δ840が一定の範囲内にあるとき、その範囲を文字にして、例えば、「元気である」、「大変疲労している」、「要注意」等のように表示することも可能である。
なお、Δ760/Δ840が一定値に達したら、過労状態であるとみなして点灯或いは音による警報を発するようにしても良い。
【0021】
図6は第2の実施形態を示す。
センサ部1には、波長760nm±5nmの光、又は、波長905nm±5nmの光を照射する発光ダイオード4より成る光源のみが設置され、波長840nm±5nmの光は照射されないようになっている。
フォトダイオード6が波長760nm±5nmの光、又は、波長905nm±5nmの光を受光して、A/D変換器16へ検知信号を発信すると、A/D変換器16で変換されたデジタル信号を受けて、CPU11は波長760nm±5nmの光、又は、波長905nm±5nmの光の透過率を算出し、これをデータメモリ13に格納する。
【0022】
そして、CPU11は、各測定時点における透過率を比較し、透過率の経時変化をグラフ或いは数値としてディスプレイ14に表示する。
被験者は、ディスプレイ14の表示を見て、光の透過率が急激に低下したら、疲労の蓄積が進行していると認識できる。
また、ある測定時点における透過率と次の測定時点における透過率との差が一定以上になったら、過労であるとみなして点灯又は音による警報を発するようにすると良い。
【0023】
なお、パーソナルコンピュータへログインする際の指紋認証装置の指紋認識部をセンサ部として利用し、この指紋認識部に光源及び受光部を設置して、ログイン時に疲労度を測定することもできる。この場合は、パーソナルコンピュータが測定器本体の機能を果たすことになる。
また、第1の実施形態或いは第2の実施形態におけるセンサ部1を携帯電話、キーボード、各種端末装置等の電子機器に接続し、携帯電話、端末装置に接続されたコンピュータを計測器本体として利用することも可能である。
これらいずれの場合にも、光の透過率を正確に測定できるように、光源及び受光部を、指先から11.5mm±0.5mmの距離に相当する位置に設置するのが望ましい。
さらに、センサ部の形状を変えて、手指以外の個所、例えば足指、手首等の血管で光の透過率を計測しても良い。
【0024】
【発明の効果】
請求項1乃至4に係る発明によれば、疲労度を簡単に、且つ、客観的に知ることができるので、随時疲労度をチェックすることにより、運動や労働による過労を防ぐことが可能である。
また、センサ部分へ指等を押し付ける押圧力によって測定精度が変動しにくいので、単に光源と受光部との間に指等を差し込むだけで疲労度を正確に測定できる。
【0025】
請求項5に係る発明によれば、指挿入筒に指を差し込むだけで、血液を通過した光の透過性を測定できる。
請求項6に係る発明によれば、パーソナルコンピュータへのログイン時のように、指紋認証を行う際に、同時に疲労度を測定することが可能となる。
請求項7に係る発明によれば、表示内容を理解できない被験者にも、疲労が進んでいることを知らせることができる。
請求項8に係る発明によれば、身近な携帯電話、キーボード、端末装置等を利用して、いつでも手軽に疲労度を測定できる。
請求項9に係る発明によれば、高精度で光の透過率を測定できるため、確実に疲労度を知ることが可能となる。
【図面の簡単な説明】
【図1】第1の実施形態を示す血液疲労度センサのブロック図
【図2】センサ部の側面図
【図3】センサ部の平面図
【図4】第1の光源と第2の光源の発光タイミングを示す図
【図5】光の波長と透過率との関係を示す図
【図6】第1の実施形態を示す血液疲労度センサのブロック図
【符号の説明】
1 センサ部
2 測定器本体
3 指挿入筒
4 発光ダイオード
5 発光ダイオード
6 フォトダイオード
9 リード線
10 コネクタ
11 CPU
12 ROM
13 データメモリ
14 ディスプレイ
15 表示制御装置
16 A/D変換器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a blood fatigue sensor that utilizes the fact that deoxygenated hemoglobin in blood increases upon fatigue.
[0002]
[Prior art]
In recent years, there has been an increasing number of cases in which mental and physical diseases are committed due to accumulation of fatigue due to a shortage of workers due to a reduction in the number of employees, and in severe cases, death from overwork.
However, it is troublesome to have a physician check frequently to avoid illness due to overwork, so that people usually tend to overlook fatigue until their physical and mental health deteriorates considerably.
Therefore, there is a long-felt need for a device that allows even ordinary people to easily determine the degree of fatigue on their own.
[0003]
As a device that allows ordinary people to diagnose their own health status, information on the health status of the subject, such as the state of peripheral circulation, blood oxygen concentration, body fatigue, There is known a health condition analyzer that evaluates the degree of tension and presents the result to a subject (see Patent Document 1).
However, the above-mentioned conventional health condition analysis apparatus irradiates light to blood vessels such as a finger, and detects a pulse wave by receiving light reflected by the blood vessels. Therefore, the measurement may not be possible unless the subject applies an appropriate pressing force.
[0004]
[Patent Document 1]
JP-A-8-299292
[Problems to be solved by the invention]
It is an object of the present invention to provide a blood fatigue sensor that can easily know the degree of fatigue and is less likely to vary in accuracy due to the movement of the subject.
[0006]
[Means for Solving the Problems]
The blood fatigue degree sensor according to the present invention includes a first light source that emits light having a wavelength of 760 nm ± 5 nm, a second light source that emits light having a wavelength of 840 nm ± 5 nm, and the first light source and the second light source. The light receiving portion facing away at an interval, the light amount emitted from the first light source and the second light source and the light amount received by the light receiving portion determine the transmittance of light having a wavelength of 760 nm ± 5 nm and the wavelength of 840 nm ±. Calculating means for calculating the transmittance of the light having a wavelength of 5 nm, and calculating the ratio between the transmittance of the light having a wavelength of 760 nm ± 5 nm and the transmittance of the light having a wavelength of 840 nm ± 5 nm from the result; A display unit for displaying the degree.
[0007]
Alternatively, a first light source that irradiates light having a wavelength of 905 nm ± 5 nm, a second light source that irradiates light having a wavelength of 840 nm ± 5 nm, and faces the first light source and the second light source at an interval. The light transmittance of the wavelength 905 nm ± 5 nm and the transmittance of the light of wavelength 840 nm ± 5 nm are determined by the light receiving unit, the light amount irradiated from the first light source and the second light source, and the light amount received by the light receiving unit. Calculating means for calculating the ratio between the transmittance of light having a wavelength of 905 nm ± 5 nm and the transmittance of light having a wavelength of 840 nm ± 5 nm from the result, and a display section for displaying a degree of fatigue based on the calculation result. Is provided.
[0008]
When a blood vessel is irradiated with light having a wavelength of 760 nm ± 5 nm or 905 nm ± 5 nm and light having a wavelength of 840 nm ± 5 nm, the transmittance of the light having a wavelength of 760 nm ± 5 nm or 905 nm ± 5 nm fluctuates due to deoxygenated hemoglobin in blood. The transmittance of light having a wavelength of 840 nm ± 5 nm changes depending on the hemolyzed neutral fat in the blood.
Hemoglobin in blood increases when fatigued, so that the transmittance of light having a wavelength of 760 nm ± 5 nm or 905 nm ± 5 nm decreases, but the transmittance of light having a wavelength of 840 nm ± 5 nm changes little.
Accordingly, when the ratio of the transmittance of the light having the wavelength of 760 nm ± 5 nm or 905 nm ± 5 nm to the transmittance of the light having the wavelength of 840 nm ± 5 nm is significantly reduced, it can be understood that the accumulation of fatigue tends to progress. Display and inform.
[0009]
The blood fatigue degree sensor of the present invention includes a light source that emits light having a wavelength of 760 nm ± 5 nm, a light receiving unit facing the light source at an interval, a light amount emitted from the light source, and light received by the light receiving unit. Calculating means for calculating the transmittance of light having a wavelength of 760 nm ± 5 nm based on the amount of light, and obtaining a temporal change in the transmittance of light having a wavelength of 760 nm ± 5 nm from the result; and a display for displaying the degree of fatigue based on the calculation result. May be provided.
[0010]
Alternatively, a light source that emits light having a wavelength of 905 nm ± 5 nm, a light receiving unit facing the light source at an interval, and a light source having a wavelength of 905 nm ± 5 nm depending on the amount of light emitted from the light source and the amount of light received by the light receiving unit. An arithmetic unit for calculating the light transmittance and obtaining a temporal change in the transmittance of the light having a wavelength of 905 nm ± 5 nm from the result as an operation result, and a display unit for displaying the operation result or the degree of fatigue based on the operation result. .
When the transmittance of light having a wavelength of 760 nm ± 5 nm or 905 nm ± 5 nm is sharply reduced, it is known that fatigue is progressing and hemoglobin in blood is increasing.
[0011]
The light source and the light receiving section may be provided on the inner surface of the finger insertion tube. With this configuration, it is possible to measure the transmittance of light that has passed through the blood simply by inserting a finger into the finger insertion tube.
It is also possible to use a fingerprint recognition unit of the fingerprint authentication device and install a light source and a light receiving unit here.
If an alarm is issued when the calculation result reaches a predetermined value, even a test subject who cannot understand the displayed contents can recognize that fatigue is progressing.
It is good to mount it on an electronic device such as a mobile phone or a computer terminal device (for example, a keyboard) so that it can be easily used at any time.
It is desirable that the light source and the light receiving unit are installed at positions corresponding to a distance of 11.5 mm ± 0.5 mm from the fingertip so that the degree of fatigue can be known by accurately measuring the light transmittance.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3 show a first embodiment of the present invention.
As shown in FIG. 1, the blood fatigue degree sensor includes a sensor unit 1 and a measuring device main body 2.
The sensor unit 1 includes a finger insertion tube 3 (FIGS. 2 and 3), a first light source including a light emitting diode 4 for emitting light having a wavelength of 760 nm ± 5 nm or light having a wavelength of 905 nm ± 5 nm, and a light source having a wavelength of 840 nm ± 5 nm. It has a second light source composed of a light emitting diode 5 for irradiating light, and a light receiving section composed of a photodiode 6.
[0013]
As shown in FIGS. 2 and 3, the finger insertion tube 3 is formed in a slightly thin cylindrical shape in accordance with the shape of the fingertip.
At a distance of 11.5 mm ± 0.5 mm from the back end of the finger insertion tube 3, a light emitting diode 4 and a light emitting diode 5 are mounted on one side of the inner surface, and a photodiode 6 is mounted on the other side of the inner surface. , 5 are installed.
Further, a connector 10 is attached to a distal end of a lead wire 9 extending from the finger insertion tube 3.
[0014]
The measuring device main body 2 is incorporated in a case, and is detachably connected to the memory unit 1 via a connector 10.
Further, as shown in FIG. 1, the measuring device main body 2 controls the entire circuit of the blood fatigue degree sensor, and stores a CPU 11 serving as a calculating means, a ROM 12 storing a control program of the CPU 11 and the like, a calculation result of the CPU 11 and the like. A data memory 13 for storing, a display 14 serving as a display unit installed on the outer surface of the case, a display control circuit 15 for controlling display contents on the display 14 based on a calculation result of the CPU 11, and a data transmitted from the memory unit 1. A / D converter 16 for digitally converting the converted signal.
A power switch is provided in the case of the measuring device main body 2.
[0015]
The blood fatigue sensor according to the present embodiment measures the fatigue as follows.
The subject inserts the finger of the hand into the finger insertion tube 3 to the far end. Then, the light emitting diodes 4 and 5 and the photodiode 6 face each other across a portion of 11.5 mm ± 0.5 mm from the fingertip.
When the subject turns on the power switch in this state, the light emitting diodes 4 and 5 start emitting light toward the photodiode 6.
[0016]
The light emitting diodes 4 and 5 are pulsed under the control of the CPU 11. The light emitting diode 4 repeatedly emits light having a wavelength of 760 nm ± 5 nm or light having a wavelength of 905 nm ± 5 nm for 40 ms and turns off the light for 200 ms (a in FIG. 4), and the light emitting diode 5 emits light having a wavelength of 840 nm ± 5 nm for 40 ms. And turning off the light for 200 ms is repeated (b in FIG. 4). Further, the lighting timings of the light emitting diode 4 and the light emitting diode 5 are shifted so that the light emitting diode 5 is turned on at the same time as the light emitting diode 4 is turned off.
Although the light emitting diodes 4 and 5 vary depending on the device used, for example, the maximum current is 20 mA, and light emission usually starts from 7 mA, and is changed to 20 mA according to the deterioration of the light emitting diodes 4 and 5.
[0017]
A part of the light emitted from the light emitting diodes 4 and 5 passes through the finger and is received by the photodiode 6.
The photodiode 6 transmits a detection signal corresponding to the amount of received light to the A / D converter 16, and the A / D converter 16 converts the received signal into a digital signal. The digital signal is read by the CPU 11 and the difference between the amount of light emitted from the light emitting diodes 4 and 5 is used to determine the transmittance of light having a wavelength of 760 nm ± 5 nm, or the transmittance of light having a wavelength of 905 nm ± 5 nm and the light having a wavelength of 840 nm ± 5 nm. And the transmittance are calculated.
[0018]
By the way, the light having a wavelength of 760 nm ± 5 nm or the light having a wavelength of 905 nm ± 5 nm emitted from the light emitting diode 4 changes in transmittance due to deoxygenated hemoglobin in blood, and the wavelength 840 nm ± emitted from the light emitting diode 5. The transmittance of 5 nm light changes depending on the hemolyzed neutral fat in blood.
In addition, hemoglobin in the blood increases when fatigue occurs, whereas the neutral fat concentration hardly changes.
In FIG. 5, the solid line indicates the light transmittance in a normal state (non-fatigue state), and the broken line indicates the light transmittance during fatigue. From FIG. 5, it can be seen that the transmittance of light having a wavelength of 760 nm ± 5 nm or light having a wavelength of 905 nm ± 5 nm decreases when fatigue occurs, but the transmittance of light having a wavelength of 840 nm ± 5 nm does not easily change.
[0019]
Therefore, for example, when the transmittance of light having a wavelength of 760 nm ± 5 nm is used, the CPU 11 uses the CPU 11 to determine the ratio (Δ760) of the transmittance of light having a wavelength of 760 nm ± 5 nm (Δ760) to the transmittance of light having a wavelength of 840 nm ± 5 nm (Δ840). When Δ840) is obtained and log (Δ760 / Δ840), which is the amount of inclination, is obtained based on the transmittance ratio, the degree of fatigue increases as the amount of inclination increases.
Δ760 / Δ840 and log (Δ760 / Δ840) obtained by the CPU 11 are stored in the data memory 13, further taken out from the data memory 13 by the CPU 11, and passed to the display control circuit 15 as display information. The display control circuit 15 converts the display information into display data of a preset format and displays the display data on the display 14 as the degree of fatigue.
[0020]
The calculated log (Δ760 / Δ840) may be displayed on the display 14 as a diagonal line, and may be displayed together with the diagonal line indicating the log (Δ760 / Δ840) in a normal state. Alternatively, Δ760 / Δ840 may be directly used as a numerical value and compared with a normal numerical value. May be displayed. Then, the subject can recognize that he / she is tired when the measurement result is largely separated from the normal state.
Further, when Δ760 / Δ840 is within a certain range, the range can be displayed in characters and displayed as, for example, “energy”, “very tired”, “attention required”, and the like. It is.
When Δ760 / Δ840 reaches a certain value, it may be considered that the vehicle is in an overworked state, and a warning by lighting or sound may be issued.
[0021]
FIG. 6 shows a second embodiment.
The sensor unit 1 is provided with only a light source composed of a light emitting diode 4 that emits light having a wavelength of 760 nm ± 5 nm or light having a wavelength of 905 nm ± 5 nm, and is not irradiated with light having a wavelength of 840 nm ± 5 nm.
When the photodiode 6 receives light having a wavelength of 760 nm ± 5 nm or light having a wavelength of 905 nm ± 5 nm and transmits a detection signal to the A / D converter 16, the digital signal converted by the A / D converter 16 is transmitted. In response, the CPU 11 calculates the transmittance of the light having the wavelength of 760 nm ± 5 nm or the light having the wavelength of 905 nm ± 5 nm, and stores the calculated transmittance in the data memory 13.
[0022]
Then, the CPU 11 compares the transmittance at each measurement time, and displays a change with time of the transmittance on the display 14 as a graph or a numerical value.
The subject looks at the display 14 and, when the light transmittance sharply decreases, can recognize that the accumulation of fatigue is progressing.
Further, when the difference between the transmittance at a certain measurement time point and the transmittance at the next measurement time point becomes equal to or more than a certain value, it is preferable to consider that it is too much work and to issue a warning by lighting or sound.
[0023]
The fingerprint recognition unit of the fingerprint authentication device when logging in to the personal computer can be used as a sensor unit, and a light source and a light receiving unit can be installed in the fingerprint recognition unit to measure the degree of fatigue at the time of login. In this case, the personal computer fulfills the function of the measuring instrument body.
In addition, the sensor unit 1 in the first embodiment or the second embodiment is connected to electronic devices such as a mobile phone, a keyboard, and various terminal devices, and a computer connected to the mobile phone and the terminal device is used as a measuring instrument main body. It is also possible.
In any of these cases, it is desirable to dispose the light source and the light receiving portion at a position corresponding to a distance of 11.5 mm ± 0.5 mm from the fingertip so that the light transmittance can be accurately measured.
Further, by changing the shape of the sensor unit, the light transmittance may be measured at a part other than the finger, for example, at a blood vessel such as a toe or a wrist.
[0024]
【The invention's effect】
According to the first to fourth aspects of the present invention, since the fatigue level can be easily and objectively known, it is possible to prevent overwork due to exercise or labor by checking the fatigue level at any time. .
In addition, since the measurement accuracy does not easily change due to the pressing force of pressing a finger or the like against the sensor portion, the degree of fatigue can be accurately measured simply by inserting the finger or the like between the light source and the light receiving unit.
[0025]
According to the invention according to claim 5, it is possible to measure the transmittance of light that has passed through the blood simply by inserting a finger into the finger insertion tube.
According to the invention of claim 6, it is possible to simultaneously measure the degree of fatigue when performing fingerprint authentication, such as when logging in to a personal computer.
According to the invention according to claim 7, it is possible to notify a subject who cannot understand the displayed contents that the fatigue is progressing.
According to the invention according to claim 8, the degree of fatigue can be easily measured at any time by using a nearby mobile phone, keyboard, terminal device, or the like.
According to the ninth aspect of the present invention, since the light transmittance can be measured with high accuracy, it is possible to reliably know the degree of fatigue.
[Brief description of the drawings]
FIG. 1 is a block diagram of a blood fatigue degree sensor showing a first embodiment. FIG. 2 is a side view of a sensor unit. FIG. 3 is a plan view of a sensor unit. FIG. 4 is a diagram of a first light source and a second light source. FIG. 5 is a diagram showing light emission timing. FIG. 5 is a diagram showing a relationship between light wavelength and transmittance. FIG. 6 is a block diagram of a blood fatigue degree sensor according to the first embodiment.
DESCRIPTION OF SYMBOLS 1 Sensor part 2 Measuring instrument main body 3 Finger insertion tube 4 Light emitting diode 5 Light emitting diode 6 Photodiode 9 Lead wire 10 Connector 11 CPU
12 ROM
13 Data Memory 14 Display 15 Display Controller 16 A / D Converter

Claims (9)

波長760nm±5nmの光を照射する第1の光源と、波長840nm±5nmの光を照射する第2の光源と、前記第1の光源及び第2の光源に対して間隔をあけて対向した受光部と、前記第1の光源及び第2の光源から照射された光量と前記受光部が受光した光量によって、波長760nm±5nmの光の透過率及び波長840nm±5nmの光の透過率を算出し、この結果から波長760nm±5nmの光の透過率と波長840nm±5nmの光の透過率との比を演算結果として得る演算手段と、該演算結果に基づく疲労度を表示する表示部とを備えた血液疲労度センサ。A first light source for irradiating light with a wavelength of 760 nm ± 5 nm, a second light source for irradiating light with a wavelength of 840 nm ± 5 nm, and a light receiving device facing the first light source and the second light source at intervals. The light transmittance of a wavelength of 760 nm ± 5 nm and the light transmittance of a wavelength of 840 nm ± 5 nm are calculated based on the light amount emitted from the first light source and the second light source and the light amount received by the light receiving unit. A calculating means for obtaining, as an operation result, a ratio between a transmittance of light having a wavelength of 760 nm ± 5 nm and a transmittance of light having a wavelength of 840 nm ± 5 nm; and a display section for displaying a degree of fatigue based on the calculation result. Blood fatigue sensor. 波長760nm±5nmの光を照射する光源と、該光源に対して間隔をあけて対向した受光部と、前記光源から照射された光量と前記受光部が受光した光量によって波長760nm±5nmの光の透過率を算出し、この結果から波長760nm±5nmの光の透過率の経時変化を演算結果として得る演算手段と、該演算結果或いは演算結果に基づく疲労度を表示する表示部とを備えた血液疲労度センサ。A light source for irradiating light having a wavelength of 760 nm ± 5 nm, a light receiving portion facing the light source at an interval, and a light having a wavelength of 760 nm ± 5 nm depending on the amount of light emitted from the light source and the amount of light received by the light receiving portion. A blood device comprising: a calculating means for calculating a transmittance and obtaining a temporal change in transmittance of light having a wavelength of 760 nm ± 5 nm from the result as a calculation result; and a display unit for displaying the calculation result or a degree of fatigue based on the calculation result. Fatigue degree sensor. 波長905nm±5nmの光を照射する第1の光源と、波長840nm±5nmの光を照射する第2の光源と、前記第1の光源及び第2の光源に対して間隔をあけて対向した受光部と、前記第1の光源及び第2の光源から照射された光量と前記受光部が受光した光量によって、波長905nm±5nmの光の透過率及び波長840nm±5nmの光の透過率を算出し、この結果から波長905nm±5nmの光の透過率と波長840nm±5nmの光の透過率との比を演算結果として得る演算手段と、該演算結果に基づく疲労度を表示する表示部とを備えた血液疲労度センサ。A first light source for irradiating light with a wavelength of 905 nm ± 5 nm, a second light source for irradiating light with a wavelength of 840 nm ± 5 nm, and a light receiving device facing the first and second light sources at an interval The light transmittance of a wavelength of 905 nm ± 5 nm and the light transmittance of a wavelength of 840 nm ± 5 nm are calculated based on the light amount emitted from the first light source and the second light source and the light amount received by the light receiving unit. A calculation means for obtaining, as an operation result, a ratio between a transmittance of light having a wavelength of 905 nm ± 5 nm and a transmittance of light having a wavelength of 840 nm ± 5 nm, and a display section for displaying a degree of fatigue based on the calculation result. Blood fatigue sensor. 波長905nm±5nmの光を照射する光源と、該光源に対して間隔をあけて対向した受光部と、前記光源から照射された光量と前記受光部が受光した光量によって波長905nm±5nmの光の透過率を算出し、この結果から波長905nm±5nmの光の透過率の経時変化を演算結果として得る演算手段と、該演算結果或いは演算結果に基づく疲労度を表示する表示部とを備えた血液疲労度センサ。A light source that emits light having a wavelength of 905 nm ± 5 nm, a light receiving unit facing the light source at an interval, and light having a wavelength of 905 nm ± 5 nm based on the amount of light emitted from the light source and the amount of light received by the light receiving unit. A blood device comprising: calculating means for calculating a transmittance, and obtaining a temporal change in transmittance of light having a wavelength of 905 nm ± 5 nm as a calculation result from the result; and a display unit for displaying the calculation result or a degree of fatigue based on the calculation result. Fatigue degree sensor. 前記光源及び受光部が指挿入筒の内面に設けられた請求項1乃至4のいずれかに記載の血液疲労度センサ。The blood fatigue degree sensor according to any one of claims 1 to 4, wherein the light source and the light receiving unit are provided on an inner surface of the finger insertion tube. 指紋認証装置の指紋認識部に前記光源及び受光部を設置した請求項1乃至4のいずれかに記載の血液疲労度センサ。The blood fatigue sensor according to any one of claims 1 to 4, wherein the light source and the light receiving unit are provided in a fingerprint recognition unit of the fingerprint authentication device. 前記演算結果が所定値に達した時に警報を発する請求項1乃至6のいずれかに記載の血液疲労度センサ。7. The blood fatigue sensor according to claim 1, wherein an alarm is issued when the calculation result reaches a predetermined value. 電子機器に搭載された請求項1乃至7のいずれかに記載の血液疲労度センサ。The blood fatigue degree sensor according to any one of claims 1 to 7, which is mounted on an electronic device. 前記光源及び受光部が、指先から11.5mm±0.5mmの距離に相当する位置に設置された請求項1乃至8のいずれかに記載の血液疲労度センサ。9. The blood fatigue sensor according to claim 1, wherein the light source and the light receiving unit are installed at a position corresponding to a distance of 11.5 mm ± 0.5 mm from a fingertip.
JP2003098339A 2003-04-01 2003-04-01 Blood fatigue degree sensor Pending JP2004298572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098339A JP2004298572A (en) 2003-04-01 2003-04-01 Blood fatigue degree sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098339A JP2004298572A (en) 2003-04-01 2003-04-01 Blood fatigue degree sensor

Publications (1)

Publication Number Publication Date
JP2004298572A true JP2004298572A (en) 2004-10-28

Family

ID=33409893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098339A Pending JP2004298572A (en) 2003-04-01 2003-04-01 Blood fatigue degree sensor

Country Status (1)

Country Link
JP (1) JP2004298572A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165741A (en) * 2008-01-18 2009-07-30 Laurel Machinery Co Ltd Health state management device and health state management system
JP2011502598A (en) * 2007-11-09 2011-01-27 エンビテック−ウィスマール ゲー・エム・ベー・ハー Blood oxygen saturation measuring device
JP2013119001A (en) * 2011-12-08 2013-06-17 Asahi Sun Clean Co Ltd Muscle fatigue evaluation device, system, method, and program
CN117571522A (en) * 2024-01-16 2024-02-20 首都医科大学附属北京友谊医院 Vascular stent external loading testing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017700A1 (en) * 1990-05-18 1991-11-28 Mitsubishi Rayon Co., Ltd. Catheter for measurement and method of measuring oxygen saturation degree or flow speed of blood
JPH06142087A (en) * 1992-11-13 1994-05-24 Omron Corp Motility monitor
JPH11507568A (en) * 1995-06-09 1999-07-06 サイブロ メディカル リミテッド Sensor for optical measurement of blood oxygen saturation, its measurement method, and its measurement device
JP2002248104A (en) * 2001-02-26 2002-09-03 Spectratech Inc Biological information measurement device and measurement method in use
JP2002529174A (en) * 1998-11-06 2002-09-10 メドトロニック・アヴェコア・カーディオヴァスキュラー・インコーポレーテッド Apparatus and method for measuring blood parameters
JP2002272708A (en) * 2001-03-21 2002-09-24 Mitsuba Corp Physical condition judgment method and instrument
JP2003061921A (en) * 2001-08-30 2003-03-04 Mitsuba Corp Physical condition discriminating method and physical condition discriminating device
JP2003070754A (en) * 2001-09-05 2003-03-11 Japan Science & Technology Corp Vascular elasticity measurement instrument

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017700A1 (en) * 1990-05-18 1991-11-28 Mitsubishi Rayon Co., Ltd. Catheter for measurement and method of measuring oxygen saturation degree or flow speed of blood
JPH06142087A (en) * 1992-11-13 1994-05-24 Omron Corp Motility monitor
JPH11507568A (en) * 1995-06-09 1999-07-06 サイブロ メディカル リミテッド Sensor for optical measurement of blood oxygen saturation, its measurement method, and its measurement device
JP2002529174A (en) * 1998-11-06 2002-09-10 メドトロニック・アヴェコア・カーディオヴァスキュラー・インコーポレーテッド Apparatus and method for measuring blood parameters
JP2002248104A (en) * 2001-02-26 2002-09-03 Spectratech Inc Biological information measurement device and measurement method in use
JP2002272708A (en) * 2001-03-21 2002-09-24 Mitsuba Corp Physical condition judgment method and instrument
JP2003061921A (en) * 2001-08-30 2003-03-04 Mitsuba Corp Physical condition discriminating method and physical condition discriminating device
JP2003070754A (en) * 2001-09-05 2003-03-11 Japan Science & Technology Corp Vascular elasticity measurement instrument

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502598A (en) * 2007-11-09 2011-01-27 エンビテック−ウィスマール ゲー・エム・ベー・ハー Blood oxygen saturation measuring device
JP2009165741A (en) * 2008-01-18 2009-07-30 Laurel Machinery Co Ltd Health state management device and health state management system
US8311702B2 (en) 2008-01-18 2012-11-13 Laurel Machinery Co., Ltd. Health state management device and health state management system
JP2013119001A (en) * 2011-12-08 2013-06-17 Asahi Sun Clean Co Ltd Muscle fatigue evaluation device, system, method, and program
CN117571522A (en) * 2024-01-16 2024-02-20 首都医科大学附属北京友谊医院 Vascular stent external loading testing device
CN117571522B (en) * 2024-01-16 2024-05-14 首都医科大学附属北京友谊医院 Vascular stent external loading testing device

Similar Documents

Publication Publication Date Title
EP1860993B1 (en) Noninvasive multi-parameter patient monitor
US8135447B2 (en) Optical biological information measuring apparatus, optical biological information measuring method, biological information decision apparatus, program and recording medium
US9186075B2 (en) Indicating the accuracy of a physiological parameter
JP2007135621A (en) Biological information measuring instrument
JPH08289876A (en) Pulse meter
JP6007782B2 (en) Biological information measuring device
CN102008299A (en) Method and device for measuring the pulse by means of light waves with two wavelengths
US20180235489A1 (en) Photoplethysmographic wearable blood pressure monitoring system and methods
JP6431697B2 (en) Wrist-mounted pulse oximeter
JP4385677B2 (en) Biological information measuring device
JP2010264126A (en) Biological information measuring device
JP2003061921A (en) Physical condition discriminating method and physical condition discriminating device
JP4433756B2 (en) Biological information measuring device, control method therefor, control program, and recording medium
JP5003436B2 (en) Biological information processing apparatus and biological information processing method
JP2004298572A (en) Blood fatigue degree sensor
JP5077326B2 (en) Biological information measuring device, control method therefor, and control program
JP2005253865A (en) Biological evaluation device, biological evaluation method, biological evaluation program, and recording medium
KR20080054855A (en) Mobile terminal for bio-feedback using ppg sensor and method thereof
JP2006026212A (en) Living body information detector
JP2002272708A (en) Physical condition judgment method and instrument
US20110263954A1 (en) Noninvasive blood glucose meter
JP2009207713A (en) Biological information processing device, biological information processing method, and control program
US20070016076A1 (en) Dermatone skin analyzer
JP6691637B2 (en) Biological information measuring device
JP2007240420A (en) Portable measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100517