JP2004298138A - Method for producing dough enriched with gamma-aminobutyric acid - Google Patents

Method for producing dough enriched with gamma-aminobutyric acid Download PDF

Info

Publication number
JP2004298138A
JP2004298138A JP2003097403A JP2003097403A JP2004298138A JP 2004298138 A JP2004298138 A JP 2004298138A JP 2003097403 A JP2003097403 A JP 2003097403A JP 2003097403 A JP2003097403 A JP 2003097403A JP 2004298138 A JP2004298138 A JP 2004298138A
Authority
JP
Japan
Prior art keywords
dough
aminobutyric acid
enriched
food
flour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003097403A
Other languages
Japanese (ja)
Other versions
JP4303503B2 (en
Inventor
Yoshinobu Nakazawa
佳伸 中澤
Atsuo Okochi
敦雄 大河内
Norihiko Maeda
紀彦 前田
Toshiyuki Kaneko
俊之 金子
Tokuo Shiomi
徳夫 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIDA SEIFUN KK
Showa Sangyo Co Ltd
Original Assignee
KIDA SEIFUN KK
Showa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIDA SEIFUN KK, Showa Sangyo Co Ltd filed Critical KIDA SEIFUN KK
Priority to JP2003097403A priority Critical patent/JP4303503B2/en
Publication of JP2004298138A publication Critical patent/JP2004298138A/en
Application granted granted Critical
Publication of JP4303503B2 publication Critical patent/JP4303503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Noodles (AREA)
  • Confectionery (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a food material enriched with γ-aminobutyric acid and usable as it is in conventional food production processes. <P>SOLUTION: This invention provides (1) a method for producing a γ-aminobutyric acid-enriched dough by adding water to cereal flour and kneading the mixture to form ≥10 mg of γ-aminobutyric acid per 100 g of the dough from glutamic acid in the dough, (2) a method for producing a γ-aminobutyric acid-enriched dough described in the item (1) wherein the cereal flour contains embryo and/or periderm, (3) a method for producing the γ-aminobutyric acid-enriched dough described in the item (1) or (2) wherein the preparation of the dough is carried out in the presence of a glutamic acid source, and (4) a food produced from the dough produced by the method described in the item (1), (2) or (3). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、γ−アミノ酪酸を富化した生地の製造方法に関するものである。
【0002】
【従来の技術】
γ−アミノ酪酸(GABA)は、動植物など自然界に広く分布する神経伝達物質として作用するアミノ酸の一種で、血圧降下作用を始めとする様々な生理活性が報告されており、健康機能を発揮する摂取量として一日20mgが推奨されている(例えば、非特許文献1参照)。
【0003】
γ−アミノ酪酸に関するものとしては、▲1▼米胚芽、胚芽を含む米糠、胚芽米、小麦胚芽及び小麦胚芽を含む麩の中の少なくとも1種をpH2.5〜7.5かつ50℃以下の条件で水に浸漬して得たγ−アミノ酪酸を富化した食品素材(特許文献1)、▲2▼米胚芽、胚芽を含む米糠、胚芽米、小麦胚芽及び小麦胚芽を含む麩の中の少なくとも1種をpH2.5〜7.5かつ50℃以下の条件で水に浸漬して得たγ−アミノ酪酸を富化した食品素材に酸を加えて抽出し、抽出物をイオン交換クロマトグラフィーにより精製することを特徴とするγ−アミノ酪酸の製造法(特許文献2)、▲3▼米胚芽、胚芽を含む米糠若しくは胚芽米の少なくとも1種に、グルタミン酸若しくはグルタミン酸の塩を含む溶液を添加して反応させ、該添加溶液中のグルタミン酸と前記米胚芽、胚芽を含む米糠若しくは胚芽米中のグルタミン酸脱炭酸酵素の酵素作用によりγ−アミノ酪酸を生成する方法(特許文献3)、▲4▼小麦粒を水に浸漬して発芽させた後、乾燥、粉砕することを特徴とするγ−アミノ酪酸を含有する発芽小麦粉の製造方法(特許文献4)等がある。
【0004】
【非特許文献1】
「食品と開発」vol.36、No.6、2001、p.4
【特許文献1】
特許第2590423号公報
【特許文献2】
特開平8−280394号公報
【特許文献3】
特開2000−201651号公報
【特許文献4】
特開2002−335891号公報
【0005】
上記の従来法▲1▼〜▲3▼は、水溶液下のγ−アミノ酪酸の生成を目的としたものであるので、そのまま、通常のパン等の食品製造工程に適用し得ないという欠点がある。また、従来法▲4▼は、発芽という面倒な工程を必要とするため、加工に手間がかかり、またγ−アミノ酪酸の生成率が低いという欠点がある。
以上のことから、通常の食品製造工程にそのまま適用し得るような、簡便に食品中のγ−アミノ酪酸を付加させる方法の開発が待たれている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、通常の食品製造工程にそのまま使用し得る、γ−アミノ酪酸を富化した食品素材を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するため鋭意研究を重ねたところ、生地の調製に穀物粉末を用いれば、生地中においてもグルタミン酸からのγ−アミノ酪酸生成反応が十分に生起することを知り、更に研究を重ねた結果、本発明を完成するに至った。
【0008】
即ち、本発明は、以下の構成からなるものである。
1.穀物粉末に水を添加し、次いで混捏することにより生地を調製し、生地中にグルタミン酸からγ−アミノ酪酸を生地100g当たり10mg以上生成させることを特徴とするγ−アミノ酪酸を富化した生地の製造方法。
2.穀物粉末が、胚芽及び/又は外皮を含むものである上記1記載のγ−アミノ酪酸を富化した生地の製造方法。
3.上記1又は2記載の方法において、生地を置く温度を5〜45℃にすることを特徴とする請求項1又は2記載のγ−アミノ酪酸を富化した生地の製造方法。
4.穀物が、小麦、大麦、ライ麦、米又は蕎麦である上記1、2又は3記載のγ−アミノ酪酸を富化した生地の製造方法。
5.生地の調製が、グルタミン酸源の存在下に行われたものである上記1、2、3又は4記載のγ−アミノ酪酸を富化した生地の製造方法。
6.上記1、2、3、4又は5記載の方法により得た生地から製造された食品。
7.食品が、ベーカリー類、焼き・蒸し菓子類又は麺類である上記6記載の食品。
【0009】
本発明、グルタミン酸からのγ−アミノ酪酸生成反応は、穀物粉末からなるものを用いると、生地中においても十分に生起するという、全く意外な事実の発見に基づいてなされたものである。
【0010】
本発明は、穀物粉末に水を添加し、混捏することにより、生地中にグルタミン酸からのγ−アミノ酪酸生成反応を十分に生起させて、γ−アミノ酪酸を富化した生地を得る点に特徴を有するものである。
本発明によれば、従来のような水溶液中ではなくて、生地中においても、γ−アミノ酪酸が効率良く生成し、その結果、γ−アミノ酪酸を富化した生地が得られるという、驚くべき効果を達成し得た。
本発明の生地を用いて食品を製造すると、γ−アミノ酪酸を富化した食品を製造することが出来る。
【0011】
一般に、γ−アミノ酪酸を多く含むと言われている食品100g中のγ−アミノ酪酸の量は、玄米では5〜10mg、発芽させた玄米では10〜20mg、通常の小麦粉(小麦の胚乳部分を主体とするもの)では1mg、全粒粉小麦粉(小麦全粒を製粉したもの)では3〜10mg、発芽させた小麦を製粉した小麦粉では10〜20mgであることが知られている。
本発明によれば、生地又はベーカリー類、焼き菓子類、麺類などの最終食品100g中に10〜500mgの範囲でγ−アミノ酪酸を含有させることができる。
そして、本発明の生地を用いて食品を製造すると、通常の食品製造工程を使用して、γ−アミノ酪酸が富化した食品を簡便に製造することが出来る。
【0012】
本発明において、従来のような水溶液中ではなくて、穀物の粉末からなる生地中においても、γ−アミノ酪酸が効率よく生成することが出来た理由は、以下の通りであると推察される。
(1)穀物の粉末に水を添加した場合、粉末中に水が浸透し、次いで、この浸透水中で、粉末中の反応成分のグルタミン酸とグルタミン酸脱炭酸酵素からなる脱炭酸反応系が形成され、グルタミン酸からのγ−アミノ酪酸の生成反応が生起する。
(2)その結果、穀物粉末からなるものを用いた場合、生地中にもかかわらず、グルタミン酸からのγ−アミノ酪酸の生成反応が十分に生起し、本発明の生地中のγ−アミノ酪酸の含有率が高くなるものと考えられる。
【0013】
本発明で得られたγ−アミノ酪酸を富化した生地は、そのまま、食品製造用生地として各種の食品製造に使用することが出来るので、γ−アミノ酪酸を富化した食品の製造には最適な食品素材となる点で優れている。
即ち、本発明のγ−アミノ酪酸の富化は生地中で行われるので、従来のように、通常の食品製造工程とは別に、γ−アミノ酪酸の取得を目的とする工程を設けるという面倒な方法を採用することなく、γ−アミノ酪酸を富化した食品を簡便に得ることができる。
【0014】
以下、本発明について、更に詳細に説明する。
本発明は、穀物を粉砕し、得られた粉末に水を添加し、次いで混捏して生地を調製することにより、γ−アミノ酪酸を富化した生地を製造した点に特徴を有する。
【0015】
(1)穀物
本発明の穀物としては、小麦、大麦、ライ麦、燕麦、米、蕎麦、ひえ、あわ、とうもろこし、もろこし、大豆などの食用穀物が挙げられる。
一般に穀物には、グルタミン酸を基質としてγ−アミノ酪酸を生成するグルタミン酸脱炭酸酵素が存在する。この酵素は、穀物の部位の中で胚芽や外皮に多く含まれるので、本発明では、これらの穀物を粉砕した穀粉、胚芽や外皮など穀物の特定部位の粉末、それらを適宜混合したものを用いることができる。例えば、小麦の胚芽や外皮(ふすま)を多く含有する穀粉として、いわゆる全粒粉などは、様々な加工食品の原材料として広く用いることができる。
【0016】
(2)穀物粉末
本発明は、穀物粉末を用いて、初めて、生地中においても、グルタミン酸からγ−アミノ酪酸を生成する反応を十分に生起させた点に特徴を有するものであるので、穀物を粉砕する必要がある。
全粒中に含有されている、γ−アミノ酪酸は100g当たり3〜10mgであるが、これを粉砕して粉末にして、生地を調製すれば、生地中にγ−アミノ酪酸を富化することができる。この場合、特により細かく粉砕することによって、より多量のγ−アミノ酪酸を富化することができる。
穀物の粉砕機としては、穀物粉を粉末に粉砕するものであれば、特に制限なく使用することができる。例えば、ロール粉砕機、ピンミル、ハンマーミル、スクリーンミル、ボールミル、ジェット粉砕機等が用いられる。
【0017】
(3)生地
1)混捏
本発明のγ−アミノ酪酸の生成は、先ず、反応成分(グルタミン酸、グルタミン酸脱炭酸酵素)と水からなる反応系を形成して反応を生起させ、次いで、生成物のγ−アミノ酪酸を生地中に均一に分散することによって、所期の目的を達成することが出来る。
そのための手段としては、食品加工に用いられている通常の混捏方法をそのまま採用することができる。
即ち、食品加工の混捏方法としては、例えば、原料を均一に混ぜる低速混捏工程と、穀物粉(小麦粉等)の蛋白質が水と結合してできるグルテンが生地中に均一に分散し、生地の伸展性と弾力性のバランスが程良く釣り合うようにする中・高速混捏工程がある。これらの各工程は、そのまま、本発明のγ−アミノ酪酸の生成工程に使用可能であるから、本発明では、該生成工程を別に設ける必要はない。この点が、本発明の特徴の一つとなっている。
【0018】
2)生地を置く条件
本発明における生地を置くとは、調製した生地の状態で一定時間経過させることをいう。
一般に、食品に加工する目的で、まとめた生地、シート状にした生地、成形した生地を意図的にある条件下に置くことを、「生地をねかせる」、「生地を休ませる」、「生地を熟成させる」などと表現することがあるが、本発明ではこれらの表現のものも含まれる。
また、生地の状態で置く時間には、一般的な製パン、製菓、製麺など食品の調理加工工程において、生地の調製から最終的な喫食を目的として加熱調理されるまでの間で、生地の状態で経過する時間も含まれる。従って、例えば製麺食品の場合、生地や生麺の状態にしてから置かれる時間も含まれる。
本発明における生地を置く温度は、0〜50℃、好ましくは5〜45℃にするのが望ましい。温度がこの範囲外では、γ−アミノ酪酸を富化させる酵素活性が低くなるのをはじめ、生地の状態がその後の食品加工における作業性や最終食品の品質に好ましくない影響を及ぼす場合がある。
生地の静置時間は、通常、0〜20時間程度でよいが、静置温度が低い場合、γ−アミノ酪酸の生成反応の反応速度が遅くなるので、そのぶん静置時間を長くする必要がある。
【0019】
3)副材料
本発明では、グルタミン酸源として、グルタミン酸、グルタミン酸塩、またはこれらを多く含む食用素材を使用するのが特に好ましい。例えば、昆布、チーズ、のり、蛋白質酵素分解物、胚芽粉末などを用いるのがよい。
こうしたグルタミン酸源を配合することにより、生地中のγ一アミノ酪酸の含量をさらに増加させることができる。
その他の通常の食品用副材料としては、通常のものが使用可能である。例えば、澱粉、糖類、調味料、膨張剤、食塩、水、蛋白素材、油脂、乳化剤などが挙げられる。
【0020】
【発明の実施の形態】
以下、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
本発明の実施例におけるγ−アミノ酪酸の分析方法は以下の通りである。
【0021】
(1)試料からの抽出
生地や水分の多い食品は液体窒素等で凍結して、乾燥した食品は一般の粉砕機にかけて粉末にして試料とした。試料1gに蒸留水5mlを加えよく撹絆してから、16%TCA水溶液5mlを加えて攪拌してさらに超音波を5分間かけて抽出した。抽出液を8000rpmで10分間遠心処理して得た上澄みを0.45μmメンプレンフィルターで濾過して濾液をHPLC分析用の被検液とした。
【0022】
(2)HPLC(高速液体クロマトグラフィー)による定量
分離にODSカラム、検出に蛍光検出器を装備した(株)島津製作所製のポストカラム反応HPLCシステムを用いて分析定量した。溶離液は(株)島津製作所製のアミノ酸分析用移動相キット、ポストカラム反応液は(株)島津製作所製のアミノ酸分析用OPA試薬を用いた。定量には、和光純薬工業(株)製のアミノ酸混合標準液並びに4−アミノ酪酸を用いて、検量線定量法により分析した。
【0023】
【実施例】
(試験例1)生地
穀粉100gに水70ml加えて、充分に混捏して、生地の塊を調製した。調製した生地は、均一に直径15〜20cmに伸ばして、ビニールで包んで各温度に設定した恒温槽に置いた。
穀粉として、実施例では、品種ホクシン小麦をピンミル(ホソカワミクロン(株)製)を用いて、粉砕して調製した全粒粉末を使用した。比較例では、実施例の全粒粉末の代わりに、市販の薄力小麦粉(木田製粉(株)製)、又は市販の強力小麦粉(ハルエゾ:木田製粉(株)製)を用いた。
生地を所定温度で所定時間置いた後に、生地の中心部付近の一部を採取して直ちに液体窒素で凍結して、凍結したものを試料として前述のHPLCを用いてγ一アミノ酪酸を定量して、生地中のγ一アミノ酪酸含有量を求めた。生地を置く時と凍結の時以外の操作は、室温で行った。
なお、生地を置く時間が0時間については、生地にする前の穀粉のγ−アミノ酪酸を定量して、その分析値に100/170を乗じた数値を用いた。
試験結果は、表1に示す。
【0024】
【表1】

Figure 2004298138
*:生地を置く時間
【0025】
(試験例2)生地
試験例1の全粒粉末に、グルタミン酸ナトリウム(味の素(株)製)、胚芽粉末(小麦胚芽をピンミルで粉砕)、グルテン酵素分解物(大日本明治製糖(株)製)または昆布エキス粉末((株)サトー商会製)を配合した穀粉ミックスを調製し、試験例1と同様の方法で生地を調製して、30℃の恒温槽に置いた。
γ−アミノ酪酸の分析方法は、試験例1の方法に従った。
試験結果は、表2に示す。
【0026】
【表2】
Figure 2004298138
*1:グルタミン酸源の穀粉に対する配合割合
*2:生地を置く時間
【0027】
(試験例3)パン
実施例17の穀粉ミックス(全粒小麦粉100、胚芽粉末5、グルテン酵素分解物1の配合)を用いて、以下の工程で食パンを製造した。
また、実施例での最初の生地配合のねかし時間は、28℃で、0時間(実施例18)、2時間(実施例19)、4時間(実施例20)、6時間(実施例21)行った。
一方、比較例では、実施例の生地配合の穀粉ミックスを、強力粉(ハルエゾ:木田製粉(株)製)に代えた以外は、実施例と同じ工程で、ねかし時間、0時間(比較例6)、6時間(比較例7)で、食パンを製造した。
【0028】
1.生地の調製
(1)生地配合
穀扮ミックス 50重量%
水 40重量%
(2)水和
ミキシング 低速3分、中速2分
捏上温度 28℃
ねかし 0、2、4、6時間で水和(28℃)
(3)本捏配合
強力粉(ハルエゾ:木田製粉 (株)) 50重量%
食塩 2重量%
上白糖 5.5重量%
ドライイースト 1重量%
脱脂粉乳 1.7重量%
バター 3.5重量%
水 30重量%
(4)本捏
ミキシング 低速3分 中速4分 油脂入れ 低速1分 中速4分
捏上温度 26℃
【0029】
2.発酵・成形
発酵時間 28℃ 相対湿度 80% 60分、パンチ、15分
分割重量 450g×2
ベンチタイム 30分
成形 再丸め型に入れる
ホイロ 38℃ 相対湿度80% 60分
焼成 上段175℃/下段200℃ 40分
食パン中のγ−アミノ酪酸含有量は、試験例1と同様の方法で測定した。
試験結果は、表3に示す。
【0030】
【表3】
Figure 2004298138
*:生地を置く時間
【0031】
(試験例4) クラッカー
実施例17と同じ配合の穀粉ミックス(全粒小麦粉100、胚芽粉末5、グルテン酵素分解物1の配合)を用いて、以下の工程でクラッカーを製造した(実施例22)。
一方、比較例では、最初の生地配合の穀粉ミックスを強力粉(ハルエゾ:木田製粉(株)製)に代えた以外は、実施例と同じ工程で、クラッカーを製造した(比較例8)。
【0032】
1.生地の調製
(1)中種配合
穀粉ミックス 70重量%
イースト 0.3重量%
イーストフード 0.1重量%
モルト 0.3重量%
ショートニング 5重量%
水 29重量%
(2)水和
ミキシング 低速2分 油脂入れ 中速2分
捏上温度 24℃
水和時間 28℃ 相対湿度 75% 16時間(28℃)
(3)本捏配合
穀粉ミックス 30重量%
食塩 1.5重量%
上白糖 3重量%
モルト 0.3重量%
ショートニング 5重量%
重曹 0.6重量%
水 17.5重量%
(4)本捏
ミキシング 低速3分 中速7分
捏上温度 26℃
【0033】
2.発酵・成形
発酵時間 28℃ 相対湿度 80% 4時間
シーティング 2mm
カッティング 7cm ×7cm角
焼成 上段260℃/下段220℃ 5〜6分
クラッカー中のγ−アミノ酪酸含有量は、試験例1と同様の方法で測定した。
試験結果は、表4に示す。
【0034】
【表4】
Figure 2004298138
【0035】
(試験例5)中華麺
実施例17と同じ配合の穀粉ミックス(全粒小麦粉100、胚芽粉末5、グルテン酵素分解物1の配合)を用いて、以下の工程により、生地のねかし(熟成)時間を変えて生麺を製造して、試験例1と同じ方法でγ−アミノ酪酸含有量を測定した。
また、実施例での製麺工程でのねかし時間は、0時間(実施例23)、3時間(実施例24)、9時間(実施例25)、24時間(実施例26)で行った。
一方、比較例では、最初の生地配合の穀粉ミックスを、強力粉(ハルエゾ:木田製粉(株))に代えた以外は、実施例と同じ工程で、ねかし時間、0時間(比較例9)、6時間(比較例10)で生麺を製造した。
【0036】
1.生地の調製
(1)生地配合
内層 外層
穀粉ミックス 100重量%
ハルエゾ 100重量%
粉末グルテン 1重量%
粉末卵白 1重量%
食塩 1重量% 1重量%
かんすい 0.5重量%
アルコール 2重量%
水 37重量% 32.5重量%
【0037】
(2)製麺
ミキシング 高速5分 低速10分
複合 各々1回
三層合わせ 内層 7.7mm 外層 3.3mm
ねかし 0、3、9、24時間(20℃)
圧延 4〜5回
切り出し 切り刃♯22番角(最終麺厚1.35〜1.4mm)
中華麺中のγ−アミノ酪酸含有量は、試験例1と同様の方法で測定した。
試験結果は、表5に示す。
【0038】
【表5】
Figure 2004298138
以上の表1〜5の結果から、穀物粉末のものを用いた場合、γ−アミノ酪酸が富化した生地や食品が得られることが解る。
【0039】
【発明の効果】
本発明によれば、従来のような水溶液中ではなくて、穀物粉末から調製した生地中においても、γ−アミノ酪酸が効率良く生成し、その結果、γ−アミノ酪酸が富化した生地が得られるという、優れた効果が奏される。
本発明の生地を用いて食品を製造すると、通常の食品製造工程を使用して、γ−アミノ酪酸が富化した食品を簡便に製造することが出来る。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing dough enriched in γ-aminobutyric acid.
[0002]
[Prior art]
[gamma] -Aminobutyric acid (GABA) is a kind of amino acid which acts as a neurotransmitter widely distributed in nature such as animals and plants, and has been reported to have various physiological activities such as a blood pressure lowering effect. The recommended amount is 20 mg per day (for example, see Non-Patent Document 1).
[0003]
Regarding γ-aminobutyric acid, (1) at least one of rice germ, rice bran including germ, germ rice, wheat germ and wheat germ including wheat germ has a pH of 2.5 to 7.5 and a temperature of 50 ° C. or lower. Γ-aminobutyric acid-enriched food material obtained by immersion in water under the conditions (Patent Document 1), (2) rice germ, rice bran containing germ, germ rice, wheat germ and wheat germ containing wheat germ An acid is added to a γ-aminobutyric acid-enriched food material obtained by immersing at least one kind in water at a pH of 2.5 to 7.5 and a temperature of 50 ° C. or lower, and the extract is subjected to ion exchange chromatography. Γ-aminobutyric acid production method (Patent Document 2), characterized by purification by: (3) adding a solution containing glutamic acid or a salt of glutamic acid to at least one kind of rice germ, rice bran including germ or germ rice And react in the addition solution. A method of producing γ-aminobutyric acid by the enzymatic action of glutamic acid and glutamate decarboxylase in the rice germ, rice bran containing germ or germ rice (Patent Document 3), (4) immersing wheat grains in water to germinate After that, there is a method for producing germinated flour containing γ-aminobutyric acid, which is characterized by drying and pulverization (Patent Document 4).
[0004]
[Non-patent document 1]
"Food and Development" vol. 36, no. 6, 2001, p. 4
[Patent Document 1]
Japanese Patent No. 2590423 [Patent Document 2]
JP-A-8-280394 [Patent Document 3]
JP 2000-201651 A [Patent Document 4]
JP-A-2002-335891
Since the above-mentioned conventional methods (1) to (3) are aimed at producing γ-aminobutyric acid in an aqueous solution, they have a drawback that they cannot be directly applied to food production processes such as bread. . In addition, the conventional method (4) requires a troublesome step of germination, which requires a lot of processing, and has a drawback that the yield of γ-aminobutyric acid is low.
In view of the above, development of a method for simply adding γ-aminobutyric acid in food, which can be directly applied to a normal food manufacturing process, has been awaited.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a γ-aminobutyric acid-enriched food material that can be used as it is in a normal food manufacturing process.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above problems, and found that if cereal powder is used for dough preparation, a γ-aminobutyric acid generation reaction from glutamic acid can sufficiently occur even in dough. As a result of further study and further study, the present invention was completed.
[0008]
That is, the present invention has the following configuration.
1. A dough is prepared by adding water to the cereal powder and then kneading the dough to prepare a dough, wherein γ-aminobutyric acid is produced in the dough from glutamic acid in an amount of 10 mg or more per 100 g of the dough. Production method.
2. 2. The method for producing a γ-aminobutyric acid-enriched dough according to 1 above, wherein the cereal powder contains germ and / or hull.
3. 3. The method for producing γ-aminobutyric acid-enriched dough according to claim 1, wherein the dough is placed at a temperature of 5 to 45 ° C. in the method according to 1 or 2.
4. 4. The method for producing a γ-aminobutyric acid-enriched dough according to the above 1, 2, or 3, wherein the cereal is wheat, barley, rye, rice or buckwheat.
5. 5. The method for producing a γ-aminobutyric acid-enriched dough according to the above 1, 2, 3 or 4, wherein the dough is prepared in the presence of a glutamic acid source.
6. A food manufactured from the dough obtained by the method according to the above 1, 2, 3, 4 or 5.
7. 7. The food according to the above item 6, wherein the food is a bakery, a baked / steamed confectionery or a noodle.
[0009]
The production reaction of γ-aminobutyric acid from glutamic acid according to the present invention has been made based on the discovery of a completely unexpected fact that the use of cereal powder sufficiently occurs even in dough.
[0010]
The present invention is characterized in that by adding water to cereal powder and kneading, a γ-aminobutyric acid generation reaction from glutamic acid is sufficiently generated in the dough to obtain a dough enriched in γ-aminobutyric acid. It has.
According to the present invention, it is surprising that γ-aminobutyric acid is efficiently produced not only in a conventional aqueous solution but also in a dough, and as a result, a γ-aminobutyric acid-enriched dough is obtained. The effect could be achieved.
When a food is produced using the dough of the present invention, a food enriched in γ-aminobutyric acid can be produced.
[0011]
Generally, the amount of γ-aminobutyric acid in 100 g of food which is said to contain a large amount of γ-aminobutyric acid is 5 to 10 mg for brown rice, 10 to 20 mg for germinated brown rice, and ordinary flour (wheat endosperm portion). It is known that the content is 1 mg for whole wheat flour (whole wheat flour is milled), 3 to 10 mg, and the flour obtained by milling germinated wheat is 10 to 20 mg.
According to the present invention, γ-aminobutyric acid can be contained in the range of 10 to 500 mg in 100 g of final food such as dough or bakery, baked goods, noodles and the like.
When food is manufactured using the dough of the present invention, foods enriched in γ-aminobutyric acid can be easily manufactured using ordinary food manufacturing processes.
[0012]
In the present invention, the reason why γ-aminobutyric acid was able to be efficiently produced not only in a conventional aqueous solution but also in a dough composed of cereal powder is presumed to be as follows.
(1) When water is added to the cereal powder, the water penetrates into the powder, and then, in the permeated water, a decarboxylation reaction system comprising glutamic acid and glutamic acid decarboxylase, which are the reaction components in the powder, is formed, A production reaction of γ-aminobutyric acid from glutamic acid occurs.
(2) As a result, in the case where cereal powder is used, the production reaction of γ-aminobutyric acid from glutamic acid sufficiently occurs despite the presence in the dough, and the reaction of γ-aminobutyric acid in the dough of the present invention occurs. It is considered that the content becomes higher.
[0013]
The dough enriched in γ-aminobutyric acid obtained in the present invention can be used as it is as a dough for food production in various types of food production, and is optimal for producing γ-aminobutyric acid-enriched food. It is excellent in that it becomes a good food material.
That is, since the enrichment of γ-aminobutyric acid of the present invention is performed in the dough, it is troublesome to provide a step for obtaining γ-aminobutyric acid separately from the usual food production process as in the related art. A food enriched in γ-aminobutyric acid can be easily obtained without employing any method.
[0014]
Hereinafter, the present invention will be described in more detail.
The present invention is characterized in that dough enriched in γ-aminobutyric acid is produced by pulverizing grains, adding water to the obtained powder, and kneading to prepare dough.
[0015]
(1) Grains The cereals of the present invention include edible grains such as wheat, barley, rye, oats, rice, buckwheat, flour, foam, corn, corn, and soybeans.
Generally, a glutamic acid decarboxylase that produces γ-aminobutyric acid using glutamic acid as a substrate is present in grains. Since this enzyme is contained abundantly in the germ and the hull in the cereal part, in the present invention, flour obtained by crushing these cereals, powder in the specific part of the cereal such as the germ and hull, and those obtained by appropriately mixing them are used. be able to. For example, as a flour containing a large amount of wheat germ or hull (bran), so-called whole grain flour can be widely used as a raw material for various processed foods.
[0016]
(2) Cereal powder The present invention is characterized in that, for the first time, the use of cereal powder in a dough to sufficiently generate a reaction for producing γ-aminobutyric acid from glutamic acid has been characterized. Need to be crushed.
The amount of γ-aminobutyric acid contained in whole grains is 3 to 10 mg per 100 g, but if this is crushed and powdered to prepare dough, the dough may be enriched in γ-aminobutyric acid. Can be. In this case, a greater amount of γ-aminobutyric acid can be enriched, especially by finer grinding.
As a cereal crusher, any crusher for crushing cereal powder into powder can be used without particular limitation. For example, a roll mill, a pin mill, a hammer mill, a screen mill, a ball mill, a jet mill, or the like is used.
[0017]
(3) Dough 1) Kneading In the production of γ-aminobutyric acid of the present invention, first, a reaction system consisting of reaction components (glutamic acid, glutamic acid decarboxylase) and water is formed to cause a reaction, and then, The desired purpose can be achieved by uniformly dispersing γ-aminobutyric acid in the dough.
As a means for that, the usual kneading method used for food processing can be employed as it is.
That is, as a kneading method of food processing, for example, a low-speed kneading step of uniformly mixing raw materials, gluten formed by binding proteins of cereal flour (such as flour) with water are uniformly dispersed in the dough, and the dough is spread. There is a medium / high speed kneading process to make the balance between elasticity and elasticity properly balanced. Since each of these steps can be used as it is in the step of producing γ-aminobutyric acid of the present invention, it is not necessary to separately provide the step of producing in the present invention. This is one of the features of the present invention.
[0018]
2) Conditions for placing dough Placing dough in the present invention means that a certain period of time elapses in the state of the prepared dough.
In general, for the purpose of processing into foods, intentionally placing dough, sheeted dough, or molded dough under certain conditions is called `` neutral dough '', `` rest dough '', `` The term "age" may be used, but the present invention includes those expressions.
In addition, in the time of placing in the state of the dough, during the process of cooking and processing of food such as general baking, confectionery, noodles, from the preparation of the dough to the time of heating and cooking for the purpose of final eating, the dough The time that elapses in the state is also included. Therefore, in the case of, for example, noodle-made foods, the time for placing the dough or raw noodles is also included.
In the present invention, the temperature at which the dough is placed is desirably 0 to 50C, preferably 5 to 45C. If the temperature is out of this range, the state of the dough may adversely affect the workability in the subsequent food processing and the quality of the final food, including a decrease in the enzyme activity for enriching γ-aminobutyric acid.
The standing time of the dough is usually about 0 to 20 hours, but if the standing temperature is low, the reaction rate of the production reaction of γ-aminobutyric acid becomes slow, so the standing time needs to be lengthened accordingly. is there.
[0019]
3) Sub-material In the present invention, it is particularly preferable to use glutamic acid, glutamate, or an edible material containing a large amount of these as a glutamic acid source. For example, it is preferable to use kelp, cheese, glue, enzymatically decomposed protein, germ powder and the like.
By adding such a glutamic acid source, the content of γ-aminobutyric acid in the dough can be further increased.
As other ordinary food-use auxiliary materials, ordinary ones can be used. Examples include starch, sugars, seasonings, swelling agents, salt, water, protein materials, oils and fats, emulsifiers, and the like.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
The method for analyzing γ-aminobutyric acid in the examples of the present invention is as follows.
[0021]
(1) Extracted dough from the sample and foods with a high moisture content were frozen with liquid nitrogen or the like, and dried foods were powdered by a general pulverizer to obtain samples. After adding 5 ml of distilled water to 1 g of the sample and stirring well, 5 ml of a 16% aqueous solution of TCA was added and stirred, and ultrasonic waves were further extracted for 5 minutes. The extract was centrifuged at 8000 rpm for 10 minutes, and the resulting supernatant was filtered through a 0.45 μm membrane filter, and the filtrate was used as a test solution for HPLC analysis.
[0022]
(2) Analytical quantification was performed using a post-column reaction HPLC system manufactured by Shimadzu Corporation equipped with an ODS column for quantitative separation by HPLC (high-performance liquid chromatography) and a fluorescence detector for detection. The eluent used was a mobile phase kit for amino acid analysis manufactured by Shimadzu Corporation, and the post-column reaction solution was an OPA reagent for amino acid analysis manufactured by Shimadzu Corporation. The quantification was performed by a calibration curve quantification method using an amino acid mixed standard solution and 4-aminobutyric acid manufactured by Wako Pure Chemical Industries, Ltd.
[0023]
【Example】
(Test Example 1) 70 g of dough flour was added to 100 g of dough and kneaded well to prepare a dough mass. The prepared dough was uniformly stretched to a diameter of 15 to 20 cm, wrapped in vinyl, and placed in a thermostat set at each temperature.
In the examples, whole grain powder prepared by pulverizing varieties foxin wheat using a pin mill (manufactured by Hosokawa Micron Corporation) was used as the flour. In the comparative example, a commercially available light flour (Kida Flour Milling Co., Ltd.) or a commercially available strong flour (Haruezo: Kida Flour Milling Co., Ltd.) was used instead of the whole grain powder of the example.
After placing the dough at a predetermined temperature for a predetermined time, a part near the center of the dough is collected and immediately frozen with liquid nitrogen, and the frozen sample is used as a sample to quantify γ-aminobutyric acid using the above-mentioned HPLC. Thus, the content of γ-aminobutyric acid in the dough was determined. Operations other than placing the dough and freezing were performed at room temperature.
As for the time of placing the dough for 0 hour, γ-aminobutyric acid of the flour before being made into dough was quantified, and a numerical value obtained by multiplying the analysis value by 100/170 was used.
The test results are shown in Table 1.
[0024]
[Table 1]
Figure 2004298138
*: Time to put dough
(Test Example 2) Sodium glutamate (manufactured by Ajinomoto Co., Ltd.), germ powder (wheat germ crushed with a pin mill), gluten enzyme decomposed product (manufactured by Dainippon Meiji Sugar Co., Ltd.) A flour mix mixed with kelp extract powder (manufactured by Sato Shokai Co., Ltd.) was prepared, and a dough was prepared in the same manner as in Test Example 1 and placed in a thermostat at 30 ° C.
The analysis method for γ-aminobutyric acid was in accordance with the method of Test Example 1.
The test results are shown in Table 2.
[0026]
[Table 2]
Figure 2004298138
* 1: Mixing ratio of glutamate source to flour * 2: Time for placing dough
(Test Example 3) Bread Using the flour mix of Example 17 (combination of whole wheat flour 100, germ powder 5 and gluten enzyme degradation product 1), bread was produced in the following steps.
The setting time of the first dough blending in the examples was 28 hours at 0 ° C. (Example 18), 2 hours (Example 19), 4 hours (Example 20), and 6 hours (Example 21). went.
On the other hand, in the comparative example, the same process as in the example was carried out except that the flour mix containing the dough of the example was replaced with a strong flour (Haruzo: manufactured by Kida Flour Milling Co., Ltd.). In 6 hours (Comparative Example 7), bread was manufactured.
[0028]
1. Preparation of dough (1) Dough blended grain dressing mix 50% by weight
40% by weight of water
(2) Hydration mixing Low speed 3 minutes, medium speed 2 minutes Kneading temperature 28 ° C
Hydration Hydration at 0, 2, 4, 6 hours (28 ° C)
(3) 50% by weight of this kneading compounded strong flour (Haruezo: Kida Flour Milling Co., Ltd.)
Salt 2% by weight
5.5% by weight of white sugar
Dry yeast 1% by weight
1.7% by weight of skim milk powder
3.5% by weight butter
Water 30% by weight
(4) Main kneading mixing Low speed 3 minutes Medium speed 4 minutes Oil filling Low speed 1 minute Medium speed 4 minutes Kneading temperature 26 ° C
[0029]
2. Fermentation / Molding fermentation time 28 ° C Relative humidity 80% 60 minutes, Punch, 15 minutes Split weight 450g × 2
Bench time 30 minutes molding Heating in a re-rounding mold 38 ° C Relative humidity 80% 60 minutes firing Upper 175 ° C / Lower 200 ° C 40 minutes The γ-aminobutyric acid content in the bread was measured in the same manner as in Test Example 1. .
The test results are shown in Table 3.
[0030]
[Table 3]
Figure 2004298138
*: Time to put dough [0031]
(Test Example 4) Cracker Using a flour mix having the same composition as in Example 17 (combination of whole wheat flour 100, germ powder 5 and gluten enzyme degradation product 1), a cracker was produced in the following steps (Example 22). .
On the other hand, in the comparative example, a cracker was produced in the same process as in the example except that the flour mix containing the first dough was replaced with a strong flour (Haruzo: manufactured by Kida Flour Milling Co., Ltd.) (Comparative Example 8).
[0032]
1. Preparation of dough (1) Meat flour mix 70% by weight
Yeast 0.3% by weight
Yeast food 0.1% by weight
Malt 0.3% by weight
5% by weight shortening
29% by weight of water
(2) Hydration mixing Low speed 2 minutes Oil / fat medium speed 2 minutes Kneading temperature 24 ° C
Hydration time 28 ° C Relative humidity 75% 16 hours (28 ° C)
(3) Flour mix 30% by weight
Salt 1.5% by weight
White sugar 3% by weight
Malt 0.3% by weight
5% by weight shortening
0.6% by weight baking soda
Water 17.5% by weight
(4) Main kneading mixing Low speed 3 minutes Medium speed 7 minutes Kneading temperature 26 ° C
[0033]
2. Fermentation / mold fermentation time 28 ℃ Relative humidity 80% 4 hours sheeting 2mm
Cutting 7 cm × 7 cm square firing Upper 260 ° C./Lower 220 ° C. 5 to 6 minutes The content of γ-aminobutyric acid in the cracker was measured in the same manner as in Test Example 1.
The test results are shown in Table 4.
[0034]
[Table 4]
Figure 2004298138
[0035]
(Test Example 5) Using a flour mix (combination of whole wheat flour 100, germ powder 5 and gluten enzyme decomposed product 1) having the same composition as Chinese noodle Example 17, the dough was set (ripened) by the following steps. Was changed to produce raw noodles, and the γ-aminobutyric acid content was measured in the same manner as in Test Example 1.
The setting time in the noodle-making process in the examples was 0 hour (Example 23), 3 hours (Example 24), 9 hours (Example 25), and 24 hours (Example 26).
On the other hand, in the comparative example, the same process as in the example was carried out except that the flour mix containing the first dough was replaced by a strong flour (Halezo: Kida Flour Milling Co., Ltd.), and 6 hours, 0 hours (Comparative Example 9). Raw noodles were manufactured in a time (Comparative Example 10).
[0036]
1. Preparation of dough (1) Dough blended inner layer Outer layer flour mix 100% by weight
Haruezo 100% by weight
Gluten powder 1% by weight
1% by weight of powdered egg white
Salt 1% by weight 1% by weight
0.5% by weight
Alcohol 2% by weight
Water 37% by weight 32.5% by weight
[0037]
(2) Noodle making high-speed 5 minutes low-speed 10 minutes composite Each three-layer mixing Inner layer 7.7 mm Outer layer 3.3 mm
Nekashi 0, 3, 9, 24 hours (20 ° C)
Rolling 4 to 5 cuts Cutting edge No. 22 (final noodle thickness 1.35 to 1.4 mm)
The γ-aminobutyric acid content in Chinese noodles was measured in the same manner as in Test Example 1.
The test results are shown in Table 5.
[0038]
[Table 5]
Figure 2004298138
From the results of the above Tables 1 to 5, it can be seen that when cereal powders are used, doughs and foods enriched in γ-aminobutyric acid can be obtained.
[0039]
【The invention's effect】
According to the present invention, γ-aminobutyric acid is efficiently produced not only in a conventional aqueous solution but also in a dough prepared from cereal powder, and as a result, a dough enriched in γ-aminobutyric acid is obtained. The effect is excellent.
When a food is manufactured using the dough of the present invention, a food enriched in γ-aminobutyric acid can be easily manufactured using a normal food manufacturing process.

Claims (7)

穀物粉末に水を添加し、次いで混捏することにより生地を調製し、生地中にグルタミン酸からγ−アミノ酪酸を生地100g当たり10mg以上生成させることを特徴とするγ−アミノ酪酸を富化した生地の製造方法。A dough is prepared by adding water to the cereal powder and then kneading the dough to produce γ-aminobutyric acid from glutamic acid in the dough of 10 mg or more per 100 g of dough. Production method. 穀物粉末が、胚芽及び/又は外皮を含むものである請求項1記載のγ−アミノ酪酸を富化した生地の製造方法。The method for producing dough enriched in [gamma] -aminobutyric acid according to claim 1, wherein the cereal powder contains embryos and / or hulls. 請求項1又は2記載の方法において、生地を置く温度を5〜45℃にすることを特徴とする請求項1又は2記載のγ−アミノ酪酸を富化した生地の製造方法。3. The method according to claim 1, wherein the dough is placed at a temperature of 5 to 45 [deg.] C. 穀物が、小麦、大麦、ライ麦、米又は蕎麦である請求項1、2又は3記載のγ−アミノ酪酸を富化した生地の製造方法。The method for producing dough enriched in γ-aminobutyric acid according to claim 1, 2 or 3, wherein the cereal is wheat, barley, rye, rice or buckwheat. 生地の調製が、グルタミン酸源の存在下に行われたものである請求項1、2、3又は4記載のγ−アミノ酪酸を富化した生地の製造方法。The method for producing a γ-aminobutyric acid-enriched dough according to claim 1, 2, 3, or 4, wherein the dough is prepared in the presence of a glutamic acid source. 請求項1、2、3、4又は5記載の方法により得た生地から製造された食品。A food product produced from the dough obtained by the method according to claim 1, 2, 3, 4 or 5. 食品が、ベーカリー類、焼き・蒸し菓子類又は麺類である請求項8記載の食品。The food according to claim 8, wherein the food is a bakery, a baked / steamed confectionery or a noodle.
JP2003097403A 2003-03-31 2003-03-31 Method for producing dough enriched with γ-aminobutyric acid Expired - Fee Related JP4303503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097403A JP4303503B2 (en) 2003-03-31 2003-03-31 Method for producing dough enriched with γ-aminobutyric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097403A JP4303503B2 (en) 2003-03-31 2003-03-31 Method for producing dough enriched with γ-aminobutyric acid

Publications (2)

Publication Number Publication Date
JP2004298138A true JP2004298138A (en) 2004-10-28
JP4303503B2 JP4303503B2 (en) 2009-07-29

Family

ID=33409195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097403A Expired - Fee Related JP4303503B2 (en) 2003-03-31 2003-03-31 Method for producing dough enriched with γ-aminobutyric acid

Country Status (1)

Country Link
JP (1) JP4303503B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325480A (en) * 2005-05-26 2006-12-07 Andersen Institute Of Bread & Life Co Ltd Method for producing sourdough and breads, pasty food using the sourdough and food and drink using the same
JP2007110953A (en) * 2005-10-19 2007-05-10 Haruhiko Mori PRODUCTION METHOD AND APPLICATION METHOD OF SOURDOUGH CONTAINING HIGH CONCENTRATION OF gamma-AMINOBUTYRIC ACID
JPWO2005060766A1 (en) * 2003-12-22 2007-07-12 サッポロビール株式会社 Foods with high functional ingredient content and methods for producing them
JP2008301711A (en) * 2007-06-05 2008-12-18 Nippon Flour Mills Co Ltd Chinese noodle wheat flour composition containing raw embryo powder, chinese noodle premix flour, and chinese noodle using the chinese noodle wheat flour composition and chinese noodle premix flour
JP2012055211A (en) * 2010-09-07 2012-03-22 Maeda:Kk Method for producing gaba-containing gaba barley, and product of the gaba barley
JP2014057538A (en) * 2012-09-18 2014-04-03 Nisshin Flour Milling Inc Method for manufacturing multi-layer noodle
JP2017012146A (en) * 2015-07-01 2017-01-19 月島食品工業株式会社 Method for producing baked confectionery
JP2018166420A (en) * 2017-03-29 2018-11-01 日清製粉株式会社 Manufacturing method of breads using wheat bran
CN115087352A (en) * 2019-11-07 2022-09-20 勒芬天主教大学 Carbon dioxide generation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005060766A1 (en) * 2003-12-22 2007-07-12 サッポロビール株式会社 Foods with high functional ingredient content and methods for producing them
JP2006325480A (en) * 2005-05-26 2006-12-07 Andersen Institute Of Bread & Life Co Ltd Method for producing sourdough and breads, pasty food using the sourdough and food and drink using the same
JP2007110953A (en) * 2005-10-19 2007-05-10 Haruhiko Mori PRODUCTION METHOD AND APPLICATION METHOD OF SOURDOUGH CONTAINING HIGH CONCENTRATION OF gamma-AMINOBUTYRIC ACID
JP2008301711A (en) * 2007-06-05 2008-12-18 Nippon Flour Mills Co Ltd Chinese noodle wheat flour composition containing raw embryo powder, chinese noodle premix flour, and chinese noodle using the chinese noodle wheat flour composition and chinese noodle premix flour
JP2012055211A (en) * 2010-09-07 2012-03-22 Maeda:Kk Method for producing gaba-containing gaba barley, and product of the gaba barley
JP2014057538A (en) * 2012-09-18 2014-04-03 Nisshin Flour Milling Inc Method for manufacturing multi-layer noodle
JP2017012146A (en) * 2015-07-01 2017-01-19 月島食品工業株式会社 Method for producing baked confectionery
JP2018166420A (en) * 2017-03-29 2018-11-01 日清製粉株式会社 Manufacturing method of breads using wheat bran
CN115087352A (en) * 2019-11-07 2022-09-20 勒芬天主教大学 Carbon dioxide generation

Also Published As

Publication number Publication date
JP4303503B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP7000629B2 (en) Wheat bran composition and its manufacturing method
Elgeti et al. Volume and texture improvement of gluten-free bread using quinoa white flour
US6106887A (en) Process for obtaining a modified cereal flour
TWI520687B (en) Low salt soy sauce and its manufacturing method
JP2011505805A (en) Korean-style pancake powder formulation using rice flour
US20170295804A1 (en) Rice Flour as an Alternative to Wheat Flour and Method for Producing Gluten-Free Bread Made from Rice Flour
JP4303503B2 (en) Method for producing dough enriched with γ-aminobutyric acid
JP4188146B2 (en) Method for producing fermented flavored confectionery
US20070148299A1 (en) Foods containing large amount of functional components and method of producing the same
JP4362044B2 (en) Method for producing tartary buckwheat flour, method for producing tartary buckwheat flour, and buckwheat processed food
RU2556061C1 (en) Method for manufacture of bakery products with composite mixtures
Naumenko et al. IMPROVING THE QUALITY OF WHEAT BREAD BY ENRICHING TEFF FLOUR.
CN108739924A (en) A kind of rice bread product and its processing method
CA2550771A1 (en) Malt root of wheat, barley, oats or rye including high functional ingredients contents and their processing methods
JP2006262892A (en) Method for producing breads
RU2783971C1 (en) Method for producing grain bread
JP3821796B2 (en) Food material enriched with phytic acid and food containing the same
Acharya PREPARATION AND QUALITY EVALUATION OF MALTED SORGHUM INCORPORATED BREAD
JPH05292908A (en) Production of noodles
Choińska et al. Glucose Consumption and Lactic Acid Formation in Millet Sourdough Fermented with Different Strains of Lactic Acid Bacteria
JP7474606B2 (en) Dough improver for wheat bran-containing bread, bread dough, and method for producing bread
JP7365179B2 (en) milled flour
RU2684716C1 (en) Method of grain bread preparation
Turksoy et al. Effect of sourdough addition on gluten‐free sorghum bread fortified with plant‐based protein and dietary fiber: Functional, textural, and structural properties
Alper et al. Recent Advances in the Use of Sourdough Fermentation to Improve the Quality of Gluten-Free Bakery Products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees