JP2004297947A - Rotor for motor - Google Patents

Rotor for motor Download PDF

Info

Publication number
JP2004297947A
JP2004297947A JP2003088774A JP2003088774A JP2004297947A JP 2004297947 A JP2004297947 A JP 2004297947A JP 2003088774 A JP2003088774 A JP 2003088774A JP 2003088774 A JP2003088774 A JP 2003088774A JP 2004297947 A JP2004297947 A JP 2004297947A
Authority
JP
Japan
Prior art keywords
rotor
core
rotor core
motor
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003088774A
Other languages
Japanese (ja)
Other versions
JP4225091B2 (en
Inventor
Keiichi Kanashige
慶一 金重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003088774A priority Critical patent/JP4225091B2/en
Publication of JP2004297947A publication Critical patent/JP2004297947A/en
Application granted granted Critical
Publication of JP4225091B2 publication Critical patent/JP4225091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor for a motor of which a core plate is surely fixed, and dimension precision and mechanical strength of a rotor core are raised, with a structure simple enough to suppress cost increase. <P>SOLUTION: The rotor for a motor comprises a motor output shaft 2. It also comprises a cylindrical rotor core 3 where disc-like core plates 8 are laminated, which is composed of a through hole 14 in which the motor output shaft 2 is inserted, a plurality of insert holes 10 where a permanent magnet 7 is inserted, and a partition groove 11 formed to prevent magnetic shorting that can occur between the insert holes 10. It also comprises a fixing frame 4 composed of a pair of disc part 5 which sandwiches the rotor core 3 from upper and lower end surfaces, and a skeleton 6 that engages with the partition groove 11 formed vertically from the disc part 5 for fixing the core plate 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、モータに関し、特にモータ用回転子(ロータコア)の構造に関する。
【0002】
【従来の技術】
従来より、巻線コイルを装着されたステータコアの内側に永久磁石を有するロータを配置して、ステータコアの巻線コイルに電気パルスを入力することでロータを回転させるように構成されたモータが一般に使用されている。このようなモータにおけるロータは、回転動力の出力軸としての回転シャフトと、永久磁石が固定されたロータコアとが一体となって回転するように構成されている。ロータコアは回転の中心に回転シャフトを、外周端付近に永久磁石を備え、ステータコアによって生成される磁界変化に応じて回転を行い、回転シャフトからその動力を出力するようになっている。
【0003】
このようなモータにおいて、ロータコアの外周端付近に備えられる永久磁石は、ロータコアの全周を囲むようにごく狭い範囲に複数個備えられるため、各々の永久磁石がお互いの磁束を打ち消しあうように働いて良好な磁場形成を妨げ、ロータコアの回転反応を鈍くしてしまうことがある。そこで、ロータコアに備えられる永久磁石を互いに区画するような溝をロータコアの外周端に設けて、各々の永久磁石間での磁気的な短絡を防止するような構成が実用化されている(例えば、特許文献1参照。)。
【0004】
ところで、一般にロータコアは、例えばコアプレートとして電磁鋼板といった磁性材料が複数枚積層されて構成されている。そして積層されたコアプレートは、通常リベットを用いたかしめや溶接によって固定されている。しかしながら、かしめによってコアプレートを固定した場合には物理的な力により、溶接によってコアプレートを固定した場合には溶接熱によって、いずれも局所的な応力集中や変形が生じ、ロータコア自身の寸法精度,機械的な強度が低下するとともに、磁気的な特性劣化が発生することがある。
【0005】
一方、このような不具合を解消する技術として、図4の従来のモータ用回転子(ロータコア)の構成例に示すように、複数枚のコアプレート34が積層された積層コアを固定するにあたって、永久磁石33が埋設された積層コアを一対のエンドプレート32で挟持して、積層コアの中心部の貫通穴34a及びピン挿入用の貫通穴34bにエンドプレートの内輪32c及び対応するピン32bを圧入固定してロータコアを形成し、エンドプレート32の中央部の貫通穴32aにシャフト25を圧入固定してシャフト25をロータに一体的に取り付けるように構成した技術が提案されている(例えば、特許文献2参照。)。
【0006】
【特許文献1】
特開2001−286110号公報(段落0025〜0028,図1)
【特許文献2】
特開2000−184645号公報(段落0023〜0033)
【0007】
【発明が解決しようとする課題】
しかし、上述の特許文献2に記載の技術においては、ピン32bを貫入させるための専用の貫通穴34bを各コアプレートの同位置に加工する必要がある。そのため、ロータコアの製造時には精度良く貫通穴を加工する工程が必要となり、コストが嵩んでしまうという課題がある。
【0008】
また、この技術においては、シャフト25を圧入された一対のエンドプレート32で、積層されたコアプレート34を挟持することで、ロータコア全体の固定を保っている。つまり、ロータコア全体の強度は、一対のエンドプレートの内輪32cとシャフト5との接触部に働く摩擦力に依存するものであるため、固定力が不十分になりやすく、ロータコアの寸法精度や機械的強度を確保しにくい。
【0009】
本発明はこのような課題に鑑み創案されたもので、コスト増を抑えた簡素な構造により、コアプレートを確実に固定できるようにするとともに、ロータコアの寸法精度と機械的強度とを高めることのできるようにした、モータ用回転子を提供することを目的とする。
【0010】
【課題を解決するための手段】
このため、請求項1記載の本発明のモータ用回転子は、モータ出力軸と、該モータ出力軸が貫装される貫通孔と、それぞれ永久磁石を挿入される複数の挿入孔と、該挿入孔間で発生しうる磁気短絡を防止するように形成された区画溝とを備えた円盤状のコアプレートが積層されてなる円筒形のロータコアと、該ロータコアを上下端面から挟持する一対の円盤状部と、該円盤状部から鉛直方向に形成され該区画溝に嵌合して該コアプレートを固定する骨組部とからなる固定用フレームとを備えたことを特徴とする。
【0011】
なお、該固定用フレームは、非磁性体材料で構成されることも好ましい。この場合、永久磁石の挿入孔間で発生しうる磁気短絡を効果的に防止することができるとともに、周辺の磁場環境へ悪影響を与えることがなくなる。
また、請求項2記載の本発明のモータ用回転子は、該骨組部が、該一対の円盤状部間を連結するように備えられることを特徴とする。
【0012】
また、請求項3記載の本発明のモータ用回転子は、該固定用フレームが、該回転シャフトへ固設されることを特徴とする。
【0013】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施形態を説明する。
図1は本モータ用回転子の構成を示す分解構成図である。また、図2は本モータ用回転子の構成を示す組立構成図である。
本実施形態に係るモータ用回転子(ロータ)1は、図1,図2に示すように、主要構成として、回転シャフト(モータ出力軸)2とロータコア3と固定用フレーム4とから構成される。ロータコア3は円盤状の複数のコアプレート(ここでは、電磁鋼板)8が積層されて円筒形状をなしている。電磁鋼板8は、その中心に回転シャフト2を貫装する貫通孔14を備え、また、その外周端付近には永久磁石7を挿入するための複数の挿入孔10が全外周に均一配置されて形成されている。さらに、各電磁鋼板8の外周端には、複数の挿入孔10の周縁部を互いに区画するように、区画溝11が形成され、永久磁石7同士の磁気短絡を防止するようになっている。複数の電磁鋼板8は、全て同一の形状を有しており、挿入孔10,区画溝11が電磁鋼板8の中心に対してそれぞれの円周上に均等に配置されて設けられている。そして、各挿入孔10,区画溝11が縦に揃うようにこれらの電磁鋼板8が積層されて、ロータコア3が形成される。
【0014】
回転シャフト2は本モータ用回転子の回転軸であり、ロータコア3に貫装されて一体に回転し、その回転力を出力するモータの出力軸として構成されている。また、回転用シャフト2には、固定用フレーム4を固定するためのフレームピン孔12が設けられている。
固定用フレーム4は、ロータコア3の上下端面に対になって備えられている。この一対の固定用フレーム4は、回転シャフト2に固定されロータコア3の上下端面に接合してロータコア3を挟持する一対の円盤状部5と、該区画溝に嵌合して電磁鋼板8を固定する複数の骨組部(リブ状の構造)6とから構成される。骨組部6は、一対の円盤状部5の間を連結するように、円盤状部5から鉛直方向に設けられている。なお、固定用フレーム4は、非磁性体材料で構成されており、ここでは、セラミックが用いられている。
【0015】
以上のような構成により、本実施形態のモータ用回転子によれば、以下のように組立てられて、以下のような効果が得られる。
まず、複数の電磁鋼板8を、挿入孔10,区画溝11が縦に揃うように積層する。複数の電磁鋼板8は全て同じ形状を有し、挿入孔10,区画溝11が電磁鋼板8の中心に対してそれぞれの円周上に均等に設けられているため、積層が容易であり、積層ズレが生じない。
【0016】
次に、挿入孔10に永久磁石7を挿入し、ロータコア3を形成する。積層ズレが生じていないため、永久磁石7の挿入も容易に行うことができる。また、ロータコア3の外周端には区画溝11が形成される。区画溝11は、各々の永久磁石7を区画するように形成されているため、各々の永久磁石7の磁気短絡を防止することができる。
【0017】
続いて、ロータコア3を回転シャフト2に通し、固定フレーム4によってロータコア3を挟持する。この時、ロータコア3の外周端に形成されている区画溝11に、固定用フレーム4の骨組部6が嵌合し、骨組部6によってロータコア3が固定される。骨組部6は、固定フレーム4の一対の円盤状部5の間を連結するように、円盤状部5から鉛直方向へ設けられているため、確実にロータコア3を固定することができる。また、骨組部6によって、大きな遠心力が働くロータコア3の外周端を、回転シャフト2に垂直な全断面について固定することができ、効果的に電磁鋼板8を保持することができる。また、区画溝11は、永久磁石7の磁気短絡を防止するためのものであるから、骨組部6を嵌合させる孔や溝を予め別に用意しておく必要がなく、コスト増を招かず、ロータコア3の性能低下も招かない。
【0018】
また、ロータコア3は、骨組部6の圧入によって固定されるのではなく、区画溝11と骨組部6との嵌合と固定フレーム4による挟持によって固定されるため、ロータコア3へ不要な応力や変形を与えることがなく、また、骨組部6はロータコア3の外周端でもロータコア3を固定することができる。
また、固定フレーム4は、非磁性体材料で構成されているため、ロータコアが形成する磁場を乱すことがなく、また、永久磁石7によって固定フレーム自身が磁化して、周辺の磁場環境に悪影響を与えるおそれがない。
【0019】
そして最後に、フレームピン9を用いて固定用フレーム4の円盤状部5を回転シャフト2に固定する。フレームピン9による固定は圧入によって行われるが、圧入される対象が回転シャフト2であるため、ロータコア3へ不要な応力や変形を与えず、ロータコア3の寸法精度と機械的強度とを高めることができ、また、ロータコア3へ不要な応力や変形を与える心配なく確実に圧入させて回転シャフト2へ固定することができる。また、単に固定用フレーム4を回転シャフト2に圧入させて固定するのではなく、フレームピン9を回転シャフト2へ圧入させて固定しているため、固定用フレーム4と回転シャフト2とを堅固に固定することができる。
【0020】
以上、本発明の一実施形態について説明したが、本発明はかかる実施形態に限定されたものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、上述の実施形態において、電磁鋼板8の外周端付近に永久磁石7を挿入するための複数の挿入孔10と、複数の挿入孔10に挿入される永久磁石7を互いに区画するような区画溝11とが外周端に均一に配置されて形成されているが、例えば図3に示すように、各々の挿入孔10´が、電磁鋼板8´の外周端よりやや内側で両側に一つずつの区画溝11´を形成されるような配置にしてもよい。このような構成の場合、区画溝11´が電磁鋼板8´の外周端よりやや内側に形成されて、区画溝11´の全周が電磁鋼板8´に囲まれているため、区画溝11´周辺の剛性をより高くすることができ、また、骨組部をこの区画溝11´に嵌合させることで堅固に電磁鋼板8´を保持することができる。
【0021】
【発明の効果】
以上詳述したように、請求項1記載の本発明のモータ用回転子によれば、電磁鋼板が固定用フレームによって外周端で保持されるため、遠心力による電磁鋼板のズレや破壊を防止することができ、最も堅固にロータコアを固定することができる。それに加えて、ロータコア内部での磁気短絡を防止することができる。
【0022】
また、請求項2記載の本発明のモータ用回転子によれば、骨組部が一対の円盤状部間を連結するように備えられるため、確実にモータ用回転子を固定することができる。特に、大きな遠心力が働くモータ用回転子の外周端を、回転軸に垂直な全断面について固定することができるため、効果的に電磁鋼板を保持することができる。
【0023】
また、請求項3記載の本発明のモータ用回転子によれば、固定用フレームが、回転シャフトへ固設されるため、固定用フレームがロータコアへ不要な応力や変形を与えず、ロータコアの寸法精度と機械的強度とを高めることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態としてのモータ用回転子の構成を示す分解構成図である。
【図2】本発明の一実施形態としてのモータ用回転子の構成を示す組立構成図である。
【図3】本発明の一実施形態の変形例としてのモータ用回転子における電磁鋼板の構成を示す部分構成図である。
【図4】従来のモータ用回転子の構成例であり、その構成を示す全体構成図である。
【符号の説明】
1 ロータ(モータ用回転子)
2 回転シャフト(モータ出力軸)
3 ロータコア
4 固定用フレーム
5 円盤状部
6 骨組部(リブ状の構造)
7 永久磁石
8,8´ 電磁鋼板(コアプレート)
9 フレームピン
10,10´ 挿入孔
11,11´ 区画溝
12 フレームピン孔
13 フレームピン孔
14 貫通孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a motor, and more particularly, to a structure of a motor rotor (rotor core).
[0002]
[Prior art]
Conventionally, a motor configured to arrange a rotor having a permanent magnet inside a stator core on which a winding coil is mounted and to input an electric pulse to the winding coil of the stator core to rotate the rotor is generally used. Have been. The rotor of such a motor is configured such that a rotating shaft as an output shaft for rotating power and a rotor core to which a permanent magnet is fixed rotate integrally. The rotor core has a rotating shaft at the center of rotation and a permanent magnet near the outer peripheral end. The rotor core rotates according to a magnetic field change generated by the stator core, and outputs power from the rotating shaft.
[0003]
In such a motor, since a plurality of permanent magnets provided near the outer peripheral end of the rotor core are provided in a very narrow range so as to surround the entire circumference of the rotor core, each permanent magnet works so as to cancel each other's magnetic flux. In some cases, the formation of a favorable magnetic field is hindered, and the rotation reaction of the rotor core is dulled. Therefore, a configuration has been put to practical use in which grooves are provided at the outer peripheral end of the rotor core so as to partition the permanent magnets provided on the rotor core from each other to prevent a magnetic short circuit between the respective permanent magnets (for example, See Patent Document 1.).
[0004]
By the way, a rotor core is generally formed by laminating a plurality of magnetic materials such as electromagnetic steel plates as a core plate. The laminated core plates are usually fixed by caulking or welding using rivets. However, when the core plate is fixed by caulking, local stress concentration and deformation occur due to physical force, and when the core plate is fixed by welding, welding heat causes any local stress concentration and deformation. In addition to a decrease in mechanical strength, magnetic characteristic deterioration may occur.
[0005]
On the other hand, as a technique for solving such a problem, as shown in a configuration example of a conventional motor rotor (rotor core) in FIG. 4, when a laminated core in which a plurality of core plates 34 are laminated is permanently fixed. The laminated core in which the magnet 33 is embedded is sandwiched between a pair of end plates 32, and the inner ring 32c of the end plate and the corresponding pin 32b are press-fitted and fixed in the through hole 34a and the pin insertion through hole 34b at the center of the laminated core. A technique has been proposed in which a rotor core is formed, and a shaft 25 is press-fitted and fixed in a through hole 32a at a central portion of an end plate 32 so that the shaft 25 is integrally attached to a rotor (for example, Patent Document 2). reference.).
[0006]
[Patent Document 1]
JP 2001-286110 A (paragraphs 0025 to 0028, FIG. 1)
[Patent Document 2]
JP 2000-184645 A (paragraphs 0023 to 0033)
[0007]
[Problems to be solved by the invention]
However, in the technique described in Patent Document 2 described above, it is necessary to form a dedicated through hole 34b for penetrating the pin 32b at the same position on each core plate. Therefore, when manufacturing the rotor core, a process of processing the through hole with high accuracy is required, and there is a problem that the cost increases.
[0008]
Further, in this technique, the entire rotor core is fixed by sandwiching the laminated core plates 34 between the pair of end plates 32 into which the shaft 25 is press-fitted. That is, since the strength of the entire rotor core depends on the frictional force acting on the contact portion between the inner ring 32c of the pair of end plates and the shaft 5, the fixing force tends to be insufficient, and the dimensional accuracy of the rotor core and the mechanical It is difficult to secure strength.
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and aims to improve the dimensional accuracy and mechanical strength of a rotor core while ensuring that a core plate can be securely fixed by a simple structure that suppresses an increase in cost. It is an object of the present invention to provide a motor rotor that can be used.
[0010]
[Means for Solving the Problems]
For this reason, the motor rotor according to the first aspect of the present invention includes a motor output shaft, a through hole through which the motor output shaft is inserted, a plurality of insertion holes into which permanent magnets are inserted, and the insertion hole. A cylindrical rotor core formed by laminating disk-shaped core plates each having a partition groove formed so as to prevent a magnetic short circuit that can occur between holes, and a pair of disk-shaped members that sandwich the rotor core from upper and lower end surfaces. And a frame formed in a vertical direction from the disc-shaped portion and fitted to the partition groove to fix the core plate.
[0011]
It is preferable that the fixing frame is made of a non-magnetic material. In this case, a magnetic short circuit that can occur between the insertion holes of the permanent magnets can be effectively prevented, and the surrounding magnetic field environment is not adversely affected.
According to a second aspect of the present invention, the rotor for a motor according to the present invention is characterized in that the frame portion is provided so as to connect the pair of disc-shaped portions.
[0012]
According to a third aspect of the present invention, in the motor rotor of the present invention, the fixing frame is fixed to the rotating shaft.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an exploded configuration diagram showing the configuration of the motor rotor. FIG. 2 is an assembly configuration diagram showing the configuration of the motor rotor.
As shown in FIGS. 1 and 2, a motor rotor (rotor) 1 according to the present embodiment mainly includes a rotating shaft (motor output shaft) 2, a rotor core 3, and a fixing frame 4. . The rotor core 3 has a cylindrical shape formed by laminating a plurality of disc-shaped core plates (here, electromagnetic steel plates) 8. The electromagnetic steel plate 8 is provided with a through hole 14 at the center thereof for penetrating the rotating shaft 2, and a plurality of insertion holes 10 for inserting the permanent magnets 7 are uniformly arranged on the entire outer periphery near the outer peripheral end. Is formed. Further, a partition groove 11 is formed at an outer peripheral end of each electromagnetic steel sheet 8 so as to partition the peripheral edges of the plurality of insertion holes 10 from each other, so that a magnetic short circuit between the permanent magnets 7 is prevented. The plurality of electromagnetic steel sheets 8 all have the same shape, and the insertion holes 10 and the partition grooves 11 are provided so as to be evenly arranged on the respective circumferences with respect to the center of the electromagnetic steel sheet 8. Then, the electromagnetic steel sheets 8 are stacked so that the insertion holes 10 and the partition grooves 11 are vertically aligned, and the rotor core 3 is formed.
[0014]
The rotating shaft 2 is a rotating shaft of the motor rotor, and is configured as an output shaft of a motor that is inserted through the rotor core 3 and rotates integrally, and outputs the rotating force. Further, the rotating shaft 2 is provided with a frame pin hole 12 for fixing the fixing frame 4.
The fixing frames 4 are provided in pairs on upper and lower end surfaces of the rotor core 3. The pair of fixing frames 4 are fixed to the rotating shaft 2 and joined to the upper and lower end surfaces of the rotor core 3 to clamp the rotor core 3, and the electromagnetic steel plates 8 are fixed by fitting into the partition grooves. And a plurality of frame portions (rib-like structures) 6. The skeleton 6 is provided in a vertical direction from the disc 5 so as to connect the pair of discs 5 to each other. Note that the fixing frame 4 is made of a non-magnetic material, and here, ceramic is used.
[0015]
With the configuration as described above, according to the motor rotor of the present embodiment, it is assembled as follows, and the following effects are obtained.
First, a plurality of electromagnetic steel sheets 8 are stacked so that the insertion holes 10 and the partition grooves 11 are vertically aligned. The plurality of electromagnetic steel sheets 8 all have the same shape, and the insertion holes 10 and the partition grooves 11 are evenly provided on the respective circumferences with respect to the center of the electromagnetic steel sheet 8, so that the lamination is easy and the lamination is easy. No deviation occurs.
[0016]
Next, the permanent magnet 7 is inserted into the insertion hole 10 to form the rotor core 3. Since there is no lamination displacement, the permanent magnet 7 can be easily inserted. Further, a partition groove 11 is formed at the outer peripheral end of the rotor core 3. Since the partition grooves 11 are formed so as to partition the respective permanent magnets 7, it is possible to prevent a magnetic short circuit between the respective permanent magnets 7.
[0017]
Subsequently, the rotor core 3 is passed through the rotating shaft 2, and the rotor core 3 is held by the fixed frame 4. At this time, the frame 6 of the fixing frame 4 is fitted into the partition groove 11 formed on the outer peripheral end of the rotor core 3, and the rotor core 3 is fixed by the frame 6. Since the frame portion 6 is provided in the vertical direction from the disc-shaped portion 5 so as to connect between the pair of disc-shaped portions 5 of the fixed frame 4, the rotor core 3 can be securely fixed. Further, the outer peripheral end of the rotor core 3 on which a large centrifugal force acts can be fixed by the frame portion 6 over the entire cross section perpendicular to the rotating shaft 2, and the electromagnetic steel sheet 8 can be held effectively. In addition, since the partition groove 11 is for preventing a magnetic short circuit of the permanent magnet 7, there is no need to separately prepare a hole or a groove for fitting the frame portion 6 in advance, and the cost does not increase. The performance of the rotor core 3 does not decrease.
[0018]
Further, since the rotor core 3 is not fixed by press-fitting of the frame 6, but is fixed by fitting the partitioning groove 11 and the frame 6 and clamping by the fixing frame 4, unnecessary stress or deformation to the rotor core 3 is generated. In addition, the frame 6 can fix the rotor core 3 even at the outer peripheral end of the rotor core 3.
In addition, since the fixed frame 4 is made of a non-magnetic material, the magnetic field formed by the rotor core is not disturbed, and the fixed frame itself is magnetized by the permanent magnet 7 to adversely affect the surrounding magnetic field environment. There is no fear of giving.
[0019]
Finally, the disc-shaped portion 5 of the fixing frame 4 is fixed to the rotating shaft 2 using the frame pins 9. The fixing by the frame pins 9 is performed by press-fitting. However, since the object to be press-fitted is the rotary shaft 2, unnecessary stress and deformation are not applied to the rotor core 3, and the dimensional accuracy and mechanical strength of the rotor core 3 can be increased. Further, it is possible to securely press-fit the rotor core 3 to the rotary shaft 2 without giving unnecessary stress or deformation to the rotor core 3. In addition, since the frame pins 9 are pressed into the rotating shaft 2 and fixed instead of simply pressing the fixing frame 4 into the rotating shaft 2, the fixing frame 4 and the rotating shaft 2 are firmly connected. Can be fixed.
[0020]
As described above, one embodiment of the present invention has been described, but the present invention is not limited to such an embodiment, and can be variously modified and implemented without departing from the gist of the present invention.
For example, in the above-described embodiment, a plurality of insertion holes 10 for inserting the permanent magnets 7 near the outer peripheral end of the electromagnetic steel plate 8 and a partition that partitions the permanent magnets 7 inserted into the plurality of insertion holes 10 from each other. The grooves 11 are formed so as to be evenly arranged on the outer peripheral end. For example, as shown in FIG. 3, each of the insertion holes 10 ′ is slightly inside the outer peripheral end of the electromagnetic steel plate 8 ′, one on each side. May be arranged so as to form the partition groove 11 ′. In the case of such a configuration, the partition groove 11 ′ is formed slightly inside the outer peripheral end of the electromagnetic steel plate 8 ′ and the entire circumference of the partition groove 11 ′ is surrounded by the electromagnetic steel plate 8 ′. The rigidity of the periphery can be further increased, and the electromagnetic steel sheet 8 'can be firmly held by fitting the frame portion into the partition groove 11'.
[0021]
【The invention's effect】
As described in detail above, according to the motor rotor of the present invention, since the electromagnetic steel sheet is held at the outer peripheral end by the fixing frame, displacement and breakage of the electromagnetic steel sheet due to centrifugal force are prevented. The rotor core can be fixed most firmly. In addition, a magnetic short circuit inside the rotor core can be prevented.
[0022]
Further, according to the motor rotor of the present invention, since the frame portion is provided so as to connect the pair of disc-shaped portions, the motor rotor can be securely fixed. In particular, since the outer peripheral end of the motor rotor on which a large centrifugal force acts can be fixed in all cross sections perpendicular to the rotation axis, the electromagnetic steel sheet can be held effectively.
[0023]
According to the third aspect of the present invention, since the fixing frame is fixed to the rotating shaft, the fixing frame does not apply unnecessary stress or deformation to the rotor core, and the dimension of the rotor core is reduced. Accuracy and mechanical strength can be increased.
[Brief description of the drawings]
FIG. 1 is an exploded configuration diagram illustrating a configuration of a motor rotor as one embodiment of the present invention.
FIG. 2 is an assembly configuration diagram showing a configuration of a motor rotor as one embodiment of the present invention.
FIG. 3 is a partial configuration diagram showing a configuration of an electromagnetic steel plate in a motor rotor as a modification of one embodiment of the present invention.
FIG. 4 is a configuration example of a conventional motor rotor, and is an overall configuration diagram showing the configuration.
[Explanation of symbols]
1 rotor (rotor for motor)
2 Rotating shaft (motor output shaft)
3 rotor core 4 fixing frame 5 disc-shaped part 6 skeleton part (rib-shaped structure)
7 Permanent magnet 8, 8 'Magnetic steel sheet (core plate)
9 Frame Pin 10, 10 'Insertion Hole 11, 11' Partition Groove 12 Frame Pin Hole 13 Frame Pin Hole 14 Through Hole

Claims (3)

モータ出力軸と、
該モータ出力軸が貫装される貫通孔と、それぞれ永久磁石を挿入される複数の挿入孔と、該挿入孔間で発生しうる磁気短絡を防止するように形成された区画溝とを備えた円盤状のコアプレートが積層されてなる円筒形のロータコアと、
該ロータコアを上下端面から挟持する一対の円盤状部と、該円盤状部から鉛直方向に形成され該区画溝に嵌合して該コアプレートを固定する骨組部とからなる固定用フレームと
を備えたことを特徴とする、モータ用回転子。
Motor output shaft,
The motor output shaft includes a through hole, a plurality of insertion holes into which permanent magnets are inserted, and a partition groove formed to prevent a magnetic short circuit that may occur between the insertion holes. A cylindrical rotor core formed by laminating disk-shaped core plates;
A fixing frame including a pair of disk-shaped portions for holding the rotor core from upper and lower end surfaces, and a frame portion formed in a vertical direction from the disk-shaped portion and fitted in the partition groove to fix the core plate; A rotor for a motor, characterized in that:
該骨組部が、該一対の円盤状部間を連結するように備えられることを特徴とする、請求項1記載のモータ用回転子。The motor rotor according to claim 1, wherein the frame portion is provided so as to connect the pair of disc-shaped portions. 該固定用フレームが、該回転シャフトへ固設されることを特徴とする、請求項1又は2記載のモータ用回転子。3. The motor rotor according to claim 1, wherein the fixing frame is fixed to the rotating shaft.
JP2003088774A 2003-03-27 2003-03-27 Rotor for motor Expired - Fee Related JP4225091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088774A JP4225091B2 (en) 2003-03-27 2003-03-27 Rotor for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088774A JP4225091B2 (en) 2003-03-27 2003-03-27 Rotor for motor

Publications (2)

Publication Number Publication Date
JP2004297947A true JP2004297947A (en) 2004-10-21
JP4225091B2 JP4225091B2 (en) 2009-02-18

Family

ID=33402815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088774A Expired - Fee Related JP4225091B2 (en) 2003-03-27 2003-03-27 Rotor for motor

Country Status (1)

Country Link
JP (1) JP4225091B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936102B2 (en) 2005-11-29 2011-05-03 Wilic S.Ar.L Magnet holder for permanent magnet rotors of rotating machines
US7946591B2 (en) 2005-09-21 2011-05-24 Wilic S.Ar.L. Combined labyrinth seal and screw-type gasket bearing sealing arrangement
KR101083699B1 (en) 2009-06-25 2011-11-16 주식회사 대우일렉트로닉스 A motor rotor with a apparatus preventing separation of permanent magnet and the manufacturing method of the motor thereof
US8120198B2 (en) 2008-07-23 2012-02-21 Wilic S.Ar.L. Wind power turbine
US8274170B2 (en) 2009-04-09 2012-09-25 Willic S.A.R.L. Wind power turbine including a cable bundle guide device
US8310122B2 (en) 2005-11-29 2012-11-13 Wilic S.A.R.L. Core plate stack assembly for permanent magnet rotor or rotating machines
US8319362B2 (en) 2008-11-12 2012-11-27 Wilic S.Ar.L. Wind power turbine with a cooling system
US8358189B2 (en) 2009-08-07 2013-01-22 Willic S.Ar.L. Method and apparatus for activating an electric machine, and electric machine
US8410623B2 (en) 2009-06-10 2013-04-02 Wilic S. AR. L. Wind power electricity generating system and relative control method
US8492919B2 (en) 2008-06-19 2013-07-23 Wilic S.Ar.L. Wind power generator equipped with a cooling system
US8541902B2 (en) 2010-02-04 2013-09-24 Wilic S.Ar.L. Wind power turbine electric generator cooling system and method and wind power turbine comprising such a cooling system
US8618689B2 (en) 2009-11-23 2013-12-31 Wilic S.Ar.L. Wind power turbine for generating electric energy
JP2014027774A (en) * 2012-07-26 2014-02-06 Asmo Co Ltd Rotary electric machine and method for manufacturing the same
US8659867B2 (en) 2009-04-29 2014-02-25 Wilic S.A.R.L. Wind power system for generating electric energy
US8669685B2 (en) 2008-11-13 2014-03-11 Wilic S.Ar.L. Wind power turbine for producing electric energy
US8937398B2 (en) 2011-03-10 2015-01-20 Wilic S.Ar.L. Wind turbine rotary electric machine
US8937397B2 (en) 2010-03-30 2015-01-20 Wilic S.A.R.L. Wind power turbine and method of removing a bearing from a wind power turbine
US8957555B2 (en) 2011-03-10 2015-02-17 Wilic S.Ar.L. Wind turbine rotary electric machine
US8975770B2 (en) 2010-04-22 2015-03-10 Wilic S.Ar.L. Wind power turbine electric generator and wind power turbine equipped with an electric generator
US9006918B2 (en) 2011-03-10 2015-04-14 Wilic S.A.R.L. Wind turbine
CN112104180A (en) * 2020-08-21 2020-12-18 石镇德 Asynchronous starting permanent magnet auxiliary type synchronous reluctance motor
CN113964985A (en) * 2021-12-14 2022-01-21 宁波圣龙汽车动力系统股份有限公司 Inserted sheet type motor inner rotor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946591B2 (en) 2005-09-21 2011-05-24 Wilic S.Ar.L. Combined labyrinth seal and screw-type gasket bearing sealing arrangement
US7936102B2 (en) 2005-11-29 2011-05-03 Wilic S.Ar.L Magnet holder for permanent magnet rotors of rotating machines
US8310122B2 (en) 2005-11-29 2012-11-13 Wilic S.A.R.L. Core plate stack assembly for permanent magnet rotor or rotating machines
US8492919B2 (en) 2008-06-19 2013-07-23 Wilic S.Ar.L. Wind power generator equipped with a cooling system
US9312741B2 (en) 2008-06-19 2016-04-12 Windfin B.V. Wind power generator equipped with a cooling system
US8120198B2 (en) 2008-07-23 2012-02-21 Wilic S.Ar.L. Wind power turbine
US8319362B2 (en) 2008-11-12 2012-11-27 Wilic S.Ar.L. Wind power turbine with a cooling system
US8669685B2 (en) 2008-11-13 2014-03-11 Wilic S.Ar.L. Wind power turbine for producing electric energy
US8274170B2 (en) 2009-04-09 2012-09-25 Willic S.A.R.L. Wind power turbine including a cable bundle guide device
US8659867B2 (en) 2009-04-29 2014-02-25 Wilic S.A.R.L. Wind power system for generating electric energy
US8410623B2 (en) 2009-06-10 2013-04-02 Wilic S. AR. L. Wind power electricity generating system and relative control method
KR101083699B1 (en) 2009-06-25 2011-11-16 주식회사 대우일렉트로닉스 A motor rotor with a apparatus preventing separation of permanent magnet and the manufacturing method of the motor thereof
US8358189B2 (en) 2009-08-07 2013-01-22 Willic S.Ar.L. Method and apparatus for activating an electric machine, and electric machine
US8810347B2 (en) 2009-08-07 2014-08-19 Wilic S.Ar.L Method and apparatus for activating an electric machine, and electric machine
US8618689B2 (en) 2009-11-23 2013-12-31 Wilic S.Ar.L. Wind power turbine for generating electric energy
US8541902B2 (en) 2010-02-04 2013-09-24 Wilic S.Ar.L. Wind power turbine electric generator cooling system and method and wind power turbine comprising such a cooling system
US8937397B2 (en) 2010-03-30 2015-01-20 Wilic S.A.R.L. Wind power turbine and method of removing a bearing from a wind power turbine
US8975770B2 (en) 2010-04-22 2015-03-10 Wilic S.Ar.L. Wind power turbine electric generator and wind power turbine equipped with an electric generator
US8957555B2 (en) 2011-03-10 2015-02-17 Wilic S.Ar.L. Wind turbine rotary electric machine
US8937398B2 (en) 2011-03-10 2015-01-20 Wilic S.Ar.L. Wind turbine rotary electric machine
US9006918B2 (en) 2011-03-10 2015-04-14 Wilic S.A.R.L. Wind turbine
JP2014027774A (en) * 2012-07-26 2014-02-06 Asmo Co Ltd Rotary electric machine and method for manufacturing the same
CN112104180A (en) * 2020-08-21 2020-12-18 石镇德 Asynchronous starting permanent magnet auxiliary type synchronous reluctance motor
CN113964985A (en) * 2021-12-14 2022-01-21 宁波圣龙汽车动力系统股份有限公司 Inserted sheet type motor inner rotor

Also Published As

Publication number Publication date
JP4225091B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP2004297947A (en) Rotor for motor
ES2747929T3 (en) Rotary electric machine with axial gap
JP5309630B2 (en) Permanent magnet embedded motor
JP4529500B2 (en) Axial gap rotating electric machine
JP2005151725A (en) Axial gap rotary electric machine
JPH0352530A (en) Electric motor and assembling method of the same
JP2012125000A (en) End plate and rotor for rotating electric machine using the same
KR101908122B1 (en) Rotor of spoke type motor
JP2015204715A (en) Rotor for rotary electric machine
JP2012165572A (en) Rotary electric machine
JP2005354798A (en) Electric motor
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
JPH09191618A (en) Synchronous motor and rotor of motor
JP4466262B2 (en) Rotor structure of axial gap motor
JP4291211B2 (en) Rotating electric machine rotor and rotating electric machine
JP2006304532A (en) Rotor structure of axial gap rotating electric machine
JP2002058184A (en) Rotor construction and motor
JPH0984283A (en) Structure for arranging rotor magnet to rotor
WO2011061806A1 (en) Method of manufacturing rotor of electric motor
JP4318959B2 (en) Permanent magnet rotor and brushless motor
JP2002136091A (en) Brushless dc motor
JP2013090461A (en) Stator of axial gap type rotary electric machine, and axial gap type rotary electric machine
KR20180020032A (en) Method for manufacturing rotor spoke type motor
JP7325645B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
JP2004260918A (en) Rotor of motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees