JP2004297868A - Synchronous motor for electric railway vehicle - Google Patents

Synchronous motor for electric railway vehicle Download PDF

Info

Publication number
JP2004297868A
JP2004297868A JP2003084723A JP2003084723A JP2004297868A JP 2004297868 A JP2004297868 A JP 2004297868A JP 2003084723 A JP2003084723 A JP 2003084723A JP 2003084723 A JP2003084723 A JP 2003084723A JP 2004297868 A JP2004297868 A JP 2004297868A
Authority
JP
Japan
Prior art keywords
rotor
synchronous motor
stator
railway vehicle
electric railway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084723A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kawaguchi
清 川口
Koichi Matsuoka
孝一 松岡
Hiroshi Hata
広 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2003084723A priority Critical patent/JP2004297868A/en
Publication of JP2004297868A publication Critical patent/JP2004297868A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To offer a synchronous motor for an electric railway vehicle that can sharply reduce the weight under springs. <P>SOLUTION: The synchronous motor for an electric railway vehicle is provided with a rotor l05 which consists of permanent magnets being arranged such that the direction of a magnetic pole rotates by 90° between every adjacent magnets, a stator 101 which is fixed to a cover 102, in opposition to this rotor 105, and a light support 103 which performs a flexible support, being provided between the rotor 105 and the stator 101. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気鉄道車両に搭載される同期電動機に関するものである。
【0002】
【従来の技術】
従来、電気鉄道車両には、以下に示すような同期電動機を車両の下部に搭載するようになっている。
【0003】
図4はかかる従来の同期電動機の断面図、図5は図4のB−B線断面図である。
【0004】
これらの図において、1は固定子、2はその固定子1を固定するカバー、3は軸受部(ベアリング)4を介した剛体の支持部、5は回転子、6は回転子5の車軸であり、この同期電動機は車両(図示なし)の下部に配置され、車軸6の回転により、車輪(図示なし)が回転駆動される。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した従来の同期電動機は他の電動機と同様に、剛支持の鏡蓋を介して固定子1と回転子5が固定されるため、固定子1と回転子5間のギャップは微小であった。
【0006】
さらに、従来の同期電動機は回転子5としての永久磁石及び固定子1と剛体による厚い支持部材3を有しているため、ダイレクト駆動式車両では特にバネ下重量が増す課題があった。因みに、電気鉄道車両用同期電動機を搭載した場合、そのバネ下荷重は、2tにも及ぶものであった。
【0007】
また、駆動軸に変位を伴う動力伝達には継手を要した。その他、風損、発熱や騒音が生じる点や、冷却が必要であり、体積が増加する点や、省エネや保守等が困難である点でも課題があった。
【0008】
図6は従来のドイツのINTRA ICE ダイレクトドライブシステムの構成図である。
【0009】
この図において、11はレール、12は車輪、13は車軸、14は車軸13に取り付けられる撓み継手、15はカルダンホローシャフトカップリング、16は中空型のPM同期主電動機、17はボギーフレームである。
【0010】
この図に示すように、中空型同期主電動機16において車軸13を受ける撓み継手14は公知であるが、密封型同期主電動機のローター側が撓むものは存在しなかった。
【0011】
本発明は、上記状況に鑑みて、バネ下重量を大幅に低減することができる電気鉄道車両用同期電動機を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕電気鉄道車両用同期電動機において、隣合う磁石毎に磁極の方向が90°回転する配列の永久磁石からなる回転子と、この回転子に対向し、カバーに固定される固定子と、前記回転子の車軸と固定子間に軸受部を介して設けられ、前記回転子と固定子間を柔弾性支持する軽量支持体とを備えることを特徴とする。
【0013】
〔2〕上記〔1〕記載の電気鉄道車両用同期電動機において、前記回転子と固定子間のギャップは3mm以上に可変とし、前記固定子が複層で枠装架で、外層側に設けられる前記カバーは非磁性空芯コイル円筒カバーであり、該カバー内に冷媒を封入することでファンレスとなし、継手を用いず駆動力を直接伝達をする構成としたことを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0015】
図1は本発明の電気鉄道車両用同期電動機の模式図、図2は図1のA−A線断面図、図3はその同期電動機の車軸が傾斜した状態を示す図である。
【0016】
これらの図において、101は固定子、102はその固定子101を固定するカバー、103は軸受部(ベアリング)104を介した、固定子101と回転子105間に設けられる軽量弾性支持体、105は隣合う磁石毎に磁極の方向が90°回転する配列の永久磁石からなる回転子、106は回転子105に連結される車軸、107はカバー102に取付けられる空冷フィンであり、この同期電動機は、車両(図示なし)の下部に配置され、車軸106の回転により、車輪(図示なし)が回転駆動される。
【0017】
ここで、回転子105は隣合う磁石毎に磁極の方向が90°回転する配列の永久磁石からなるため、回転子105の外円周側には強められた磁界が発生するが、内円周側の磁界は互いに打ち消し合うことになる。
【0018】
回転子105と固定子101間のギャップは3mm以上に可変とし、前記固定子101は複層で枠装架で、外層側には非磁性空芯コイルからなる円筒形状のカバー102が配置されている。このカバー102内に冷媒を封入することで、ファンレスとなし、継手を用いずに駆動力を直接伝達をする構成とする。
【0019】
支持体としては、軽量弾性支持体103を用い、回転子101としては隣合う磁石毎に磁極の方向が90°回転する配列の永久磁石を用いるため、鉄道車両のバネ下重量の軽減を図ることができる。
【0020】
また、本発明の電気鉄道車両用同期電動機は、図3に示すように、車軸106が角度θ傾斜しても、軽量弾性支持体103で車軸106の荷重を吸収することができるように構成されており、ギャップgを3mm以上大きくするようにしている。このようにギャップgを大きくしているので、風損を低減することができる。
【0021】
また、駆動機構の軽量・簡素化を図ることができる。
【0022】
さらに、駆動電動機の高効率・低損失化を図ることができる。また、変位の磁気ダイビング化を図ることができる。
【0023】
本発明の場合は、その電気鉄道車両用同期電動機を搭載した場合でも、1tにみたないと考えられる。
【0024】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0025】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0026】
(A)電気鉄道車両のバネ下重量の軽減と軌道の省保守化を図ることができる。
【0027】
(B)電気鉄道車両の駆動機構の軽量・簡素化を図ることができる。
【0028】
(C)電気鉄道車両の駆動電動機の高効率・低損失・低騒音化を図ることができる。
【0029】
(D)電気鉄道車両の車軸の変位の磁気ダイビング化を図ることができる。
【図面の簡単な説明】
【図1】本発明の電気鉄道車両用同期電動機の模式図である。
【図2】図1のA−A線断面図である。
【図3】本発明の電気鉄道車両用同期電動機の車軸が傾斜した状態を示す図である。
【図4】従来の電気鉄道車両用同期電動機の模式図である。
【図5】図4のB−B線断面図である。
【図6】従来のドイツのINTRA ICE ダイレクトドライブシステムの構成図である。
【符号の説明】
101 固定子
102 カバー
103 軽量支持体
104 軸受部(ベアリング)
105 隣合う磁石毎に磁極の方向が90°回転する配列の永久磁石からなる回転子
106 車軸
107 空冷フィン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a synchronous motor mounted on an electric railway vehicle.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an electric railway vehicle is equipped with a synchronous motor as described below at a lower portion of the vehicle.
[0003]
FIG. 4 is a sectional view of such a conventional synchronous motor, and FIG. 5 is a sectional view taken along line BB of FIG.
[0004]
In these figures, 1 is a stator, 2 is a cover for fixing the stator 1, 3 is a rigid support portion via a bearing (bearing) 4, 5 is a rotor, and 6 is an axle of the rotor 5. The synchronous motor is provided below a vehicle (not shown), and the rotation of the axle 6 causes the wheels (not shown) to rotate.
[0005]
[Problems to be solved by the invention]
However, in the above-mentioned conventional synchronous motor, the stator 1 and the rotor 5 are fixed via the rigidly supported head, like other motors, so that the gap between the stator 1 and the rotor 5 is very small. there were.
[0006]
Furthermore, since the conventional synchronous motor has the permanent magnet as the rotor 5, the stator 1, and the thick supporting member 3 made of a rigid body, there is a problem that the unsprung weight increases particularly in a direct drive type vehicle. Incidentally, when the synchronous motor for an electric railway vehicle is mounted, the unsprung load of the synchronous motor is as large as 2t.
[0007]
In addition, a joint was required for power transmission involving displacement of the drive shaft. In addition, there are also problems in that windage loss, heat generation and noise are generated, cooling is required, the volume is increased, and energy saving and maintenance are difficult.
[0008]
FIG. 6 is a configuration diagram of a conventional German INTRA ICE direct drive system.
[0009]
In this figure, 11 is a rail, 12 is a wheel, 13 is an axle, 14 is a flexible joint attached to the axle 13, 15 is a cardan hollow shaft coupling, 16 is a hollow PM synchronous main motor, and 17 is a bogie frame. .
[0010]
As shown in this figure, a flexible joint 14 for receiving an axle 13 in a hollow synchronous main motor 16 is known, but there is no one in which the rotor of a sealed synchronous main motor bends.
[0011]
The present invention has been made in view of the above circumstances, and has as its object to provide a synchronous motor for electric railway vehicles that can significantly reduce unsprung weight.
[0012]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
[1] In a synchronous motor for an electric railway vehicle, a rotor composed of permanent magnets arranged such that the direction of a magnetic pole rotates by 90 ° for each adjacent magnet, a stator opposed to the rotor and fixed to a cover, A light-weight support member is provided between the axle of the rotor and the stator via a bearing, and supports the rotor and the stator softly and elastically.
[0013]
[2] In the synchronous motor for an electric railway vehicle according to the above [1], the gap between the rotor and the stator is made variable to 3 mm or more, and the stator is a multi-layer frame mounted and provided on the outer layer side. The cover is a nonmagnetic air-core coiled cylindrical cover, and is characterized in that the cover is filled with a refrigerant to make it fanless, and the driving force is directly transmitted without using a joint.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0015]
FIG. 1 is a schematic view of a synchronous motor for an electric railway vehicle according to the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. 3 is a view showing a state in which the axle of the synchronous motor is inclined.
[0016]
In these figures, 101 is a stator, 102 is a cover for fixing the stator 101, 103 is a lightweight elastic support member provided between the stator 101 and the rotor 105 via a bearing portion (bearing) 104, 105 Is a rotor composed of permanent magnets arranged such that the direction of the magnetic pole rotates by 90 ° for each adjacent magnet, 106 is an axle connected to the rotor 105, 107 is an air-cooled fin attached to the cover 102, and the synchronous motor is The wheel (not shown) is rotationally driven by the rotation of the axle 106.
[0017]
Here, the rotor 105 is composed of permanent magnets in which the direction of the magnetic pole is rotated by 90 ° for each adjacent magnet, so that an enhanced magnetic field is generated on the outer circumferential side of the rotor 105, The side magnetic fields will cancel each other.
[0018]
The gap between the rotor 105 and the stator 101 is made variable to 3 mm or more. The stator 101 is a multi-layer frame mounting, and a cylindrical cover 102 made of a non-magnetic air core coil is arranged on the outer layer side. I have. By enclosing the refrigerant in the cover 102, the drive is made fanless and the driving force is directly transmitted without using a joint.
[0019]
As the support, a lightweight elastic support 103 is used, and as the rotor 101, permanent magnets in which the direction of the magnetic pole rotates by 90 ° for each adjacent magnet are used, so that the unsprung weight of the railway vehicle is reduced. Can be.
[0020]
Further, as shown in FIG. 3, the electric motor for an electric railway vehicle according to the present invention is configured such that even if the axle 106 is inclined at an angle θ, the lightweight elastic support 103 can absorb the load on the axle 106. The gap g is set to be larger than 3 mm. Since the gap g is increased in this way, windage loss can be reduced.
[0021]
Further, the driving mechanism can be reduced in weight and simplification.
[0022]
Further, high efficiency and low loss of the driving motor can be achieved. Further, magnetic diving of the displacement can be achieved.
[0023]
In the case of the present invention, even when the synchronous motor for an electric railway vehicle is mounted, it is considered that it does not reach 1t.
[0024]
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0025]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
[0026]
(A) The unsprung weight of the electric railway vehicle can be reduced and the track can be saved.
[0027]
(B) The drive mechanism of the electric railway vehicle can be made lightweight and simple.
[0028]
(C) High efficiency, low loss, and low noise of the drive motor of the electric railway vehicle can be achieved.
[0029]
(D) The displacement of the axle of the electric railway vehicle can be changed to magnetic diving.
[Brief description of the drawings]
FIG. 1 is a schematic view of a synchronous motor for an electric railway vehicle according to the present invention.
FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a diagram showing a state in which the axle of the synchronous motor for an electric railway vehicle of the present invention is inclined.
FIG. 4 is a schematic view of a conventional synchronous motor for an electric railway vehicle.
FIG. 5 is a sectional view taken along line BB of FIG. 4;
FIG. 6 is a configuration diagram of a conventional German INTRA ICE direct drive system.
[Explanation of symbols]
101 stator 102 cover 103 lightweight support 104 bearing part (bearing)
105 Rotor composed of permanent magnets arranged such that the direction of the magnetic pole rotates 90 ° for each adjacent magnet 106 Axle 107 Air-cooled fin

Claims (2)

(a)隣合う磁石毎に磁極の方向が90°回転する配列の永久磁石からなる回転子と、
(b)該回転子に対向し、カバーに固定される固定子と、
(c)前記回転子の車軸と固定子間に軸受部を介して設けられ、前記回転子と固定子間を柔弾性支持する軽量支持体とを備えることを特徴とする電気鉄道車両用同期電動機。
(A) a rotor composed of permanent magnets arranged such that the direction of the magnetic pole rotates by 90 ° for each adjacent magnet;
(B) a stator facing the rotor and fixed to the cover;
(C) a synchronous motor for an electric railway vehicle, comprising: a lightweight support member provided between the axle of the rotor and the stator through a bearing portion, and supporting the elasticity between the rotor and the stator. .
請求項1記載の電気鉄道車両用同期電動機において、前記回転子と固定子間のギャップは3mm以上に可変とし、前記固定子が複層で枠装架で、外層側に設けられる前記カバーは非磁性空芯コイル円筒カバーであり、該カバー内に冷媒を封入することでファンレスとなし、継手を用いず駆動力を直接伝達をする構成としたことを特徴とする電気鉄道車両用同期電動機。2. The synchronous motor for an electric railway vehicle according to claim 1, wherein a gap between the rotor and the stator is variable to 3 mm or more, the stator is a multi-layer frame mounting, and the cover provided on an outer layer side is non-layered. A synchronous motor for an electric railway vehicle, wherein the synchronous motor is a magnetic air-core coil cylindrical cover, in which a cooling medium is sealed in the cover to make it fanless, and a driving force is directly transmitted without using a joint.
JP2003084723A 2003-03-26 2003-03-26 Synchronous motor for electric railway vehicle Pending JP2004297868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084723A JP2004297868A (en) 2003-03-26 2003-03-26 Synchronous motor for electric railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084723A JP2004297868A (en) 2003-03-26 2003-03-26 Synchronous motor for electric railway vehicle

Publications (1)

Publication Number Publication Date
JP2004297868A true JP2004297868A (en) 2004-10-21

Family

ID=33399824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084723A Pending JP2004297868A (en) 2003-03-26 2003-03-26 Synchronous motor for electric railway vehicle

Country Status (1)

Country Link
JP (1) JP2004297868A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112457A (en) * 2013-02-06 2013-05-22 西南交通大学 Gearless-driving motor wheel pair unit with elastic supporting of motor
KR101353901B1 (en) 2012-11-29 2014-01-23 한국철도기술연구원 A railway car direct drive motor's core, material of core and method of lamination
DE102014013652A1 (en) * 2014-09-21 2016-03-24 Hanning Elektro-Werke Gmbh & Co. Kg drive arrangement
JP2017043313A (en) * 2015-08-28 2017-03-02 幸徳 川本 Truck device for railway vehicle
CN108099926A (en) * 2018-01-26 2018-06-01 大连交通大学 Double cartridge type rail vehicle permanent magnet direct-drive integral towing gears
WO2021145264A1 (en) * 2020-01-17 2021-07-22 三菱重工業株式会社 Electric vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353901B1 (en) 2012-11-29 2014-01-23 한국철도기술연구원 A railway car direct drive motor's core, material of core and method of lamination
CN103112457A (en) * 2013-02-06 2013-05-22 西南交通大学 Gearless-driving motor wheel pair unit with elastic supporting of motor
DE102014013652A1 (en) * 2014-09-21 2016-03-24 Hanning Elektro-Werke Gmbh & Co. Kg drive arrangement
JP2017043313A (en) * 2015-08-28 2017-03-02 幸徳 川本 Truck device for railway vehicle
CN108099926A (en) * 2018-01-26 2018-06-01 大连交通大学 Double cartridge type rail vehicle permanent magnet direct-drive integral towing gears
WO2021145264A1 (en) * 2020-01-17 2021-07-22 三菱重工業株式会社 Electric vehicle

Similar Documents

Publication Publication Date Title
US7462968B2 (en) Electric wheel
US7986069B2 (en) Brushless electric machine
US8247943B2 (en) Motor/generator structure
US11299031B2 (en) Wheel hub motor for electric vehicle
US8847448B2 (en) Electric generator for railroad train in combination
US9124144B2 (en) Dual radial gap motor-generator structure
CN108233651A (en) H-shaped iron core composite excitation axial magnetic flux switches wheel hub motor
JP2004215375A (en) Power generating damper device
CN105009414A (en) Rotating electrical machine
JP2004274838A (en) Wheel drive system
JP2007060748A (en) Superconducting multishaft motor and vehicle equipped therewith
JP3569148B2 (en) Rotating electric machine and electric vehicle using the same
JP2004297868A (en) Synchronous motor for electric railway vehicle
Kondo Application of permanent magnet synchronous motor to driving railway vehicles.
JP2007060744A (en) Motor for both power generation/driving and vehicle equipped with that motor
JP3816938B1 (en) In-wheel motor with a drive unit enclosed in a high-pressure pressurized chamber
KR101134114B1 (en) In-wheel motor for vehicle
WO2013162415A1 (en) Device for generating electrical energy from automobile wheels
JP2010187502A (en) Moving body
JPH0246184A (en) Wheel motor driven car with superconductor
JPH0516800A (en) Driving equipment for rolling stock
KR20060041573A (en) In-wheel-drive type wheel motor
CN213594258U (en) Permanent magnet direct drive motor and axle box integrated rubber wheel driving structure
CN107733107B (en) A kind of electric return board brushless hybrid excitation motor
KR101261287B1 (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080306

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828