JP2004297727A - Piezoelectric vibrator - Google Patents

Piezoelectric vibrator Download PDF

Info

Publication number
JP2004297727A
JP2004297727A JP2003090981A JP2003090981A JP2004297727A JP 2004297727 A JP2004297727 A JP 2004297727A JP 2003090981 A JP2003090981 A JP 2003090981A JP 2003090981 A JP2003090981 A JP 2003090981A JP 2004297727 A JP2004297727 A JP 2004297727A
Authority
JP
Japan
Prior art keywords
grooves
substrate
thickness
groove
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003090981A
Other languages
Japanese (ja)
Inventor
Tomohisa Azuma
智久 東
Gakuo Tsukada
岳夫 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003090981A priority Critical patent/JP2004297727A/en
Publication of JP2004297727A publication Critical patent/JP2004297727A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric vibrator which confines a thickness longitudinal fundamental wave by simple machining. <P>SOLUTION: One or more grooves 2 are formed on the front face of a substrate 1 composed of a piezoelectric material. On the rear face of the substrate 1, grooves 3 are formed across the grooves 2. In each of the grooves 2 and of the grooves 3 on the front and rear faces of the substrate 1, vibrating electrodes 4, 5 are provided to face each other in a portion where the grooves 2, 3 intersect. The thickness of the portion where the grooves 2, 3 intersect is preferably made equal to or thicker than 1/2 of the thickness (t) of the substrate 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、厚み縦の基本波のエネルギー閉じ込めを実現する圧電振動子に関する。
【0002】
【従来の技術】
例えばPT(チタン酸鉛)やビスマス層状化合物等のように、実効ポアソン比が1/3未満の圧電材料においては、圧電材料でなる基板の両面に対向する部分電極を形成しても厚み縦基本波を閉じ込めることができない。これを解決する手段として、超音波加工機により、基板の振動部のみを凹状に加工したものがあるが、しかし加工が困難であるという問題点がある。
【0003】
このような問題点を解決するため、特許文献1、2には、積層体構造により圧電振動子を実現し、その内部電極によって振動電極を形成したものが開示されている。また、特許文献3には、熱拡散により変化させ得る元素および導電性金属を含むペーストを用いて、電極部と無電極部に、密度およびコンプライアンスの少なくともいずれか一方に差を持たせて前記問題を解決している。また、特許文献4には、基板の表裏面に同方向に溝を形成し、各溝に互いに対向するように振動電極を形成したものが開示されている。
【0004】
【特許文献1】
特開平2−171010号公報
【特許文献2】
特開2003−32073号公報
【特許文献3】
特開平5−48378号公報
【特許文献4】
特開2000−323954号公報。
【0005】
【発明が解決しようとする課題】
特許文献1、2に記載のように、積層体により圧電振動子を構成したものにおいては、積層工程が必要であり、製造工程数が多くなり、コスト高を招くという問題点がある。
【0006】
また、特許文献3に記載のものは、圧電材料の組成に応じて、熱拡散を行わせるための専用ペーストを準備する必要があり、やはり製造工程が複雑化し、コスト高を招くという問題点がある。
【0007】
また、特許文献4に記載のものでは充分な特性のものが得にくいということが判明した。
【0008】
本発明は、上記問題点に鑑み、簡単な機械加工によって厚み縦の基本波の閉じ込めが可能になるを提供することにある。
【0009】
【課題を解決するための手段】
(1)本発明の圧電振動子は、圧電材料でなる基板の表面に1本以上の溝を形成し、
前記基板の裏面に、前記溝に交差するように溝を形成し、
前記基板の表裏面の溝に、表裏面の溝が交差する箇所において互いに対向する振動電極を設けたことを特徴とする。
【0010】
(2)また、本発明の圧電振動子は、前記溝の交差部分の厚みは前記基板の厚みの半分以上であることを特徴とする。
【0011】
【発明の実施の形態】
図1は本発明による圧電振動子の一実施の形態を示す斜視図、図2、図3はそれぞれ図1のX−X、Y−Y断面図である。図1ないし図3において、1は圧電材料でなる基板である。基板1に用いる圧電材料としては、実効ポアソン比が1/3未満ものである。具体的にはチタン酸鉛(PT)系や、ビスマス層状化合物等を用いることが好ましい。また、チタン酸ジルコン酸鉛(PZT)系の一部も使用可能である。また、これらの圧電材料以外にも、水晶、ランガサイト構造を有する化合物、タンタル酸化合物、タングステン−ブロンズ化合物、(Bi0.5Na0.5)TiO構造を有する化合物を用いることができる。
【0012】
2、3は基板1の表裏面に設けられた溝である。これらの溝2、3は基板1のほぼ中央部において交差(立体交差を意味する。)するように形成される。なお、溝2、3の交差角度は90度でなくてもよい。これらの溝2、3はダイシングソーや回転砥石を用いて加工することができる。溝2、3の側面は底面に対して90度でもよいが、傾斜面に形成する(すなわち溝2、3の底面と側面とのなす角度が90度を超える。)ことが、引き出し電極4、5の形成が容易になる点で好ましい。
【0013】
4、5はそれぞれ前記溝2、3の交差部分に形成される振動電極である。6、7はそれぞれこれらの振動電極4、5の引き出し電極である。
【0014】
図4は実効ポアソン比が1/3未満の圧電基板における振動閉じ込めを説明する図である。図4(A)は本実施の形態の構成を近似させて示したもので、振動電極4、5の間隔が他の部分より狭くなっている。この場合、ωは厚み振動の共振周波数、κは厚み振動の波数であり、実数は振動が伝わることを意味し、虚数は伝わらないことを意味する。ω’は無電極部の共振周波数、κ’は基板の板面方向の波数である。
【0015】
図4(B)に示すように、実効ポアソン比が1/3未満の材料を基板に用いると、カットトオフ周波数(共振周波数)ω、ω’より高周波側で波数が実数となり、低周波側で虚数となる。図4(B)から分かるように、ω、〜ω’の間の周波数では、波数が電極の存在する薄い部分で実数であり、無電極部分で虚数となるので、振動電極4、5の対向部分、すなわち基板の薄くした部分で振動の閉じ込めが起こる。
【0016】
このような圧電振動子は次のような工程により作製することができる。まず焼成後の組成比が目標となる値になるように、原材料粉末を秤量して混合する。次にこれを仮焼成し、微粉砕する。次に造粒し、成形し、脱バインダー後、1100〜1250℃で焼成する。次にこれを一次研磨してマザー基板を得る。このマザー基板に分極用の仮電極を付け、分極を行う。この分極は、150〜300℃のシリコンオイルバス中で3kV/mm〜20kV/mmの電圧を印加することにより行う。
【0017】
次に二次研磨を行って仮電極を除去と共に、目標の厚みを得る。次に溝2、3の加工を圧電振動子の複数個分について行う。そして前記振動電極4、5および引き出しで電極6、7の形成を、例えば銀電極のスパッタリング、蒸着等により行う。なお、電極材料としては、銀以外に、銅、アルミニウム、金、クロム、ニッケル、錫、パラジウム、白金、タングステン、モリブデン、炭素のいずれか1種または2種以上のものからなる合金等が使用できる。
【0018】
その後、マザー基板を縦横に切断して個々の基板を得る。その後、パッケージへの実装を行い、インピーダンスアナライザーにより特性を評価する。
【0019】
具体例について説明すると、ビスマス層状化合物として、
(Ba0.6Sr0.3La0.1)BiTi15にMnCOを0.5wt%加えて焼成したものを用いた。分極は、シリコンオイル中で6kV/mmの電圧を5分間印加して行った。二次研磨は0.44mm(図1のt=0.44mm)の厚みに研磨した。また、ダイシングソーにより、全体のサイズが(図1のa=)7mm×(図1のb=)4.5mmとなるように切断した。また、溝2、3の形成は、ダイシングソーにより24μmの深さ(図2のc)に1,6mmの幅(図1のw)で行った。また、溝2、3の側面の傾斜角は約100度とした。
【0020】
本発明の構成による厚み縦基本波の閉じ込め効果を確認するため、下記の▲1▼〜▲4▼のようなサンプルを作製して特性を比較した。各サンプルの基板の材質、サイズ、溝の深さ、振動電極4、5の材質、厚み、サイズは前記と同じとした。
【0021】
▲1▼(従来例)溝2、3を設けない基板に前記振動電極4、5や引き出し電極6、7を形成した。
【0022】
▲2▼(比較例1)基板1の表面のみに溝2を設け、基板1の裏面の溝3を設けず、溝2の中央に振動電極4を設け、対向する裏面に振動電極5を設けた。
【0023】
▲3▼(比較例2)基板1の表面に溝2を設け、基板の裏面には表面の溝2と平行に溝を設け、溝2の中央に振動電極4を設け、裏面の溝に対向する振動電極5を設けた。
【0024】
▲4▼(本発明の実施例)図1〜図3に示したように基板1の表裏面に交差する溝2、3を設け、溝2、3の交差部に振動電極4、5を設けた。
【0025】
図5〜図8は前記各サンプル▲1▼〜▲4▼の周波数に対するインピーダンスおよび位相角θzの変化を示す。位相角θzは−90度が容量性、+90度が誘導性を示す。
【0026】
図5に示すサンプル▲1▼の従来例においては、基本波には複数のモード(共振、反共振)が見られており、周波数低下型の閉じ込めができていない。3倍波においては、単独のモード(共振、反共振)が見られることと、フェーズ(位相角)が0度以上であることにより、周波数低下型の閉じ込めができていることが分かる。
【0027】
図6に示すサンプル▲2▼の比較例1においては、基本波、3倍波ともに複数のモード(共振、反共振)が見られており、周波数低下型の閉じ込めができていない。
【0028】
図7に示すサンプル▲3▼の比較例2においては、基本波には複数のモード(共振、反共振)が見られており、周波数低下型の閉じ込めができていない。3倍波はモード(共振、反共振)が単層になってきているが、フェーズは0度以下であり、周波数低下型の閉じ込めができていない。
【0029】
図8に示すサンプル▲4▼の本発明の実施例においては、基本波は単独のモード(共振、反共振)が見られることと、フェースが0度以上であることにより、周波数上昇型の閉じ込めができていることが分かる。3倍波はモード(共振、反共振)が単層になってきているが、フェースが0度以下であり、周波数上昇型の閉じ込めができていない。
【0030】
このように、基板1の表裏面に溝2、3を交差するように設けてその溝2、3の交差部で振動電極4、5が対向するように設けることにより、周波数上昇型の厚み縦基本波の閉じ込めが可能になる。
【0031】
本発明は、実効ポアソン比が1/3未満の圧電材料において、溝2、3を設けない構造で周波数低下型で3倍波の閉じ込めができ、一方、溝2、3を設けることで基本波の閉じ込めが可能になるので、1種類の材料で異なる周波数の波の閉じ込めが可能になるという利点がある。また、簡単な機械加工で振動部を薄く形成でき、かつ単板から作製できるため、コスト低減が可能となる。
【0032】
本発明を実施する場合、溝2、3が交差する部分、すなわち最も薄い部分の厚み(図2のs)は基板の厚み(図1のt)の半分以上(s/t≧1/2)とすることが、基板1の強度を保つ上で好ましい。また、溝2、3の深さ(図2のc)は、基板1の表面の粗さ(1μm)を超える深さとすることが、前記閉じ込め効果を得る上で必要である。
【0033】
振動電極4、5の形状は、図示例の円形のみならず、多角形等他の形状としてもよい。また、振動電極4、5は、溝2、3の幅以下に設定する。また、振動電極4、5は互いに対向する部分が溝2、3の交差部であれば、溝2、3の長手方向に長い形状としてもよい。また、基板1の表裏面の少なくともいずれか一方に複数本の溝を設ける構成とすることも可能である。
【0034】
【発明の効果】
本発明によれば、圧電材料でなる基板の表裏面に溝を交差するように形成し、その交差部で振動電極が対向するように構成したものであり、基板として積層板ではなく単板を用いることができ、かつ機械加工で溝が形成できるので、簡単かつ安価に圧電振動子を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明による圧電振動子の一実施の形態を示す斜視図である。
【図2】図1のX−X断面図である。
【図3】図1のY−Y断面図である。
【図4】(A)は本発明の概略構成図、(B)は厚み縦基本波の振動の閉じ込めが可能であることを説明する図である。
【図5】基板に溝を設けない従来例による場合の周波数に対するインピーダンスおよび位相角の変化を、厚み縦基本波と3倍波について示す特性図である。
【図6】基板の片面にのみ溝を設けた比較例1における周波数に対するインピーダンスおよび位相角の変化を、厚み縦基本波と3倍波について示す特性図である。
【図7】基板の両面に溝を同方向に設けた比較例2における周波数に対するインピーダンスおよび位相角の変化を、厚み縦基本波と3倍波について示す特性図である。
【図8】基板の両面に溝を互いに交差するように設けた本発明の実施例における周波数に対するインピーダンスおよび位相角の変化を、厚み縦基本波と3倍波について示す特性図である。
【符号の説明】
1:基板、2、3:溝、4、5:振動電極、5、7:引き出し電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piezoelectric vibrator that realizes energy confinement of a fundamental wave having a longitudinal thickness.
[0002]
[Prior art]
For example, in the case of a piezoelectric material having an effective Poisson's ratio of less than 1/3, such as PT (lead titanate) or a bismuth layered compound, even if partial electrodes facing both surfaces of a substrate made of a piezoelectric material are formed, the thickness is basically the same as the thickness. I can't trap the waves. As a means for solving this, there is a method in which only the vibrating portion of the substrate is processed into a concave shape by an ultrasonic processing machine, but there is a problem that the processing is difficult.
[0003]
In order to solve such a problem, Patent Documents 1 and 2 disclose a structure in which a piezoelectric vibrator is realized by a laminated body structure and a vibrating electrode is formed by internal electrodes thereof. Further, Patent Document 3 discloses that the above problem is caused by providing a difference between at least one of density and compliance between an electrode portion and a non-electrode portion using a paste containing an element which can be changed by thermal diffusion and a conductive metal. Has been resolved. Patent Document 4 discloses a structure in which grooves are formed on the front and back surfaces of a substrate in the same direction, and vibration electrodes are formed so as to face each groove.
[0004]
[Patent Document 1]
JP-A-2-171010 [Patent Document 2]
JP 2003-32073 A [Patent Document 3]
JP-A-5-48378 [Patent Document 4]
JP-A-2000-323954.
[0005]
[Problems to be solved by the invention]
As described in Patent Literatures 1 and 2, in the case where the piezoelectric vibrator is configured by the laminated body, the laminating step is required, and the number of manufacturing steps is increased, which causes a problem that the cost is increased.
[0006]
Further, in the case of Patent Document 3, it is necessary to prepare a special paste for performing thermal diffusion according to the composition of the piezoelectric material, which also complicates the manufacturing process and raises the cost. is there.
[0007]
In addition, it has been found that the one described in Patent Document 4 is difficult to obtain one having sufficient characteristics.
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a method capable of confining a fundamental wave in a thickness direction by simple machining.
[0009]
[Means for Solving the Problems]
(1) The piezoelectric vibrator of the present invention has at least one groove formed on the surface of a substrate made of a piezoelectric material,
On the back surface of the substrate, a groove is formed so as to intersect the groove,
Vibrating electrodes facing each other are provided in the grooves on the front and back surfaces of the substrate at the intersections of the grooves on the front and back surfaces.
[0010]
(2) The piezoelectric vibrator of the present invention is characterized in that the thickness of the intersection of the grooves is at least half the thickness of the substrate.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a perspective view showing an embodiment of a piezoelectric vibrator according to the present invention, and FIGS. 2 and 3 are sectional views taken along lines XX and YY of FIG. 1, respectively. 1 to 3, reference numeral 1 denotes a substrate made of a piezoelectric material. The piezoelectric material used for the substrate 1 has an effective Poisson's ratio of less than 1/3. Specifically, it is preferable to use a lead titanate (PT) system, a bismuth layered compound, or the like. Also, a part of lead zirconate titanate (PZT) can be used. In addition to these piezoelectric materials, quartz, a compound having a langasite structure, a tantalum compound, a tungsten-bronze compound, and a compound having a (Bi 0.5 Na 0.5 ) TiO 3 structure can be used.
[0012]
Reference numerals 2 and 3 denote grooves provided on the front and back surfaces of the substrate 1. These grooves 2 and 3 are formed so as to intersect at substantially the center of the substrate 1 (meaning a three-dimensional intersection). Note that the intersection angle between the grooves 2 and 3 need not be 90 degrees. These grooves 2 and 3 can be processed using a dicing saw or a rotary grindstone. Although the side surfaces of the grooves 2 and 3 may be 90 degrees with respect to the bottom surface, the extraction electrodes 4 and 3 may be formed on an inclined surface (that is, the angle between the bottom surface and the side surfaces of the grooves 2 and 3 exceeds 90 degrees). This is preferable in that the formation of No. 5 becomes easy.
[0013]
Vibration electrodes 4 and 5 are formed at the intersections of the grooves 2 and 3, respectively. Reference numerals 6 and 7 denote extraction electrodes of these vibrating electrodes 4 and 5, respectively.
[0014]
FIG. 4 is a diagram for explaining vibration confinement in a piezoelectric substrate having an effective Poisson's ratio of less than 1/3. FIG. 4A shows a configuration of the present embodiment in an approximate manner, and the interval between the vibrating electrodes 4 and 5 is narrower than other portions. In this case, ω 0 is the resonance frequency of the thickness vibration, κ is the wave number of the thickness vibration, a real number means that the vibration is transmitted, and an imaginary number means that it is not transmitted. ω 0 ′ is the resonance frequency of the electrodeless portion, and κ ′ is the wave number in the direction of the plate surface of the substrate.
[0015]
As shown in FIG. 4B, when a material having an effective Poisson's ratio of less than 1/3 is used for the substrate, the wave number becomes a real number on the higher frequency side than the cutoff frequency (resonant frequency) ω 0 , ω 0 ′, and the lower frequency side Is an imaginary number. As can be seen from FIG. 4 (B), ω 0, the frequency between ~ω 0 ', a real number in the thin portion where the wave number is present in the electrode, since the imaginary number in the non-electrode portion, the vibrating electrodes 4 and 5 Vibration is confined in the opposite portion of the substrate, that is, in the thinned portion of the substrate.
[0016]
Such a piezoelectric vibrator can be manufactured by the following steps. First, raw material powders are weighed and mixed so that the composition ratio after firing becomes a target value. Next, it is calcined and finely pulverized. Next, the mixture is granulated, molded, debindered, and fired at 1100 to 1250 ° C. Next, this is primarily polished to obtain a mother substrate. A temporary electrode for polarization is attached to this mother substrate, and polarization is performed. This polarization is performed by applying a voltage of 3 kV / mm to 20 kV / mm in a silicon oil bath at 150 to 300 ° C.
[0017]
Next, secondary polishing is performed to remove the temporary electrode and obtain a target thickness. Next, the grooves 2 and 3 are processed for a plurality of piezoelectric vibrators. The electrodes 6 and 7 are formed by, for example, sputtering and vapor deposition of a silver electrode. In addition, as an electrode material, besides silver, an alloy of one or more of copper, aluminum, gold, chromium, nickel, tin, palladium, platinum, tungsten, molybdenum, and carbon can be used. .
[0018]
Thereafter, the mother substrate is cut vertically and horizontally to obtain individual substrates. After that, it is mounted on a package, and the characteristics are evaluated using an impedance analyzer.
[0019]
To explain a specific example, as a bismuth layered compound,
A material obtained by adding 0.5 wt% of MnCO 3 to (Ba 0.6 Sr 0.3 La 0.1 ) Bi 4 Ti 4 O 15 and calcining it was used. The polarization was performed by applying a voltage of 6 kV / mm in silicon oil for 5 minutes. The secondary polishing was performed to a thickness of 0.44 mm (t = 0.44 mm in FIG. 1). Moreover, it cut | disconnected by dicing saw so that the whole size might be (a = of FIG. 1) 7 mm x (b = of FIG. 1) 4.5 mm. The grooves 2 and 3 were formed with a dicing saw at a depth of 24 μm (c in FIG. 2) and a width of 1.6 mm (w in FIG. 1). The inclination angles of the side surfaces of the grooves 2 and 3 were set to about 100 degrees.
[0020]
In order to confirm the effect of confining the thickness longitudinal fundamental wave by the configuration of the present invention, the following samples (1) to (4) were prepared and their characteristics were compared. The material, size, groove depth, material, thickness, and size of the vibrating electrodes 4 and 5 of each sample were the same as described above.
[0021]
{Circle around (1)} (Conventional example) The vibrating electrodes 4 and 5 and the lead electrodes 6 and 7 were formed on a substrate on which the grooves 2 and 3 were not provided.
[0022]
{Circle around (2)} (Comparative Example 1) The groove 2 is provided only on the surface of the substrate 1, the groove 3 on the back surface of the substrate 1 is not provided, the vibration electrode 4 is provided at the center of the groove 2, and the vibration electrode 5 is provided on the opposite back surface. Was.
[0023]
{Circle around (3)} (Comparative Example 2) A groove 2 is provided on the front surface of the substrate 1, a groove is provided on the back surface of the substrate in parallel with the groove 2 on the front surface, and a vibration electrode 4 is provided at the center of the groove 2 to face the groove on the back surface. The vibrating electrode 5 is provided.
[0024]
(4) (Embodiment of the present invention) As shown in FIGS. 1 to 3, grooves 2 and 3 are provided on the front and back surfaces of the substrate 1 and vibration electrodes 4 and 5 are provided at the intersections of the grooves 2 and 3. Was.
[0025]
5 to 8 show changes in impedance and phase angle θz with respect to the frequency of each of the samples (1) to (4). As for the phase angle θz, −90 degrees indicates capacitive, and +90 degrees indicates inductive.
[0026]
In the conventional example of the sample (1) shown in FIG. 5, a plurality of modes (resonance and anti-resonance) are observed in the fundamental wave, and confinement of the frequency reduction type is not achieved. It can be seen that in the third harmonic, a single mode (resonance, antiresonance) is observed, and the phase (phase angle) is 0 degree or more, so that a frequency-reduced confinement is achieved.
[0027]
In Comparative Example 1 of Sample (2) shown in FIG. 6, a plurality of modes (resonance and anti-resonance) are observed for both the fundamental wave and the third harmonic, and a frequency-reduction type confinement is not achieved.
[0028]
In the comparative example 2 of the sample (3) shown in FIG. 7, a plurality of modes (resonance and anti-resonance) are observed in the fundamental wave, and confinement of the frequency reduction type is not achieved. Although the mode (resonance and antiresonance) of the third harmonic has become a single layer, the phase is 0 degrees or less, and confinement of a frequency lowering type has not been achieved.
[0029]
In the embodiment of the present invention of sample {circle around (4)} shown in FIG. 8, the fundamental wave has a single mode (resonance and anti-resonance), and the face is at 0 degrees or more, so that the frequency rise type confinement is obtained. You can see that is done. Although the mode (resonance and antiresonance) of the third harmonic is becoming a single layer, the face is at 0 degrees or less, and confinement of a frequency rising type is not performed.
[0030]
As described above, the grooves 2 and 3 are provided on the front and back surfaces of the substrate 1 so as to intersect with each other, and the vibration electrodes 4 and 5 are provided so as to face each other at the intersections of the grooves 2 and 3. The fundamental wave can be confined.
[0031]
According to the present invention, in a piezoelectric material having an effective Poisson's ratio of less than 1/3, the structure in which the grooves 2 and 3 are not provided can confine a third harmonic in a frequency-reduced manner. Has the advantage that it is possible to confine waves of different frequencies with one type of material. In addition, since the vibrating portion can be formed thin by simple machining and can be manufactured from a single plate, cost can be reduced.
[0032]
In practicing the present invention, the thickness of the portion where the grooves 2 and 3 intersect, that is, the thinnest portion (s in FIG. 2) is at least half (s / t ≧ 1/2) of the thickness of the substrate (t in FIG. 1). It is preferable to maintain the strength of the substrate 1. Further, it is necessary for the depth of the grooves 2 and 3 (c in FIG. 2) to be greater than the surface roughness (1 μm) of the substrate 1 in order to obtain the confinement effect.
[0033]
The shape of the vibration electrodes 4 and 5 is not limited to the circular shape in the illustrated example, but may be other shapes such as a polygon. Further, the vibration electrodes 4 and 5 are set to be equal to or less than the width of the grooves 2 and 3. The vibrating electrodes 4 and 5 may have a shape that is long in the longitudinal direction of the grooves 2 and 3 as long as the portions facing each other intersect with the grooves 2 and 3. It is also possible to provide a configuration in which a plurality of grooves are provided on at least one of the front and back surfaces of the substrate 1.
[0034]
【The invention's effect】
According to the present invention, grooves are formed so as to intersect on the front and back surfaces of a substrate made of a piezoelectric material, and the vibrating electrodes are configured to face each other at the intersections. Since it can be used and the grooves can be formed by machining, it is possible to provide a piezoelectric vibrator simply and inexpensively.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a piezoelectric vibrator according to the present invention.
FIG. 2 is a sectional view taken along line XX of FIG.
FIG. 3 is a sectional view taken along line YY of FIG. 1;
FIG. 4A is a schematic configuration diagram of the present invention, and FIG. 4B is a diagram for explaining that vibration of a thickness longitudinal fundamental wave can be confined.
FIG. 5 is a characteristic diagram showing changes in impedance and phase angle with respect to frequency in the case of a conventional example in which a groove is not provided in a substrate, for a thickness longitudinal fundamental wave and a third harmonic.
FIG. 6 is a characteristic diagram showing changes in impedance and phase angle with respect to frequency in a thickness longitudinal fundamental wave and a third harmonic in Comparative Example 1 in which a groove is provided only on one surface of a substrate.
FIG. 7 is a characteristic diagram showing changes in impedance and phase angle with respect to frequency for a thickness longitudinal fundamental wave and a third harmonic in Comparative Example 2 in which grooves are provided in the same direction on both surfaces of a substrate.
FIG. 8 is a characteristic diagram showing changes in impedance and phase angle with respect to frequency for a thickness longitudinal fundamental wave and a third harmonic in an embodiment of the present invention in which grooves are provided so as to cross each other on both surfaces of a substrate.
[Explanation of symbols]
1: Substrate, 2, 3: groove, 4, 5: vibration electrode, 5, 7, extraction electrode

Claims (2)

圧電材料でなる基板の表面に1本以上の溝を形成し、
前記基板の裏面に、前記溝に交差するように溝を形成し、
前記基板の表裏面の溝に、表裏面の溝が交差する箇所において互いに対向する振動電極を設けたことを特徴とする圧電振動子。
Forming at least one groove on the surface of the substrate made of piezoelectric material,
On the back surface of the substrate, a groove is formed so as to intersect the groove,
A piezoelectric vibrator, wherein vibration electrodes facing each other are provided in the grooves on the front and back surfaces of the substrate at locations where the grooves on the front and back surfaces intersect.
請求項1に記載の圧電振動子において、
前記溝の交差部分の厚みは前記基板の厚みの半分以上であることを特徴とする圧電振動子。
The piezoelectric vibrator according to claim 1,
The thickness of the intersection of the grooves is at least half the thickness of the substrate.
JP2003090981A 2003-03-28 2003-03-28 Piezoelectric vibrator Pending JP2004297727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090981A JP2004297727A (en) 2003-03-28 2003-03-28 Piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090981A JP2004297727A (en) 2003-03-28 2003-03-28 Piezoelectric vibrator

Publications (1)

Publication Number Publication Date
JP2004297727A true JP2004297727A (en) 2004-10-21

Family

ID=33404468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090981A Pending JP2004297727A (en) 2003-03-28 2003-03-28 Piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP2004297727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007052370A1 (en) * 2005-11-04 2009-04-30 株式会社村田製作所 Piezoelectric thin film resonator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007052370A1 (en) * 2005-11-04 2009-04-30 株式会社村田製作所 Piezoelectric thin film resonator
JP4803183B2 (en) * 2005-11-04 2011-10-26 株式会社村田製作所 Piezoelectric thin film resonator

Similar Documents

Publication Publication Date Title
US20230134688A1 (en) Plate wave devices with wave confinement structures and fabrication methods
US11152914B2 (en) Elastic wave device and method for manufacturing the same
JP4043790B2 (en) Array of ultrasonic transducers
JP2790177B2 (en) Electrostrictive resonance element
US6552471B1 (en) Multi-piezoelectric layer ultrasonic transducer for medical imaging
US3528851A (en) Method of making a piezoelectric resonator
CN1364339A (en) resonator structure and a filter comprising such a resonator structure
CN103765771B (en) Piezoelectrics wave device and manufacture method thereof
JP4147954B2 (en) Method for manufacturing piezoelectric element
JPH0666630B2 (en) Energy trapped oscillator
JPS6340491B2 (en)
JP2001211052A (en) Piezoelectric resonator
JP2004297727A (en) Piezoelectric vibrator
CN102420286A (en) Piezoelectric component having multilayer composite structure and preparation method thereof
JP2000143335A (en) Ceramic material, ultrasonic probe, piezoelectric oscillator and their production
JP4605879B2 (en) Piezoelectric vibrator
JP2004104629A (en) Ultrasonic probe
JPH0691411B2 (en) Electrostrictive resonance device
JP3729033B2 (en) Energy confinement type piezoelectric resonator and manufacturing method thereof
US20220038073A1 (en) Elastic wave device and method for manufacturing the same
US3717778A (en) Piezoelectric ceramic resonator with asymmetrically rough edge
JP3239399B2 (en) Surface wave device
JP3729054B2 (en) Piezoelectric resonator
JPH01176111A (en) Electrostriction resonator
JPH0738370A (en) Ceramic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060227

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090309

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707