JP2004294260A - Electronic time-piece circuit - Google Patents

Electronic time-piece circuit Download PDF

Info

Publication number
JP2004294260A
JP2004294260A JP2003086846A JP2003086846A JP2004294260A JP 2004294260 A JP2004294260 A JP 2004294260A JP 2003086846 A JP2003086846 A JP 2003086846A JP 2003086846 A JP2003086846 A JP 2003086846A JP 2004294260 A JP2004294260 A JP 2004294260A
Authority
JP
Japan
Prior art keywords
circuit
storage
short
power supply
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003086846A
Other languages
Japanese (ja)
Other versions
JP4252344B2 (en
Inventor
Jun Onishi
潤 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2003086846A priority Critical patent/JP4252344B2/en
Publication of JP2004294260A publication Critical patent/JP2004294260A/en
Application granted granted Critical
Publication of JP4252344B2 publication Critical patent/JP4252344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Clocks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve that problem of an electronic time-piece having a conventional rate control circuit, that a memory circuit of the rate control circuit is apt to be affected by noises and has a large circuit size. <P>SOLUTION: A rate control circuit having a memory control circuit 13, a waveform shaping circuit 14, memory circuit 15, and short circuit 16 is employed in the electronic time-piece. In normal hand operation, the short circuit 16 short-circuits the two ends of the memory circuit 15 so that erroneous operation of the rate control circuit can be prevented. Also, by providing the short circuit 16 with a resistor 162, destruction of the short circuit itself can be prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、記憶回路の情報によって歩度を調整する歩度調整回路を備える電子時計回路に関するものである。
【0002】
【従来の技術】
従来より電子時計は、歩度調整の一つの方法として、発振回路の出力を可変分周回路によって記憶回路の情報を元に適当な分周比をもって分周する事により論理的に緩急を設ける方法が行われている。ここでいう歩度とは時計の周波数偏差のことである。
【0003】
上記のように歩度調整を行う電子時計回路に間しては、従来より多くの出願を見るところである。(例えば、特許文献1参照)
【0004】
以下に特許文献1に示す従来の歩度調整回路を図面を用いて説明する。図5は特許文献1に示す従来の歩度調整回路について主旨を逸脱しないように書き直した回路図である。図6は特許文献1に示す従来の歩度調整回路へのクロックの信号CL1と信号CL2との関係を示すタイミングチャートである。信号CL1と信号CL2とについては後述する。
【0005】
図5に示す従来の歩度調整回路において、101は発振回路、102は可変分周回路、103はスイッチSW、104はnチャネルMOSトランジスタ、105は記憶回路、1は第1の電源線、3は第3の電源線である。第1の電源線はVDDの電位を供給し、第3の電源線はVSSの電位を供給する。106はnチャネルMOSトランジスタ104のON−OFFを制御するための信号CL2を印加する信号線、107は記憶回路105にクロック信号を与えるための信号CL1を印加する信号線である。
【0006】
スイッチSW103の一端は第1の電源線1と接続し、他端はnチャネルMOSトランジスタ104のドレインと記憶回路105のデータ入力Dとに接続し、その接続点をノードPとする。nチャネルMOSトランジスタ104のソースは第3の電源線3に接続し、nチャネルMOSトランジスタ104のゲートは信号線106に接続し信号CL2が印加する。記憶回路105のクロック入力Cは信号線107に接続し信号CL1が印加する。記憶回路105の出力Qは可変分周回路102に接続している。発振回路101は可変分周回路102と接続し、可変分周回路102は図示しない内部回路と接続している。
【0007】
信号CL1、信号CL2は図6のタイミングチャートで示される関係にあり、記憶回路105はスイッチSW103のONまたはOFFにより1または0のデータを読み込み記憶する。一方、可変分周回路102は発振回路101の出力を記憶回路105の記憶情報によって設定された分周比で分周し歩度調整を行う。
【0008】
【特許文献1】
特開昭58−158581号公報(第14−15頁、第1−2図)
【0009】
【発明が解決しようとする課題】
特許文献1に示す従来の歩度調整回路は、その動作時に、図5に示す記憶回路105の入力が不定状態になってしまうことがある。図5のスイッチSW103がOFFであり、かつ歩度調整を行わない通常動作時(信号CL2が“L”)は、nチャネルMOSトランジスタ104はソース−ゲート間に電位差が無いのでOFFし、スイッチSW103とnチャネルMOSトランジスタ104と記憶回路105とのデータ入力の接続点であるノードPの電位が不定となってしまう。
このノードPの電位が不定になっても動作上影響が無いように、記憶回路105はD型フリップフロップで構成している。D型フリップフロップは、データ入力への信号が不定であっても以前に記憶したデータ入力への信号の値を出力することができるからである。
【0010】
しかしながら、D型フリップフロップの内部の回路構成は一例として良く知られているように、マスター回路とスレーブ回路により構成し、それぞれの回路構成が等しい。そしてマスター回路とスレーブ回路とはそれぞれ少なくとも2つの2入力ゲートと2つのトランスミッションゲートとからなるフリップフロップで構成し、さらに、トランスミッションゲートの制御信号として反転信号を出力するインバータまたはバッファを必要とする。このため、回路規模が大きくなってしまうという問題があった。
【0011】
また、前述のような、スイッチSW103がOFFであり、かつ信号CL2が“L”になり、ノードPの電位が不定になると、ノードPに接続する配線にノイズが伝播してしまう場合がある。配線がアンテナの役割を果たしてノイズの影響を受ける、いわゆる配線アンテナ効果である。このため、ノードPに接続するnチャネルMOSトランジスタ104のドレインとバルクと基板とからなる寄生ダイオードを介して第1の電源線1や第3の電源線3にノイズを進入させ、不測の動作不良を引き起こす場合がある。
【0012】
さらにまた、図5のノードPが不定となりノイズの影響を受けた場合でも、ノイズの電位が記憶回路105の電源電圧内であれば記憶回路105のデータ入力への影響は無いが、ノイズの電位が記憶回路105の電源電圧を越えてしまった場合は、記憶回路105のデータ入力に接続するトランスミッションゲートのドレインとバルクと基板とからなる寄生ダイオードを介してノイズが電源へ進入し記憶回路105がラッチしたデータ入力への信号を変化させてしまう場合がある。
【0013】
本発明の目的は、上記課題を解決しようとするもので、従来の歩度調整回路に対して、回路規模の小さく、ノイズの影響を受けず、消費電流の小さい電子時計回路を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するための本発明の要旨は、歩度調整回路を備える時計回路において、歩度調整回路は、記憶回路と記憶制御手段と波形整形回路と短絡回路と、第1の電源と第2の電源とを有し、記憶制御手段の一端を第1の電源に接続し、記憶制御手段の他端を記憶回路の一端に接続するとともに、波形整形回路と短絡回路の一端とに接続し、記憶回路の他端を第2の電源に接続するとともに、短絡回路の他端に接続することを特徴とするものである。
【0015】
【発明の実施の形態】
以下図面により本発明の実施例の形態を詳述する。図1は本発明の電子時計回路における歩度調整回路を示す回路図である。図2は歩度調整回路を構成する記憶回路15の電気的特性を示す図である。図3は歩度調整回路のタイミングチャートである。図4は歩度調整回路を構成する各回路の状態を示す一覧表である。
【0016】
[本発明の構成説明:図1]
まず、本発明の構成を図にもとづいて説明する。図1は本発明の実施の形態における電子時計の歩度調整回路の構成図であり、1は第1の電源線でありVDDの電位を供給する。2は第2の電源線でありVPPの電位を供給する。13は記憶制御回路、14は波形整形回路、15は記憶回路、16は短絡回路である。
【0017】
記憶制御回路13は、書込回路131、読出回路132とを並列に接続する。短絡回路16は、短絡スイッチ161と抵抗体162とを直列に接続する。
【0018】
書込回路131はpチャネルMOSトランジスタであり、ソースとバルクとを第1の電源線1と接続し、ドレインを波形整形回路14の入力に接続し、ゲートを書込制御手段9の出力(以下Sigwと称する)に接続する。
読出回路132はpチャネルMOSトランジスタであり、ソースとバルクとを第1の電源線1と接続し、ドレインを波形整形回路14の入力に接続し、ゲートを読出制御手段10の出力(以下Sigrと称する)に接続する。
記憶回路15はホットエレクトロン注入型のMONOS構造をもつ不揮発性記憶素子であり、ソースとバルクとを第2の電源線2に接続し、ドレインを波形整形回路14の入力に接続し、ゲートを記憶制御手段11の出力(以下Sigmと称する)に接続する。
短絡スイッチ161はnチャネルMOSトランジスタであり、ソースとバルクとを抵抗体162の一端と接続し、ドレインを波形整形回路14の入力に接続し、ゲートを短絡制御手段12の出力(以下Sigsと称する)に接続する。抵抗体162の他端は第2の電源線2と接続する。
波形整形回路14の出力は、図示しない内部回路(可変分周回路)と接続する。
【0019】
書込回路131は、記憶回路15に情報を書き込むための回路であり、記憶回路15にくらべ電流供給能力が大きい構造のMOSトランジスタで構成する。
読出回路132は、記憶回路15から情報を読み出すための回路であり、記憶回路15にくらべ電流供給能力が小さい構造のMOSトランジスタで構成する。
短絡スイッチ161は、記憶回路15のドレイン−ソース間を短絡するために用いる回路であり、抵抗体162は、短絡スイッチ161を保護する保護抵抗として用いる。
【0020】
このように、ホットエレクトロン注入型MONOS構造をもつ不揮発性記憶素子を用いることと短絡回路を用いることにより、従来の技術に比して回路規模を小さくし、記憶回路の入力の状態が不定とはならない歩度調整回路を有する電子時計回路を構成することができる。
【0021】
[記憶回路の電気特性説明:図2]
次に本発明の動作を説明する。まずその一つである記憶回路15の電気的特性について図2を用いて説明する。
図2は、記憶回路15の書込前と書込後のドレイン−ソース間電圧に対するドレイン−ソース間電流を示す図(以下Vds−Ids特性と称す)である。Iasは書込前のVds−Ids特性であり、Vtasは書込前の記憶回路15の閾値である。Iwrは書込後のVds−Ids特性であり、Vtwrは書込後の記憶回路15の閾値である。
記憶回路15は情報を書込することで閾値が高くなり矢印Aの方向に特性がシフトする。また、第2の電源に供給するVPPの電位がVtas<VPP<Vtwrの関係を持ち、記憶回路15を書込していない場合、記憶回路15は記憶制御手段11の出力信号Sigmに応じてON又はOFFとなる。同様にVPPの電位がVtas<VPP<Vtwrの関係を持ち記憶回路15を書込した場合、記憶回路15は記憶制御手段11の出力信号Sigmに無関係にOFFとなる。
ここで、VPPの電位は、書込時を除きVPP<Vtwrとする。記憶回路15はホットエレクトロン注入型のMONOS構造であり、ゲート下に電流を流すことでホットエレクトロンを生成しゲートに注入することで閾値が移動する。ホットエレクトロン注入型のMONOS構造の記憶素子は、既に知られている不揮発性記憶素子であるので説明は省略する。
【0022】
[書込時の動作説明:図3、図4]
図3は、歩度調整回路のタイミングチャートである。図4は、歩度調整回路の各回路の状態を示す一覧表である。
次に、本発明の実施の形態における歩度調整回路の書込時の様子を図3と図4とを用いて説明する。
図3に示すように、書込制御手段9の出力信号Sigwを“L”とすると、書込回路131はソース−ゲート間に電位差が有るため、図4に示すようにONする。
図3に示すように、読出制御手段10の出力信号Sigrを“H”とすると、読出回路132はソース−ゲート間に電位差が無いため、図4に示すようにOFFする。
図3に示すように、記憶制御手段11の出力信号Sigmを“H”とすると、記憶回路15は、当初未書込であるため閾値が低いこととソース−ゲート間に電位差が有ることから図4に示すようにONする。
図3に示すように、短絡制御手段12の出力信号Sigsを“L”とすると、短絡スイッチ161はソース−ゲート間に電位差が無いため、図4に示すようにOFFする。
【0023】
従って第1の電源線1と第2の電源線2とは、書込回路131と記憶回路15を介し導通する。波形整形回路14の出力は、波形整形回路14の入力が書込回路131と記憶回路15のMOSトランジスタの電流供給能力の引き合いから能力の大きい書込回路131により、VDD=“H”に引かれるため“L”となる。その後VPPの電位をさらに低い電位に引き下げて記憶回路15のゲート下に電流を流しホットエレクトロンを生成供給すると記憶回路15は情報が書き込まれ、記憶回路15の閾値が移動する。このため、記憶回路15はソース−ゲート間に電位差があっても移動した閾値を超えずにOFFする。記憶回路15がOFFすることで波形整形回路14の出力は、波形整形回路14の入力が書込回路131によりVDD=“H”に引かれ、“L”となる。
また、VPPの電位を引き下げた時に短絡スイッチ161はOFFであり、短絡スイッチ161のドレインと第2の電源線の間にはVDD−VPPの電位が掛かるが、短絡スイッチ161のソースは抵抗体162を介して第2の電源線2に接続しているため短絡スイッチ161の耐圧は高くなり、素子破壊を起こすことはない。
【0024】
[通常時の動作説明:図3、図4]
次に、歩度調整回路の通常時を図3と図4とを用いて説明する。ここで通常時とは、電子時計回路の動作時において読出時と書込時を除く全ての状態のことである。
図3に示すように、書込制御手段9の出力信号Sigwを“H”とすると、書込回路131はソース−ゲート間に電位差が無いため、図4に示すようにOFFする。
図3に示すように、読出制御手段10の出力信号Sigrを“H”とすると、読出回路132はソース−ゲート間に電位差が無いため、図4に示すようにOFFする。書込回路131と読出回路132とがともにOFFすることにより、第1の電源線1と第2の電源線2との間は絶縁する。
図3に示すように、記憶制御手段11の出力信号Sigmを“L”とすると、記憶回路15は未書込の時はソース−ゲート間に電位差が無いため、図4に示すようにOFFし、書込済みの時は閾値が高く特性がシフトしており、常時OFFとなることから書込状態に関わらず図4に示すようにOFFする。
図3に示すように、短絡制御手段12の出力信号Sigsを“H”とすると、短絡スイッチ161はソース−ゲート間に電位差があるため、図4に示すようにONする。波形整形回路14の出力は、波形整形回路8の入力が短絡スイッチ161と抵抗体162とを介してVPP=“L”に引かれるため、“H”となる。
【0025】
上記のごとく、短絡回路16がONすることで、記憶回路15のソースとドレインはVPPと同電位になる。また記憶制御手段11の出力信号Sigmは“L”であり、記憶回路15のゲートもVPPの電位と同電位となる。記憶回路51は、ソース、ドレインとゲートとが同電位になることから、電気的ストレスが掛からず、第2の電源線2にノイズが伝播したとしても、誤書込の可能性を排除できる。よって、記憶回路15の書込状態維持による歩度品質を向上することができる。
【0026】
また、上記のごとく、通常時には波形製回路14の入力は、記憶回路15の書込状態によらず書込回路131や読出回路132や記憶回路15がOFFであるため、電位供給されないが、短絡回路6によりVPPの電位に固定するため、入力信号が不定時に見られるようなノイズの他回路への伝播を排除し消費電流や誤動作を削減することができる。
【0027】
[読出時の動作説明:図3、図4]
次に本発明の実施の形態における歩度調整回路の記憶回路15が書込済みの場合における、記憶回路15の読出の様子を図3と図4を用いて説明する。
図3に示すように、書込制御手段9の出力信号Sigwを“H”とすると、書込回路131はソース−ゲート間に電位差が無いため、図4に示すようにOFFする。図3に示すように、読出制御手段10の出力信号Sigrを“L”とすると、読出回路132はソース−ゲート間に電位差が有るため、図4に示すようにONする。図3に示すように、記憶制御手段11の出力信号Sigmを“H”とすると記憶回路15は、ソース−ゲート間に電位差が有るが、ソース−ゲート間電位が書込によりシフトした閾値を越えずに、図4に示すようにOFFする。
図3に示すように、短絡制御手段12の出力信号Sigsを“L”とすると、短絡スイッチ161はソース−ゲート間に電位差が無いため、図4に示すようにOFFする。従って、第1の電源線1と第2の電源線2とは絶縁する。
波形整形回路14の出力は、波形整形回路14の入力がONに制御された読出回路132を介してVDD=“H”に引かれるため、“L”となる。
【0028】
また本発明の構造によれば、ONとOFFの2値の情報のうちOFFの情報の読出を少ない素子数で実現することができ、回路規模の縮小に効果の高いものである。
【0029】
[未書込の場合の動作説明:図3、図4]
同様に歩度調整回路の記憶回路15が未書込の場合における、記憶回路15の読出の様子を図3と図4を用いて説明する。
図3に示すように、書込制御手段9の出力信号Sigwを“H”とすると、書込回路131はソース−ゲート間に電位差が無いため、図4に示すようにOFFする。図3に示すように、読出制御手段10の出力信号Sigrを“L”とすると、読出回路132はソース−ゲート間に電位差が有るため、図4に示すようにONする。図3に示すように、記憶制御手段11の出力信号Sigmを“H”とすると、記憶回路15は未書込で閾値が低い上、ソース−ゲート間に電位差があるため、図4に示すようにONする。
図3に示すように、短絡制御手段12の出力信号Sigsを“L”とすると、短絡スイッチ161はソース−ゲート間に電位差が無いため、図4に示すようにOFFする。従って第1の電源線1と第2の電源線2とは、読出回路132と記憶回路15を介し導通する。
波形整形回路14の出力は、波形整形回路14の入力が読出回路132と記憶回路15のMOSトランジスタの電流供給能力の引き合いから能力の大きい記憶回路15によりVPP=“L”に引かれるため、“H”となる。
【0030】
また本発明の構造によれば、ONとOFFの2値の情報のうちONの情報の読出を少ない素子数で実現することができ、回路規模の縮小に効果の高いものである。
【0031】
【発明の効果】
上記のごとく、本発明の歩度調整回路を有する電子時計回路によれば、短絡スイッチ161と抵抗体162とを有する短絡回路16により、通常運針時に記憶回路15を短絡することで、記憶回路15を不定な状態にすることはなく、他の回路の不測の誤動作を防止することができる。
また、本発明の歩度調整回路を有する電子時計回路は、時計用電子回路の規模を小さくし、半導体チップサイズを縮小しコストダウンを図ることができる。
【0032】
本発明の歩度調整回路を有する電子時計回路の動作において、第2の電源線2と短絡スイッチ161とを抵抗体162を介し接続することで、書込時に印加される高電圧に対して短絡スイッチ161の耐圧性能を向上させ、素子破壊を防止することができる。
【0033】
また通常時に、記憶回路15の全端子を短絡回路16と記憶制御手段11の制御で同電位とすることで、記憶回路15の誤書込を防止することができる。
【0034】
全ての時計動作時において、波形整形回路14の入力を固定することでノイズの他回路への伝播を排除し消費電流の増加や誤動作などの不具合を無くすることができる。
【図面の簡単な説明】
【図1】本発明の電子時計回路の回路図である。
【図2】記憶回路15の電気的特性である。
【図3】歩度調整回路のタイミングチャートである。
【図4】歩度調整回路を構成する各回路の状態を示す一覧表である。
【図5】従来の電子時計回路の回路図である。
【図6】従来の電子時計回路のタイミングチャートである。
【符号の説明】
1 第1の電源線
2 第2の電源線
3 第3の電源線
9 書込制御手段
10 読出制御手段
11 記憶制御手段
12 短絡制御手段
13 記憶制御回路
14 波形整形回路
15 記憶回路
16 短絡回路
131 書込回路
132 読出回路
161 短絡スイッチ
162 抵抗体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic timepiece circuit including a rate adjusting circuit for adjusting a rate based on information in a storage circuit.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an electronic timepiece has a method of adjusting the rate by logically dividing the output of an oscillation circuit with an appropriate frequency division ratio based on information in a memory circuit by a variable frequency divider circuit. Is being done. The rate here is a frequency deviation of the clock.
[0003]
As to the electronic timepiece circuit for adjusting the rate as described above, more applications have been seen than before. (For example, see Patent Document 1)
[0004]
Hereinafter, a conventional rate adjusting circuit disclosed in Patent Document 1 will be described with reference to the drawings. FIG. 5 is a circuit diagram of the conventional rate adjusting circuit disclosed in Patent Document 1 rewritten so as not to deviate from the gist. FIG. 6 is a timing chart showing the relationship between the signal CL1 and the signal CL2 of the clock to the conventional rate adjusting circuit shown in Patent Document 1. The signal CL1 and the signal CL2 will be described later.
[0005]
In the conventional rate adjusting circuit shown in FIG. 5, 101 is an oscillation circuit, 102 is a variable frequency dividing circuit, 103 is a switch SW, 104 is an n-channel MOS transistor, 105 is a storage circuit, 1 is a first power supply line, 3 is This is the third power supply line. The first power supply line supplies a potential of VDD, and the third power supply line supplies a potential of VSS. 106 is a signal line for applying a signal CL2 for controlling ON / OFF of the n-channel MOS transistor 104, and 107 is a signal line for applying a signal CL1 for applying a clock signal to the storage circuit 105.
[0006]
One end of the switch SW103 is connected to the first power supply line 1, the other end is connected to the drain of the n-channel MOS transistor 104 and the data input D of the storage circuit 105, and the connection point is a node P. The source of the n-channel MOS transistor 104 is connected to the third power supply line 3, the gate of the n-channel MOS transistor 104 is connected to the signal line 106, and the signal CL2 is applied. The clock input C of the storage circuit 105 is connected to the signal line 107 and the signal CL1 is applied. The output Q of the storage circuit 105 is connected to the variable frequency dividing circuit 102. The oscillation circuit 101 is connected to a variable frequency dividing circuit 102, and the variable frequency dividing circuit 102 is connected to an internal circuit (not shown).
[0007]
The signal CL1 and the signal CL2 have a relationship shown in the timing chart of FIG. 6, and the storage circuit 105 reads and stores data of 1 or 0 by turning on or off the switch SW103. On the other hand, the variable frequency dividing circuit 102 divides the output of the oscillation circuit 101 by the frequency dividing ratio set by the information stored in the memory circuit 105 to adjust the rate.
[0008]
[Patent Document 1]
JP-A-58-158581 (pages 14 to 15, FIG. 1-2)
[0009]
[Problems to be solved by the invention]
In the conventional rate adjustment circuit disclosed in Patent Document 1, the input of the storage circuit 105 illustrated in FIG. When the switch SW103 in FIG. 5 is OFF and the normal operation without adjusting the rate (the signal CL2 is “L”), the n-channel MOS transistor 104 turns OFF because there is no potential difference between the source and the gate. The potential of the node P, which is the connection point of the data input between the n-channel MOS transistor 104 and the storage circuit 105, becomes unstable.
The storage circuit 105 is configured by a D-type flip-flop so that the operation of the node P is not affected even if the potential of the node P becomes unstable. This is because the D-type flip-flop can output the previously stored signal value to the data input even if the signal to the data input is indefinite.
[0010]
However, as is well known as an example, the internal circuit configuration of the D-type flip-flop is configured by a master circuit and a slave circuit, and the respective circuit configurations are equal. Each of the master circuit and the slave circuit includes a flip-flop including at least two two-input gates and two transmission gates, and further requires an inverter or a buffer that outputs an inverted signal as a control signal for the transmission gate. For this reason, there has been a problem that the circuit scale becomes large.
[0011]
Further, when the switch SW103 is OFF and the signal CL2 becomes “L” as described above and the potential of the node P becomes unstable, noise may propagate to a wiring connected to the node P. This is a so-called wiring antenna effect in which the wiring functions as an antenna and is affected by noise. For this reason, noise enters the first power supply line 1 and the third power supply line 3 through the parasitic diode composed of the drain, the bulk, and the substrate of the n-channel MOS transistor 104 connected to the node P, causing an unexpected operation failure. May cause
[0012]
Further, even when the node P in FIG. 5 is undefined and is affected by noise, if the noise potential is within the power supply voltage of the storage circuit 105, there is no effect on the data input of the storage circuit 105. Exceeds the power supply voltage of the storage circuit 105, noise enters the power supply via a parasitic diode composed of a drain, a bulk, and a substrate of a transmission gate connected to the data input of the storage circuit 105, and the storage circuit 105 The signal to the latched data input may be changed.
[0013]
An object of the present invention is to solve the above-described problem, and to provide an electronic timepiece circuit having a smaller circuit scale, less affected by noise, and lower current consumption than a conventional rate adjustment circuit. .
[0014]
[Means for Solving the Problems]
The gist of the present invention to achieve the above object is to provide a timepiece circuit including a rate adjustment circuit, wherein the rate adjustment circuit includes a storage circuit, a storage control unit, a waveform shaping circuit, a short circuit, a first power supply, and a second power supply. A power supply, one end of the storage control means is connected to the first power supply, the other end of the storage control means is connected to one end of the storage circuit, and the storage control means is connected to one end of the waveform shaping circuit and one end of the short circuit. The other end of the circuit is connected to the second power supply and the other end of the short circuit.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing a rate adjusting circuit in an electronic timepiece circuit of the present invention. FIG. 2 is a diagram showing electrical characteristics of the storage circuit 15 constituting the rate adjustment circuit. FIG. 3 is a timing chart of the rate adjusting circuit. FIG. 4 is a list showing the state of each circuit constituting the rate adjusting circuit.
[0016]
[Description of Configuration of the Present Invention: FIG. 1]
First, the configuration of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a rate adjusting circuit of an electronic timepiece according to an embodiment of the present invention. Reference numeral 1 denotes a first power supply line which supplies a potential of VDD. Reference numeral 2 denotes a second power supply line for supplying a potential of VPP. 13 is a storage control circuit, 14 is a waveform shaping circuit, 15 is a storage circuit, and 16 is a short circuit.
[0017]
The storage control circuit 13 connects the write circuit 131 and the read circuit 132 in parallel. The short circuit 16 connects the short circuit switch 161 and the resistor 162 in series.
[0018]
The write circuit 131 is a p-channel MOS transistor. The source and the bulk are connected to the first power supply line 1, the drain is connected to the input of the waveform shaping circuit 14, and the gate is the output (hereinafter referred to as the output) of the write control means 9. Sigw).
The read circuit 132 is a p-channel MOS transistor, having its source and bulk connected to the first power supply line 1, its drain connected to the input of the waveform shaping circuit 14, and its gate connected to the output of the read control means 10 (hereinafter referred to as Sigr and Connected).
The storage circuit 15 is a nonvolatile storage element having a hot electron injection type MONOS structure, in which the source and the bulk are connected to the second power supply line 2, the drain is connected to the input of the waveform shaping circuit 14, and the gate is stored. It is connected to the output of the control means 11 (hereinafter referred to as Sigma).
The short-circuit switch 161 is an n-channel MOS transistor. The source and the bulk are connected to one end of the resistor 162, the drain is connected to the input of the waveform shaping circuit 14, and the gate is the output of the short-circuit control means 12 (hereinafter referred to as Sigs). ). The other end of the resistor 162 is connected to the second power supply line 2.
The output of the waveform shaping circuit 14 is connected to an internal circuit (variable frequency dividing circuit) not shown.
[0019]
The write circuit 131 is a circuit for writing information to the storage circuit 15 and is configured by a MOS transistor having a structure with a higher current supply capability than the storage circuit 15.
The read circuit 132 is a circuit for reading information from the storage circuit 15, and is configured by a MOS transistor having a structure with a smaller current supply capability than the storage circuit 15.
The short-circuit switch 161 is a circuit used to short-circuit between the drain and the source of the storage circuit 15, and the resistor 162 is used as a protection resistor for protecting the short-circuit switch 161.
[0020]
As described above, by using the nonvolatile memory element having the hot electron injection type MONOS structure and using the short circuit, the circuit scale is reduced as compared with the conventional technology, and the input state of the memory circuit is uncertain. It is possible to configure an electronic timepiece circuit having an unfavorable rate adjustment circuit.
[0021]
[Description of electrical characteristics of storage circuit: FIG. 2]
Next, the operation of the present invention will be described. First, electrical characteristics of the storage circuit 15 which is one of them will be described with reference to FIG.
FIG. 2 is a diagram showing the drain-source current with respect to the drain-source voltage before and after writing in the storage circuit 15 (hereinafter, referred to as Vds-Ids characteristic). Ias is the Vds-Ids characteristic before writing, and Vtas is the threshold value of the storage circuit 15 before writing. Iwr is the Vds-Ids characteristic after writing, and Vtwr is the threshold value of the storage circuit 15 after writing.
The threshold value of the storage circuit 15 is increased by writing information, and the characteristics are shifted in the direction of arrow A. When the potential of VPP supplied to the second power supply has a relationship of Vtas <VPP <Vtwr, and the storage circuit 15 is not written, the storage circuit 15 is turned on in response to the output signal Sigma of the storage control unit 11. Or it becomes OFF. Similarly, when the potential of VPP has a relationship of Vtas <VPP <Vtwr and the storage circuit 15 is written, the storage circuit 15 is turned off regardless of the output signal Sigma of the storage control unit 11.
Here, the potential of VPP is set to VPP <Vtwr except during writing. The storage circuit 15 has a MONOS structure of a hot electron injection type, in which a current flows under the gate to generate hot electrons and the threshold is shifted by injecting the electrons into the gate. The storage element having the MONOS structure of the hot electron injection type is a known nonvolatile storage element, and a description thereof will be omitted.
[0022]
[Description of Write Operation: FIGS. 3 and 4]
FIG. 3 is a timing chart of the rate adjustment circuit. FIG. 4 is a list showing a state of each circuit of the rate adjustment circuit.
Next, how the rate adjusting circuit according to the embodiment of the present invention performs writing will be described with reference to FIGS.
As shown in FIG. 3, when the output signal Sigw of the write control means 9 is set to "L", the write circuit 131 is turned on as shown in FIG. 4 because there is a potential difference between the source and the gate.
As shown in FIG. 3, when the output signal Sigr of the read control means 10 is set to “H”, the read circuit 132 is turned off as shown in FIG. 4 because there is no potential difference between the source and the gate.
As shown in FIG. 3, when the output signal Sigma of the storage control unit 11 is set to “H”, the storage circuit 15 is initially unwritten, and thus has a low threshold value and a potential difference between the source and the gate. It is turned on as shown in FIG.
As shown in FIG. 3, when the output signal Sigs of the short-circuit control means 12 is set to “L”, the short-circuit switch 161 is turned off as shown in FIG. 4 because there is no potential difference between the source and the gate.
[0023]
Therefore, the first power supply line 1 and the second power supply line 2 conduct through the writing circuit 131 and the storage circuit 15. The output of the waveform shaping circuit 14 is pulled to VDD = “H” by the writing circuit 131 having a large capacity from the input of the waveform shaping circuit 14 due to the current supply capacity of the MOS transistors of the writing circuit 131 and the storage circuit 15. Therefore, it becomes “L”. After that, when the potential of VPP is further reduced to a lower potential and a current flows under the gate of the memory circuit 15 to generate and supply hot electrons, information is written in the memory circuit 15 and the threshold value of the memory circuit 15 moves. For this reason, the storage circuit 15 is turned off without exceeding the moved threshold value even if there is a potential difference between the source and the gate. When the storage circuit 15 is turned off, the output of the waveform shaping circuit 14 becomes “L” since the input of the waveform shaping circuit 14 is pulled to VDD = “H” by the writing circuit 131.
When the potential of VPP is lowered, the short-circuit switch 161 is OFF, and a potential of VDD-VPP is applied between the drain of the short-circuit switch 161 and the second power supply line. , The breakdown voltage of the short-circuit switch 161 is increased, and no element destruction occurs.
[0024]
[Description of normal operation: FIGS. 3 and 4]
Next, the normal state of the rate adjusting circuit will be described with reference to FIGS. Here, the normal state refers to all states in the operation of the electronic timepiece circuit except for reading and writing.
As shown in FIG. 3, when the output signal Sigw of the write control means 9 is set to “H”, the write circuit 131 is turned off as shown in FIG. 4 because there is no potential difference between the source and the gate.
As shown in FIG. 3, when the output signal Sigr of the read control means 10 is set to “H”, the read circuit 132 is turned off as shown in FIG. 4 because there is no potential difference between the source and the gate. By turning off both the write circuit 131 and the read circuit 132, the first power supply line 1 and the second power supply line 2 are insulated.
As shown in FIG. 3, when the output signal Sigma of the storage control means 11 is set to "L", the storage circuit 15 is turned off as shown in FIG. When the data has been written, the threshold value is high and the characteristics are shifted, and the data is always turned off. Therefore, the data is turned off as shown in FIG. 4 regardless of the writing state.
As shown in FIG. 3, when the output signal Sigs of the short-circuit control means 12 is set to “H”, the short-circuit switch 161 is turned on as shown in FIG. 4 because there is a potential difference between the source and the gate. The output of the waveform shaping circuit 14 becomes “H” because the input of the waveform shaping circuit 8 is pulled down to VPP = “L” via the short-circuit switch 161 and the resistor 162.
[0025]
As described above, when the short circuit 16 is turned on, the source and the drain of the storage circuit 15 have the same potential as VPP. Further, the output signal Sigma of the storage control unit 11 is “L”, and the gate of the storage circuit 15 also has the same potential as the potential of VPP. In the storage circuit 51, since the source, the drain, and the gate have the same potential, electrical stress is not applied, and even if noise propagates to the second power supply line 2, the possibility of erroneous writing can be eliminated. Therefore, the quality of the rate by maintaining the write state of the storage circuit 15 can be improved.
[0026]
As described above, the input of the waveform circuit 14 is not normally supplied with the potential because the write circuit 131, the read circuit 132, and the memory circuit 15 are OFF regardless of the write state of the memory circuit 15 during normal times. Since the potential is fixed to the VPP potential by the circuit 6, it is possible to eliminate the propagation of noise, which may be seen when the input signal is indefinite, to other circuits, thereby reducing current consumption and malfunction.
[0027]
[Description of operation at the time of reading: FIGS. 3 and 4]
Next, a state of reading from the storage circuit 15 when the storage circuit 15 of the rate adjustment circuit according to the embodiment of the present invention has been written will be described with reference to FIGS.
As shown in FIG. 3, when the output signal Sigw of the write control means 9 is set to “H”, the write circuit 131 is turned off as shown in FIG. 4 because there is no potential difference between the source and the gate. As shown in FIG. 3, when the output signal Sigr of the read control means 10 is set to "L", the read circuit 132 is turned on as shown in FIG. 4 because there is a potential difference between the source and the gate. As shown in FIG. 3, when the output signal Sigma of the storage control means 11 is set to "H", the storage circuit 15 has a potential difference between the source and the gate, but the potential between the source and the gate exceeds the threshold shifted by writing. Instead, it is turned off as shown in FIG.
As shown in FIG. 3, when the output signal Sigs of the short-circuit control means 12 is set to “L”, the short-circuit switch 161 is turned off as shown in FIG. 4 because there is no potential difference between the source and the gate. Therefore, the first power supply line 1 and the second power supply line 2 are insulated.
The output of the waveform shaping circuit 14 becomes “L” because VDD = “H” through the readout circuit 132 in which the input of the waveform shaping circuit 14 is controlled to be ON.
[0028]
Further, according to the structure of the present invention, the reading of the OFF information among the binary information of ON and OFF can be realized with a small number of elements, which is highly effective in reducing the circuit scale.
[0029]
[Description of operation when writing is not yet performed: FIGS. 3 and 4]
Similarly, a state of reading from the storage circuit 15 when the storage circuit 15 of the rate adjustment circuit is not written will be described with reference to FIGS.
As shown in FIG. 3, when the output signal Sigw of the write control means 9 is set to “H”, the write circuit 131 is turned off as shown in FIG. 4 because there is no potential difference between the source and the gate. As shown in FIG. 3, when the output signal Sigr of the read control means 10 is set to "L", the read circuit 132 is turned on as shown in FIG. 4 because there is a potential difference between the source and the gate. As shown in FIG. 3, when the output signal Sigma of the storage control unit 11 is set to “H”, the storage circuit 15 is not written, has a low threshold value, and has a potential difference between the source and the gate. To ON.
As shown in FIG. 3, when the output signal Sigs of the short-circuit control means 12 is set to “L”, the short-circuit switch 161 is turned off as shown in FIG. 4 because there is no potential difference between the source and the gate. Therefore, the first power supply line 1 and the second power supply line 2 conduct through the readout circuit 132 and the storage circuit 15.
The output of the waveform shaping circuit 14 is "VPP =" L "" because the input of the waveform shaping circuit 14 is pulled down to VPP = "L" by the storage circuit 15 having a large capacity from the inquiries of the current supply capabilities of the readout circuit 132 and the MOS transistor of the storage circuit 15. H ”.
[0030]
Further, according to the structure of the present invention, reading of ON information among binary information of ON and OFF can be realized with a small number of elements, which is highly effective in reducing the circuit scale.
[0031]
【The invention's effect】
As described above, according to the electronic timepiece circuit having the rate adjusting circuit of the present invention, the storage circuit 15 is short-circuited during normal hand movement by the short-circuit circuit 16 having the short-circuit switch 161 and the resistor 162. An undefined state can be prevented, and an unexpected malfunction of another circuit can be prevented.
Further, the electronic timepiece circuit having the rate adjusting circuit of the present invention can reduce the scale of the timepiece electronic circuit, the size of the semiconductor chip, and the cost.
[0032]
In the operation of the electronic timepiece circuit having the rate adjusting circuit of the present invention, by connecting the second power supply line 2 and the short-circuit switch 161 via the resistor 162, the short-circuit switch for the high voltage applied at the time of writing is provided. 161 can be improved, and element destruction can be prevented.
[0033]
In addition, at normal times, by setting all terminals of the storage circuit 15 to the same potential under the control of the short circuit 16 and the storage control means 11, erroneous writing of the storage circuit 15 can be prevented.
[0034]
By fixing the input of the waveform shaping circuit 14 during all clock operations, it is possible to eliminate the propagation of noise to other circuits and eliminate problems such as an increase in current consumption and malfunction.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an electronic timepiece circuit according to the present invention.
FIG. 2 shows electrical characteristics of a memory circuit 15.
FIG. 3 is a timing chart of the rate adjusting circuit.
FIG. 4 is a list showing states of respective circuits constituting the rate adjusting circuit.
FIG. 5 is a circuit diagram of a conventional electronic timepiece circuit.
FIG. 6 is a timing chart of a conventional electronic timepiece circuit.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 first power supply line 2 second power supply line 3 third power supply line 9 write control means 10 read control means 11 storage control means 12 short circuit control means 13 storage control circuit 14 waveform shaping circuit 15 storage circuit 16 short circuit 131 Write circuit 132 Read circuit 161 Short circuit switch 162 Resistor

Claims (3)

歩度調整回路を備える電子時計回路において、
前記歩度調整回路は、記憶回路と記憶制御手段と波形整形回路と短絡回路と、第1の電源と第2の電源とを有し、
前記記憶制御手段の一端を前記第1の電源に接続し、
前記記憶制御手段の他端を前記記憶回路の一端に接続するとともに、前記波形整形回路と前記短絡回路の一端とに接続し、
前記記憶回路の他端を第2の電源に接続するとともに、前記短絡回路の他端に接続することを特徴とする電子時計回路。
In an electronic timepiece circuit including a rate adjustment circuit,
The rate adjusting circuit includes a storage circuit, a storage control unit, a waveform shaping circuit, a short circuit, a first power supply and a second power supply,
Connecting one end of the storage control means to the first power supply;
The other end of the storage control means is connected to one end of the storage circuit, and connected to the waveform shaping circuit and one end of the short circuit,
An electronic timepiece circuit, wherein the other end of the storage circuit is connected to a second power supply and the other end of the short circuit.
前記記憶制御手段は、書込回路と読出回路とを並列に接続することを特徴とする請求項1に記載の電子時計回路。2. The electronic timepiece circuit according to claim 1, wherein said storage control means connects a write circuit and a read circuit in parallel. 前記短絡回路は、スイッチと抵抗とを直列に接続することを特徴とする請求項1または請求項2に記載の電子時計回路。The electronic timepiece circuit according to claim 1, wherein the short circuit connects a switch and a resistor in series.
JP2003086846A 2003-03-27 2003-03-27 Electronic clock circuit Expired - Fee Related JP4252344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086846A JP4252344B2 (en) 2003-03-27 2003-03-27 Electronic clock circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086846A JP4252344B2 (en) 2003-03-27 2003-03-27 Electronic clock circuit

Publications (2)

Publication Number Publication Date
JP2004294260A true JP2004294260A (en) 2004-10-21
JP4252344B2 JP4252344B2 (en) 2009-04-08

Family

ID=33401364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086846A Expired - Fee Related JP4252344B2 (en) 2003-03-27 2003-03-27 Electronic clock circuit

Country Status (1)

Country Link
JP (1) JP4252344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030892B2 (en) 2011-12-08 2015-05-12 Seiko Instruments Inc. Data reading device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030892B2 (en) 2011-12-08 2015-05-12 Seiko Instruments Inc. Data reading device
TWI576848B (en) * 2011-12-08 2017-04-01 Sii Semiconductor Corp Data reading device

Also Published As

Publication number Publication date
JP4252344B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
US7733145B2 (en) Nonvolatile latch circuit and nonvolatile flip-flop circuit
JPS63234622A (en) Data output circuit
KR101221177B1 (en) Voltage switching circuit
US7081784B2 (en) Data output circuit of memory device
US8149632B2 (en) Output circuit for a semiconductor memory device and data output method
JP2001251171A (en) Delay circuit
KR100416625B1 (en) Input/output buffer of differential type for reducing variation of reference voltage
US7180326B2 (en) Noise elimination circuit
US7218145B2 (en) Level conversion circuit
KR19980058197A (en) Output pad circuit using control signal
JP4252344B2 (en) Electronic clock circuit
JP3630847B2 (en) Latch circuit
US9159379B2 (en) Switching circuit and semiconductor memory device
JP3500598B2 (en) Latch circuit
JP2006216147A (en) Non-volatile memory circuit
US6172527B1 (en) Output circuit capable of reducing feedthrough current
US6353560B1 (en) Semiconductor memory device
US6825694B2 (en) Flip-flop circuit for use in electronic devices
JP7251624B2 (en) semiconductor integrated circuit
EP4191882A1 (en) Register with data retention
KR20070076112A (en) Level shifter
JP3168977B2 (en) Semiconductor device
KR0150160B1 (en) Semiconductor apparatus having loading compensating circuit of bus line
KR950015206B1 (en) High voltage transmitting circuit
US7602651B2 (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees