JP2004294233A - X-ray spectral microscopic analyzing method and photoelectric conversion type x-ray microscopic device - Google Patents

X-ray spectral microscopic analyzing method and photoelectric conversion type x-ray microscopic device Download PDF

Info

Publication number
JP2004294233A
JP2004294233A JP2003086139A JP2003086139A JP2004294233A JP 2004294233 A JP2004294233 A JP 2004294233A JP 2003086139 A JP2003086139 A JP 2003086139A JP 2003086139 A JP2003086139 A JP 2003086139A JP 2004294233 A JP2004294233 A JP 2004294233A
Authority
JP
Japan
Prior art keywords
absorption
ray
image
wavelength
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003086139A
Other languages
Japanese (ja)
Other versions
JP4145690B2 (en
Inventor
Kunio Shinohara
邦夫 篠原
Atsushi Ito
敦 伊藤
Sadao Fujii
貞夫 藤井
Fumihiko Oda
史彦 小田
Eiji Sato
栄治 佐藤
Akihiro Nakayama
章弘 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003086139A priority Critical patent/JP4145690B2/en
Publication of JP2004294233A publication Critical patent/JP2004294233A/en
Application granted granted Critical
Publication of JP4145690B2 publication Critical patent/JP4145690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray spectral microscopic analyzing method for precisely calculating the compositional distribution of a specimen, especially a physiological specimen constituted of low atomic weight elements. <P>SOLUTION: A specimen is irradiated with X rays using a photoelectric conversion type X-ray microscopic device while sweeping a wavelength to acquire an X-ray absorbing image at every wavelength and the absorption spectra of the designated part on the specimen at the time of measurement are synthesized to detect elements contained from an absorption terminal structure. A plurality of linear simultaneous equations, which are related to the difference between absorbances at wavelengths on both sides of the absorption terminals of the respective elements detected, the surface densities of the respective elements and the difference between absorption coefficients at respective wavelengths, are solved to calculate the proximity values of the surface densities of the respective elements and residual spectra are formed by subtracting the absorption spectra calculated from the surface density proximity values from absorption spectra at the time of measurement to detect new elements. The same plurality of linear simultaneous equations are formed with respect to all of elements detected and solved. Further, when the new elements can not be detected by calculating the surface density proximity the surface densities of the respective elements are set based on the final surface density proximity values. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、光電変換型X線顕微鏡装置を用いて試料の各所における構成元素の同定と定量をすることにより組成の分布を測定するX線分光顕微分析方法に関するものである。特に、生体試料等を対象とした微量構成元素の測定に関する。
【0002】
【従来の技術】
従来、微量元素の測定方法として、例えば特許文献1に開示されたようなX線吸収端を利用して元素の含有率を測定する方法があり、1〜数十ppmの硫黄の含有率を測定している。しかしながら、この開示方法は、硫黄など特定した既知元素のX線吸収端に相当するX線分光角位置にX線検知器を配置してX線吸収端前後の透過率を検出して両者の比を求めて含有率を測定するもので、予め決めた元素に適用するものであり、また、試料上の元素組成分布を測定することはできなかった。
【0003】
また、微量元素の分析方法として、蛍光X線分析法がある(例えば、特許文献2参照)。この方法はX線を試料に照射して、含有元素が発生する特性X線を検出することにより組成分析するものである。この方法は主に重金属元素の測定に適するものであり、生体内に存在するC,O,Nといった比較的軽い元素では蛍光X線の励起効率が低いため、測定に必要な精度を満たすことができず、原理的に不向きである。
【0004】
また、元素の吸収端付近の吸収の差分により元素の含有率を測定する方法として、吸収端両側の波長での吸収の差分を利用する方法が提案されている(例えば、非特許文献1参照)。この方法は、元素の含有率をその元素の吸収端両端での透過率の差から計算する。ある元素の吸収端について観察される短波長側の吸収率(T)と長波長側での吸収率(T)の比をT /Tとすると、これには他の構成元素の寄与もあるため、以下のように求められる。
【0005】
/T =exp[−(μCS −μCL)・ρ・x−(μ −μ )・ρ・x−(μ −μ )・ρ・x−…]
ここで、μCS,μCL,μ ,μ 等はそれぞれ炭素、窒素等の短波長側、長波長側での質量吸収係数を、ρ,ρ等はそれぞれ炭素、窒素等の密度を、また、xは領域の厚さを、表わす。
なお、ρ・xは面密度を表わし、この面密度が求める単位面積あたりの元素の含有量である。
【0006】
しかしながら、この方法では、上式で示されるように、ある元素の吸収端部分に含まれる他の元素による吸収の寄与が無視できず、当該元素の含有量の測定において測定精度が不足するものであった。特に、微量元素の測定においては、吸収端の存在すら観察できないという問題があった。
【0007】
さらに、従来、ある元素の吸収端部分に含まれる他の元素による吸収の寄与を取り除く試みとして、吸収端領域近傍の吸収微細構造(XANES)における波長を利用した分子分析がある。この方法は、いくつかの波長において求めた含有元素の元素量を未知数としてX線吸収の連立方程式を解く方法である。
たとえば、酸素O、窒素N、炭素C、カルシウムCaで構成される生体試料の元素の組成を求めるとすると、まず、各元素の吸収端の両側の波長におけるX線の吸収率を取得する。ある波長における入射および透過X線量をそれぞれI 、I、透過率をTとすると、透過率Tおよび吸収Aは、次のように表わすことができる。
【0008】
T=I/ I =exp[−(μρx+μρx+μρx+μCaρCax)
A=−lnT=μρx+μρx+μρx+μCaρCa
ここで、μは質量吸収係数を表わし、ρは密度を表わす。下付文字O,N,C,Caはそれぞれ酸素、窒素、炭素、カルシウムを示す。xは領域の厚さを表わし、ρxは面密度を表わす。すると、ρxは単位面積あたりの元素含有量となるので、この面密度が求める単位面積あたりの元素の含有量である。
次に、各元素の吸収端両端の吸収の差分A(dif)を、下のように表す。
【0009】
O吸収端:
(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρx+(μ Ca −μ Ca) ρCa
N吸収端:
(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρx+μ Ca −μ Ca) ρCa
C吸収端:
(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρx+(μ Ca −μ Ca) ρCa
Ca吸収端:
(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρx+(μ Ca −μ Ca) ρCa
ここで、μは含有元素の吸収端前後の波長λにおける質量吸収係数を示す。たとえば下付文字3がついたものは窒素の吸収端の短波長側波長、下付文字4がついたものはその長波長側波長における吸収係数である。上付文字O、N、C、Caはそれぞれ酸素、窒素、炭素、カルシウムを示す。
【0010】
上の4元連立方程式から、ρx、ρx、ρx、ρCa を求める。この方法では、分析の対象が既知の場合、すなわち、分子分析の場合は吸収微細構造に含まれる化学結合種が既知の場合、元素分析の場合は含有元素種が既知である場合などは、試料中の元素の含有量を精度よく求めることができる。たとえば、生物試料の場合、炭素、窒素、酸素、などの主要元素については定量が可能である。しかしながら、特に元素分析の場合は、そもそも未知の含有元素を求めることが目的となるのであるが、未知の微量元素についても分析するために予め予想される元素の全てを対象とした分析をするとすれば、常時、極めて多元の連立方程式を解かなければならなくなり、演算負荷が極めて大きくなって実用的でない。
【0011】
生体中の構成元素の測定方法としてゾーンプレートを用いた走査型X線顕微鏡装置を利用する場合は、生体内の主要元素すべての組成を測定するために波長掃引を2次元の範囲で行う必要がある。しかし、ゾ−ンプレート型X線顕微鏡装置では波長ごとに焦点距離が異なるため、2次元の範囲で測定することは、ゾーンプレートの位置調整および2次元の範囲の走査を行うために長時間を要し困難であった。
【0012】
【特許文献1】
特開2002−214162号公報
【特許文献2】
特開平8−122281号公報
【非特許文献1】
伊藤、篠原ら「電子ズーム管を用いた軟X線吸収スペクトルの測定とほ乳動物細胞の局部域における元素分析(Measurement of soft X−ray absorption spectra and elemental analysis in local regions of mammalian cells using an electronic zooming tube )」、顕微鏡学会誌(Journal of Microscopy), Vol..181, Pt 1, January 1966, pp.54−60
【0013】
【発明が解決しようとする課題】
そこで、本発明が解決しようとする課題は、含有元素に未知元素が含まれる場合でも試料、特に低原子量元素で構成される生体試料の組成分布を効率よくかつ精度よく算出する簡易なX線分光顕微分析方法および光電変換型X線顕微鏡装置を提供することである。
【0014】
【課題を解決するための手段】
上記課題を解決するため、本発明のX線分光顕微分析方法は、光電変換型X線顕微鏡装置において試料にX線を波長掃引して照射し波長ごとのX線吸収画像を取得して記憶し、得られたX線吸収画像から試料上の所定の位置において吸収スペクトルを合成し、この吸収スペクトルに基づいて元素の吸収端構造の有無を検出し、検出した各元素の吸収端構造の吸収端両側の波長における吸収率の差分を左辺とし前記検出した各元素の面密度を右辺の独立変数、それぞれの波長における質量吸収係数の差を各独立変数の係数とした多元1次連立方程式を立てて、この多元1次連立方程式を解くことにより前記各元素の面密度の近似値を求め、この面密度近似値を用いて各元素の吸収スペクトルの寄与分を算出し初めに求めた吸収スペクトルから差し引いて残余のスペクトルを形成し、この残余のスペクトルから、さらに新たな元素の吸収端構造の有無を検出し、新たな元素が検出できたときは、これまでに検出した全ての元素について上記と同様の多元1次連立方程式を立てて、これを解いて各元素の面密度の近似値を算出し、新たな元素が検出できなかったときは、先に求めた面密度近似値をもって試料上の所定位置における各元素の面密度とすることを特徴とする。
【0015】
本発明のX線分光顕微分析方法では光電変換型X線顕微鏡を使用する。光電変換型X線顕微鏡は、X線吸収像を電子線に変換して大きな倍率で拡大してCCD検出素子などで検出して画像化する。本発明の分析方法では、X線を波長掃引して試料に照射して形成したX線画像を記憶しておき、これらを用いて所定の部分を指定して各波長における吸収データを読み出して吸収スペクトルを生成する。したがって、本発明の分析方法によれば、大きく拡大した画像に基づいて試料上の特定の部分を正確に指定して分析することができる。位置の指定は簡単であるので、試料上の組成分布を求めることも容易である。
【0016】
本発明のX線分光顕微分析方法によれば、試料中の指定した部分における吸収スペクトルの形状から元素固有の吸収端を見つけ出して、その部分に含有される元素を同定し、同定された各元素の面密度を独立変数とし、それぞれの元素の吸収端両側の波長における吸収係数を係数として、検出された元素の数だけ独立変数を持った多元1次連立方程式を立て、これを解いて同定された各元素を定量する。
各元素の定量値を用いて、各元素ごとの吸収スペクトルを算出して、初めの吸収スペクトルから差し引いた残余の吸収スペクトルを算出すると、この残余の吸収スペクトルは、まだ同定されていない残りの元素の吸収スペクトルを表し、スケールを拡大すれば微少含有元素の吸収スペクトルの構造が見えるようになる。
【0017】
そこで、この残余の吸収スペクトルを観察して吸収端構造の有無を調べ、吸収端が存在すれば、その吸収端に対応する元素を新たに同定する。こうして同定された全ての元素を対象にして初めの吸収スペクトルのデータを用いた多元連立方程式を立てて解くことにより、各元素の同定をし直す。
この方法を用いて、たとえば炭素、酸素、窒素など必ず含まれる少数の元素から始めて、1個ずつ他の元素を検出しては連立方程式を立てて解くので、初めから存在の可能性がある全ての元素の数だけ独立変数を持った多元連立方程式を対象にする必要がなく、検出できた元素の数だけしか独立変数を持たない比較的少ない元数の多元1次連立方程式を解けば十分であるため、演算負荷は実用上に妥当な程度に小さい。
【0018】
なお、含有される可能性がある元素を選択して、それら元素の吸収端の両側の波長を指定し、それら指定波長におけるX線吸収データを選択して記憶し、その間欠的なデータにより吸収スペクトルを代表して分析計算を行うようにしてもよい。
分析に使用するX線吸収データは、含有される元素の吸収端両側のX線吸収だけである。したがって、記憶しておく吸収データが試料に含有される元素の吸収端両側の波長におけるX線吸収を含んでいれば分析に不都合はない。そこで、試料に含有されている可能性がある元素を選択して、それらの元素の吸収端前後の波長におけるデータだけを記録するようにすれば、記憶容量も小さくて済み、また分析に必要な演算量も格段に節減が可能である。
【0019】
また、上記課題を解決するため、本発明の光電変換型X線顕微鏡装置は分光分析用の演算処理装置を備えるもので、光電変換面に密着して設置した試料の背後から波長掃引したX線を照射して形成した電子像を電子イメージ拡大装置で拡大して画像検出部に結像させ、演算処理装置が画像検出部からX線吸収画像を掃引波長ごとに画像メモリに格納して、X線画像中の任意の位置が指定されると、指定された位置に対応する画像信号を必要な波長について取り出して、指定部分の測定X線吸収スペクトルとして合成する。
【0020】
演算処理装置は、さらに、測定X線吸収スペクトルに基づいて元素の吸収端構造の有無を検出し、検出された各元素の吸収端構造の吸収端両側の波長における吸収率の差分を左辺とし検出した各元素の面密度を右辺の変数とし両側波長における質量吸収係数の差を各右辺変数の係数とした多元連立方程式を立てて解くことにより各元素の面密度の近似値を求め、求めた面密度近似値を用いて各元素の吸収スペクトルの寄与分を算出し測定吸収スペクトルから差し引いて残余のスペクトルを形成し、残余スペクトルの形状からさらに新たな元素の吸収端構造の有無を検査する。
新たな元素が検出できたときは、これまでに検出した全ての元素について上記と同様の多元連立方程式を立てて解いて各元素の面密度の新しい近似値を算出し、新たな元素が検出できなかったときは、最後の面密度近似値をもって指定位置における各元素の面密度とすることを特徴とする。
【0021】
本発明の光電変換型X線顕微鏡装置を用いることにより、大きく拡大した画像に基づいて試料上の特定の部分を正確に指定して分析することができる。位置の指定は簡単であるので、試料上の組成分布を求めることも容易である。また、演算負荷も大きくなく、演算処理装置はパソコンを利用することもできる。さらに、低原子量元素から構成される生体試料について、元素の同定と定量が容易にできるようになる。
【0022】
【発明の実施の形態】
本発明のX線分光顕微分析方法を図示の実施の形態に基づいて詳細に説明する。
本実施例の方法は、試料を測定して得た吸収スペクトルに現れる吸収端構造に基づいて元素の含有を検出し、測定吸収スペクトルに基づいて、検出した元素に関する多元1次連立方程式を解いて元素の含有量を推定し、その含有量推定値を持った物質の吸収スペクトルを算定し測定吸収スペクトルから差し引いて残余スペクトルを求め、この残余スペクトルに現れる吸収端構造によって含有されるさらに別の元素を見いだす。
【0023】
さらに、測定吸収スペクトルに基づいて、それまでに検出した元素に関する多元連立方程式を立ててこれを解くことにより、含有する元素の含有量を推定し、上と同じ方法で残余スペクトルを生成してさらに別の元素の吸収端構造を探す。
この手順を繰り返して、新しい元素が見いだせなくなったときに最終的な推定値を物質に含まれた元素の含有量とする。
したがって、多元連立方程式の項数はそれまでに発見された元素の種類と同じ数になるので、項数は繰り返し演算に伴って徐々に増加するが、必要最小限に抑えられ、演算負荷は無駄に大きくなることがない。
【0024】
図1は本実施例に使用するX線顕微鏡装置を示す概念構成図である。図1のX線顕微鏡装置は、X線発生装置1と光電変換面2と電子イメージ拡大装置3と画像検出部4と演算処理装置5を備える。
X線発生装置1は、グレーティングや全反射ミラーなどにより適当な範囲内で波長掃引しながらX線を放射する。シンクロトロン放射光を利用してもよい。X線発生装置1から放射されるX線は、光電変換面2に照射する。
光電変換面2は支持膜の後ろに、たとえば、金薄膜とヨウ化セシウムやアンチモンセシウムの膜の2層構造体薄膜などの光電変換機能を有する光電変換膜が配置されている。支持膜の表面には測定対象の試料が密着貼付されていて、光電変換面2の上には試料が遮断した部分が陰となったX線像が形成される。光電変換面2は、X線が入射した位置で入射X線の強度に対応した量の光電子を表面に放出し、X線画像に対応した電子像を形成する。
【0025】
電子イメージ拡大装置3は、光電変換面2表面に発生する電子像からアノードで光電子を引き出して、対物レンズと投射レンズで像拡大して、所定の距離にある面状の画像検出部4に拡大電子像として投射する。
画像検出部4は、電子像を可視像化する機能素子で、たとえば、マイクロチャンネルプレート(MCP)とその後方に設けられた蛍光面で構成して人が観察できる可視像にしたり、さらに、蛍光面の後方に設けられたリレーレンズを内蔵する光学系とCCDカメラにより電気信号化することができる。
【0026】
画像検出部4で電気信号化された画像信号は適当な画像処理を施すことにより測定の目的に適った画像としてモニター上に表示すると共に、演算処理装置5に送られ、ここで分析処理が行われる。
演算処理装置5は、画像検出部4で形成されるX線吸収像の画素に対応した画像メモリを多数備えていて、各波長ごとにX線吸収画像を濃淡像として記憶することができる。
【0027】
画像メモリに記憶させるX線吸収像は、波長刻みが小さいほど情報量が大きく後の演算における自由度が大きくなるが、メモリ容量が大量に必要となる。本発明の分析方法による含有元素の同定および定量には、含有される元素の吸収端前後の波長におけるデータを利用し、それ以外は使わない。
したがって、試料に含有される可能性がある元素が決まっている場合は、それら元素の吸収端前後の予め決められた波長における吸収像を記憶させておけば十分である。そこで、実際の分析装置では、検出可能性がある元素に係る波長におけるX線吸収像のみを記憶させることにより装置の簡素化と演算の簡略化を図ることができる。
【0028】
図2は、生体を構成する主な元素について、その吸収端の波長と、吸収端の両側で分析に用いる波長の例をリストした表である。たとえば窒素は3.099nmの位置に吸収端があり、分析のため吸収端前後の3.0nmと3.15nmにおける吸収率の差を利用することができる。また、炭素は4.368nmに吸収端があり、たとえば4.25nmと4.45nmにおける吸収率を分析に利用すればよい。
【0029】
図3は、演算処理装置5による分析手順を示すフロー図である。
X線分光顕微分析を行うときは、まずループ演算回数を表すパラメータiをリセットする(S1)。次に、オペレータがモニタを介して分析対象とする部分を指定すると、指定した部分に対応する画像メモリ上のピクセル位置のデータを読み出し、波長を独立変数とする第0次の吸収スペクトルを生成する(S2)。第0次スペクトルは、試料について観測された元のX線吸収スペクトルである。
吸収スペクトルは、波長を適当に密な間隔で取って生成してもよいが、上で述べたように、分析に使用する波長にのみ注目して他の波長を無視したスペクトルであってもよい。
【0030】
図4は、簡単化したモデル物質について作成した第0次吸収スペクトル図である。図4の吸収スペクトルは、試料に炭素、酸素、窒素、カルシウム、および鉄しか含まれず、炭素、酸素、窒素の面密度が共に1×10−6g/cm、カルシウムが1×10−7g/cm、鉄が1×10−8g/cmであるときを示す。吸収スペクトルは、それぞれの元素の吸収端両側の波長における吸収率のみを示している。矢印はそれぞれの吸収端の波長位置、グラフ中の黒点は分析計算に用いる波長における吸収を示す。
【0031】
このような第0次吸収スペクトルを観察することにより、吸収端構造の有無を判定する(S3)。図4では、酸素O、窒素N、炭素Cしか明らかな吸収端構造を表していない。そこで、ループ演算回数iを歩進して1とし(S4)、新しく同定した元素種(初めはO,N,C)を追加し、これまでに同定された元素数をNi(ここでは3)とする(S5)。
【0032】
そして、第0次吸収スペクトルのデータを用いて、同定した各元素の吸収端両側の波長における試料全体によるX線吸収の差分A(dif)(aは同定した元素を表す。)を算出して左辺に置き、右辺にはそれぞれの元素jが吸収端両側の波長kにおいて示す質量吸収係数μ の吸収端両側同士の差分を係数とし面密度ρxを変数としたNi元の1次方程式をNi個生成してNi元連立方程式とし、この連立方程式を解いて各元素の面密度を求める(S6)。
【0033】
図4の例ではO,N,Cの3個の元素が同定されているから、下の3元1次連立方程式となる。
O吸収端両側:
(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρ
N吸収端両側:
(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρ
C吸収端両側:
(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρ
3元連立方程式は比較的簡単に解けて、各元素の面密度が第1近似値として求まる。
【0034】
次に、これら同定された元素が第i次近似値として求めた面密度を有するとしたときに呈するはずのX線吸収スペクトルを算出して、第i次吸収スペクトルとする(S7)。
実験で得られた第0次吸収スペクトルから第i次吸収スペクトルを差し引いて、差分スペクトルを生成する(S8)。
図5は、図4の例において第0次吸収スペクトルから第1次吸収スペクトルを差し引いて生成された差分スペクトルを示すものである。縦軸のスケールは10倍に拡大されている。
【0035】
差分スペクトルのパターンから吸収端構造の存比を判定する(S3)。吸収端の形状は顕著であるので、パターン認識により機械的に決定することができる。なお、差分スペクトルをモニタに表示して、オペレータがこれを観察して判断するようにしてもよい。
図5には、カルシウムの吸収端構造が明確に浮かび出ていて、容易に同定することができる。
【0036】
新たに同定できる元素があったときは、さらに新しく同定された元素の吸収端両側波長について各元素のデータを取得して、先と同様にS4からS8まで歩進し、これまでに同定された全ての元素数Ni個のNi元方程式からなる連立方程式を立ててこれを解き、各元素の面密度の第i近似値を求めて、最後にS3に戻る。
【0037】
図4の例では、図5の差分スペクトルからカルシウムの存在が明確になったので、第0次吸収スペクトルに基づいて、下の4元1次連立方程式が立てられる。O吸収端両側:
(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρx+(μ Ca −μ Ca) ρCa
N吸収端両側:
(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρx+(μ Ca −μ Ca) ρCa
C吸収端両側:
(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρx+(μ Ca −μ Ca) ρCa
Ca吸収端両側:
Ca(dif)=(μ −μ ) ρx+(μ −μ ) ρx+(μ −μ ) ρx+(μ Ca −μ Ca) ρCa
この4元連立方程式を解くことによって、4個の元素について面密度の第2近似値が得られる。
【0038】
さらに、第2近似値を用いて求めた第2次吸収スペクトルを第0次吸収スペクトルから差し引いて求めた差分スペクトルから最後の鉄の吸収端構造が見いだされるので、第0次吸収スペクトルに基づいて5個の元素について5元1次連立方程式を生成して解いて、5個の元素について面密度の第3近似値を算定する。
この手続を差分スペクトルにおいて吸収端が観察されなくなるまで繰り返す。
【0039】
差分スペクトルに吸収端構造が観察できなかったときには、既に同定された元素以外には顕著な元素が含まれないとして、最後に求めた第i次近似値をもってそれぞれの面密度の測定値とする(S9)。
本方法によって求めた面密度は元素量に対応するので、各元素の相対的な重量比を知ることができる。また、試料の厚さを別の手法で求めることができれば、面密度を厚さで割ることにより密度を求めることが可能である。
本実施例の方法を用いることにより、未知試料に含まれる元素を最小限の項数を持った多元連立方程式を解くことにより、正確に検出し面密度として元素量を求めることができる。したがって、試料に含まれる各元素の相対的な重量比を知ることができる。
【0040】
この方法は、拡大倍率の高いX線吸収画像を生成する光電変換型X線顕微鏡装置を用いるので、試料の部分を正確に指定して成分分析することができる。また、X線吸収画像中に任意の位置を選択して分析することにより未知試料に含まれる元素の2次元分布を明らかにすることができる。
光電変換型X線顕微鏡は生体試料を取り扱うこともできるので、特に生体試料について対象部分を特定して比較的軽い元素を定量することができる。微量な軽元素の検出には他に適当な手法がないので、本発明の手法は特に有用である。
【0041】
さらに、本実施例の方法によれば、一旦X線画像を生成した後は、分析する部分は何度でも任意に指定し直して結果を得ることができる。
なお、上記説明では、技術上の概念を分かり易く説明するために、画像メモリから読み出したデータに基づいて吸収スペクトルを合成するとしたが、実際の構成では各演算に必要なデータのみを抽出すれば足りて、連続したスペクトルとして扱う必要がないことはいうまでもない。
【0042】
【発明の効果】
以上説明したように、本発明のX線分光顕微分析方法および光電変換型X線顕微鏡装置によって、含有元素に未知元素が含まれる場合でも試料、特に低原子量元素で構成される生体試料の組成分布を効率よくかつ精度よく算出することができる。
【図面の簡単な説明】
【図1】本発明の1実施例に使用するX線顕微鏡装置を示す概念構成図である。
【図2】生体を構成する主な元素について吸収端と分析に用いる波長をリストした表である。
【図3】本実施例における分析の演算処理を示すフロー図である。
【図4】簡単化したモデル物質の吸収スペクトル図である。
【図5】本実施例で使用する差分スペクトルの例を示す図面である。
【符号の説明】
1 X線発生装置
2 光電変換面
3 電子イメージ拡大装置
4 画像検出部
5 演算処理装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an X-ray spectroscopic microanalysis method for measuring a composition distribution by identifying and quantifying constituent elements at various points of a sample using a photoelectric conversion type X-ray microscope apparatus. In particular, it relates to the measurement of trace constituent elements in biological samples and the like.
[0002]
[Prior art]
Conventionally, as a method for measuring trace elements, there is a method of measuring the content of elements using an X-ray absorption edge as disclosed in Patent Document 1, for example, measuring the sulfur content of 1 to several tens ppm. are doing. However, according to this disclosed method, an X-ray detector is arranged at an X-ray spectral angle position corresponding to the X-ray absorption edge of a specified known element such as sulfur, the transmittance before and after the X-ray absorption edge is detected, and the ratio between the two is detected. Is determined by measuring the content rate, and is applied to a predetermined element, and the elemental composition distribution on the sample cannot be measured.
[0003]
As a method for analyzing trace elements, there is a fluorescent X-ray analysis method (for example, see Patent Document 2). In this method, a sample is irradiated with X-rays, and composition analysis is performed by detecting characteristic X-rays that generate contained elements. This method is mainly suitable for the measurement of heavy metal elements. Since relatively light elements such as C, O, and N existing in a living body have low excitation efficiency of fluorescent X-rays, they can satisfy the accuracy required for the measurement. It cannot be done and is not suitable in principle.
[0004]
As a method for measuring the content of an element based on the difference in absorption near the absorption edge of an element, a method using the difference in absorption at wavelengths on both sides of the absorption edge has been proposed (for example, see Non-Patent Document 1). . In this method, the content of an element is calculated from the difference in transmittance at both ends of the absorption edge of the element. Absorbance on the short wavelength side observed for the absorption edge of an element (TS) And the absorptance (TL) To TS  / TLThen, since this also has the contribution of other constituent elements, it is obtained as follows.
[0005]
TS  / TL = Exp [-(μCS −μCL) ・ ΡCX- (μN S −μN L) ・ ΡNX- (μO S −μO L) ・ ΡO・ X -...]
Where μCS, ΜCL, ΜN S, ΜN L Are the mass absorption coefficients on the short wavelength side and long wavelength side of carbon and nitrogen, respectively, ρC, ΡNEtc. represent the density of carbon, nitrogen, etc., respectively, and x represents the thickness of the region.
Here, ρ · x represents the surface density, and this surface density is the content of the element per unit area required.
[0006]
However, in this method, as shown by the above equation, the contribution of absorption by another element contained in the absorption edge portion of a certain element cannot be ignored, and the measurement accuracy is insufficient in measuring the content of the element. there were. In particular, in the measurement of trace elements, there was a problem that even the presence of the absorption edge could not be observed.
[0007]
Further, conventionally, as an attempt to remove the contribution of absorption by another element contained in the absorption edge portion of a certain element, there is molecular analysis using a wavelength in an absorption fine structure (XANES) near the absorption edge region. This method is a method of solving simultaneous equations of X-ray absorption with the element amounts of contained elements obtained at several wavelengths as unknowns.
For example, assuming that the composition of an element of a biological sample composed of oxygen O, nitrogen N, carbon C, and calcium Ca is to be obtained, first, the X-ray absorptivity at wavelengths on both sides of the absorption edge of each element is obtained. The incident and transmitted X-ray doses at a certain wavelength0 , I, and the transmittance T, the transmittance T and the absorption A can be expressed as follows.
[0008]
T = I / I0 = Exp [-(μOρOx + μNρNx + μCρCx + μCaρCax)
A = -lnT = μOρOx + μNρNx + μCρCx + μCaρCax
Here, μ represents the mass absorption coefficient, and ρ represents the density. The subscripts O, N, C, and Ca indicate oxygen, nitrogen, carbon, and calcium, respectively. x represents the thickness of the region, and ρx represents the areal density. Then, since ρx is the element content per unit area, this surface density is the content of the element per unit area to be obtained.
Next, the difference A (dif) of absorption at both ends of the absorption edge of each element is expressed as below.
[0009]
O absorption edge:
Ao(Dif) = (μ1 O−μ2 O) ΡOx + (μ1 N−μ2 N) ΡNx + (μ1 C−μ2 C) ΡCx + (μ1 Ca−μ2 Ca) ΡCax
N absorption edge:
AN(Dif) = (μ3 O−μ4 O) ΡOx + (μ3 N−μ4 N) ΡNx + (μ3 C−μ4 C) ΡCx + μ3 Ca−μ4 Ca) ΡCax
C absorption edge:
Ao(Dif) = (μ5 O−μ6 O) ΡOx + (μ5 N−μ6 N) ΡNx + (μ5 C−μ6 C) ΡCx + (μ5 Ca−μ6 Ca) ΡCax
Ca absorption edge:
Ao(Dif) = (μ7 O−μ8 O) ΡOx + (μ7 N−μ8 N) ΡNx + (μ7 C−μ8 C) ΡCx + (μ7 Ca−μ8 Ca) ΡCax
Where μiIs the wavelength λ before and after the absorption edge of the contained elementiShows the mass absorption coefficient at. For example, the subscript 3 indicates the shorter wavelength of the absorption edge of nitrogen, and the subscript 4 indicates the absorption coefficient at the longer wavelength. Superscripts O, N, C, and Ca indicate oxygen, nitrogen, carbon, and calcium, respectively.
[0010]
From the above four system of equations, ρOx, ρNx, ρCx, ρCax Ask for. In this method, if the target of analysis is known, that is, if the chemical bond species contained in the absorption fine structure is known in the case of molecular analysis, or if the contained element type is known in the case of elemental analysis, the sample is used. The content of the element in can be determined with high accuracy. For example, in the case of a biological sample, the main elements such as carbon, nitrogen, and oxygen can be quantified. However, in the case of elemental analysis, in particular, the purpose is to determine the unknown contained elements in the first place.However, in order to analyze unknown trace elements, it is necessary to analyze all expected elements in advance. For example, it is always necessary to solve a system of equations that are extremely multi-dimensional, and the calculation load becomes extremely large, which is not practical.
[0011]
When using a scanning X-ray microscope using a zone plate as a method for measuring constituent elements in a living body, it is necessary to perform a wavelength sweep in a two-dimensional range in order to measure the composition of all the main elements in the living body. is there. However, in a zone plate type X-ray microscope apparatus, since the focal length differs for each wavelength, measuring in a two-dimensional range requires a long time to adjust the position of the zone plate and scan the two-dimensional range. It was necessary and difficult.
[0012]
[Patent Document 1]
JP 2002-214162 A
[Patent Document 2]
JP-A-8-122281
[Non-patent document 1]
Ito, Shinohara et al. "Measurement of soft X-ray absorption spectroscopy and elemental analysis analysis in soft x-ray absorption spectrum using an electronic zoom tube and elemental analysis in radiation analysis tube) ", Journal of Microscopy, Vol. . 181, Pt 1, January 1966, pp. 54-60
[0013]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is to provide a simple X-ray spectroscopy for efficiently and accurately calculating the composition distribution of a sample, particularly a biological sample composed of low atomic weight elements, even when the contained element contains an unknown element. An object of the present invention is to provide a microscopic analysis method and a photoelectric conversion type X-ray microscope device.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, an X-ray spectroscopic microscopic analysis method of the present invention uses a photoelectric conversion type X-ray microscope apparatus to sweep and irradiate a sample with X-rays at a wavelength to acquire and store an X-ray absorption image for each wavelength. An absorption spectrum is synthesized at a predetermined position on the sample from the obtained X-ray absorption image, the presence or absence of an absorption edge structure of an element is detected based on the absorption spectrum, and the absorption edge of the detected absorption edge structure of each element is detected. A multi-dimensional linear simultaneous equation is established in which the difference between the absorptivity at both wavelengths is the left side, the areal density of each detected element is the independent variable on the right side, and the difference between the mass absorption coefficients at each wavelength is the coefficient of each independent variable. An approximate value of the areal density of each element is obtained by solving the system of linear equations, and the contribution of the absorption spectrum of each element is calculated using the approximate value of the areal density. Subtract to form a residual spectrum, and from this residual spectrum, detect the presence or absence of the absorption edge structure of a new element.If a new element can be detected, the above is applied to all the elements detected so far. A similar multi-dimensional linear simultaneous equation is set up and solved to calculate an approximate value of the areal density of each element. When a new element cannot be detected, the approximate density of the previously obtained area density is used on the sample. It is characterized by the areal density of each element at a predetermined position.
[0015]
In the X-ray spectroscopic microscopic analysis method of the present invention, a photoelectric conversion type X-ray microscope is used. The photoelectric conversion type X-ray microscope converts an X-ray absorption image into an electron beam, enlarges the image at a large magnification, detects the image with a CCD detection element or the like, and forms an image. In the analysis method of the present invention, an X-ray image formed by irradiating a sample by X-ray wavelength sweeping is stored, and a predetermined portion is designated using these to read out the absorption data at each wavelength to absorb the X-ray. Generate a spectrum. Therefore, according to the analysis method of the present invention, a specific portion on a sample can be accurately specified and analyzed based on a greatly enlarged image. Since the designation of the position is simple, it is easy to obtain the composition distribution on the sample.
[0016]
According to the X-ray spectroscopic microscopic analysis method of the present invention, an absorption edge peculiar to an element is found from a shape of an absorption spectrum at a designated portion in a sample, elements contained in the portion are identified, and each identified element is identified. The surface density of each element as an independent variable, the coefficient of absorption at the wavelength on both sides of the absorption edge of each element is used as a coefficient, and a multi-dimensional linear simultaneous equation with independent variables is established for the number of detected elements. Quantified each element.
Using the quantitative value of each element, calculate the absorption spectrum of each element, and calculate the remaining absorption spectrum subtracted from the initial absorption spectrum, the remaining absorption spectrum is the remaining element that has not been identified yet When the scale is enlarged, the structure of the absorption spectrum of the minutely contained element becomes visible.
[0017]
Therefore, the presence or absence of an absorption edge structure is examined by observing the remaining absorption spectrum, and if an absorption edge exists, an element corresponding to the absorption edge is newly identified. The identification of each element is re-established by setting up and solving a multiple simultaneous equation using the data of the first absorption spectrum for all the elements thus identified.
By using this method, starting with a small number of elements, such as carbon, oxygen, and nitrogen, which are always included, detecting other elements one by one, and solving a simultaneous equation, all possible elements can be found from the beginning. It is not necessary to target multiple simultaneous equations having independent variables as many as the number of elements, and it is sufficient to solve a multiple linear simultaneous equation with a relatively small number of elements having only independent variables as many as the detected elements. Therefore, the calculation load is small enough to be practically appropriate.
[0018]
In addition, select the elements that may be contained, specify the wavelengths on both sides of the absorption edge of those elements, select and store the X-ray absorption data at those specified wavelengths, and use the intermittent data to absorb the data. The analysis calculation may be performed on behalf of the spectrum.
The X-ray absorption data used for the analysis is only the X-ray absorption on both sides of the absorption edge of the contained element. Therefore, there is no inconvenience in the analysis if the stored absorption data includes X-ray absorption at the wavelengths on both sides of the absorption edge of the element contained in the sample. Therefore, by selecting elements that may be contained in the sample and recording only data at the wavelengths before and after the absorption edge of those elements, the storage capacity can be reduced and the analysis can be performed in The amount of calculation can be remarkably reduced.
[0019]
Further, in order to solve the above-mentioned problems, the photoelectric conversion type X-ray microscope apparatus of the present invention includes an arithmetic processing unit for spectroscopic analysis, and the X-rays wavelength-swept from behind a sample placed in close contact with the photoelectric conversion surface. The electronic image formed by irradiating the image is magnified by an electronic image magnifying device to form an image on an image detecting unit, and the arithmetic processing unit stores an X-ray absorption image from the image detecting unit in an image memory for each sweep wavelength, When an arbitrary position in the line image is designated, an image signal corresponding to the designated position is extracted for a necessary wavelength and synthesized as a measured X-ray absorption spectrum of the designated portion.
[0020]
The arithmetic processing unit further detects the presence or absence of an absorption edge structure of the element based on the measured X-ray absorption spectrum, and detects the difference between the absorptance at the wavelength on both sides of the absorption edge of the detected absorption edge structure of each element as the left side. The approximate value of the areal density of each element was obtained by solving a multiple simultaneous equation using the areal density of each element as a variable on the right-hand side and the difference of the mass absorption coefficient at both wavelengths as the coefficient of each right-hand side variable. The contribution of the absorption spectrum of each element is calculated using the density approximation, and the remaining spectrum is formed by subtracting the contribution from the measured absorption spectrum, and the shape of the residual spectrum is used to check for the presence or absence of a new element absorption edge structure.
When a new element can be detected, a new approximate value of the areal density of each element is calculated by solving the same multiple-element simultaneous equation for all the elements detected so far, and the new element can be detected. When there is no, the last area density approximate value is used as the area density of each element at the designated position.
[0021]
By using the photoelectric conversion type X-ray microscope apparatus of the present invention, a specific portion on a sample can be accurately specified and analyzed based on a greatly enlarged image. Since the designation of the position is simple, it is easy to obtain the composition distribution on the sample. In addition, the calculation load is not large, and the calculation processing device can use a personal computer. Furthermore, the identification and quantification of elements can be easily performed on a biological sample composed of low atomic weight elements.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The X-ray spectroscopic microscopic analysis method of the present invention will be described in detail based on the illustrated embodiment.
The method of this embodiment detects the content of an element based on the absorption edge structure appearing in an absorption spectrum obtained by measuring a sample, and solves a multiple linear system of equations relating to the detected element based on the measured absorption spectrum. Estimate the content of the element, calculate the absorption spectrum of the substance with the estimated value of the content, subtract from the measured absorption spectrum to obtain a residual spectrum, and further elements contained by the absorption edge structure appearing in this residual spectrum Find out.
[0023]
Furthermore, based on the measured absorption spectrum, a multiple simultaneous equation for the elements detected so far is established and solved, thereby estimating the content of the contained elements, generating a residual spectrum in the same manner as above, and further generating a residual spectrum. Find the absorption edge structure of another element.
This procedure is repeated, and when a new element can no longer be found, the final estimate is the content of the element contained in the substance.
Therefore, the number of terms in the system of equations is the same as the number of element types discovered so far, and the number of terms gradually increases with repetitive operations. Does not become large.
[0024]
FIG. 1 is a conceptual configuration diagram showing an X-ray microscope device used in the present embodiment. The X-ray microscope device of FIG. 1 includes an X-ray generation device 1, a photoelectric conversion surface 2, an electronic image enlargement device 3, an image detection unit 4, and an arithmetic processing device 5.
The X-ray generator 1 emits X-rays while sweeping the wavelength within an appropriate range using a grating, a total reflection mirror, or the like. Synchrotron radiation may be used. X-rays emitted from the X-ray generator 1 irradiate the photoelectric conversion surface 2.
In the photoelectric conversion surface 2, a photoelectric conversion film having a photoelectric conversion function such as a two-layer structure thin film of a gold thin film and a film of cesium iodide or antimony cesium is disposed behind the support film. A sample to be measured is closely adhered to the surface of the support film, and an X-ray image is formed on the photoelectric conversion surface 2 with a portion where the sample is blocked being shaded. The photoelectric conversion surface 2 emits an amount of photoelectrons corresponding to the intensity of the incident X-ray to the surface at the position where the X-ray is incident, and forms an electron image corresponding to the X-ray image.
[0025]
The electronic image enlargement device 3 extracts photoelectrons from an electron image generated on the surface of the photoelectric conversion surface 2 by an anode, enlarges the image by an objective lens and a projection lens, and enlarges the image to a planar image detection unit 4 at a predetermined distance. Project as an electronic image.
The image detecting section 4 is a functional element for visualizing an electronic image, and is constituted by, for example, a microchannel plate (MCP) and a fluorescent screen provided behind the microchannel plate (MCP) to provide a visible image that can be observed by a person. An electrical signal can be generated by an optical system having a built-in relay lens provided behind the fluorescent screen and a CCD camera.
[0026]
The image signal converted into an electric signal by the image detection unit 4 is displayed on a monitor as an image suitable for the purpose of measurement by performing appropriate image processing, and is also sent to the arithmetic processing unit 5, where the analysis processing is performed. Is
The arithmetic processing unit 5 includes a large number of image memories corresponding to the pixels of the X-ray absorption image formed by the image detection unit 4, and can store the X-ray absorption image for each wavelength as a grayscale image.
[0027]
The X-ray absorption image stored in the image memory has a larger amount of information as the wavelength increment is smaller, and thus has a greater degree of freedom in subsequent calculations, but requires a large memory capacity. For identification and quantification of contained elements by the analysis method of the present invention, data at wavelengths before and after the absorption edge of contained elements are used, and the others are not used.
Therefore, when elements that may be contained in the sample are determined, it is sufficient to store absorption images at predetermined wavelengths before and after the absorption edge of those elements. Therefore, in an actual analyzer, by storing only an X-ray absorption image at a wavelength relating to an element that can be detected, simplification of the apparatus and simplification of calculation can be achieved.
[0028]
FIG. 2 is a table listing examples of wavelengths at the absorption edge and wavelengths used for analysis on both sides of the absorption edge for main elements constituting the living body. For example, nitrogen has an absorption edge at a position of 3.099 nm, and the difference between the absorption rates at 3.0 nm and 3.15 nm before and after the absorption edge can be used for analysis. In addition, carbon has an absorption edge at 4.368 nm. For example, the absorption rates at 4.25 nm and 4.45 nm may be used for analysis.
[0029]
FIG. 3 is a flowchart illustrating an analysis procedure performed by the arithmetic processing unit 5.
When performing X-ray spectroscopic microscopic analysis, first, a parameter i representing the number of loop calculations is reset (S1). Next, when the operator specifies a portion to be analyzed via the monitor, data of a pixel position on the image memory corresponding to the specified portion is read, and a zero-order absorption spectrum having wavelength as an independent variable is generated. (S2). The 0th order spectrum is the original X-ray absorption spectrum observed for the sample.
The absorption spectrum may be generated by taking wavelengths at appropriately dense intervals, or, as described above, may be a spectrum that focuses only on the wavelength used for analysis and ignores other wavelengths. .
[0030]
FIG. 4 is a 0th-order absorption spectrum diagram created for the simplified model substance. The absorption spectrum of FIG. 4 shows that the sample contains only carbon, oxygen, nitrogen, calcium, and iron, and the areal densities of carbon, oxygen, and nitrogen are both 1 × 10-6g / cm2, Calcium is 1 × 10-7g / cm21 × 10 iron-8g / cm2Indicates when. The absorption spectrum shows only the absorptance at the wavelength on both sides of the absorption edge of each element. The arrows indicate the wavelength positions of the respective absorption edges, and the black dots in the graph indicate the absorption at the wavelength used for the analysis calculation.
[0031]
By observing such a zero-order absorption spectrum, the presence or absence of an absorption edge structure is determined (S3). In FIG. 4, only oxygen O, nitrogen N, and carbon C show an obvious absorption edge structure. Therefore, the number i of loop operations is incremented to 1 (S4), the newly identified element type (initially O, N, C) is added, and the number of elements identified so far is Ni (here, 3). (S5).
[0032]
Then, using the data of the 0th-order absorption spectrum, the difference A of the X-ray absorption by the entire sample at the wavelengths on both sides of the absorption edge of each element identified.a(Dif) (a represents the identified element) is calculated and placed on the left side, and on the right side is the mass absorption coefficient μ of each element j at the wavelength k on both sides of the absorption edge.k jArea difference ρ using the difference between the absorption edges on both sides as a coefficientjNi primary linear equations with x as a variable are generated as Ni linear simultaneous equations, and the simultaneous equations are solved to obtain the areal density of each element (S6).
[0033]
In the example of FIG. 4, since three elements O, N, and C have been identified, the following three-dimensional linear simultaneous equation is obtained.
O absorption edge both sides:
Ao(Dif) = (μ1 O−μ2 O) ΡOx + (μ1 N−μ2 N) ΡNx + (μ1 C−μ2 C) ΡCx
N absorption edge both sides:
AN(Dif) = (μ3 O−μ4 O) ΡOx + (μ3 N−μ4 N) ΡNx + (μ3 C−μ4 C) ΡCx
Both sides of C absorption end:
Ao(Dif) = (μ5 O−μ6 O) ΡOx + (μ5 N−μ6 N) ΡNx + (μ5 C−μ6 C) ΡCx
The ternary simultaneous equation can be solved relatively easily, and the areal density of each element is obtained as a first approximate value.
[0034]
Next, an X-ray absorption spectrum that should be exhibited when these identified elements have the areal density determined as the i-th approximate value is calculated, and is set as the i-th absorption spectrum (S7).
A difference spectrum is generated by subtracting the i-th absorption spectrum from the zero-order absorption spectrum obtained in the experiment (S8).
FIG. 5 shows a difference spectrum generated by subtracting the first-order absorption spectrum from the zero-order absorption spectrum in the example of FIG. The scale of the vertical axis is magnified 10 times.
[0035]
The existence ratio of the absorption edge structure is determined from the pattern of the difference spectrum (S3). Since the shape of the absorption edge is remarkable, it can be determined mechanically by pattern recognition. The difference spectrum may be displayed on a monitor, and the operator may observe and determine the difference spectrum.
FIG. 5 clearly shows the absorption edge structure of calcium, and can be easily identified.
[0036]
When there is an element that can be newly identified, data of each element is acquired for the wavelengths on both sides of the absorption edge of the newly identified element, and the steps from S4 to S8 are performed in the same manner as above, and the identification has been performed so far. A simultaneous equation composed of Ni elemental equations for all elements of Ni is set up and solved, an i-th approximate value of the areal density of each element is obtained, and finally the process returns to S3.
[0037]
In the example of FIG. 4, since the presence of calcium has been clarified from the difference spectrum of FIG. 5, the following quaternary linear simultaneous equation is established based on the 0th-order absorption spectrum. O absorption edge both sides:
Ao(Dif) = (μ1 O−μ2 O) ΡOx + (μ1 N−μ2 N) ΡNx + (μ1 C−μ2 C) ΡCx + (μ1 Ca−μ2 Ca) ΡCax
N absorption edge both sides:
AN(Dif) = (μ3 O−μ4 O) ΡOx + (μ3 N−μ4 N) ΡNx + (μ3 C−μ4 C) ΡCx + (μ3 Ca−μ4 Ca) ΡCax
Both sides of C absorption end:
Ao(Dif) = (μ5 O−μ6 O) ΡOx + (μ5 N−μ6 N) ΡNx + (μ5 C−μ6 C) ΡCx + (μ5 Ca−μ6 Ca) ΡCax
Ca absorption edge both sides:
ACa(Dif) = (μ7 O−μ8 O) ΡOx + (μ7 N−μ8 N) ΡNx + (μ7 C−μ8 C) ΡCx + (μ7 Ca−μ8 Ca) ΡCax
By solving this quaternary simultaneous equation, a second approximate value of the areal density is obtained for the four elements.
[0038]
Further, since the last absorption edge structure of iron is found from the difference spectrum obtained by subtracting the secondary absorption spectrum obtained using the second approximation from the zeroth absorption spectrum, the iron absorption edge structure is obtained based on the zeroth absorption spectrum. A five-element linear simultaneous equation is generated and solved for the five elements, and a third approximate value of the areal density is calculated for the five elements.
This procedure is repeated until no absorption edge is observed in the difference spectrum.
[0039]
When the absorption edge structure cannot be observed in the difference spectrum, it is determined that no remarkable element is contained other than the already identified element, and the i-th approximate value obtained last is used as the measured value of each area density ( S9).
Since the areal density obtained by this method corresponds to the amount of the element, the relative weight ratio of each element can be known. If the thickness of the sample can be obtained by another method, the density can be obtained by dividing the surface density by the thickness.
By using the method of this embodiment, the elements contained in the unknown sample can be accurately detected by solving a multiple simultaneous equation having a minimum number of terms, and the element amount can be obtained as the areal density. Therefore, the relative weight ratio of each element contained in the sample can be known.
[0040]
Since this method uses a photoelectric conversion type X-ray microscope apparatus that generates an X-ray absorption image with a high magnification, it is possible to accurately specify a sample portion and perform component analysis. Further, by selecting and analyzing an arbitrary position in the X-ray absorption image, the two-dimensional distribution of elements contained in the unknown sample can be clarified.
Since the photoelectric conversion type X-ray microscope can also handle a biological sample, a relatively light element can be quantified particularly by specifying a target portion of the biological sample. The technique of the present invention is particularly useful because there is no other suitable technique for detecting trace light elements.
[0041]
Further, according to the method of the present embodiment, once the X-ray image is generated, the part to be analyzed can be arbitrarily specified again and again to obtain a result.
In the above description, in order to explain the technical concept in an easy-to-understand manner, the absorption spectrum is synthesized based on the data read from the image memory. However, in an actual configuration, only the data necessary for each operation is extracted. Needless to say, it is not necessary to treat it as a continuous spectrum.
[0042]
【The invention's effect】
As described above, the composition distribution of a sample, particularly a biological sample composed of a low atomic weight element, even when an unknown element is contained, by the X-ray spectroscopic microscopic analysis method and the photoelectric conversion type X-ray microscope apparatus of the present invention. Can be calculated efficiently and accurately.
[Brief description of the drawings]
FIG. 1 is a conceptual configuration diagram showing an X-ray microscope device used in one embodiment of the present invention.
FIG. 2 is a table listing absorption edges and wavelengths used for analysis of main elements constituting the living body.
FIG. 3 is a flowchart showing an analysis calculation process in the embodiment.
FIG. 4 is a simplified absorption spectrum diagram of a model substance.
FIG. 5 is a diagram illustrating an example of a difference spectrum used in the present embodiment.
[Explanation of symbols]
1 X-ray generator
2 Photoelectric conversion surface
3 Electronic image magnifier
4 Image detector
5 Arithmetic processing unit

Claims (5)

光電変換型X線顕微鏡装置において、試料にX線を波長掃引して照射し波長ごとのX線吸収画像を取得して記憶し、得られたX線吸収画像から試料上の所定の位置において吸収スペクトルを合成し、該合成した吸収スペクトルに基づいて元素の吸収端構造の有無を検出し、検出した各元素の吸収端構造の吸収端両側の波長における吸収率の差分を左辺とし前記検出した各元素の面密度を右辺の変数、それぞれの波長における質量吸収係数の差を各右辺変数の係数とした多元連立方程式を立てて、該多元連立方程式を解くことにより前記各元素の面密度の近似値を求め、該面密度近似値を用いて各元素の吸収スペクトルの寄与分を算出し前記合成した吸収スペクトルから差し引いて残余のスペクトルを形成し、該残余のスペクトルからさらに新たな元素の吸収端構造の有無を検査し、新たな元素が検出できたときは、これまでに検出した全ての元素について上記と同様の多元連立方程式を立てて、これを解いて各元素の面密度の近似値を算出し、新たな元素が検出できなかったときは、前記面密度近似値をもって当該所定の位置における前記各元素の面密度とすることを特徴とするX線分光顕微分析方法。In a photoelectric conversion type X-ray microscope apparatus, a sample is irradiated with X-rays by sweeping the wavelength, X-ray absorption images are acquired and stored for each wavelength, and the obtained X-ray absorption images are absorbed at a predetermined position on the sample. The spectra are synthesized, and the presence or absence of the absorption edge structure of the element is detected based on the synthesized absorption spectrum, and the difference between the absorptances at the wavelengths on both sides of the absorption edge structure of the detected absorption edge structure of each element is defined as the left side. The surface density of the element is a variable on the right-hand side, and a difference equation between the mass absorption coefficients at each wavelength is set as a coefficient of each variable on the right-hand side. Is calculated, the contribution of the absorption spectrum of each element is calculated using the approximate surface density, and the remaining absorption spectrum is subtracted from the combined absorption spectrum to form a residual spectrum. Inspect the presence or absence of the absorption edge structure of any element, and if a new element can be detected, establish the same simultaneous multiple-element equation for all elements detected so far and solve this to solve the surface of each element. An X-ray spectroscopic microanalysis method, wherein an approximate value of density is calculated, and when a new element cannot be detected, the approximate surface density value is used as the areal density of each element at the predetermined position. 前記吸収スペクトルは演算上必要とされる波長位置におけるデータからなることを特徴とする請求項1記載のX線分光顕微分析方法。2. The X-ray spectroscopic microscopic analysis method according to claim 1, wherein said absorption spectrum comprises data at a wavelength position required for calculation. 前記試料に含有する可能性がある元素の吸収端前後の波長におけるX線吸収画像データを選択して記憶することを特徴とする請求項1または2記載のX線分光顕微分析方法。3. The X-ray spectroscopic microanalysis method according to claim 1, wherein X-ray absorption image data at wavelengths around an absorption edge of an element which may be contained in the sample is selected and stored. X線発生装置と光電変換面と電子イメージ拡大装置と画像検出部と演算処理装置とを備える光電変換型X線顕微鏡装置であって、試料を前記光電変換面に密着して設置し該試料の背後から前記X線発生装置で発生したX線を波長掃引して照射すると、透過したX線により前記光電変換面に電子像を形成し、前記電子イメージ拡大装置が該電子像から放出される電子を引き出し拡大して前記画像検出部に結像させ、前記演算処理装置が画像メモリを備えて該画像検出部からX線吸収画像の画像信号を取得して掃引波長ごとに前記画像メモリに格納して、X線画像中の所定の位置が指定されると、前記画像メモリから該画像中の位置に対応する画像信号を掃引波長中の必要な波長について取り出して、該指定された部分の測定X線吸収スペクトルとして合成し、該測定X線吸収スペクトルに基づいて元素の吸収端構造の有無を検出し、検出した各元素の吸収端構造の吸収端両側の波長における吸収率の差分を左辺とし前記検出した各元素の面密度を右辺の変数、それぞれの波長における質量吸収係数の差を各右辺変数の係数とした多元連立方程式を立てて、該多元連立方程式を解くことにより前記各元素の面密度の近似値を求め、該面密度近似値を用いて各元素の吸収スペクトルの寄与分を算出し前記測定吸収スペクトルから差し引いて残余のスペクトルを形成し、該残余のスペクトルからさらに新たな元素の吸収端構造の有無を検査し、新たな元素が検出できたときは、これまでに検出した全ての元素について上記と同様の多元連立方程式を立てて、これを解いて各元素の面密度の近似値を算出し、新たな元素が検出できなかったときは、前記面密度近似値をもって当該所定の位置における前記各元素の面密度とすることを特徴とする光電変換型X線顕微鏡装置。What is claimed is: 1. A photoelectric conversion type X-ray microscope device comprising an X-ray generator, a photoelectric conversion surface, an electronic image magnifying device, an image detection unit, and an arithmetic processing device, wherein a sample is placed in close contact with the photoelectric conversion surface, and When X-rays generated by the X-ray generator are swept from behind and irradiated, the transmitted X-rays form an electron image on the photoelectric conversion surface, and the electron image magnifying device emits electrons emitted from the electron image. The image processing unit is provided with an image memory, acquires an image signal of an X-ray absorption image from the image detection unit, and stores the image signal in the image memory for each sweep wavelength. Then, when a predetermined position in the X-ray image is designated, an image signal corresponding to the position in the image is taken out from the image memory for a necessary wavelength in the sweep wavelength, and the measurement X of the designated portion is measured. Line absorption spectrum Then, the presence or absence of an absorption edge structure of the element was detected based on the measured X-ray absorption spectrum, and the difference between the absorptance at the wavelength on both sides of the absorption edge of the detected absorption edge structure of each element was determined as the left side. The surface density of each element is a variable on the right side, and the difference of the mass absorption coefficient at each wavelength is set as a coefficient of each variable on the right side. Determine the value, calculate the contribution of the absorption spectrum of each element using the approximate surface density value, subtract from the measured absorption spectrum to form a residual spectrum, and further determine the absorption edge structure of a new element from the residual spectrum. If a new element can be detected, the same multidimensional simultaneous equation as described above is established for all the elements detected so far, and this is solved to determine the near surface density of each element. Calculating a value, when a new element is not detected, the photoelectric conversion type X-ray microscope apparatus characterized by having the surface density approximation and surface density of each element in the predetermined position. 前記画像メモリが前記試料に含有する可能性がある元素の吸収端前後の波長におけるX線吸収画像データを選択して記憶することを特徴とする請求項4記載の光電変換型X線顕微鏡装置。5. The photoelectric conversion type X-ray microscope apparatus according to claim 4, wherein said image memory selects and stores X-ray absorption image data at wavelengths around an absorption edge of an element which may be contained in said sample.
JP2003086139A 2003-03-26 2003-03-26 X-ray spectroscopic microscopic analysis method and photoelectric conversion X-ray microscope apparatus Expired - Fee Related JP4145690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086139A JP4145690B2 (en) 2003-03-26 2003-03-26 X-ray spectroscopic microscopic analysis method and photoelectric conversion X-ray microscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086139A JP4145690B2 (en) 2003-03-26 2003-03-26 X-ray spectroscopic microscopic analysis method and photoelectric conversion X-ray microscope apparatus

Publications (2)

Publication Number Publication Date
JP2004294233A true JP2004294233A (en) 2004-10-21
JP4145690B2 JP4145690B2 (en) 2008-09-03

Family

ID=33400883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086139A Expired - Fee Related JP4145690B2 (en) 2003-03-26 2003-03-26 X-ray spectroscopic microscopic analysis method and photoelectric conversion X-ray microscope apparatus

Country Status (1)

Country Link
JP (1) JP4145690B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218845A (en) * 2006-02-20 2007-08-30 Shimadzu Corp Transmission x-ray measuring method
WO2007122770A1 (en) * 2006-04-13 2007-11-01 Shimadzu Corporation Three-dimensional quantitatively determining method using transmitted x-rays
JP2012145553A (en) * 2011-01-14 2012-08-02 Jfe Steel Corp Quantitative analysis method
JP2012150026A (en) * 2011-01-20 2012-08-09 National Institute Of Advanced Industrial & Technology Quantitative analysis method by element and quantitative analyzer by element by x-ray absorption edge method
CN102739831A (en) * 2011-03-31 2012-10-17 富泰华工业(深圳)有限公司 Mobile telephone with function of material purity detection and method for detecting material purity thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218845A (en) * 2006-02-20 2007-08-30 Shimadzu Corp Transmission x-ray measuring method
JP4725350B2 (en) * 2006-02-20 2011-07-13 株式会社島津製作所 Transmission X-ray measurement method
WO2007122770A1 (en) * 2006-04-13 2007-11-01 Shimadzu Corporation Three-dimensional quantitatively determining method using transmitted x-rays
JPWO2007122770A1 (en) * 2006-04-13 2009-08-27 株式会社島津製作所 Three-dimensional quantitative method using transmitted X-ray
US7813470B2 (en) 2006-04-13 2010-10-12 Shimadzu Corporation Three-dimensional contents determination method using transmitted x-ray
JP4614001B2 (en) * 2006-04-13 2011-01-19 株式会社島津製作所 Three-dimensional quantitative method using transmitted X-ray
JP2012145553A (en) * 2011-01-14 2012-08-02 Jfe Steel Corp Quantitative analysis method
JP2012150026A (en) * 2011-01-20 2012-08-09 National Institute Of Advanced Industrial & Technology Quantitative analysis method by element and quantitative analyzer by element by x-ray absorption edge method
CN102739831A (en) * 2011-03-31 2012-10-17 富泰华工业(深圳)有限公司 Mobile telephone with function of material purity detection and method for detecting material purity thereof

Also Published As

Publication number Publication date
JP4145690B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
US7433444B2 (en) Focus-detector arrangement of an X-ray apparatus for generating projective or tomographic phase contrast recordings
Williams et al. Fresnel coherent diffractive imaging: treatment and analysis of data
US7643866B2 (en) Method for producing a computed tomography display of tissue structures by applying a contrast medium
JP2008116442A (en) Stress measurement method
JPH10500532A (en) Particle-wave reconstruction method in particle-optical instrument
US20070041492A1 (en) X-ray diffraction microscope apparatus and x-ray diffraction measuring method with the x-ray diffraction microscope apparatus
JP4145690B2 (en) X-ray spectroscopic microscopic analysis method and photoelectric conversion X-ray microscope apparatus
Dierks et al. Experimental optimization of X-ray propagation-based phase contrast imaging geometry
WO2013084905A1 (en) X-ray analysis device
JP2020204483A (en) X-ray analysis system and X-ray analysis method
JP2006250642A (en) X-ray diffraction analyzing method and x-ray diffraction analyzer
JP2019200126A (en) X-ray analysis method and x-ray analyzer
JP3625776B2 (en) Lattice constant measuring method and measuring apparatus
JP3950619B2 (en) Surface analysis data display method in surface analyzer using electron beam
JP2000046759A (en) X-ray inspection method and apparatus
JP2008089325A (en) Geological age measuring method by electron probe microanalyzer
JP6292988B2 (en) Object information acquisition method and object information acquisition apparatus
Weber et al. Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer
WO2015125604A1 (en) X-ray analysis device and computer program
JP3458538B2 (en) X-ray fluorescence analyzer
JP3404527B2 (en) Photoelectron measurement method and photoelectron measurement system
JP7306639B2 (en) X-ray spectrum analyzer and method
JP7307770B2 (en) Analysis device and image processing method
US20240003837A1 (en) System and method for mapping chemical elements in a sample
JP2019129072A (en) Scan electronic microscope and method for measuring the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees