JP2004294052A - Element for total enthalpy heat exchanger - Google Patents

Element for total enthalpy heat exchanger Download PDF

Info

Publication number
JP2004294052A
JP2004294052A JP2004058540A JP2004058540A JP2004294052A JP 2004294052 A JP2004294052 A JP 2004294052A JP 2004058540 A JP2004058540 A JP 2004058540A JP 2004058540 A JP2004058540 A JP 2004058540A JP 2004294052 A JP2004294052 A JP 2004294052A
Authority
JP
Japan
Prior art keywords
plate
heat exchanger
total heat
activated carbon
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004058540A
Other languages
Japanese (ja)
Other versions
JP3833220B2 (en
Inventor
Kiyotaka Iwamoto
清孝 岩本
Takeshi Ishiguro
武 石黒
Toshitami Ro
俊民 呂
Fumio Karibe
文夫 苅部
Nobufumi Kato
宣文 加藤
Hiroshi Murata
浩 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Nippon Puretec Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Nippon Puretec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Nippon Puretec Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2004058540A priority Critical patent/JP3833220B2/en
Publication of JP2004294052A publication Critical patent/JP2004294052A/en
Application granted granted Critical
Publication of JP3833220B2 publication Critical patent/JP3833220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To keep performance as a chemical filter over a long period of time. <P>SOLUTION: This element for a total enthalpy heat exchanger includes: a partition plate having a total enthalpy heat exchange capability and a capability for phase converting a target gas and partitioning between supply air and exhaust: a spacing plate for air supply having adsorption capability for the target gas and corrugated to keep the space between the partition plates; and a spacing plate for exhaust corrugated to keep the space between the spacing plates. The air supply spacing plate and the exhaust spacing plate are alternately stacked perpendicularly to each other through the partition plates. The partition plate is formed of a paper sheet obtained by paper making activated carbon of 40 to 70% and paper manufacturing fiber of 30 to 60%. The air supply spacing plate and the exhaust spacing plate are formed of one of acid gas adsorbing member, alkali gas adsorbing member and organic gas adsorbing member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガス浄化機能を有する全熱交換器用素子に関する。   The present invention relates to an element for a total heat exchanger having a gas purification function.

室内の空気質を制御する際、その対象とするガスについて外気の濃度が室内で要求される濃度より高いとき、フィルタによる浄化を行う(外気処理)必要がある。
この要求に対応した従来技術として、ケミカルフィルタによる浄化(外気処理)は、クリーンルームの外気処理空調機などに広く用いられている。
室内空気と外気との空気の交換(換気)を行うことは、室内の温度調節のため空調しているときにはその熱損失となり、余分に空調のエネルギーを消費する。
When controlling the air quality in a room, if the concentration of the outside air of the target gas is higher than the concentration required in the room, it is necessary to perform purification by a filter (outside air treatment).
As a conventional technology corresponding to this demand, purification by a chemical filter (outside air treatment) is widely used in an outside air treatment air conditioner of a clean room and the like.
The exchange (ventilation) of the air between the room air and the outside air results in heat loss when air conditioning is performed to control the temperature in the room, which consumes extra energy for air conditioning.

これに対する省エネルギーのための従来技術として、室内から屋外へ排出する空気から顕熱(温度)と潜熱(水分)を回収する、全熱交換器があり、一般建物の空調換気設備に広く用いられている。
全熱交換器の熱交換素子は、一般には設置後、交換は行わず長期間用いられる。
次に、ケミカルフィルタと全熱交換素子とを一体化することについて述べる。これらの一体化により、建物の新築時には省スペースとなり、改修時においては全熱交換器が既に在り外気処理の機能を後から追加したい場合に、全熱交換器の素子部分のみの交換で済めば容易となる利点がある。
As a conventional technique for energy saving, there is a total heat exchanger that recovers sensible heat (temperature) and latent heat (moisture) from air discharged indoors to outdoors, and is widely used for air conditioning and ventilation equipment in general buildings. I have.
The heat exchange element of the total heat exchanger is generally used for a long time after installation without replacement.
Next, the integration of the chemical filter and the total heat exchange element will be described. With these integrations, when building is newly constructed, space is saved, and when renovating, if there is already a total heat exchanger and you want to add the function of outside air treatment later, if you only need to replace the element part of the total heat exchanger It has the advantage of being easier.

これは、全熱交換素子において外気から室内への空気の供給経路に接触するよう、ケミカルフィルタの素材を用いた形態とすることにより実現することが考えられる。
特開平11−189999号公報
This can be realized by using a chemical filter material so that the total heat exchange element comes into contact with the air supply path from the outside air to the room.
JP-A-11-189999

ところが、実際には、上記のようなケミカルフィルタと全熱交換器の機能とを一体化した、「ガス浄化機能を有する全熱交換器用素子」は、製品化されていない。
その理由は、ケミカルフィルタの寿命の問題、すなわちケミカルフィルタは使用していくと、その浄化性能が徐々に低下していくため、所要の浄化性能が保持できなくなった時点で交換する必要があることに関係があると考えられる。
However, in actuality, the “element for a total heat exchanger having a gas purification function” that integrates the functions of the chemical filter and the total heat exchanger as described above has not been commercialized.
The reason is that there is a problem with the life of the chemical filter, that is, the purifying performance gradually decreases as the chemical filter is used, so it is necessary to replace it when the required purifying performance cannot be maintained. It is thought to be related to

ケミカルフィルタを全熱交換器と一体化していると、フィルタとしての性能が低下した時点で、浄化機能を有する全熱交換器用素子を交換することになる。すなわち、フィルタとしての寿命が課題となって実現されていないと考えられる。
なお、特許文献1には、製紙用繊維、ミクロフィブリル化セルロース、吸放湿性粉体で構成した全熱交換器用紙において、全熱交換器用素子の仕切板に要求される性能を備えた用紙が開示されている。
When the chemical filter is integrated with the total heat exchanger, the element for the total heat exchanger having the purifying function is replaced when the performance as the filter is reduced. That is, it is considered that the life of the filter has not been realized due to the problem.
Patent Document 1 discloses a total heat exchanger paper composed of papermaking fibers, microfibrillated cellulose, and moisture-absorbing and desorbing powder, which has the performance required for a partition plate of a total heat exchanger element. It has been disclosed.

しかし、特許文献1は、前述の全熱交換器用素子を構成する給気側の間隔板、排気側の間隔板および仕切板の要素における対象ガスの移相を利用した、長寿命化に関するものではない。
本発明は、ケミカルフィルタとしての性能を長期間保持させるすなわち長寿命化させることを可能としたガス浄化機能を有する全熱交換器用素子を提供することにある。
However, Patent Literature 1 does not relate to extending the service life by utilizing the phase shift of the target gas in the elements of the air supply-side interval plate, the exhaust-side interval plate, and the partition plate that constitute the above-described total heat exchanger element. Absent.
An object of the present invention is to provide an element for a total heat exchanger having a gas purifying function, which can maintain the performance as a chemical filter for a long period of time, that is, can prolong its life.

請求項1に係る発明は、全熱交換能力と目的ガスを移相させる能力とを有し、給気と排気とを隔てる仕切板と、前記目的ガスに対する吸着能力を有し、前記仕切板同士の間隔を保つ波形状を為す給気用間隔板と、前記目的ガスに対する脱離または吸着能力を有し、前記仕切板同士の間隔を保つ波形状を為す排気用間隔板とを備え、前記給気用間隔板と前記排気用間隔板とを、直交して前記仕切板を介して交互に積層して成ることを特徴とする。   The invention according to claim 1 has a total heat exchange capability and a capability of phase-shifting the target gas, has a partition plate for separating air supply and exhaust, and has an adsorption capability for the target gas, and the partition plates have An air-supply spacing plate having a corrugated shape for maintaining an interval between the gas and an exhausting space plate having a corrugated shape having a desorbing or adsorbing ability for the target gas and maintaining an interval between the partition plates. It is characterized in that the air spacing plate and the exhaust spacing plate are alternately laminated orthogonally via the partition plate.

請求項2に係る発明は、請求項1記載の全熱交換器用素子において、前記目的ガスが、酸性ガス、アルカリガス、有機ガスであることを特徴とする。
請求項3に係る発明は、請求項1記載の全熱交換器用素子において、前記仕切板は、活性炭40〜70%と製紙用繊維30〜60%とを抄紙成型した用紙で構成されていることを特徴とする。
According to a second aspect of the present invention, in the element for a total heat exchanger according to the first aspect, the target gas is an acidic gas, an alkali gas, or an organic gas.
According to a third aspect of the present invention, in the element for a total heat exchanger according to the first aspect, the partition plate is formed of paper formed by forming 40 to 70% of activated carbon and 30 to 60% of papermaking fibers. It is characterized.

請求項4に係る発明は、請求項1記載の全熱交換器用素子において、前記給気用間隔板および排気用間隔板は、酸性ガス吸着部材、アルカリガス吸着部材、有機ガス吸着部材の何れかで構成されていることを特徴とする。
請求項5に係る発明は、請求項4記載の全熱交換器用素子において、給気用間隔板に用いられる酸性ガス吸着部材は、活性炭50〜75%、製紙用繊維25〜50%を主成分とする用紙に、アルカリ化合物を添着し、活性炭に担持させて成ることを特徴とする。
The invention according to claim 4 is the element for a total heat exchanger according to claim 1, wherein the air supply space plate and the exhaust space plate are any one of an acid gas adsorption member, an alkali gas adsorption member, and an organic gas adsorption member. It is characterized by comprising.
According to a fifth aspect of the present invention, in the element for a total heat exchanger according to the fourth aspect, the acidic gas adsorbing member used for the air supply spacing plate is mainly composed of 50 to 75% of activated carbon and 25 to 50% of papermaking fibers. Characterized in that an alkali compound is impregnated on a sheet of paper to be supported on activated carbon.

請求項6に係る発明は、請求項4記載の全熱交換器用素子において、排気用間隔板に用いられる酸性ガス吸着部材は、活性炭25〜75%、製紙用繊維25〜75%を主成分とする用紙に、アルカリ化合物を添着し、活性炭に担持させて成ることを特徴とする。
請求項7に係る発明は、請求項4記載の全熱交換器用素子において、給気用間隔板に用いられるアルカリガス吸着部材は、活性炭50〜75%、製紙用繊維25〜50%を主成分とする用紙に、酸性化合物を添着し、活性炭に担持させて成ることを特徴とする。
According to a sixth aspect of the present invention, in the element for a total heat exchanger according to the fourth aspect, the acidic gas adsorbing member used for the exhaust spacing plate is mainly composed of activated carbon 25 to 75% and papermaking fibers 25 to 75%. Characterized in that an alkaline compound is impregnated on paper to be processed and is supported on activated carbon.
According to a seventh aspect of the present invention, in the element for a total heat exchanger according to the fourth aspect, the alkali gas adsorbing member used for the air supply spacing plate contains 50 to 75% of activated carbon and 25 to 50% of papermaking fibers as main components. The paper is characterized by being impregnated with an acidic compound and supported on activated carbon.

請求項8に係る発明は、請求項4記載の全熱交換器用素子において、排気用間隔板に用いられるアルカリガス吸着部材は、活性炭25〜75%、製紙用繊維25〜75%を主成分とする用紙に、酸性化合物を添着し、活性炭に担持させて成ることを特徴とする。
請求項9に係る発明は、請求項4記載の全熱交換器用素子において、給気用間隔板に用いられる有機ガス吸着部材は、活性炭50〜75%、製紙用繊維25〜50%を主成分とする用紙で構成されていることを特徴とする。
The invention according to claim 8 is the element for a total heat exchanger according to claim 4, wherein the alkali gas adsorbing member used for the exhaust spacing plate is mainly composed of activated carbon 25 to 75% and papermaking fiber 25 to 75%. The paper is characterized in that an acidic compound is impregnated on paper to be processed and is supported on activated carbon.
According to a ninth aspect of the present invention, in the element for a total heat exchanger according to the fourth aspect, the organic gas adsorbing member used for the air supply spacing plate is mainly composed of 50 to 75% of activated carbon and 25 to 50% of papermaking fibers. Characterized in that the paper is made of

請求項10に係る発明は、請求項4記載の全熱交換器用素子において、排気用間隔板に用いられる有機ガス吸着部材は、活性炭25〜75%、製紙用繊維25〜75%を主成分とする用紙で構成されていることを特徴とする。
本発明においては、全熱交換器用素子を構成する3つの要素である給気用間隔板、排気用間隔板および仕切板の組み合わせにより、3つの要素での対象ガスの移相現象を利用して、ケミカルフィルタとしての性能を長期間保持させ、もって全熱交換器用素子の長寿命化を図ることができる。
According to a tenth aspect of the present invention, in the element for a total heat exchanger according to the fourth aspect, the organic gas adsorbing member used for the exhaust spacing plate is mainly composed of activated carbon 25 to 75% and papermaking fibers 25 to 75%. It is characterized by being made of paper to be processed.
In the present invention, the combination of the three elements constituting the element for the total heat exchanger, ie, the air supply space plate, the exhaust space plate, and the partition plate, utilizes the phase shift phenomenon of the target gas in the three elements. Thus, the performance as a chemical filter can be maintained for a long time, and the life of the element for the total heat exchanger can be extended.

加えて、全熱交換器用素子として要求される所要の性能、特に、水分を透過し、空気を遮蔽する性能を仕切板に求めることができる。
これに対し、本発明においては、仕切板を製紙用繊維と活性炭とを抄紙した用紙で構成することによって、水分を透過し、空気を遮蔽する性能を満足させている。
In addition, the required performance required for the element for a total heat exchanger, particularly the performance of transmitting moisture and shielding air, can be required for the partition plate.
On the other hand, in the present invention, by forming the partition plate from paper made of papermaking fibers and activated carbon, the performance of transmitting moisture and shielding air is satisfied.

本発明によれば、全熱交換器用素子を構成する給気用間隔板、仕切板および排気用間隔板を、それぞれの部位で対象ガスの移相現象を利用できる構成としたので、ケミカルフィルタとしての性能を長期間保持させることが可能となり、全熱交換器用素子の長寿命化を図ることができる。   According to the present invention, since the air supply interval plate, the partition plate, and the exhaust interval plate that constitute the element for the total heat exchanger are configured to be able to utilize the phase shift phenomenon of the target gas at each site, the chemical filter is used as a chemical filter. Can be maintained for a long time, and the life of the element for the total heat exchanger can be extended.

以下、本発明を図面に示す実施形態に基づいて説明する。
図1は、本発明の一実施形態に係る全熱交換器用素子1を示す図である。
本実施形態に係る全熱交換器用素子1は、全熱交換能力と目的ガス(酸性ガス、アルカリガス、有機ガス)を移相させる能力とを有し、給気と排気とを隔てる仕切板2と、目的ガスに対する吸着能力を有し、仕切板2同士の間隔を保つ波形状を為す給気用間隔板3と、目的ガスに対する脱離または吸着能力を有し、仕切板2同士の間隔を保つ波形状を為す排気用間隔板4とを備え、給気用間隔板3と排気用間隔板4とを、直交して仕切板2を介して交互に積層して形成されている。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 is a diagram showing a total heat exchanger element 1 according to one embodiment of the present invention.
The total heat exchanger element 1 according to the present embodiment has a total heat exchange capacity and a capacity to shift a target gas (acid gas, alkali gas, organic gas), and separates a supply air and an exhaust air from the partition plate 2. And an air supply spacing plate 3 having an adsorbing capability for the target gas and having a wavy shape for maintaining the interval between the partition plates 2, and having a desorbing or adsorbing capability for the target gas and providing an interval between the partition plates 2. An exhaust interval plate 4 having a corrugated shape to be kept is provided, and the air supply interval plate 3 and the exhaust interval plate 4 are alternately stacked alternately via the partition plate 2 at right angles.

ここで、仕切板2に要求される性能について説明する。仕切板2では、移相作用とともに空気遮蔽性が主要な機能として要求される。移相作用の点からは活性炭の量が多いほど望ましい。しかし、活性炭の量をあまり大きくすると空気遮蔽性が満足できず、換気装置としての熱交換素子として成立しなくなる。空気遮蔽性を満足する上で、活性炭の配合が少ない方が有利であるが、活性炭が少ないと移相作用は弱くなる。   Here, the performance required for the partition plate 2 will be described. The partition plate 2 is required to have not only a phase shift effect but also an air shielding property as a main function. From the viewpoint of the phase shift effect, the larger the amount of activated carbon, the better. However, if the amount of the activated carbon is too large, the air shielding property cannot be satisfied, and the heat exchange element as a ventilation device cannot be realized. In order to satisfy the air shielding property, it is advantageous that the amount of the activated carbon is small, but if the amount of the activated carbon is small, the phase shift action is weakened.

以上を考慮し、仕切板2における活性炭の配合比を定めた。すなわち、仕切板2は、活性炭40〜70%と製紙用繊維30〜60%とを抄紙成型した用紙で構成されている。仕切板2の配合割合は、用紙として成型できる範囲を併せて考慮した。
先ず、活性炭の上限値について説明する。透気度100秒を満足することができる値とし、活性炭65%であっても透気度100秒には余裕があることが下記表1に示す実験データから確認できた。その余裕分を考慮して活性炭の上限値を70%とした。
In consideration of the above, the mixing ratio of the activated carbon in the partition plate 2 was determined. That is, the partition plate 2 is made of paper formed by papermaking of 40 to 70% of activated carbon and 30 to 60% of papermaking fibers. The mixing ratio of the partition plate 2 also considered the range that can be molded as paper.
First, the upper limit of activated carbon will be described. It was confirmed from the experimental data shown in Table 1 below that the air permeability was set to a value that could satisfy 100 seconds, and even if the activated carbon was 65%, there was room for the air permeability of 100 seconds. In consideration of the margin, the upper limit of the activated carbon was set to 70%.

次に、活性炭の下限値について説明する。下記表1に示す実験データにおいて、活性炭配合比50%で移相作用を示す例を挙げている。空気遮蔽性を満足する上で、活性炭の配合が少ない方が有利であるが、活性炭が少ないと移相作用は弱くなる。むやみに活性炭の配合比を小さくすると移相作用に支障が生じることが考えられる。そこで、活性炭の下限値を、移相作用が有効に働くように40%とした。   Next, the lower limit of activated carbon will be described. In the experimental data shown in Table 1 below, an example showing a phase shift effect at an activated carbon compounding ratio of 50% is shown. In order to satisfy the air shielding property, it is advantageous that the amount of the activated carbon is small, but if the amount of the activated carbon is small, the phase shift action is weakened. It is considered that if the mixing ratio of the activated carbon is excessively reduced, the phase shift action is hindered. Therefore, the lower limit of the activated carbon is set to 40% so that the phase shift function works effectively.

ここで、透気度とは、JIS P8117に示すガーレー透気度をいい、気体遮蔽性の指標で大きいほど性能が高い(気体を通しにくい)。一般に、全熱交換器の仕切板には、排気側から給気側へのクロス汚染を避け、換気装置としての性能を確保するため気体遮蔽性100秒以上が必要とされる。
そこで、透気度100秒を確保するために、製紙用繊維に対する活性炭の配合を50%および65%として仕切板を試作した。その結果を表1に示す。ここでは、実験No.1は製紙用繊維50%と活性炭50%とを抄紙成型した用紙、実験No.2〜実験No.6は製紙用繊維35%と活性炭65%とを抄紙成型した用紙である。実験No.2〜実験No.6の用紙は、仕切板用紙製造の際に用紙にかかるローラの圧力を実験No.1の用紙よりも高くすることにより作製した。実験No.2〜実験No.6から明らかなように、活性炭の配合を65%としても、透気度100秒を確保することが確認された。これにより、目的ガスの吸着、移相性能を高めることが可能となった。
Here, the air permeability refers to the Gurley air permeability described in JIS P8117, and the higher the gas shielding index, the higher the performance (the more difficult it is to pass gas). Generally, the partition plate of the total heat exchanger is required to have a gas shielding property of 100 seconds or more in order to avoid cross contamination from the exhaust side to the supply side and to secure the performance as a ventilation device.
Therefore, in order to ensure an air permeability of 100 seconds, a partition plate was trial-produced with 50% and 65% of activated carbon in the papermaking fiber. Table 1 shows the results. Here, Experiment No. 1 was a paper sheet made of 50% papermaking fiber and 50% activated carbon, and Experiment Nos. 2 to 6 were a paper sheet made of 35% papermaking fiber and 65% activated carbon. is there. The papers of Experiment No. 2 to Experiment No. 6 were produced by making the pressure of the roller applied to the paper higher in the production of the partition paper than that of the paper of Experiment No. 1. As is clear from Experiment Nos. 2 to 6, it was confirmed that air permeability of 100 seconds was ensured even when the content of activated carbon was 65%. This makes it possible to enhance the adsorption and phase shift performance of the target gas.

Figure 2004294052
Figure 2004294052

また、給気用間隔板3および排気用間隔板4は、酸性ガス吸着部材、アルカリガス吸着部材、有機ガス吸着部材の何れかで構成されている。
先ず、酸性ガス吸着部材は、アルカリ化合物(例えば、炭酸カリウム、炭酸ソーダ、苛性ソーダ、苛性カリウム)を坦持した活性炭と製紙用繊維を主成分とする用紙で構成されており、アルカリ化合物により酸性ガスを吸着する機能を持たせている。
Further, the air supply space plate 3 and the exhaust space plate 4 are formed of any one of an acid gas adsorption member, an alkali gas adsorption member, and an organic gas adsorption member.
First, the acidic gas adsorbing member is made of activated carbon carrying an alkali compound (for example, potassium carbonate, sodium carbonate, caustic soda, caustic potassium) and paper mainly containing papermaking fibers. It has the function of adsorbing.

酸性ガス吸着部材の用紙における配合比は、活性炭50〜75%、製紙用繊維25〜50%(両者の合計100%)を主成分とする用紙に対し、アルカリ化合物を添着し、活性炭に坦持させたものである。アルカリ化合物の配合は、活性炭50〜75%、製紙用繊維25〜50%(両者の合計100%)に対し、代表的には、8〜12%のアルカリ化合物(例えば炭酸カリウム)を添着する。   The mixing ratio of the acid gas adsorbing member in the paper is such that an alkaline compound is impregnated on paper mainly composed of 50 to 75% of activated carbon and 25 to 50% of papermaking fibers (total of both are 100%), and is carried on activated carbon. It was made. As for the compounding of the alkali compound, typically, 8 to 12% of an alkali compound (for example, potassium carbonate) is impregnated with respect to 50 to 75% of activated carbon and 25 to 50% of papermaking fibers (100% of both).

アルカリ化合物の配合の上限については、アルカリ化合物が添着しうる量であり、かつ用紙を波形に成型して支障のない範囲であり、アルカリ化合物の配合が多いほど酸性ガスの吸着性能が高くなる。
アルカリ化合物を少なくすることの利点は、主に製造コストであるが、酸性ガスの吸着性能を有効に発揮させる意味で下限を定めた。
The upper limit of the blending of the alkali compound is an amount to which the alkali compound can be impregnated, and is in a range that does not hinder the shaping of the paper, and the more the blending of the alkali compound is, the higher the adsorption performance of the acidic gas is.
The advantage of reducing the amount of the alkali compound is mainly the production cost, but the lower limit is determined in order to effectively exhibit the acidic gas adsorption performance.

次に、アルカリガス吸着部材は、酸性化合物(例えば、リン酸化合物、硫酸化合物)を坦持した活性炭と製紙用繊維を主成分とする用紙で構成されており、酸性化合物によりアルカリガスを吸着する機能を持たせている。
アルカリガス吸着部材の用紙における配合比は、活性炭50〜75%、製紙用繊維25〜50%(両者の合計100%)を主成分とする用紙に対し、酸性化合物を添着し、活性炭に坦持させたものである。酸性化合物の配合は、活性炭50〜75%、製紙用繊維25〜50%(両者の合計100%)に対し、代表的には、20〜24%の酸性化合物(例えば、リン酸)を添着する。
Next, the alkali gas adsorbing member is made of paper mainly containing activated carbon carrying an acidic compound (for example, a phosphoric acid compound or a sulfuric acid compound) and papermaking fibers, and adsorbs the alkali gas by the acidic compound. Has functions.
The compounding ratio of the alkali gas adsorbing member in the paper is such that an acidic compound is impregnated on a paper mainly composed of 50 to 75% of activated carbon and 25 to 50% of papermaking fibers (total of both are 100%) and is carried on activated carbon. It was made. For the compounding of the acidic compound, typically, 20 to 24% of the acidic compound (for example, phosphoric acid) is impregnated with respect to activated carbon 50 to 75% and papermaking fiber 25 to 50% (total 100%). .

酸性化合物の配合の上限については、酸性化合物が添着しうる量であり、かつ用紙を波形に成型して支障のない範囲であり、酸性化合物の配合が多いほどアルカリガスの吸着性能が高くなる。
酸性化合物を少なくすることの利点は、主に製造コストであるが、アルカリガスの吸着性能を有効に発揮させる意味で下限を定めた。
The upper limit of the blending of the acidic compound is an amount to which the acidic compound can be impregnated, and is in a range where there is no problem in shaping the paper into a corrugated form. The greater the blending of the acidic compound, the higher the alkali gas adsorption performance.
The advantage of reducing the amount of the acidic compound is mainly the production cost, but the lower limit is set in order to effectively exhibit the adsorption performance of the alkali gas.

次に、有機ガス吸着部材は、活性炭50〜75%と製紙用繊維25〜50%とを主成分とする用紙で構成されている。有機ガス吸着部材の配合割合は、用紙として作製できる範囲とし、活性炭の上限値および下限値は、有機ガス吸着機能を発揮し得る範囲とした。
なお、給気用間隔板3および排気用間隔板4は、気体遮蔽性の制限が無く、吸着性能に重きを置くため、仕切板とは、配合比を変えている。
Next, the organic gas adsorbing member is made of a paper containing 50 to 75% of activated carbon and 25 to 50% of papermaking fibers as main components. The compounding ratio of the organic gas adsorbing member was set to a range in which the paper could be produced, and the upper and lower limits of the activated carbon were set to a range in which the organic gas adsorbing function could be exhibited.
In addition, the air supply spacing plate 3 and the exhaust spacing plate 4 are not limited in gas shielding properties, and the mixing ratio with the partition plate is changed in order to place importance on the adsorption performance.

次に、本発明の特徴である、移相作用と長寿命化への寄与について説明する。排気用間隔板において、下記の2つの作用類型がある(下記に示す1)から3)は、いずれも共通)。
(1)排気用間隔板から目的ガスが脱離、放出
(2)排気用間隔板でも目的ガスが保持され、素子全体の吸着容量が大きくなる
先ず、(1)排気用間隔板から目的ガスが脱離、放出について説明する。
Next, the feature of the present invention, that is, the phase shift effect and the contribution to prolonging the life will be described. There are the following two types of action in the exhaust spacing plate (the following 1) to 3) are common).
(1) The target gas is desorbed and released from the exhaust spacing plate. (2) The target gas is also retained by the exhaust spacing plate, increasing the adsorption capacity of the entire device. First, (1) the target gas is released from the exhaust spacing plate. Desorption and release will be described.

1)給気用間隔板に配合されている活性炭により、室内へ供給する空気(給気)から目 的ガスを吸着する(活性炭の微細な空隙における物理吸着。薬剤を添着した活性炭 では酸−アルカリ作用による化学吸着と物理吸着の両方を含む)。
2)給気用間隔板および仕切板にそれぞれ配合されている活性炭を媒体として、目的ガ スの濃度勾配により、給気用間隔板から仕切板に目的ガスが移相する。
1) The target gas is adsorbed from the air (air supply) supplied to the room by the activated carbon mixed in the air supply interval plate (physical adsorption in fine voids of activated carbon. Including both chemisorption and physisorption by action).
2) The target gas is phase-shifted from the air supply gap plate to the partition plate by the concentration gradient of the target gas using the activated carbon mixed in the air supply gap plate and the partition plate as a medium.

3)仕切板および排気用間隔板にそれぞれ配合されている活性炭を媒体として、目的ガ スの濃度勾配により、仕切板から排気用間隔板に目的ガスが移相する。
4)排気用間隔板に移相した目的ガスは、濃度勾配により目的ガスの濃度の低い、屋外 へ排気する空気中に脱離し放出される。
1)〜4)から、給気用間隔板で吸着した目的ガスが移相し、排気用間隔板で排気する空気中に脱離、放出されることにより給気用間隔板は吸着能力を回復し、長寿命化に寄与する。
3) The target gas is phase-shifted from the partition plate to the exhaust spacing plate due to the concentration gradient of the target gas, using the activated carbon mixed in the partition plate and the exhaust spacing plate as a medium.
4) The target gas phase-shifted to the exhaust spacing plate is released and released into the air exhausted outdoors, where the concentration of the target gas is low due to the concentration gradient.
From 1) to 4), the target gas adsorbed by the air-supply spacing plate is shifted in phase, and desorbed and released into the air exhausted by the exhaust-air spacing plate, so that the air-supplying spacing plate recovers its adsorption ability. And contributes to a longer life.

次に、(2)排気用間隔板で目的ガスを保持について説明する。
1)給気用間隔板に配合されている活性炭により、室内へ供給する空気(給気)から目 的ガスを吸着する(活性炭の微細な空隙における物理吸着。薬剤を添着した活性炭 では酸−アルカリ作用による化学吸着と物理吸着の両方を含む)。
2)給気用間隔板および仕切板にそれぞれ配合されている活性炭を媒体として、目的ガ スの濃度勾配により、給気用間隔板から仕切板に目的ガスが移相する。
Next, a description will be given of (2) holding the target gas with the exhaust spacing plate.
1) The target gas is adsorbed from the air (air supply) supplied to the room by the activated carbon mixed in the air supply interval plate (physical adsorption in fine voids of activated carbon. Acid-alkali is used for activated carbon impregnated with chemicals) Including both chemisorption and physisorption by action).
2) The target gas is phase-shifted from the supply gap plate to the partition plate due to the concentration gradient of the target gas using the activated carbon mixed in the supply gap plate and the partition plate as a medium.

3)仕切板および排気用間隔板にそれぞれ配合されている活性炭を媒体として、目的ガ スの濃度勾配により、仕切板から排気用間隔板に目的ガスが移相する。
4)排気用間隔板に移相した目的ガスが排気する空気中に脱離されずとも、給気用間隔 板および仕切板および排気用間隔板からなる素子全体の吸着容量は給気用間隔板単 独より大きい。従って、給気用間隔板から仕切板への目的ガスの移相が進む範囲内 で、給気用間隔板は吸着能力を回復することから、給気用間隔板のみが目的ガスを 吸着する場合に比べ、長寿命化に寄与する。
3) The target gas is phase-shifted from the partition plate to the exhaust spacing plate due to the concentration gradient of the target gas, using the activated carbon mixed in the partition plate and the exhaust spacing plate as a medium.
4) Even if the target gas phase-shifted to the exhaust spacing plate is not desorbed into the exhausted air, the adsorption capacity of the entire device including the air supply spacing plate, the partition plate, and the exhaust spacing plate is reduced by a single supply spacing plate. Greater than Germany. Therefore, within the range in which the phase shift of the target gas from the air supply spacer to the partition plate progresses, the air supply spacer recovers the adsorbing capacity, so that only the air supply spacer adsorbs the target gas. This contributes to a longer service life.

本発明において、目的ガスを吸着する能力を表す上で、次に示す「吸着容量」を考える。
有機ガス吸着部材では、目的ガスである有機ガスを吸着する能力は、有機ガス吸着部材が目的ガスを吸着しうる容量に支配される。吸着容量は、主に活性炭量(活性炭量=秤量×活性炭の配合比)に支配される。
In the present invention, the following "adsorption capacity" is considered in expressing the ability to adsorb a target gas.
In the organic gas adsorption member, the ability to adsorb the organic gas as the target gas is governed by the capacity of the organic gas adsorption member to adsorb the target gas. The adsorption capacity is mainly governed by the amount of activated carbon (the amount of activated carbon = weighing × the mixing ratio of activated carbon).

アルカリガス吸着部材では、酸を活性炭に添着しているため、目的ガスであるアルカリガスの吸着に寄与する活性炭の有効な表面積が減り、活性炭の微細な空隙での物理吸着が低減される。
同様に、酸性ガス吸着部材においては、アルカリを活性炭に添着しているため、目的ガスである酸性ガスの吸着に寄与する活性炭の有効な表面積が減り、活性炭の微細な空隙での物理吸着が低減される。
In the alkali gas adsorbing member, since the acid is attached to the activated carbon, the effective surface area of the activated carbon contributing to the adsorption of the target gas, the alkali gas, is reduced, and the physical adsorption of the activated carbon in the fine voids is reduced.
Similarly, in the acidic gas adsorbing member, since the alkali is impregnated with the activated carbon, the effective surface area of the activated carbon that contributes to the adsorption of the target gas, the acidic gas, is reduced, and the physical adsorption of the activated carbon in the fine voids is reduced. Is done.

すなわち、目的ガスを吸着する能力に関連して、次式で表される。
吸着容量=(活性炭による吸着容量)−(酸(またはアルカリ)の添着による低減分)
例えば、活性炭量が同一であるとき、酸性ガス吸着部材およびアルカリガス吸着部材は、有機ガス吸着部材より吸着容量が小さい。
次に、給気用間隔板、仕切板および排気用間隔板の活性炭の配合についての要件の補足説明を行う。
That is, it is expressed by the following equation in relation to the ability to adsorb the target gas.
Adsorption capacity = (adsorption capacity by activated carbon)-(reduction by acid (or alkali) impregnation)
For example, when the amounts of activated carbon are the same, the acidic gas adsorption member and the alkali gas adsorption member have smaller adsorption capacities than the organic gas adsorption member.
Next, a supplementary explanation of the requirements regarding the blending of activated carbon in the air supply interval plate, the partition plate, and the exhaust interval plate will be provided.

3つの部材の配合比は、各々の部材に要求される性能と部材間の相対的な吸着容量の大小から、適切な配合比とする必要がある。
(仕切板)
制約の大きい仕切板については、仕切板2についての記述の通りである。
熱交換素子の移相作用において、仕切板の移相作用の特性が最も支配的な要因であり、仕切板と間隔板との相対的な配合比が及ぼす影響は限定的に考えられる。
The compounding ratio of the three members needs to be an appropriate compounding ratio based on the performance required for each member and the relative adsorption capacity between the members.
(Partition plate)
The partition plate having a large restriction is as described for the partition plate 2.
In the phase shift action of the heat exchange element, the characteristic of the phase shift action of the partition plate is the most dominant factor, and the influence of the relative mixing ratio between the partition plate and the spacing plate is considered to be limited.

(間隔板)
(給気用間隔板、排気用間隔板に共通して要求される性能)
活性炭の配合が多くなると、仕切板用紙は柔らかくなる。熱交換器においては熱交換素子と熱交換素子を収める筐体とで気密性を保つために、熱交換素子は型くずれしにくいようにする必要がある。そのためには、間隔板用紙にある程度の固さが求められ、活性炭をむやみに多くすると支障が生じる。このことから活性炭の配合比の上限を定め、活性炭の配合の上限を75%とした。
(Spacer)
(Performance commonly required for air supply and exhaust spacers)
As the content of activated carbon increases, the partition paper becomes softer. In the heat exchanger, in order to maintain airtightness between the heat exchange element and the housing that houses the heat exchange element, it is necessary to make the heat exchange element hard to lose its shape. For that purpose, a certain degree of rigidity is required for the spacing sheet, and an excessively large amount of activated carbon causes a problem. From this, the upper limit of the blending ratio of activated carbon was determined, and the upper limit of the blending of activated carbon was set to 75%.

(給気用間隔板)
給気用間隔板では、目的ガスの吸着と仕切板への移相作用が要求される。仕切板への移相作用に対しては、給気用間隔板において活性炭による吸着容量を増やしていくと、やがて仕切板の仕様に制約され、目的ガスの移相作用は頭打ちとなることが考えられる。しかし、給気用間隔板は、含有する活性炭により室内へ供給する空気(給気)中から目的ガスを吸着させ、浄化する機能の点から、その機能が長持ちするために、活性炭の配合比が大きく、吸着容量が大きいほど望ましい。
(Air supply spacing plate)
In the air supply interval plate, adsorption of the target gas and phase shift action to the partition plate are required. Regarding the phase shift effect on the partition plate, if the adsorption capacity by activated carbon is increased in the air supply spacing plate, the specifications of the partition plate will eventually be restricted, and the phase shift effect of the target gas will peak out. Can be However, the air supply spacing plate has a function of adsorbing and purifying a target gas from air (air supply) supplied indoors by the contained activated carbon, and the function of the activated carbon is long-lasting. Larger and larger adsorption capacity is more desirable.

(排気用間隔板)
前述したように、排気用間隔板は仕切板から移相された目的ガスに対し、(脱離・放出)と(吸着・保持)との2類型がある。
先ず、(吸着・保持)について説明する。
排気用間隔板では、仕切板からの移相作用と目的ガスの吸着保持とが要求され、何れかの作用に対しても活性炭による吸着容量が大きいほど望ましい。
(Exhaust spacing plate)
As described above, there are two types of exhaust spacing plates, (desorption / release) and (adsorption / holding), for the target gas phase-shifted from the partition plate.
First, (suction / hold) will be described.
The exhaust spacing plate is required to have a phase shift effect from the partition plate and adsorb and retain the target gas, and it is more desirable for any of the effects to have a larger adsorption capacity by activated carbon.

(給気用間隔板と排気用間隔板の相互関係について)
給気用間隔板および排気用間隔板における活性炭量に関して、仕切板に保持された目的ガスが排気用間隔板に速やかに移相するためには、
(給気用間隔板の吸着容量)≦(排気用間隔板の吸着容量)であることが望ましい。
上述の給気用間隔板の要件と併せると、給気用間隔板、排気用間隔板とも活性炭の配合比を同一に、なるべく多くすることが代表的である。活性炭量を少なくするのは、素子が大きくなった際に型くずれしにくい(素子と筐体との気密性を保つ)特性を持たせる上で有利である。
(About the interrelationship between the air supply spacing plate and the exhaust spacing plate)
Regarding the amount of activated carbon in the air supply interval plate and the exhaust interval plate, in order for the target gas held in the partition plate to promptly shift the phase to the exhaust interval plate,
It is desirable that (adsorption capacity of the air supply spacing plate) ≦ (adsorption capacity of the exhaust spacing plate).
When combined with the requirements for the above-described air supply interval plate, it is typical to increase the mixing ratio of activated carbon in the air supply interval plate and the exhaust interval plate to be the same as much as possible. Reducing the amount of activated carbon is advantageous in giving characteristics that the element is less likely to lose its shape when the element becomes large (maintaining the airtightness between the element and the housing).

次に、(脱離・放出)について説明する。
排気用間隔板で、仕切板からの移相作用と目的ガスの脱離を意図する場合、移相作用を確保できる範囲内で脱離性能が高い方が望ましい。脱離性能は、吸着容量に関係がある。
(脱離性能を発揮するための条件)
ここで一般的な状況として、目的ガスの濃度について、導入外気>還気(=室内の平均)である場合を考える。その場合、「吸着−移相−脱離」の作用が成立するためには、排気用間隔板の吸着容量は、給気用間隔板と同レベルの吸着容量でもよい。すなわち、排気用間隔板の吸着容量は最大、給気用間隔板と同レベルの吸着容量であればよく、概ね下記のように表すことができる。
Next, (desorption / release) will be described.
In the case where the phase shift action from the partition plate and the desorption of the target gas are intended in the exhaust spacing plate, it is desirable that the desorption performance is high as long as the phase shift action can be ensured. Desorption performance is related to adsorption capacity.
(Conditions for desorption performance)
Here, as a general situation, a case is considered where the concentration of the target gas is such that introduced outside air> return air (= indoor average). In this case, in order to achieve the function of “adsorption-phase-shift-desorption”, the adsorption capacity of the exhaust spacing plate may be the same level as the suction capacity of the air supply spacing plate. In other words, the maximum suction capacity of the exhaust spacing plate may be the same as the suction capacity of the air supply spacing plate, and can be approximately expressed as follows.

(排気用間隔板の吸着容量)≦(給気用間隔板の吸着容量)
(移相作用を発揮させることを考慮した条件)
その一方、排気用間隔板の吸着容量を極端に小さくすると移相作用に支障が生じると考えられる。そのため実際には、下記のようにしている。
(給気用間隔板の吸着容量)×(1/2)≦(排気用間隔板の吸着容量)
次に、本実施形態に係る全熱交換器用素子1を目的ガスに応じて給気用間隔板3および排気用間隔板4を変えた例示を以下に説明する。なお、何れも活性炭量について、給気用間隔板と排気用間隔板とで、等量とした。
(Adsorption capacity of exhaust interval plate) ≤ (Adsorption capacity of air supply interval plate)
(Conditions for exhibiting the phase shift effect)
On the other hand, if the adsorption capacity of the exhaust spacing plate is made extremely small, it is considered that the phase shift effect is hindered. Therefore, actually, the following is performed.
(Adsorption capacity of air supply interval plate) x (1/2) ≤ (adsorption capacity of exhaust interval plate)
Next, an example will be described below in which the element 1 for a total heat exchanger according to the present embodiment has the air supply space plate 3 and the exhaust space plate 4 changed according to the target gas. In each case, the amount of activated carbon was made equal between the air supply interval plate and the exhaust interval plate.

(第一例)
目的ガスをアンモニアガス(導入外気)とした場合について説明する。
本例では、給気用間隔板3として、アルカリガス吸着部材を用い、排気用間隔板4として、アンモニア(NH3)ガスを脱離する酸性ガス吸着部材を用いた。
アンモニアガスは、下記の反応式で吸着する。
(First example)
The case where the target gas is ammonia gas (introduced outside air) will be described.
In this example, an alkali gas adsorbing member was used as the air supply spacing plate 3, and an acidic gas absorption member that desorbed ammonia (NH 3 ) gas was used as the exhaust spacing plate 4.
Ammonia gas is adsorbed by the following reaction formula.

3PO4 + NH3 → NH42PO4
NH4の化合物はアルカリ性において分解し、アンモニア(NH3)ガスとして分離する。これは、一般的なNH3分析方法に用いられる原理である。
次に、本例の作用を説明する。
先ず、アンモニアガスを、給気用間隔板3で吸着し、NH42PO4化合物として給気用間隔板3中に捕捉する。
H 3 PO 4 + NH 3 → NH 4 H 2 PO 4
The compound of NH 4 is decomposed in alkaline and separated as ammonia (NH 3 ) gas. This is a principle used in a general NH 3 analysis method.
Next, the operation of the present example will be described.
First, ammonia gas is adsorbed by the air supply spacing plate 3 and captured in the air supply spacing plate 3 as an NH 4 H 2 PO 4 compound.

次に、給気用間隔板3で捕捉したNH42PO4を、仕切板2の活性炭層に移相する。
次に、給気用間隔板3で捕捉したNH42PO4を、さらに仕切板2から排気用間隔板4に移相する。
次に、NH42PO4(NH4の化合物)を、排気用間隔板4で分解し、排気用間隔板4でそのアルカリ性雰囲気にアンモニア(NH3)ガスとして分離し、屋外へ排出する空気中に放出する。
Next, the NH 4 H 2 PO 4 captured by the air supply space plate 3 is phase-shifted to the activated carbon layer of the partition plate 2.
Next, the NH 4 H 2 PO 4 captured by the air supply space plate 3 is further phase-shifted from the partition plate 2 to the exhaust space plate 4.
Next, NH 4 H 2 PO 4 (a compound of NH 4 ) is decomposed by the exhaust spacing plate 4, separated into its alkaline atmosphere as ammonia (NH 3 ) gas by the exhaust spacing plate 4, and discharged outside. Release into the air.

以上により、本例に係る全熱交換器用素子1の長寿命化が図られる。
なお、活性炭量について、給気用間隔板と排気用間隔板とを等量としたので、
(排気用間隔板の吸着容量)<(給気用間隔板の吸着容量)
となる(排気用間隔板の活性炭にアルカリが添着されていて、給気用間隔板より吸着容量が小さい)。これは吸着容量が等しいより望ましい。
As described above, the service life of the element 1 for a total heat exchanger according to the present example is extended.
In addition, about the activated carbon amount, since the air supply interval plate and the exhaust interval plate were made equal,
(Suction capacity of exhaust spacing plate) <(Suction capacity of air supply spacing plate)
(The alkali is attached to the activated carbon of the exhaust interval plate, and the adsorption capacity is smaller than that of the air supply interval plate.) This is more desirable than equal adsorption capacity.

(第二例)
目的ガスをSO2、NO2ガス(導入外気)とした場合について説明する。
本例では、給気用間隔板3として、酸性ガス吸着部材を用い、排気用間隔板4として、酸性ガス吸着部材を用いた。
先に、目的ガスがSO2の場合について説明する。
(Second example)
A case where the target gas is SO 2 or NO 2 gas (introduced outside air) will be described.
In this example, an acidic gas adsorbing member was used as the air-supplying interval plate 3 and an acidic gas adsorbing member was used as the exhausting interval plate 4.
First, the case where the target gas is SO 2 will be described.

先ず、目的ガスSO2を酸性ガス吸着部材中の活性炭により酸化し、SO2→SO4 2-で給気用間隔板3中に捕捉する。
次に、給気用間隔板3から仕切板2に濃度勾配により移相する。
次に、仕切板2から排気用間隔板4に濃度勾配により移相する。
以上により、SO2に対し、入口側の給気用間隔板3の他に、出口側の排気用間隔板4の分、吸着容量が増え、本例に係る全熱交換器用素子1の長寿命に寄与する。
First, oxidized by the activated carbon in the acid gas adsorption member of the desired gas SO 2, SO 2 → SO 4 captures 2-in supply air spacers 3 in.
Next, the phase is shifted from the air supply interval plate 3 to the partition plate 2 by a concentration gradient.
Next, the phase is shifted from the partition plate 2 to the exhaust spacing plate 4 by a concentration gradient.
As described above, the adsorption capacity of SO 2 is increased by the amount of the exhaust-side spacing plate 4 on the outlet side in addition to the amount of the inlet-side spacing plate 3 on the inlet side, and the long life of the element 1 for a total heat exchanger according to this example is increased. To contribute.

次に、目的ガスがNO2の場合について説明する。
先ず、目的ガスNO2を、給気側の給気用間隔板3にNO2として捕捉する。
次に、給気用間隔板3から仕切板2に濃度勾配により移相する。
次に、仕切板2から排気用間隔板4に濃度勾配により移相する。
次に、1次側より取得したNO2のうち一部を、活性炭の特性を利用して排気用間隔板4よりNO2 -およびNOとして屋外へ排出する空気中に放出する。
Next, the case where the target gas is NO 2 will be described.
First, the object gas NO 2, to capture as NO 2 in air supply spacers 3 in the supply side.
Next, the phase is shifted from the air supply interval plate 3 to the partition plate 2 by a concentration gradient.
Next, the phase is shifted from the partition plate 2 to the exhaust spacing plate 4 by a concentration gradient.
Next, a part of the NO 2 obtained from the primary side is released into the air to be discharged outside as NO 2 and NO from the exhaust spacing plate 4 by utilizing the characteristics of the activated carbon.

次に、1次側より取得したNO2のうちの残りは、NO2の形で排気用間隔板4中に吸着されるが、入口側の給気用間隔板3の他に、出口側の排気用間隔板4の分、吸着容量が増える。
以上により、目的ガスNO2に対する出口側の排気用間隔板4の作用にて、本例に係る全熱交換器用素子1の長寿命に寄与する。
Then, 1 is the remaining of the NO 2 obtained from the primary side, but are attracted to the spacer board 4 exhaust in the form of NO 2, in addition to the inlet side of the air supply spacers 3, the outlet The suction capacity is increased by the space plate 4 for exhaust.
As described above, the action of the outlet-side exhaust spacing plate 4 with respect to the target gas NO 2 contributes to the long life of the total heat exchanger element 1 according to the present embodiment.

(第三例)
目的ガスを有機ガス(導入外気)とした場合について説明する。
本例では、給気用間隔板3として、有機ガス吸着部材を用い、排気用間隔板4として、アルカリガス吸着部材を用いた。
次に、本例の作用を説明する。
(Third example)
The case where the target gas is an organic gas (introduced outside air) will be described.
In this example, an organic gas adsorption member was used as the air supply space plate 3, and an alkali gas adsorption member was used as the exhaust space plate 4.
Next, the operation of the present example will be described.

先ず、目的ガスである有機ガスを、給気用間隔板3で吸着する。
次に、吸着した有機ガスを、給気用間隔板3から仕切板2に移相する。
次に、仕切板2中の有機ガスを、排気用間隔板4に移相する。
次に、排気用間隔板4から排気側で脱離し、屋外へ排出する空気中に放出する。
以上により、本例に係る全熱交換器用素子1の長寿命化が図られる。
First, an organic gas, which is a target gas, is adsorbed by the air supply spacing plate 3.
Next, the adsorbed organic gas is phase-shifted from the air supply interval plate 3 to the partition plate 2.
Next, the organic gas in the partition plate 2 is phase-shifted to the exhaust spacing plate 4.
Next, it is detached from the exhaust spacing plate 4 on the exhaust side and released into the air that is discharged outdoors.
As described above, the service life of the element 1 for a total heat exchanger according to the present example is extended.

なお、活性炭量について、給気用間隔板と排気用間隔板とを等量としたので、
(排気用間隔板の吸着容量)<(給気用間隔板の吸着容量)
となる(排気用間隔板の活性炭に酸が添着されていて、給気用間隔板より吸着容量が小さい)。これは吸着容量が等しいより望ましい。
(第四例)
目的ガスを有機ガス(導入外気)とした場合について説明する。
In addition, about the activated carbon amount, since the air supply interval plate and the exhaust interval plate were made equal,
(Suction capacity of exhaust spacing plate) <(Suction capacity of air supply spacing plate)
(Acid is attached to the activated carbon of the exhaust spacing plate, and the adsorption capacity is smaller than that of the air supply spacing plate). This is more desirable than equal adsorption capacity.
(Fourth example)
The case where the target gas is an organic gas (introduced outside air) will be described.

本例では、給気用間隔板3として、有機ガス吸着部材を用い、排気用間隔板4として、有機ガス吸着部材を用いた。
本例では、給気用間隔板3および排気用間隔板4で、2次(排気)側の吸着能力を1次(給気)側の吸着能力と等しくするかまたは小さくする。これにより、吸着容量の大きい給気用間隔板3で吸着し、吸着容量の小さい排気用間隔板4に移相され再放出することができる。
In this example, an organic gas absorbing member was used as the air supply spacing plate 3, and an organic gas absorption member was used as the exhaust spacing plate 4.
In the present example, the suction capacity on the secondary (exhaust) side is made equal to or smaller than the suction capacity on the primary (supply) side in the air supply space plate 3 and the exhaust space plate 4. Thus, the gas can be adsorbed by the supply space plate 3 having a large adsorption capacity, and the phase can be shifted to the exhaust space plate 4 having a small adsorption capacity to be released again.

次に、本例の作用を説明する。
先ず、目的ガスである有機ガス(導入外気)を、給気用間隔板3で吸着する。
次に、吸着した有機ガスを、給気用間隔板3から仕切板2に移相する。
次に、仕切板2中の有機ガスを、さらに排気用間隔板4に移相する。
次に、排気用間隔板4から排気側で脱離し、屋外へ排出する空気中に放出する。
Next, the operation of the present example will be described.
First, an organic gas (introduced outside air) as a target gas is adsorbed by the air supply spacing plate 3.
Next, the adsorbed organic gas is phase-shifted from the air supply interval plate 3 to the partition plate 2.
Next, the organic gas in the partition plate 2 is further phase-shifted to the exhaust spacing plate 4.
Next, it is detached from the exhaust spacing plate 4 on the exhaust side and released into the air that is discharged outdoors.

以上により、本例に係る全熱交換器用素子1の長寿命化が図られる。
なお、給気側活性炭量=排気側活性炭量でも、(排気側吸着容量)=(給気側吸着容量)であり、「吸着−移相−脱離」作用は成立するが、(排気側吸着容量)<(給気側吸着容量)とするために、(排気側活性炭量)<(給気側活性炭量)とする方が望ましい。
(第五例)
目的ガスを酸性ガス(導入外気)とした場合について説明する。
As described above, the service life of the element 1 for a total heat exchanger according to the present example is extended.
Even when the amount of activated carbon on the supply side = the amount of activated carbon on the exhaust side, (exhaust-side adsorption capacity) = (supply-side adsorption capacity), and the “adsorption-phase-shift-desorption” action is established, but (exhaust-side adsorption capacity). In order to satisfy (capacity) <(supply capacity on the air supply side), it is preferable to satisfy (amount of activated carbon on the exhaust side) <(amount of activated carbon on the air supply side).
(Fifth example)
The case where the target gas is acid gas (introduced outside air) will be described.

本例では、給気用間隔板3として、酸性ガス吸着部材を用い、排気用間隔板4として、アルカリガス吸着部材を用いた。
第二例との比較では、NO2ガスが多い場合に本例5が適する。
次に、本例の作用を説明する。
先ず、目的ガスNO2を、給気用間隔板3にNO2として捕捉する。
In this example, an acidic gas adsorbing member was used as the air supply spacing plate 3, and an alkali gas adsorption member was used as the exhaust spacing plate 4.
In comparison with the second example, the fifth example is suitable when the amount of NO 2 gas is large.
Next, the operation of the present example will be described.
First, the target gas NO 2 is captured by the air supply interval plate 3 as NO 2 .

次に、給気用間隔板3から仕切板2に濃度勾配により移相する。
次に、仕切板2から排気用間隔板4に濃度勾配により移相する。
次に、1次側より取得したNO2のうち一部を、活性炭の特性により排気用間隔板4よりNO2 -およびNOとして屋外へ排出する空気中に放出する。
次に、1次側より取得したNO2のうちの残りを、NO2の形で排気用間隔板4中に吸着するが、入口側の給気用間隔板3の他に、出口側の排気用間隔板4の分、吸着容量が増える。
Next, the phase is shifted from the air supply interval plate 3 to the partition plate 2 by a concentration gradient.
Next, the phase is shifted from the partition plate 2 to the exhaust spacing plate 4 by a concentration gradient.
Next, a part of the NO 2 obtained from the primary side is released into the air to be discharged outside as NO 2 and NO from the exhaust spacing plate 4 due to the characteristics of the activated carbon.
Then, the rest of the NO 2 obtained from the primary side, although the adsorption to the spacing plate 4 exhaust in the form of NO 2, in addition to the inlet side of the air supply spacers 3, exhaust outlet The suction capacity is increased by the distance plate 4 for use.

以上により、目的ガスNO2に対する出口側の排気用間隔板4の作用にて、本例に係る全熱交換器用素子1の長寿命に寄与する。
次に、目的ガスがSO2の場合について説明する。
先ず、目的ガスSO2を給気用間隔板3中に捕捉する。
吸着されたSO2は、給気用間隔板3中の活性炭により酸化されてSO2→SO4 2-となる。
As described above, the action of the outlet-side exhaust spacing plate 4 with respect to the target gas NO 2 contributes to the long life of the total heat exchanger element 1 according to the present embodiment.
Next, a case where the target gas is SO 2 will be described.
First, the target gas SO 2 is captured in the air supply space plate 3.
The adsorbed SO 2 is oxidized by the activated carbon in the air supply space plate 3 to be SO 2 → SO 4 2- .

次に、給気用間隔板3から仕切板2に濃度勾配により移相する。
次に、仕切板2から排気用間隔板4に濃度勾配により移相する。
以上により、SO4 2-の形で吸着される容量は、入口側の給気用間隔板3の他に、出口側の排気用間隔板4の分、吸着容量が増え、本例に係る全熱交換器用素子1の長寿命に寄与する。
Next, the phase is shifted from the air supply interval plate 3 to the partition plate 2 by a concentration gradient.
Next, the phase is shifted from the partition plate 2 to the exhaust spacing plate 4 by a concentration gradient.
As described above, the capacity to be adsorbed in the form of SO 4 2− is increased by the suction space plate 3 on the outlet side in addition to the space plate 3 on the inlet side, and the suction capacity is increased. This contributes to a long life of the heat exchanger element 1.

(試験例1)
次に、本実施形態に係る全熱交換素子1を図3および図4に示すよう全熱交換器5を内蔵し、千葉県内の幹線道路沿いに立地する建物内に設置し、暴露試験を行い、目的ガスとしてNO2の浄化性能および移相について検討するための実験を行った。
ここでは、仕切板2は製紙用繊維50%と活性炭50%とを抄紙成型した用紙で構成し、秤量175g/m2、板厚0.60mm、透気度152秒とした。給気用間隔板3および排気用間隔板4を炭酸カリウムを担持させた活性炭50〜70%と製紙用繊維25〜50%を主成分とする用紙で構成した酸性ガス吸着部材を用いた。
(Test Example 1)
Next, the total heat exchange element 1 according to the present embodiment incorporates the total heat exchanger 5 as shown in FIGS. 3 and 4 and is installed in a building located along a main road in Chiba Prefecture, and subjected to an exposure test. An experiment was conducted to examine the purification performance and phase shift of NO 2 as a target gas.
Here, the partition plate 2 was made of paper formed by papermaking with 50% of papermaking fibers and 50% of activated carbon, and the weighing was 175 g / m 2 , the plate thickness was 0.60 mm, and the air permeability was 152 seconds. The gas supply spacing plate 3 and the exhaust spacing plate 4 were made of an acidic gas adsorbing member composed of paper containing 50 to 70% of activated carbon carrying potassium carbonate and 25 to 50% of papermaking fibers as main components.

本例では、試験条件を簡単にするために、SA(給気)をRA(還気)に接続し、室内に吹いた空気が全熱交換器5に戻る(RA濃度=SA濃度)ようにモデル化した試験装置10として説明する。
また、OA(外気)、SA(給気)およびEA(排気)の所定の箇所に測定点を設け、それぞれにNOx計7を取り付け、NO2濃度(ppb)およびNO濃度(ppb)を測定した。
In this example, in order to simplify the test conditions, SA (supply air) is connected to RA (return air) so that the air blown into the room returns to the total heat exchanger 5 (RA concentration = SA concentration). Description will be given as a modeled test apparatus 10.
Further, measurement points were provided at predetermined locations of OA (outside air), SA (supply air) and EA (exhaust), and a NOx meter 7 was attached to each of them to measure NO 2 concentration (ppb) and NO concentration (ppb). .

先ず、送風機6により、例えば、40m3/hで自動車排ガスなどによる高めのNO2を含んだ外気(OA)を取り入れる。
次に、OA(外気)に対し、SA(給気)でNO2濃度が低くなるか否かを評価する。
次に、RA(還気)に対し、EA(排気)でNO2濃度が高くなるか否かを評価する。
一般に、NO2を活性炭により吸着浄化すると、若干NOが放出されるとされている。
First, the blower 6 takes in outside air (OA) containing high NO 2 due to automobile exhaust gas at 40 m 3 / h, for example.
Next, it is evaluated whether or not the NO 2 concentration is reduced in SA (air supply) with respect to OA (outside air).
Next, it is evaluated whether or not the NO 2 concentration increases in EA (exhaust) with respect to RA (return air).
Generally, it is said that when NO 2 is adsorbed and purified by activated carbon, NO is slightly released.

図4に、各測定点におけるある平日の午前8時55分〜9時の平均濃度を示す。
次に、試験結果について考察する。
先ず、導入OA(外気)中のNO2濃度に比べてSA(給気)のNO2濃度が大幅に低減されており(OA46.2→SA7.8)、目的ガスであるNO2を浄化する効果を示している。
FIG. 4 shows the average concentration at 8:55 am to 9:00 am on a certain weekday at each measurement point.
Next, the test results will be considered.
First, the NO 2 concentration of SA (supply air) as compared with the NO 2 concentration in the introduction OA (outside air) are greatly reduced (OA46.2 → SA7.8), purifying the NO 2 is the object gas The effect is shown.

このことから、幹線道路沿いで自動車排ガスによりNO2濃度が高い外気を室内に導入する際、NO2濃度を低減し、室内に供給していることが分かる。
次に、RA(還気=SA(給気))中のNO濃度に対しEA(排気)中のNO濃度が若干上昇している(RA22.6→EA25.9)。
SA(給気)中のNO濃度はOA(外気)より高くなっていない(SA=22.6、OA=32.6)。
From this, it can be seen that when outside air having a high NO 2 concentration is introduced into a room due to automobile exhaust gas along a main road, the NO 2 concentration is reduced and supplied to the room.
Next, the NO concentration in EA (exhaust) is slightly higher than the NO concentration in RA (return air = SA (supply)) (RA 22.6 → EA 25.9).
The NO concentration in SA (air supply) is not higher than OA (outside air) (SA = 22.6, OA = 32.6).

これらから、NO2が給気側で全熱交換素子1に吸着し、仕切板2を介して移相し、NOの形で排気側へ放出され、EA(排気)のNO濃度を上昇させていると考えられる。
このことは、移相現象が生じていることを説明しており、全熱交換素子1が浄化フィルタとしての性能を長寿命化させる効果を有する裏付けとなる。
(試験例2)
次に、本発明に係る全熱交換器用素子の熱交換性能について説明する。
From these, NO 2 is adsorbed on the total heat exchange element 1 on the air supply side, phase-shifted through the partition plate 2 and released to the exhaust side in the form of NO, increasing the NO concentration of EA (exhaust). It is thought that there is.
This explains that the phase shift phenomenon has occurred, and supports that the total heat exchange element 1 has the effect of extending the life of the performance as a purification filter.
(Test Example 2)
Next, the heat exchange performance of the element for a total heat exchanger according to the present invention will be described.

(全熱交熱交換性能について)
熱交換効率についての指標を表2に示す。これらは、室内から屋外へ排気する空気から、熱交換器により室内へ供給する空気(給気)へ回収する回収率を意味しており、(1)式〔顕熱(温度)〕、(2)式〔潜熱(水分)〕、(3)式〔全熱(顕熱+潜熱=温度と水分)〕を対象に表したものである。
(About total heat exchange performance)
Table 2 shows indices for the heat exchange efficiency. These mean the rate of recovery from the air exhausted indoors to the outdoors to the air (air supply) supplied indoors by the heat exchanger. Equation (1) [sensible heat (temperature)], (2) ) Formula (latent heat (moisture)) and formula (3) [total heat (sensible heat + latent heat = temperature and moisture)].

Figure 2004294052
Figure 2004294052

(熱交換性能の試験例)
全熱交換器用素子の仕様(全熱交換器用素子は、図3に示す暴露試験と同一のものを使用した。)は、表3に示す通りである。
(Test example of heat exchange performance)
Table 3 shows the specifications of the total heat exchanger element (the same element as the exposure test shown in FIG. 3 was used for the total heat exchanger element).

Figure 2004294052
Figure 2004294052

表3において、配合割合の%は重量比を表す。酸性ガス吸着部材におけるアルカリ(炭酸カリウム)の%は、有機ガス吸着部材を100%としたときの重量比を表す。
(熱交換性能試験の概要)
図5に示すように試験装置20を設置した。チャンバ21内を電気ヒータ22と加湿器23で加熱、加湿することにより、RA(還気)に比べ高温・高湿の空気をOA(外気)に供給した。
In Table 3,% of the mixing ratio represents a weight ratio. The percentage of alkali (potassium carbonate) in the acidic gas adsorbing member represents a weight ratio when the amount of the organic gas adsorbing member is 100%.
(Outline of heat exchange performance test)
The test apparatus 20 was installed as shown in FIG. By heating and humidifying the inside of the chamber 21 with the electric heater 22 and the humidifier 23, air having a higher temperature and a higher humidity than RA (return air) was supplied to the OA (outside air).

OA(外気)−SA(給気)の送風機24は、SA(給気)の吹出し口で40m3/hとなるようにその出力を調整した。
同様に、RA(還気)−EA(排気)の送風機25は、EA(排気)の吹出し口で40m3/hとなるようにその出力を調整した。
OA(外気),SA(給気),RA(還気)の3点に温湿度計26をそれぞれ配置して温湿度を連続計測し、試験装置20の運転を開始して約1時間経過し、各点の温湿度が安定したところでその値を読み取った。
The output of the blower 24 of OA (outside air) -SA (air supply) was adjusted so as to be 40 m 3 / h at the outlet of SA (air supply).
Similarly, the output of the blower 25 of RA (return air) -EA (exhaust) was adjusted so as to be 40 m 3 / h at the outlet of EA (exhaust).
The temperature and humidity are continuously measured by arranging the temperature and humidity meters 26 at three points of OA (outside air), SA (supply air), and RA (return air), respectively. When the temperature and humidity at each point became stable, the values were read.

(結果と考察)
各点で測定した温湿度、それらから換算した絶対湿度、比エンタルピを表4に示す。
(Results and discussion)
Table 4 shows the temperature and humidity measured at each point, the absolute humidity converted from them, and the specific enthalpy.

Figure 2004294052
Figure 2004294052

温湿度測定結果をもとに、(1)式〜(3)式により熱交換効率を求めると、表5の値が得られた。   When the heat exchange efficiency was determined by the equations (1) to (3) based on the temperature and humidity measurement results, the values in Table 5 were obtained.

Figure 2004294052
Figure 2004294052

(熱交換性能試験の結果)
SA(給気)の温度(30.0℃)がOA(外気)の温度(35.1℃)より低く、OA(外気)の温度(35.1℃)とRA(還気)の温度(27.4℃)の間の値となっており、RA(還気)の冷熱を回収しSA(給気)に供給していることがわかる。これは顕熱(温度)の交換を示している。
(Result of heat exchange performance test)
The temperature of SA (air supply) (30.0 ° C.) is lower than the temperature of OA (outside air) (35.1 ° C.), and the temperature of OA (outside air) (35.1 ° C.) and the temperature of RA (return air) ( 27.4 ° C.), indicating that the cold energy of RA (return air) is recovered and supplied to SA (air supply). This indicates the exchange of sensible heat (temperature).

SA(給気)の絶対湿度0.0220(kg/kg(DA))はOA(外気)の絶対湿度(0.0239kg/kg(DA))とRA(還気)の絶対湿度(0.0164kg/kg(DA))の間の値となっており、潜熱(水分)が交換されていることを示している。
SA(給気)の比エンタルピ84.6(kJ/kg(DA))はOA(外気)の比エンタルピ(94.8kJ/kg(DA))とRA(還気)の比エンタルピ(68.2kJ/kg(DA))の間の値となっており、全熱(顕熱と潜熱)が交換されていることを示している。
The absolute humidity of SA (air supply) 0.0220 (kg / kg (DA)) is the absolute humidity of OA (outside air) (0.0239 kg / kg (DA)) and the absolute humidity of RA (return air) (0.0164 kg). / Kg (DA)), indicating that latent heat (moisture) has been exchanged.
The specific enthalpy of SA (air supply) 84.6 (kJ / kg (DA)) is the specific enthalpy of OA (outside air) (94.8 kJ / kg (DA)) and the specific enthalpy of RA (return air) (68.2 kJ). / Kg (DA)), indicating that the total heat (sensible heat and latent heat) has been exchanged.

熱交換効率については、温度交換効率66%、湿度交換効率26%、全熱交換効率38%であり、顕熱、潜熱、および全熱について熱交換(熱回収)されている性能を示している。
以上より、試験した全熱交換器用素子は上記に示す熱交換性能を有していることが確認できた。
Regarding the heat exchange efficiency, the temperature exchange efficiency was 66%, the humidity exchange efficiency was 26%, and the total heat exchange efficiency was 38%, indicating the performance of heat exchange (heat recovery) for sensible heat, latent heat, and total heat. .
From the above, it was confirmed that the tested total heat exchanger element had the heat exchange performance described above.

従って、これを用いた全熱交換器は、意図する熱交換性能から、省エネルギーに寄与することが確認できた。   Therefore, it was confirmed that the total heat exchanger using this contributes to energy saving from the intended heat exchange performance.

本発明に係る全熱交換器用素子1の一例を示す説明図である。It is explanatory drawing which shows an example of the element 1 for total heat exchangers which concerns on this invention. 図1における全熱交換器用素子1の要部を示す拡大図である。It is an enlarged view which shows the principal part of the element 1 for total heat exchangers in FIG. 図1における全熱交換器用素子1を全熱交換器に内蔵し、目的ガスとしてNO2の浄化性能および移相について検討するための試験装置の概要を示す説明図である。FIG. 2 is an explanatory diagram showing an outline of a test apparatus for incorporating a total heat exchanger element 1 in FIG. 1 in a total heat exchanger and examining NO 2 purification performance and phase shift as a target gas. 図3における試験装置の各測定点におけるNO2濃度(ppb)およびNO濃度(ppb)を示す説明図である。FIG. 4 is an explanatory diagram showing a NO 2 concentration (ppb) and a NO concentration (ppb) at each measurement point of the test apparatus in FIG. 3. 図1における全熱交換器用素子1を内蔵した全熱交換器を用いた試験装置の模式図である。FIG. 2 is a schematic diagram of a test apparatus using a total heat exchanger incorporating the total heat exchanger element 1 in FIG. 1.

符号の説明Explanation of reference numerals

1 全熱交換器用素子
2 仕切板
3 給気用間隔板
4 排気用間隔板
5 全熱交換器
10,20 試験装置
DESCRIPTION OF SYMBOLS 1 Total heat exchanger element 2 Partition plate 3 Air supply spacing plate 4 Exhaust spacing plate 5 Total heat exchanger 10, 20 Test equipment

Claims (10)

全熱交換能力と目的ガスを移相させる能力とを有し、給気と排気とを隔てる仕切板と、
前記目的ガスに対する吸着能力を有し、前記仕切板同士の間隔を保つ波形状を為す給気用間隔板と、
前記目的ガスに対する脱離または吸着能力を有し、前記仕切板同士の間隔を保つ波形状を為す排気用間隔板とを備え、
前記給気用間隔板と前記排気用間隔板とを、直交して前記仕切板を介して交互に積層して成ることを特徴とする全熱交換器用素子。
A partition plate that has a total heat exchange capability and a capability of shifting the phase of the target gas, and separates air supply and exhaust gas;
Having an adsorption capacity for the target gas, an air supply spacing plate having a wavy shape that maintains the spacing between the partition plates,
An exhaust spacing plate having a desorption or adsorption capacity for the target gas and having a wavy shape that maintains the spacing between the partition plates,
The element for a total heat exchanger, wherein the air supply space plate and the exhaust space plate are alternately laminated orthogonally via the partition plate.
請求項1記載の全熱交換器用素子において、前記目的ガスが、酸性ガス、アルカリガス、有機ガスであることを特徴とする全熱交換器用素子。   2. The element for a total heat exchanger according to claim 1, wherein the target gas is an acidic gas, an alkali gas, or an organic gas. 請求項1記載の全熱交換器用素子において、前記仕切板は、活性炭40〜70%と製紙用繊維30〜60%とを抄紙成型した用紙で構成されていることを特徴とする全熱交換器用素子。   2. The element for a total heat exchanger according to claim 1, wherein the partition plate is made of paper formed by forming 40 to 70% of activated carbon and 30 to 60% of papermaking fibers. element. 請求項1記載の全熱交換器用素子において、前記給気用間隔板および排気用間隔板は、酸性ガス吸着部材、アルカリガス吸着部材、有機ガス吸着部材の何れかで構成されていることを特徴とする全熱交換器用素子。   2. The element for a total heat exchanger according to claim 1, wherein the air supply space plate and the exhaust space plate are formed of any one of an acid gas adsorption member, an alkali gas adsorption member, and an organic gas adsorption member. Element for a total heat exchanger. 請求項4記載の全熱交換器用素子において、給気用間隔板に用いられる酸性ガス吸着部材は、活性炭50〜75%、製紙用繊維25〜50%を主成分とする用紙に、アルカリ化合物を添着し、活性炭に担持させて成ることを特徴とする全熱交換器用素子。   5. The element for a total heat exchanger according to claim 4, wherein the acidic gas adsorbing member used for the air supply spacing plate comprises an alkaline compound on paper mainly containing 50 to 75% of activated carbon and 25 to 50% of papermaking fibers. An element for a total heat exchanger, which is attached to and supported on activated carbon. 請求項4記載の全熱交換器用素子において、排気用間隔板に用いられる酸性ガス吸着部材は、活性炭25〜75%、製紙用繊維25〜75%を主成分とする用紙に、アルカリ化合物を添着し、活性炭に担持させて成ることを特徴とする全熱交換器用素子。   5. The element for a total heat exchanger according to claim 4, wherein the acidic gas adsorbing member used for the exhaust spacing plate has an alkali compound impregnated on a paper mainly composed of 25 to 75% of activated carbon and 25 to 75% of papermaking fibers. And an element for a total heat exchanger, which is supported on activated carbon. 請求項4記載の全熱交換器用素子において、給気用間隔板に用いられるアルカリガス吸着部材は、活性炭50〜75%、製紙用繊維25〜50%を主成分とする用紙に、酸性化合物を添着し、活性炭に担持させて成ることを特徴とする全熱交換器用素子。   5. The element for a total heat exchanger according to claim 4, wherein the alkali gas adsorbing member used for the air supply spacing plate comprises an acidic compound on a sheet mainly composed of 50 to 75% of activated carbon and 25 to 50% of papermaking fibers. An element for a total heat exchanger, which is attached to and supported on activated carbon. 請求項4記載の全熱交換器用素子において、排気用間隔板に用いられるアルカリガス吸着部材は、活性炭25〜75%、製紙用繊維25〜75%を主成分とする用紙に、酸性化合物を添着し、活性炭に担持させて成ることを特徴とする全熱交換器用素子。   5. The element for a total heat exchanger according to claim 4, wherein the alkali gas adsorbing member used for the exhaust spacing plate has an acidic compound impregnated on a paper mainly composed of 25 to 75% of activated carbon and 25 to 75% of papermaking fibers. And an element for a total heat exchanger, which is supported on activated carbon. 請求項4記載の全熱交換器用素子において、給気用間隔板に用いられる有機ガス吸着部材は、活性炭50〜75%、製紙用繊維25〜50%を主成分とする用紙で構成されていることを特徴とする全熱交換器用素子。   In the element for a total heat exchanger according to the fourth aspect, the organic gas adsorbing member used for the air supply space plate is made of a paper containing activated carbon 50 to 75% and papermaking fiber 25 to 50% as main components. An element for a total heat exchanger, characterized in that: 請求項4記載の全熱交換器用素子において、排気用間隔板に用いられる有機ガス吸着部材は、活性炭25〜75%、製紙用繊維25〜75%を主成分とする用紙で構成されていることを特徴とする全熱交換器用素子。
In the element for a total heat exchanger according to claim 4, the organic gas adsorbing member used for the exhaust spacing plate is made of a paper containing activated carbon 25 to 75% and papermaking fiber 25 to 75% as main components. An element for a total heat exchanger, characterized by:
JP2004058540A 2003-03-07 2004-03-03 Cross-flow type total heat exchanger element Expired - Fee Related JP3833220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058540A JP3833220B2 (en) 2003-03-07 2004-03-03 Cross-flow type total heat exchanger element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003061892 2003-03-07
JP2004058540A JP3833220B2 (en) 2003-03-07 2004-03-03 Cross-flow type total heat exchanger element

Publications (2)

Publication Number Publication Date
JP2004294052A true JP2004294052A (en) 2004-10-21
JP3833220B2 JP3833220B2 (en) 2006-10-11

Family

ID=33421431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058540A Expired - Fee Related JP3833220B2 (en) 2003-03-07 2004-03-03 Cross-flow type total heat exchanger element

Country Status (1)

Country Link
JP (1) JP3833220B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889205B1 (en) * 2008-09-26 2009-03-16 셀파씨엔씨 Total heat exchanger element of heat recovery ventilator
KR101322049B1 (en) * 2009-08-24 2013-10-25 (주)엘지하우시스 Paper for total heat exchange element, preparation method thereof and total heat exchange element comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564178A (en) * 2011-12-18 2012-07-11 镇江市清源科技工程有限公司 High-efficiency and energy-saving waste heat recovering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317000A (en) * 2000-05-08 2001-11-16 Osaka Gas Co Ltd Activated carbon-containing paper and air filter
JP2002228382A (en) * 2001-01-31 2002-08-14 Mitsubishi Electric Corp Heat exchanger
JP2002286363A (en) * 2001-03-27 2002-10-03 Mitsubishi Electric Corp Method and device for drying lamination structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317000A (en) * 2000-05-08 2001-11-16 Osaka Gas Co Ltd Activated carbon-containing paper and air filter
JP2002228382A (en) * 2001-01-31 2002-08-14 Mitsubishi Electric Corp Heat exchanger
JP2002286363A (en) * 2001-03-27 2002-10-03 Mitsubishi Electric Corp Method and device for drying lamination structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889205B1 (en) * 2008-09-26 2009-03-16 셀파씨엔씨 Total heat exchanger element of heat recovery ventilator
KR101322049B1 (en) * 2009-08-24 2013-10-25 (주)엘지하우시스 Paper for total heat exchange element, preparation method thereof and total heat exchange element comprising the same

Also Published As

Publication number Publication date
JP3833220B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
KR100527978B1 (en) Air cleaning filter, process for preparing the same, and high-level cleaner
CN110030654A (en) Air conditioning/ventilating system
JP5627870B2 (en) Air conditioner
US20010029843A1 (en) Chemical filter and manufacturing method thereof
WO2016152645A1 (en) Chemical filter
TW201910690A (en) Ventilation and air conditioning unit
JPH11197439A (en) Dehumidification air-conditioner
JP2006010307A (en) Humidifier, and humidifying method
JP2005114294A (en) Air conditioner
WO2010100739A1 (en) Air conditioner
JP2011143358A (en) Moisture absorption filter and humidifier
KR20120054958A (en) Method for preparing an adsorbent for carbon dioxide and a multi-stage absorption filter using the adsorbent
JP2002126441A (en) Desiccant dehumidifying device and desiccant air- conditioning system
JP2009019788A (en) Desiccant air conditioner
JP2004294052A (en) Element for total enthalpy heat exchanger
JP2007032912A (en) Desiccant type ventilator
JP5116780B2 (en) Evaluation method of energy saving performance of ventilation air conditioning system
JP2019202318A (en) Water vapor separator and dehumidifying device using the same
JP2007193963A (en) Fuel cell power generating device
EP3616773B1 (en) A honeycomb adsorption object and a dehumidification air conditioner using it
JP3023361B1 (en) Heat exchange type ventilation system
JPS58124196A (en) Total heat-exchanging element
JP2001219022A (en) Nox removing filter and manufacturing method, air conditioning device
KR20070077731A (en) Refrigerator system for semiconductor process
CN219083326U (en) Modularized air purifying equipment with condensation dehumidification system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees