JP2004293901A - Operation control device for air blower for condenser - Google Patents

Operation control device for air blower for condenser Download PDF

Info

Publication number
JP2004293901A
JP2004293901A JP2003085871A JP2003085871A JP2004293901A JP 2004293901 A JP2004293901 A JP 2004293901A JP 2003085871 A JP2003085871 A JP 2003085871A JP 2003085871 A JP2003085871 A JP 2003085871A JP 2004293901 A JP2004293901 A JP 2004293901A
Authority
JP
Japan
Prior art keywords
condenser
blower
outside air
operation mode
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003085871A
Other languages
Japanese (ja)
Other versions
JP4183538B2 (en
Inventor
Shinichi Ishigami
信一 石上
Masaaki Sawadaishi
正明 澤田石
Shinji Sekine
信次 関根
Yoshiyuki Matsubara
由行 松原
Takashi Ogawa
高志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003085871A priority Critical patent/JP4183538B2/en
Publication of JP2004293901A publication Critical patent/JP2004293901A/en
Application granted granted Critical
Publication of JP4183538B2 publication Critical patent/JP4183538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the noise and to use an air blower in a cold district with respect to a conventional air blower where a speed of the air blower is adjusted by detecting the outside air temperature, that is, an air conditioning refrigerating device is properly operated by adjusting the speed of the air blower on the basis of the outside air temperature. <P>SOLUTION: This operation control device of the air blower for a condenser of a cooling system, has an automatic operation mode wherein the lower the outside air temperature is, the lower the rotating speed of the air blower for the condenser is, on the basis of the detection of a temperature by an outside air temperature detecting sensor. A selecting means is mounted to execute the automatic operation mode in a first operation mode of a first operation level, and a mode of an operation level having a rotating speed of the air blower for the condenser, lower than the first operation level. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷却システムの凝縮器用送風ファンの運転制御装置に関する。
【0002】
【従来の技術】
空調冷凍装置等の冷凍回路に用いられる凝縮器を空冷する送風機の速度調節に係るものとして、外気温を検出して送風機の速度調節を行うものがある(例えば、特許文献1参照)。これは、凝縮器の温度を検出して送風機の速度調節を行う場合には、凝縮器の周りの部品の発熱によって影響を受け易く温度検出精度が悪いという課題があり、これを解決するためになされたものであり、外気温度が低い場合は、凝縮器の放熱が大きくなるため送風機の速度を低速にすればよく、そのために外気温検知センサを設け、このセンサの検知に基づき外気温度が低い場合には送風機を低速運転するものである。
【0003】
【特許文献1】
特開平7−139848号公報(段落0155、図27)
【0004】
【発明が解決しようとする課題】
特許文献1のものは、外気温に応じて送風機の速度調節を行うため、空調冷凍装置が適切な運転となるが、より低騒音にしたい要望や、更なる寒冷地でも使用したい要望がある。本発明は、前述の要望に応えた製品を提供するものである。
【0005】
【課題を解決するための手段】
本発明の凝縮器用送風機の運転制御装置は、圧縮機によって圧縮した冷媒が凝縮器で凝縮され減圧器を通って蒸発器に流入して蒸発作用をした後、再び前記圧縮機で圧縮される循環をする冷却システムの前記凝縮器用送風機の運転制御装置において、外気温検知センサの温度検知に基づき外気温が低くなるほど前記凝縮器用送風機が低速回転となる自動運転モードを備え、この自動運転モードが第1の動作レベルで行われる第1運転モードと前記凝縮器用送風機の回転速度がこの第1の動作レベルのときよりも低くなる動作レベルにおいて行わせるための選択手段を備えたことを特徴とする。
【0006】
これによって、外気温検知センサの温度検知に基づき外気温が低い場合には送風機が低速運転する自動運転モードを行い、凝縮器の放熱環境に応じて送風機の回転が行われ、経済運転となると共に騒音の低減に寄与する運転効果を奏することができる。また、送風機の回転をより低騒音の運転モードに切り替えできることとなり、冷却システムの設置環境に応じた運転を選択できる効果がある。
【0007】
また、本発明の凝縮器用送風機の運転制御装置は、圧縮機によって圧縮した冷媒が凝縮器で凝縮され減圧器を通って蒸発器に流入して蒸発作用をした後、再び前記圧縮機で圧縮される循環をする冷却システムの前記凝縮器用送風機の運転制御装置において、外気温検知センサの温度検知に基づき外気温が低くなるほど前記凝縮器用送風機が低速回転となる自動運転モードを備え、この自動運転モードが第1の動作レベルで行われる第1運転モードと、前記自動運転モードが第1手動切り替え手段によって前記凝縮器用送風機の回転速度が前記第1の動作レベルよりも低くなる第2の動作レベルにおいて行われる第2運転モードと、前記自動運転モードが第2手動切り替え手段によって前記凝縮器用送風機の回転速度が前記第2の動作レベルよりも更に低くなる第3の動作レベルにおいて行われる第3運転モードとを備えたことを特徴とする。
【0008】
これによって、外気温検知センサの温度検知に基づき外気温が低い場合には送風機が低速運転する自動運転モードを行い、凝縮器の放熱環境に応じて送風機の回転が行われ、経済運転となると共に騒音の低減に寄与する運転効果を奏することができる。また、前記第1運転モードを外気温自動運転モードとし、前記第2運転モードを低騒音モード又は寒冷地仕様モードとし、前記第3運転モードを特別低騒音モード又は特別寒冷地仕様モードとして、運転モードを任意に切り替えできることとなり、冷却システムの設置環境に応じた運転を選択できる効果がある。
【0009】
本発明は、更に具体的な形態を提供する。即ち、圧縮機によって圧縮した冷媒が凝縮器で凝縮され減圧器を通って蒸発器に流入して蒸発作用をした後、再び前記圧縮機で圧縮される循環をする冷却システムの前記凝縮器用送風機の運転制御装置において、負の温度抵抗特性を有する外気温検知センサの温度検知に基づき外気温が低くなるほど前記凝縮器用送風機が低速回転となる自動運転モードを備え、前記外気温検知センサを含む回路抵抗値を手動スイッチによって可変して前記凝縮器用送風機の回転速度が低くなる動作レベルへ前記自動運転モードの動作レベルを可変するようにしたことを特徴とする凝縮器用送風機の運転制御装置を提供する。
【0010】
また、本発明の具体的な形態は、圧縮機によって圧縮した冷媒が凝縮器で凝縮され減圧器を通って蒸発器に流入して蒸発作用をした後、再び前記圧縮機で圧縮される循環をする冷却システムにおいて、外気温の低下に伴って抵抗値が大きくなる外気温検知センサの温度検知に基づき外気温が低くなるほど前記凝縮器用送風機が低速回転となる自動運転モードを備え、前記外気温検知センサに抵抗が直列接続される抵抗回路を構成し、前記抵抗を手動可変可能に又は手動開閉スイッチにて実質的な作用状態と非作用状態に切り替え可能とし、前記自動運転モードの動作レベルを前記抵抗によって前記凝縮器用送風機の回転速度が低くなる動作レベルへ可変するようにしたことを特徴とする凝縮器用送風機の運転制御装置である。
【0011】
また、本発明の具体的な形態は、圧縮機によって圧縮した冷媒が凝縮器で凝縮され減圧器を通って蒸発器に流入して蒸発作用をした後、再び前記圧縮機で圧縮される循環をする冷却システムの前記凝縮器用送風機の運転制御装置において、前記凝縮器用送風機は、外気温の低下に伴って抵抗値が大きくなる外気温検知センサの温度検知に基づき外気温が低くなるほど低速回転となる自動運転モードを備え、前記外気温検知センサに複数の直列抵抗が直列接続された抵抗回路を構成し、この抵抗の一つ又は複数を手動可変可能に又は手動開閉スイッチにてそれぞれ短絡可能とし、前記自動運転モードの動作レベルを前記抵抗によって前記凝縮器用送風機の回転速度が低くなる動作レベルへ可変するようにしたことを特徴とする凝縮器用送風機の運転制御装置である。
【0012】
このように、外気温の低下に伴って抵抗値が大きくなる負の温度抵抗特性を有する外気温検知センサに抵抗値が直列接続される抵抗回路を構成することによって、外気温検知センサの温度検知に基づき外気温が低い場合には送風機が低速運転となる自動運転モードで運転され、凝縮器の放熱環境に応じて送風機の回転が行われ、経済運転となると共に騒音の低減に寄与する運転効果を奏することができる。また、抵抗回路の抵抗値を手動にて可変することによって、送風機の回転を所定の運転モードに変更できるため、外気温自動運転モードを低騒音モード又は寒冷地仕様モードとし、又は特別低騒音モード又は特別寒冷地仕様モードのように特別な運転状態に切り替えることも容易となる。
【0013】
【発明の実施の形態】
次に本発明の実施の形態について説明する。各図は本発明の実施形態を示しており、図1は本発明に係る冷却システムの冷媒回路図、図2は本発明に係る凝縮器用送風機の制御回路図、図3は本発明に係る凝縮器用送風機の運転モードの説明図である。
【0014】
これらの図において、1は本発明に係る冷却システム(冷却装置)であり、空気調和装置によって室内を所定温度に冷却するために用いられるものであり、室外機である冷凍機ユニット(凝縮ユニットとも称する)1Aと、これに接続される室内機である蒸発器13及びその送風機(図示せず)等から構成されている。冷凍機ユニット1Aは、金属板等からなるユニットベース上にロータリー式等の圧縮機2、凝縮器4、凝縮器4用送風機4A等が取り付けられており、凝縮器4から後述の出口側のサービスバルブ9に至る冷媒回路と、後述の入口側のサービスバルブ15から圧縮機2に至る冷媒回路とを包含した構成である。冷凍機ユニット1Aは、ユニットベース上にこれらの部品が取り付けられて本体を構成する筐体で覆われた構成である。
【0015】
冷凍機ユニット1Aにおいて、圧縮機2の吐出側は配管3を介して凝縮器4の入口へ接続され、凝縮器4の出口側は冷媒配管5を介してサービスバルブ7、ドライヤ8を通って出口側のサービスバルブ9へ接続されている。25はリキッドインジェクション回路であり、その入口側は配管5に接続され、ストレーナ22とサーモバルブ23を通って出口側は圧縮機2へ接続されている。サーモバルブ23の感温筒23Aは、配管3の温度を感知するように取り付けられている。28は高低圧圧力スイッチであり、高圧入力として減圧チューブ26を介して配管5に接続され、低圧入力として減圧チューブ27を介して配管16に接続されている。入口側のサービスバルブ15は配管16を通りストレーナ17、逆止弁18、アキュムレータ19、20を介して圧縮機2の吸い込み側配管21へ接続されている。
【0016】
サービスバルブ9を通過した冷媒は、配管10によって液管電磁弁11から減圧器としての膨張弁12を通って蒸発器13へ流入し、蒸発器13を出た冷媒は配管14からサービスバルブ15へ流入する。
【0017】
上記の冷却システム1において、圧縮機2によって圧縮した冷媒が凝縮器4で凝縮され減圧器としての膨張弁12を通って蒸発器13に流入して蒸発作用をした後、再び圧縮機2で圧縮される循環をする。凝縮器4と膨張弁12との間の冷媒管内には液冷媒を溜めるように、この冷媒配管5の一部分に受液器50を設けている。そして、この受液器50の出口側には、圧縮機2へ液冷媒を供給するリキッドインジェクション回路25の入口側を接続している。
【0018】
このような構成において、冷却システム1の冷媒回路内には所定量の冷媒が封入され、サービスバルブ7、9、15及び液管電磁弁11が開いている状態において圧縮機2が運転されると、圧縮機2から高温高圧のガス冷媒が吐出され、このガス冷媒は配管3を通って凝縮器4へ流入する。流入したガス冷媒は、送風ファン4Bの運転により放熱して凝縮液化して配管5へ流入する。配管5へ流入した液冷媒は受液器50に貯留され、気液分離されて液冷媒だけが配管5Aからサービスバルブ7、ドライヤ8を通ってサービスバルブ9へ達する。
【0019】
サービスバルブ9を通過した液冷媒は、液管電磁弁11を通って膨張弁12によって減圧されて蒸発器13へ流入する。蒸発器13へ流入した液冷媒は、そこで蒸発して周囲から熱を吸収することにより、室内を冷却する。蒸発器13を出た配管14からサービスバルブ15、配管16、ストレーナ17、逆止弁18を通ってアキュムレータ19、20へ入り、アキュムレータ19、20で未蒸発液冷媒とガス冷媒が気液分離されてガス冷媒が配管21から圧縮機2へ流入する。
【0020】
圧縮機2は運転により温度上昇して高温となる。この温度を配管3に取り付けた感温筒23Aが感知し、感温筒23Aの感知温度に応じてサーモバルブ23の開度が自動調整される。サーモバルブ23の開度が自動調整されることにより、受液器50からリキッドインジェクション回路25へ流入する液冷媒の量が増減する。リキッドインジェクション回路25へ流入した冷媒は、ストレーナ22、サーモバルブ23を通過した後、キャピラリチューブ24で絞られ減圧されて圧縮機2内に導入される。圧縮機2内に導入された液冷媒はそこで蒸発し、吸熱作用によって圧縮機2は冷却され、異常温度上昇による損傷は防止される。
【0021】
サーモバルブ23によって圧縮機2へインジェクションされる冷媒量は、吐出温度(配管3の温度)に応じて調整されるため、低外気温時に圧縮機2が冷えすぎて圧縮機2内の潤滑オイルの流動性が大きく低下することが防止され、潤滑不良になることはない。
【0022】
本発明では、凝縮器用送風機4Aは、外気温の低下に伴って抵抗値が大きくなる負の温度抵抗特性を有する外気温検知センサ60の温度検知に基づき、マイクロコンピュータを含む制御回路装置61によって、外気温が低くなるほど低速回転となる自動運転モードを行う。この自動運転モードは、図3にAで示すように外気温が高くなるにしたがって凝縮器用送風機4Aの回転速度が上昇するような第1の動作レベルで行われる。この場合、外気温の低下に伴って外気温検知センサ60の抵抗値が大きくなり、それによって制御回路装置61の所定の回路電圧が増加又は減少する。この電圧と設定電圧とを比較し、外気温の低下に伴って凝縮器用送風機4Aの回転速度を段階的に下げる制御を行い、外気温の上昇に伴って凝縮器用送風機4Aの回転速度を段階的に上げる制御を行っている。このように、外気温検知センサ60の抵抗値の変化に伴って、凝縮器用送風機4Aの回転速度が段階的に下降および上昇する制御方式であるが、外気温検知センサ60の抵抗値の変化に伴って、凝縮器用送風機4Aの回転速度が直線的に又は曲線的に無段階に変わる方式としてもよい。
【0023】
また本発明では、この自動運転モードが、第1の動作レベルAよりも低い動作レベルにおいて行われるよう選択手段62を備えている。その一つの実施形態の具体例として、外気温検知センサ60に複数の直列抵抗63、64が直列接続された抵抗回路65を構成する。この抵抗63、64のそれぞれに手動切り替え手段の一つの形態である手動開閉スイッチ66、67を並列接続し、抵抗63、64のそれぞれを対応する手動開閉スイッチ66、67にて短絡可能に構成している。
【0024】
手動開閉スイッチ66、67は、第1の状態では対応する抵抗63、64を短絡して、抵抗63、64を実質的な非作用状態とし、第2の状態では対応する抵抗63、64の一方又は双方の短絡を開放して、抵抗63、64を実質的な作用状態とする切り替え動作をする。このため、手動開閉スイッチ66、67は、抵抗63、64の短絡状態から一度押したときに接点が開放して抵抗63、64が外気温検知センサ60と共に直列回路を構成し、次に押したときに接点が閉じて抵抗63、64が短絡されるように動作する。この手動開閉スイッチ66、67は、他の機構であってもよい。
【0025】
このように、手動開閉スイッチ66、67の開閉によって、抵抗回路65の合成抵抗値が可変される。このため、手動開閉スイッチ66、67が閉じた状態(これは、抵抗63、64の短絡状態)から開いた状態、即ち、抵抗63、64を実質的な作用状態とするように切り替え動作をした場合について、以下に説明する。いま、手動開閉スイッチ66、67が閉じた状態、即ち抵抗63、64の短絡状態においてから手動開閉スイッチ66のみを開くことによって、第1の動作レベルAのN1点で行われていた凝縮器用送風機4Aの自動運転モードが、図3のBのように同一外気温レベルで見れば、第1の動作レベルよりも低い第2の動作レベルにおいて行われる第2運転モード状態のN2点(N1点を100%とすると25%ダウンの75%の回転速度)に移行(シフト)する。これによって、第1の動作レベルAよりも低い第2の動作レベルBを基準として、外気温検知センサ60の温度検知に基づき、マイクロコンピュータを含む制御回路装置61によって、外気温が低くなるほど低速回転となる凝縮器用送風機4Aの自動運転モードを行う。このため、N1点で行われていた凝縮器用送風機4Aの回転速度はN2点にシフトするため、凝縮器用送風機4Aの回転速度は低下する。
【0026】
次に、手動開閉スイッチ66、67が閉じた状態、即ち抵抗値63、64の短絡状態から手動開閉スイッチ66、67の両方を開くことによって、図3のCのように同一外気温レベルで見れば、第1の動作レベルAのN1点又は第2の動作レベルBのN2点で行われていた自動運転モードが、凝縮器用送風機4Aの回転速度が第2の動作レベルよりも更に低い第3の動作レベルCにおいて行われる第3運転モード状態のN3点(N1点を100%とすると75%ダウンの25%の回転速度)に移行(シフト)する。これによって、第2の動作レベルBよりも更に凝縮器用送風機4Aが低速回転となる第3の動作レベルCを基準として、外気温検知センサ60の温度検知に基づき、マイクロコンピュータを含む制御回路装置61によって、外気温が低くなるほど低速回転となる凝縮器用送風機4Aの自動運転モードを行う。このため、N1点又はN2点で行われていた凝縮器用送風機4Aの回転速度は、N3点にシフトするため、凝縮器用送風機4Aの回転速度はN2点での回転速度よりも更に低下する。
【0027】
なお、図3においてゼロ(0)で示す横軸レベルは、凝縮器用送風機4Aの回転速度がゼロ、即ち停止状態である。また、第3運転モード状態への移行(シフト)は、手動開閉スイッチ66が抵抗63を短絡した状態でもって手動開閉スイッチ67のみを開いて抵抗64の短絡を解くことによって行われるように、抵抗63、64の値を設定しておくこともできる。
【0028】
本発明では、前記第1の動作レベルAで行われる第1運転モードを通常運転の標準自動運転モードとし、前記第2の動作レベルBで行われる第2運転モードを低騒音モード又は寒冷地仕様モードとし、前記第3の動作レベルCで行われる第3運転モードを特別低騒音モード又は特別寒冷地仕様モードとしている。そして手動開閉スイッチ66、67を操作して、外気温検知センサ60に対して抵抗63、64の一方又は双方の接続を可変することによって、低騒音モード又は寒冷地仕様モードとし、また特別低騒音モード又は特別寒冷地仕様モードとする切り替えができる。
【0029】
このため、通常の運転モードである第1運転モードAに設定された冷却システム1を寒冷地で運転する場合は、寒冷地仕様モードBとすることによって、第1運転モードAの場合よりも外気温検知センサ60を含む抵抗回路65の抵抗値が増加して、制御回路装置61の動作点が低速方向へシフトした状態での温度検知動作となるため、回転速度の低い凝縮器用送風機4Aの自動運転モードが行われる。
【0030】
また、標準運転モードである第1運転モードで運転している場合でも騒音が気になる場合には、低騒音モードBに切り替えることによって、回転速度の低い凝縮器用送風機4Aの自動運転モードが行われる。更に、低騒音モード若しくは寒冷地仕様モードである第2運転モードBで運転している場合に、騒音を特別低下させた状態で運転したい場合には、特別低騒音モード又は特別寒冷地仕様モードCとする切り替えによって、制御回路装置61の動作点が更に低速方向へシフトした状態で、更に回転速度の低い凝縮器用送風機4Aの自動運転モードが行われ、静音化が達成できる。
【0031】
前記第1の動作レベルAで行われる第1運転モードによって外気温検知の自動運転モードを行う冷却システム1において、抵抗63、64と手動開閉スイッチ66、67を取り付けることによって、上記のような運転モードの切り替えができる冷却システムとすることが容易となる。
【0032】
なお、上記において、抵抗回路65の合成抵抗値を可変する手段として、抵抗63、64をダイヤル摘みの回動によって可変させる可変抵抗方式でもよい。
【0033】
本発明は、上記実施形態に限定されず、本発明の技術的範囲を逸脱しない限り種種の変更が考えられ、それに係る種々の実施形態を包含するものである。
【0034】
【発明の効果】
本発明によって、外気温検知センサの温度検知に基づき外気温が低くなるほど送風機を低速運転させる自動運転モードを行い、経済運転となると共に騒音の低減に寄与する運転効果を奏することができる。また、送風機の回転をより低騒音の運転モードに切り替えできることとなり、冷却システムの設置環境に応じた運転を選択できる効果がある。
【0035】
また、請求項2の発明によって、外気温検知センサの温度検知に基づき外気温が低い場合には送風機が低速運転する自動運転モードを行い、凝縮器の放熱環境に応じて送風機の回転が行われ、経済運転となると共に騒音の低減に寄与する運転効果を奏することができる。また、前記第1運転モードを外気温自動運転モードとし、前記第2運転モードを低騒音モード又は寒冷地仕様モードとし、前記第3運転モードを特別低騒音モード又は特別寒冷地仕様モードのように、運転モードを任意に切り替えできることとなり、冷却システムの設置環境に応じた運転を選択できる効果がある。
【0036】
請求項3以降の発明によって、外気温の低下に伴って抵抗値が大きくなる負の温度抵抗特性を有する外気温検知センサに抵抗値が直列接続される抵抗回路を構成することによって、外気温検知センサの温度検知に基づき外気温が低い場合には送風機が低速運転となる自動運転モードで運転され、凝縮器の放熱環境に応じて送風機の回転が行われ、経済運転となると共に騒音の低減に寄与する運転効果を奏することができる。また、抵抗回路の抵抗値を手動にて可変することによって、送風機の回転を所定の運転モードに変更できるため、外気温自動運転モードを低騒音モード又は寒冷地仕様モードとし、又は、特別低騒音モード若しくは特別寒冷地仕様モードのように特別な運転状態に切り替えることも容易となる。
【図面の簡単な説明】
【図1】
本発明に係る冷却システムの冷媒回路である。
【図2】
本発明に係る凝縮器用送風機の制御回路図である。
【図3】
本発明に係る凝縮器用送風機の運転モードの説明図である。
【符号の説明】
1・・・冷却システム
1A・・冷凍ユニット
2・・・圧縮機
4・・・凝縮器
4A・・・送風機
60・・・外気温検知センサ
61・・・制御回路装置
62・・・選択手段
63・・・抵抗
64・・・抵抗
65・・・抵抗回路
66・・・手動開閉スイッチ
67・・・手動開閉スイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an operation control device for a blower fan for a condenser of a cooling system.
[0002]
[Prior art]
As a device related to speed adjustment of a blower for air-cooling a condenser used in a refrigeration circuit such as an air-conditioning refrigeration device, there is one that detects the outside air temperature and adjusts the speed of the blower (for example, see Patent Document 1). This is because when detecting the temperature of the condenser and adjusting the speed of the blower, there is the problem that the temperature around the condenser is easily affected by the heat generated by the components around the condenser and the temperature detection accuracy is poor. If the outside air temperature is low, the speed of the blower may be reduced because the heat radiation of the condenser becomes large, so that an outside air temperature detection sensor is provided, and the outside air temperature is low based on the detection of this sensor. In such a case, the blower is operated at a low speed.
[0003]
[Patent Document 1]
JP-A-7-139848 (paragraph 0155, FIG. 27)
[0004]
[Problems to be solved by the invention]
In the device disclosed in Patent Document 1, the air conditioner / refrigerator operates properly because the speed of the blower is adjusted according to the outside air temperature. However, there is a demand for lower noise and a demand for use in a further cold region. The present invention provides a product that meets the aforementioned needs.
[0005]
[Means for Solving the Problems]
The operation control device for a blower for a condenser according to the present invention is configured such that the refrigerant compressed by the compressor is condensed by the condenser, flows into the evaporator through the decompressor, evaporates, and then is circulated by the compressor again. In the operation control device for the condenser blower of the cooling system, the automatic blower includes an automatic operation mode in which the lower the outside air temperature is, the lower the rotation speed of the condenser blower is based on the temperature detected by the outside air temperature detection sensor. A first operation mode performed at the first operation level; and a selection means for performing the operation at an operation level at which the rotation speed of the blower for the condenser is lower than at the first operation level.
[0006]
With this, when the outside air temperature is low based on the temperature detection of the outside air temperature detection sensor, the blower performs an automatic operation mode in which the blower operates at a low speed, and the blower is rotated according to the heat radiation environment of the condenser, thereby achieving economical operation. A driving effect that contributes to noise reduction can be obtained. In addition, the rotation of the blower can be switched to a lower noise operation mode, and there is an effect that the operation according to the installation environment of the cooling system can be selected.
[0007]
In addition, the operation control device of the condenser blower of the present invention is configured such that after the refrigerant compressed by the compressor is condensed in the condenser, flows into the evaporator through the decompressor and evaporates, and is compressed again by the compressor. The operation control device for the condenser blower of the cooling system having a circulating system includes an automatic operation mode in which the condenser blower rotates at a lower speed as the outside air temperature becomes lower based on the temperature detection of the outside air temperature detection sensor. In a first operation mode in which the rotation speed of the condenser blower is lower than the first operation level by the first manual switching means. The second operation mode to be performed and the automatic operation mode are controlled by the second manual switching means so that the rotation speed of the condenser blower is lower than the second operation level. Characterized in that a third operating mode is also performed in the third operation levels even lower.
[0008]
With this, when the outside air temperature is low based on the temperature detection of the outside air temperature detection sensor, the blower performs an automatic operation mode in which the blower operates at a low speed, and the blower is rotated according to the heat radiation environment of the condenser, thereby achieving economical operation. A driving effect that contributes to noise reduction can be obtained. In addition, the first operation mode is set to an outside air temperature automatic operation mode, the second operation mode is set to a low noise mode or a cold district specification mode, and the third operation mode is set to a special low noise mode or a special cold district specification mode. The mode can be arbitrarily switched, and there is an effect that the operation according to the installation environment of the cooling system can be selected.
[0009]
The present invention provides a more specific embodiment. That is, the refrigerant compressed by the compressor is condensed in the condenser, flows into the evaporator through the decompressor, evaporates, and then is cooled again by the compressor. The operation control device includes an automatic operation mode in which the condenser blower rotates at a lower speed as the outside air temperature decreases based on the temperature detection of the outside air temperature detection sensor having a negative temperature resistance characteristic, and the circuit resistance including the outside air temperature detection sensor An operation control device for a blower for a condenser, wherein the operation level of the automatic operation mode is changed to an operation level at which the rotation speed of the blower for the condenser is reduced by changing a value by a manual switch.
[0010]
In a specific embodiment of the present invention, the refrigerant compressed by the compressor is condensed in the condenser, flows into the evaporator through the decompressor, evaporates, and then circulates again in the compressor. The cooling system includes an automatic operation mode in which the condenser blower rotates at a lower speed as the outside air temperature decreases based on the temperature detection of the outside air temperature detection sensor in which the resistance value increases as the outside air temperature decreases. Forming a resistor circuit in which a resistor is connected in series to the sensor, allowing the resistor to be manually variable or switchable between a substantially active state and a non-active state by a manual open / close switch, and setting the operation level of the automatic operation mode to An operation control device for a blower for a condenser, wherein the rotation speed of the blower for the condenser is changed to an operation level at which the rotation speed of the blower for the condenser is reduced by resistance.
[0011]
In a specific embodiment of the present invention, the refrigerant compressed by the compressor is condensed in the condenser, flows into the evaporator through the decompressor, evaporates, and then circulates again in the compressor. In the operation control device for the condenser blower of the cooling system, the condenser blower rotates at a lower speed as the outside air temperature decreases based on the temperature detection of the outside air temperature detection sensor whose resistance value increases as the outside air temperature decreases. An automatic operation mode is provided, and a plurality of series resistances are connected in series to the outside air temperature detection sensor to constitute a resistance circuit, and one or more of the resistances can be manually variable or short-circuited by a manual open / close switch. The blower for a condenser, wherein the operation level of the automatic operation mode is changed to an operation level at which a rotation speed of the blower for the condenser is reduced by the resistance. A rotation control device.
[0012]
As described above, by configuring the resistance circuit in which the resistance value is connected in series to the outside temperature detection sensor having a negative temperature resistance characteristic in which the resistance value increases as the outside temperature decreases, the temperature detection of the outside temperature detection sensor is performed. When the outside air temperature is low, the blower is operated in the automatic operation mode in which the blower operates at a low speed, and the blower is rotated according to the heat radiation environment of the condenser. Can be played. In addition, since the rotation of the blower can be changed to a predetermined operation mode by manually changing the resistance value of the resistance circuit, the outside air temperature automatic operation mode is set to a low noise mode or a cold district specification mode, or a special low noise mode. Alternatively, it is easy to switch to a special operation state such as a special cold district specification mode.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described. Each drawing shows an embodiment of the present invention, FIG. 1 is a refrigerant circuit diagram of a cooling system according to the present invention, FIG. 2 is a control circuit diagram of a blower for a condenser according to the present invention, and FIG. It is explanatory drawing of the operation mode of a dexterous blower.
[0014]
In these figures, reference numeral 1 denotes a cooling system (cooling device) according to the present invention, which is used for cooling a room to a predetermined temperature by an air conditioner, and is a refrigerator unit (also a condensing unit) which is an outdoor unit. 1A), an evaporator 13 as an indoor unit connected thereto, a blower thereof (not shown), and the like. The refrigerator unit 1A has a rotary type compressor 2, a condenser 4 and a blower 4A for the condenser 4 mounted on a unit base made of a metal plate or the like. The configuration includes a refrigerant circuit reaching the valve 9 and a refrigerant circuit reaching the compressor 2 from a service valve 15 on the inlet side described later. The refrigerator unit 1A has a configuration in which these components are mounted on a unit base and are covered by a housing that forms a main body.
[0015]
In the refrigerator unit 1A, the discharge side of the compressor 2 is connected to the inlet of the condenser 4 through the pipe 3, and the outlet side of the condenser 4 is passed through the service valve 7 and the dryer 8 through the refrigerant pipe 5 to exit. Connected to the side service valve 9. Reference numeral 25 denotes a liquid injection circuit, the inlet side of which is connected to the pipe 5, and the outlet side of which is connected to the compressor 2 through the strainer 22 and the thermo valve 23. The thermosensitive cylinder 23 </ b> A of the thermovalve 23 is attached so as to sense the temperature of the pipe 3. Reference numeral 28 denotes a high / low pressure switch which is connected to the pipe 5 via a pressure reducing tube 26 as a high pressure input and connected to the pipe 16 via a pressure reducing tube 27 as a low pressure input. The service valve 15 on the inlet side is connected to a suction side pipe 21 of the compressor 2 via a strainer 17, a check valve 18, and accumulators 19 and 20 through a pipe 16.
[0016]
The refrigerant that has passed through the service valve 9 flows into the evaporator 13 from the liquid pipe solenoid valve 11 through the expansion valve 12 as a pressure reducer via the pipe 10, and the refrigerant that has exited the evaporator 13 flows from the pipe 14 to the service valve 15. Inflow.
[0017]
In the cooling system 1 described above, the refrigerant compressed by the compressor 2 is condensed in the condenser 4, flows into the evaporator 13 through the expansion valve 12 as a decompressor, evaporates, and is compressed again by the compressor 2. Make a circulation. A liquid receiver 50 is provided in a part of the refrigerant pipe 5 so as to store the liquid refrigerant in a refrigerant pipe between the condenser 4 and the expansion valve 12. The outlet side of the liquid receiver 50 is connected to the inlet side of a liquid injection circuit 25 that supplies a liquid refrigerant to the compressor 2.
[0018]
In such a configuration, a predetermined amount of refrigerant is sealed in the refrigerant circuit of the cooling system 1, and when the compressor 2 is operated in a state where the service valves 7, 9, 15 and the liquid pipe solenoid valve 11 are open. A high-temperature and high-pressure gas refrigerant is discharged from the compressor 2, and the gas refrigerant flows into the condenser 4 through the pipe 3. The gas refrigerant that has flowed in is radiated by the operation of the blower fan 4 </ b> B, condensed and liquefied, and flows into the pipe 5. The liquid refrigerant that has flowed into the pipe 5 is stored in the liquid receiver 50 and separated into gas and liquid. Only the liquid refrigerant reaches the service valve 9 from the pipe 5A through the service valve 7 and the dryer 8.
[0019]
The liquid refrigerant passing through the service valve 9 passes through the liquid pipe solenoid valve 11, is decompressed by the expansion valve 12, and flows into the evaporator 13. The liquid refrigerant flowing into the evaporator 13 evaporates there and absorbs heat from the surroundings, thereby cooling the room. From the pipe 14 that has exited the evaporator 13, it enters the accumulators 19 and 20 through the service valve 15, the pipe 16, the strainer 17, and the check valve 18. The gas refrigerant flows into the compressor 2 from the pipe 21.
[0020]
The temperature of the compressor 2 rises due to operation and becomes high. This temperature is sensed by the temperature sensing cylinder 23A attached to the pipe 3, and the opening of the thermo valve 23 is automatically adjusted according to the sensed temperature of the temperature sensing cylinder 23A. By automatically adjusting the opening of the thermovalve 23, the amount of liquid refrigerant flowing from the liquid receiver 50 to the liquid injection circuit 25 increases or decreases. The refrigerant that has flowed into the liquid injection circuit 25 passes through the strainer 22 and the thermovalve 23, is throttled by the capillary tube 24, is decompressed, and is introduced into the compressor 2. The liquid refrigerant introduced into the compressor 2 evaporates there, and the compressor 2 is cooled by an endothermic effect, so that damage due to abnormal temperature rise is prevented.
[0021]
The amount of refrigerant injected into the compressor 2 by the thermo valve 23 is adjusted according to the discharge temperature (the temperature of the pipe 3). Fluidity is prevented from being greatly reduced, and poor lubrication does not occur.
[0022]
In the present invention, the condenser blower 4A is controlled by the control circuit device 61 including a microcomputer based on the temperature detection of the outside temperature detection sensor 60 having a negative temperature resistance characteristic in which the resistance value increases as the outside temperature decreases. The automatic operation mode in which the lower the outside air temperature is, the lower the rotation speed is, is performed. This automatic operation mode is performed at the first operation level where the rotation speed of the condenser blower 4A increases as the outside air temperature increases as indicated by A in FIG. In this case, the resistance value of the outside air temperature detection sensor 60 increases as the outside air temperature decreases, whereby the predetermined circuit voltage of the control circuit device 61 increases or decreases. This voltage is compared with the set voltage, and control is performed to gradually decrease the rotation speed of the condenser blower 4A as the outside air temperature decreases, and the rotation speed of the condenser blower 4A is increased stepwise as the outside air temperature increases. Control is performed. As described above, the control method is such that the rotation speed of the condenser blower 4A gradually decreases and increases in accordance with the change in the resistance value of the outside air temperature detection sensor 60. Accordingly, a method may be adopted in which the rotation speed of the condenser blower 4A changes steplessly in a linear or curved manner.
[0023]
Further, the present invention includes the selection means 62 so that the automatic operation mode is performed at an operation level lower than the first operation level A. As a specific example of one embodiment, a resistance circuit 65 in which a plurality of series resistors 63 and 64 are connected in series to an outside air temperature detection sensor 60 is configured. Each of the resistors 63 and 64 is connected in parallel with a manual open / close switch 66, 67, which is one form of manual switching means, and each of the resistors 63, 64 can be short-circuited by the corresponding manual open / close switch 66, 67. ing.
[0024]
In the first state, the manual open / close switches 66 and 67 short-circuit the corresponding resistors 63 and 64 to make the resistors 63 and 64 substantially inactive, and in the second state, one of the corresponding resistors 63 and 64 Alternatively, a switching operation is performed in which both short circuits are released and the resistances 63 and 64 are set to a substantially operating state. For this reason, when the manual open / close switches 66 and 67 are pressed once from the short-circuit state of the resistors 63 and 64, the contacts are opened, and the resistors 63 and 64 constitute a series circuit together with the outside air temperature detection sensor 60, and are then pressed. Sometimes, the contact is closed and the resistors 63 and 64 operate so as to be short-circuited. The manual open / close switches 66 and 67 may be other mechanisms.
[0025]
Thus, the combined resistance value of the resistance circuit 65 is varied by opening and closing the manual open / close switches 66 and 67. Therefore, the manual opening / closing switches 66 and 67 are switched from a closed state (which is a short-circuit state of the resistors 63 and 64) to an open state, that is, a switching operation such that the resistances 63 and 64 are set to a substantially operating state. The case will be described below. Now, by opening only the manual open / close switch 66 in a state where the manual open / close switches 66 and 67 are closed, that is, in a short-circuit state of the resistors 63 and 64, the blower for the condenser performed at the N1 point of the first operation level A When the automatic operation mode of 4A is viewed at the same outside air temperature level as shown in FIG. 3B, point N2 (point N1 in the second operation mode state performed at the second operation level lower than the first operation level) If it is set to 100%, it shifts to 25% down (75% rotation speed). Accordingly, based on the second operation level B lower than the first operation level A, based on the temperature detection of the outside air temperature detection sensor 60, the control circuit device 61 including the microcomputer rotates the lower speed as the outside air temperature becomes lower. The automatic operation mode of the condenser blower 4A is performed. Therefore, the rotation speed of the condenser blower 4A performed at the point N1 shifts to the point N2, and the rotation speed of the condenser blower 4A decreases.
[0026]
Next, by opening both of the manual open / close switches 66 and 67 from the state where the manual open / close switches 66 and 67 are closed, that is, the short-circuit state of the resistance values 63 and 64, it is possible to see the same external temperature level as shown in FIG. For example, the automatic operation mode performed at the N1 point of the first operation level A or the N2 point of the second operation level B is changed to the third operation mode in which the rotation speed of the blower 4A for the condenser is lower than the second operation level. In the third operation mode state performed at the operation level C, the operation shifts to (shifts to) the point N3 (25% rotation speed of 75% down when the N1 point is 100%). Thereby, the control circuit device 61 including the microcomputer is based on the temperature detection of the outside air temperature detection sensor 60 based on the third operation level C at which the condenser blower 4A rotates at a lower speed than the second operation level B. Thereby, the automatic operation mode of the blower 4A for the condenser, which rotates at a lower speed as the outside air temperature becomes lower, is performed. For this reason, since the rotation speed of the condenser blower 4A performed at the point N1 or N2 shifts to the point N3, the rotation speed of the condenser blower 4A is further reduced than the rotation speed at the point N2.
[0027]
The horizontal axis level indicated by zero (0) in FIG. 3 indicates that the rotation speed of the condenser blower 4A is zero, that is, the stopped state. The shift (shift) to the third operation mode state is performed by opening only the manual open / close switch 67 and releasing the short circuit of the resistor 64 with the manual open / close switch 66 short-circuiting the resistor 63. Values 63 and 64 can be set in advance.
[0028]
In the present invention, the first operation mode performed at the first operation level A is a standard automatic operation mode of normal operation, and the second operation mode performed at the second operation level B is a low noise mode or a cold district specification. The third operation mode performed at the third operation level C is a special low noise mode or a special cold district specification mode. By operating the manual open / close switches 66 and 67 to change the connection of one or both of the resistors 63 and 64 to the outside air temperature detection sensor 60, a low noise mode or a cold district specification mode is set, and The mode or the special cold district specification mode can be switched.
[0029]
For this reason, when the cooling system 1 set to the first operation mode A, which is the normal operation mode, is operated in a cold region, the cooling system 1 is set to the cold region specification mode B, so that the cooling system 1 is operated in a mode other than the first operation mode A. Since the resistance value of the resistance circuit 65 including the temperature detection sensor 60 is increased and the operation point of the control circuit device 61 is shifted in the low-speed direction to perform the temperature detection operation, the automatic operation of the condenser blower 4A having a low rotation speed is performed. The operation mode is performed.
[0030]
Also, when noise is a concern even when operating in the first operation mode, which is the standard operation mode, by switching to the low noise mode B, the automatic operation mode of the condenser blower 4A having a low rotation speed is set. Is Further, when operating in the second operation mode B, which is a low noise mode or a cold district specification mode, if it is desired to operate in a state where the noise is particularly reduced, the special low noise mode or the special cold district specification mode C In the state where the operating point of the control circuit device 61 is further shifted in the lower speed direction, the automatic operation mode of the condenser blower 4A having a lower rotation speed is performed by the switching, and the noise reduction can be achieved.
[0031]
In the cooling system 1 that performs the automatic operation mode for detecting the outside air temperature in the first operation mode performed at the first operation level A, the above-described operation is performed by installing the resistors 63 and 64 and the manual open / close switches 66 and 67. It becomes easy to provide a cooling system that can switch modes.
[0032]
In the above description, as a means for varying the combined resistance value of the resistance circuit 65, a variable resistance method in which the resistors 63 and 64 are varied by turning a dial knob may be used.
[0033]
The present invention is not limited to the above embodiments, and various changes can be considered without departing from the technical scope of the present invention, and the present invention includes various embodiments.
[0034]
【The invention's effect】
According to the present invention, it is possible to perform an automatic operation mode in which the blower is operated at a lower speed as the outside air temperature becomes lower based on the temperature detection of the outside air temperature detection sensor, thereby achieving an economic operation and an operation effect that contributes to a reduction in noise. In addition, the rotation of the blower can be switched to a lower noise operation mode, and there is an effect that the operation according to the installation environment of the cooling system can be selected.
[0035]
According to the invention of claim 2, when the outside air temperature is low based on the temperature detection of the outside air temperature detection sensor, the blower performs an automatic operation mode in which the blower operates at a low speed, and the blower is rotated according to the heat radiation environment of the condenser. In addition, a driving effect that contributes to economical driving and noise reduction can be obtained. In addition, the first operation mode may be an external temperature automatic operation mode, the second operation mode may be a low noise mode or a cold district specification mode, and the third operation mode may be a special low noise mode or a special cold district specification mode. The operation mode can be arbitrarily switched, and there is an effect that the operation can be selected according to the installation environment of the cooling system.
[0036]
According to the third and subsequent aspects of the present invention, a resistance circuit in which a resistance value is connected in series to an outside temperature detection sensor having a negative temperature resistance characteristic in which a resistance value increases with a decrease in outside temperature is configured to detect outside temperature. When the outside air temperature is low based on the temperature detection of the sensor, the blower is operated in the automatic operation mode in which the operation speed is low, and the blower is rotated according to the heat radiation environment of the condenser. A contributing driving effect can be achieved. In addition, since the rotation of the blower can be changed to a predetermined operation mode by manually changing the resistance value of the resistance circuit, the external temperature automatic operation mode is set to a low noise mode or a cold district specification mode, or an extra low noise mode. It is also easy to switch to a special operation state such as a mode or a special cold district specification mode.
[Brief description of the drawings]
FIG.
It is a refrigerant circuit of the cooling system concerning the present invention.
FIG. 2
It is a control circuit diagram of the blower for condensers concerning the present invention.
FIG. 3
It is explanatory drawing of the operation mode of the blower for condensers which concerns on this invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cooling system 1A ... Refrigeration unit 2 ... Compressor 4 ... Condenser 4A ... Blower 60 ... External temperature detection sensor 61 ... Control circuit device 62 ... Selection means 63 ... Resistance 64 ... Resistance 65 ... Resistance circuit 66 ... Manual open / close switch 67 ... Manual open / close switch

Claims (6)

圧縮機によって圧縮した冷媒が凝縮器で凝縮され減圧器を通って蒸発器に流入して蒸発作用をした後、再び前記圧縮機で圧縮される循環をする冷却システムの前記凝縮器用送風機の運転制御装置において、外気温検知センサの温度検知に基づき外気温が低くなるほど前記凝縮器用送風機が低速回転となる自動運転モードを備え、この自動運転モードが第1の動作レベルで行われる第1運転モードと前記凝縮器用送風機の回転速度がこの第1の動作レベルのときよりも低くなる動作レベルにおいて行わせるための選択手段を備えたことを特徴とする凝縮器用送風機の運転制御装置。After the refrigerant compressed by the compressor is condensed in the condenser, flows into the evaporator through the decompressor, evaporates, and is then compressed again by the compressor. The apparatus includes an automatic operation mode in which the blower for the condenser rotates at a lower speed as the outside air temperature decreases based on the temperature detection of the outside air temperature detection sensor, and a first operation mode in which the automatic operation mode is performed at a first operation level. An operation control device for a blower for a condenser, further comprising selection means for performing the rotation at an operation level at which the rotation speed of the blower for the condenser is lower than that at the first operation level. 圧縮機によって圧縮した冷媒が凝縮器で凝縮され減圧器を通って蒸発器に流入して蒸発作用をした後、再び前記圧縮機で圧縮される循環をする冷却システムの前記凝縮器用送風機の運転制御装置において、外気温検知センサの温度検知に基づき外気温が低くなるほど前記凝縮器用送風機が低速回転となる自動運転モードを備え、この自動運転モードが第1の動作レベルで行われる第1運転モードと、前記自動運転モードが第1手動切り替え手段によって前記凝縮器用送風機の回転速度が前記第1の動作レベルよりも低くなる第2の動作レベルにおいて行われる第2運転モードと、前記自動運転モードが第2手動切り替え手段によって前記凝縮器用送風機の回転速度が前記第2の動作レベルよりも更に低くなる第3の動作レベルにおいて行われる第3運転モードとを備えたことを特徴とする凝縮器用送風機の運転制御装置。After the refrigerant compressed by the compressor is condensed in the condenser, flows into the evaporator through the decompressor, evaporates, and is then compressed again by the compressor. The apparatus includes an automatic operation mode in which the blower for the condenser rotates at a lower speed as the outside air temperature decreases based on the temperature detection of the outside air temperature detection sensor, and a first operation mode in which the automatic operation mode is performed at a first operation level. A second operation mode in which the automatic operation mode is performed at a second operation level at which the rotation speed of the blower for the condenser is lower than the first operation level by a first manual switching means; (2) The operation is performed at a third operation level at which the rotation speed of the condenser blower is further lower than the second operation level by the manual switching means. The third operation mode and the operation control device of the condenser blower, characterized in that it comprises a. 前記第1運転モードを外気温自動運転モードとし、前記第2運転モードを低騒音モード又は寒冷地仕様モードとし、前記第3運転モードを特別低騒音モード又は特別寒冷地仕様モードとしたことを特徴とする請求項2に記載の凝縮器用送風機の運転制御装置。The first operation mode is an outside air temperature automatic operation mode, the second operation mode is a low noise mode or a cold district specification mode, and the third operation mode is a special low noise mode or a special cold district specification mode. The operation control device for a blower for a condenser according to claim 2, wherein 圧縮機によって圧縮した冷媒が凝縮器で凝縮され減圧器を通って蒸発器に流入して蒸発作用をした後、再び前記圧縮機で圧縮される循環をする冷却システムの前記凝縮器用送風機の運転制御装置において、負の温度抵抗特性を有する外気温検知センサの温度検知に基づき外気温が低くなるほど前記凝縮器用送風機が低速回転となる自動運転モードを備え、前記外気温検知センサを含む回路抵抗値を手動スイッチによって可変して前記凝縮器用送風機の回転速度が低くなる動作レベルへ前記自動運転モードの動作レベルを可変するようにしたことを特徴とする凝縮器用送風機の運転制御装置。After the refrigerant compressed by the compressor is condensed in the condenser, flows into the evaporator through the decompressor, evaporates, and is then compressed again by the compressor. In the device, the condenser blower has an automatic operation mode in which the lower the outside air temperature is based on the temperature detection of the outside air temperature detection sensor having a negative temperature resistance characteristic, the lower the rotation speed, the circuit blower including the outside air temperature detection sensor An operation control device for a blower for a condenser, wherein the operation level of the automatic operation mode is changed to an operation level at which the rotation speed of the blower for the condenser is reduced by a manual switch. 圧縮機によって圧縮した冷媒が凝縮器で凝縮され減圧器を通って蒸発器に流入して蒸発作用をした後、再び前記圧縮機で圧縮される循環をする冷却システムにおいて、外気温の低下に伴って抵抗値が大きくなる外気温検知センサの温度検知に基づき外気温が低くなるほど前記凝縮器用送風機が低速回転となる自動運転モードを備え、前記外気温検知センサに抵抗が直列接続される抵抗回路を構成し、前記抵抗を手動可変可能に又は手動開閉スイッチにて実質的な作用状態と非作用状態に切り替え可能とし、前記自動運転モードの動作レベルを前記抵抗によって前記凝縮器用送風機の回転速度が低くなる動作レベルへ可変するようにしたことを特徴とする凝縮器用送風機の運転制御装置。After the refrigerant compressed by the compressor is condensed in the condenser, flows into the evaporator through the decompressor, and evaporates, in the circulating cooling system that is compressed again by the compressor, with the decrease in outside air temperature, An automatic operation mode in which the condenser blower rotates at a lower speed as the outside air temperature decreases based on the temperature detection of the outside air temperature detection sensor whose resistance value is increased, and a resistance circuit in which a resistor is connected in series to the outside air temperature detection sensor is provided. The resistance can be manually changed or can be switched between a substantial operation state and a non-operation state by a manual opening / closing switch, and the operation level of the automatic operation mode is reduced by the resistance so that the rotation speed of the condenser blower is low. An operation control device for a blower for a condenser, characterized in that the operation control device can be changed to a different operation level. 圧縮機によって圧縮した冷媒が凝縮器で凝縮され減圧器を通って蒸発器に流入して蒸発作用をした後、再び前記圧縮機で圧縮される循環をする冷却システムの前記凝縮器用送風機の運転制御装置において、前記凝縮器用送風機は、外気温の低下に伴って抵抗値が大きくなる外気温検知センサの温度検知に基づき外気温が低くなるほど低速回転となる自動運転モードを備え、前記外気温検知センサに複数の直列抵抗が直列接続された抵抗回路を構成し、この抵抗の一つ又は複数を手動可変可能に又は手動開閉スイッチにてそれぞれ短絡可能とし、前記自動運転モードの動作レベルを前記抵抗によって前記凝縮器用送風機の回転速度が低くなる動作レベルへ可変するようにしたことを特徴とする凝縮器用送風機の運転制御装置。After the refrigerant compressed by the compressor is condensed in the condenser, flows into the evaporator through the decompressor, evaporates, and is then compressed again by the compressor. In the apparatus, the condenser blower has an automatic operation mode in which the lower the outside air temperature is, the lower the rotation speed is based on the temperature detection of the outside air temperature detection sensor whose resistance value increases as the outside air temperature decreases. Constitute a resistor circuit in which a plurality of series resistors are connected in series, one or more of the resistors can be manually variable or can be short-circuited by a manual open / close switch, and the operation level of the automatic operation mode is controlled by the resistor. An operation control device for a blower for a condenser, wherein the rotation speed of the blower for the condenser is changed to an operation level at which the rotation speed of the blower becomes low.
JP2003085871A 2003-03-26 2003-03-26 Operation control device for condenser fan Expired - Fee Related JP4183538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085871A JP4183538B2 (en) 2003-03-26 2003-03-26 Operation control device for condenser fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085871A JP4183538B2 (en) 2003-03-26 2003-03-26 Operation control device for condenser fan

Publications (2)

Publication Number Publication Date
JP2004293901A true JP2004293901A (en) 2004-10-21
JP4183538B2 JP4183538B2 (en) 2008-11-19

Family

ID=33400669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085871A Expired - Fee Related JP4183538B2 (en) 2003-03-26 2003-03-26 Operation control device for condenser fan

Country Status (1)

Country Link
JP (1) JP4183538B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010045112A1 (en) * 2008-10-14 2010-04-22 Liebert Corporation Integrated quiet and energy efficient modes of operation for air-cooled condenser
JP2012184906A (en) * 2011-03-08 2012-09-27 Mitsubishi Electric Corp Outdoor unit of air conditioning device, and air conditioning device employing the same
WO2014192545A1 (en) * 2014-05-14 2014-12-04 株式会社小松製作所 Work vehicle
CN107238148A (en) * 2017-07-20 2017-10-10 广东美的暖通设备有限公司 Air-conditioner outdoor unit, air-conditioning and air-conditioner outdoor unit control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780333B (en) * 2020-07-14 2021-11-05 珠海格力节能环保制冷技术研究中心有限公司 Control method and device of air conditioner and air conditioner equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010045112A1 (en) * 2008-10-14 2010-04-22 Liebert Corporation Integrated quiet and energy efficient modes of operation for air-cooled condenser
JP2012506024A (en) * 2008-10-14 2012-03-08 リーバート・コーポレイシヨン Integrated quiet operation mode and energy efficient operation mode of air-cooled condenser
JP2012184906A (en) * 2011-03-08 2012-09-27 Mitsubishi Electric Corp Outdoor unit of air conditioning device, and air conditioning device employing the same
WO2014192545A1 (en) * 2014-05-14 2014-12-04 株式会社小松製作所 Work vehicle
JP5834147B2 (en) * 2014-05-14 2015-12-16 株式会社小松製作所 Work vehicle
US9662958B2 (en) 2014-05-14 2017-05-30 Komatsu Ltd. Work vehicle
CN107238148A (en) * 2017-07-20 2017-10-10 广东美的暖通设备有限公司 Air-conditioner outdoor unit, air-conditioning and air-conditioner outdoor unit control method

Also Published As

Publication number Publication date
JP4183538B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
WO2010137344A1 (en) Air-conditioning device
CN110494701B (en) Air conditioner
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
CN108779939B (en) Refrigerating device
AU2002332260B2 (en) Air conditioner
JP6598882B2 (en) Refrigeration cycle equipment
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
US10222086B2 (en) Refrigeration cycle apparatus and air-conditioning apparatus
WO2015019740A1 (en) Refrigerator
JP2003314854A (en) Air conditioner
JP4183538B2 (en) Operation control device for condenser fan
JP2006194526A (en) Air conditioner
KR20040009076A (en) Added Heater Operating Method of Heat Pump Air Conditioner
JP2005048973A (en) Air conditioner and method of controlling the same
JP2020153604A (en) Refrigeration cycle device
JP5639664B2 (en) Air conditioner
JP4105413B2 (en) Multi-type air conditioner
KR100526605B1 (en) Refrigerator and refrierator controlling method
JP6835055B2 (en) Refrigeration equipment
JP7467827B2 (en) Air conditioners
US20180202689A1 (en) Multi-stage compression refrigeration cycle device
JP2004003691A (en) Air-conditioner
JP2018141587A (en) air conditioner
JPH02290471A (en) Air-conditioner
KR20110001992A (en) Method for defrost of heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees