JP2004293603A - Active type fluid-filled vibration isolator - Google Patents

Active type fluid-filled vibration isolator Download PDF

Info

Publication number
JP2004293603A
JP2004293603A JP2003084437A JP2003084437A JP2004293603A JP 2004293603 A JP2004293603 A JP 2004293603A JP 2003084437 A JP2003084437 A JP 2003084437A JP 2003084437 A JP2003084437 A JP 2003084437A JP 2004293603 A JP2004293603 A JP 2004293603A
Authority
JP
Japan
Prior art keywords
vibration
plate
partition plate
mounting member
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003084437A
Other languages
Japanese (ja)
Other versions
JP4019163B2 (en
Inventor
Kazuhiko Kato
和彦 加藤
Hajime Maeno
肇 前野
Kei Okumura
圭 奥村
Tetsuo Mikasa
哲雄 三笠
Hiroomi Nemoto
浩臣 根本
Hiroaki Kami
博昭 上
Takeshi Iinuma
健 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Sumitomo Riko Co Ltd
Original Assignee
Honda Motor Co Ltd
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Sumitomo Riko Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003084437A priority Critical patent/JP4019163B2/en
Publication of JP2004293603A publication Critical patent/JP2004293603A/en
Application granted granted Critical
Publication of JP4019163B2 publication Critical patent/JP4019163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a downsizing in a mount axial direction by shortening the distance between a partition plate, and a first mounting member and a vibrating plate while sufficiently ensuring the displacement stroke of the first mounting member and the vibrating stroke of the vibrating plate in an active type fluid-filled vibration isolator in which the first member and the vibrating plate are arranged to be apart in both sides of the partition plate supported by a second mounting member, a pressure receiving chamber is formed between opposed surfaces of the partition plate and the first member, and a vibrating chamber is formed between opposed surfaces of the partition plate and the vibrating plate. <P>SOLUTION: A peripheral protrusion 84 is formed in the peripheral edge of the vibrating plate 80 to secure the adhesion area of a support rubber elastic body 78 to the plate 80. A central recess 85 is provided in the central part of the plate 80, and the central part of the partition plate 74 is protruded towards the recess 85. Thus, the surface of the partition plate 74 opposed to the first mounting member 12 is formed into a central recessed surface 127 apart from the first member 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は、非圧縮性流体が封入された受圧室の圧力をアクチュエータで能動的に制御することにより、防振すべき振動に対して積極的乃至は相殺的な防振効果を発揮し得る能動型流体封入式防振装置に係り、例えば自動車用のエンジンマウントやボデーマウント或いは制振装置等に好適に採用される能動型流体封入式防振装置に関するものである。
【0002】
【背景技術】
振動伝達系を構成する部材間に介装される防振連結体や防振支持体等としての防振装置の一種として、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結せしめて、該本体ゴム弾性体で壁部の一部が構成されて振動が入力される受圧室を形成すると共に、かかる受圧室の圧力をアクチュエータで能動的に圧力制御するようにした流体封入式の能動型防振装置が知られている。例えば、特許文献1,2,3などに記載の防振装置が、それである。このような能動型防振装置は、例えば、防振連結される部材に対して、防振すべき振動に対応した加振力を及ぼすことにより振動を相殺的に抑制したり、マウントのばね特性を入力振動に応じて積極的に変更して低動ばね化等させることにより、振動に対して積極的な防振効果を得ることができるのであり、例えば自動車用エンジンマウント等への適用が考えられている。
【0003】
【特許文献1】
特開平2−42228号公報
【特許文献2】
特開平11−247919号公報
【特許文献3】
特開2000−283214号公報
【0004】
ところで、このような防振装置では、能動的防振効果を有効に発揮するために、防振すべき振動に対して高精度に対応した周波数や位相で受圧室の圧力変動を制御したり、受圧室に対して大きな圧力変動を効率的に及ぼすこと等が要求される。そこで、前記特許文献1,2,3にも記載されているように、第二の取付部材で仕切板を支持せしめて、該仕切板を挟んで受圧室と反対側に加振板を配設し、かかる加振板を第二の取付部材に対して弾性支持せしめる支持ゴム弾性体で壁部の一部が構成された加振室を形成すると共に、それら受圧室と加振室を相互に連通するオリフィス通路を設けて、アクチュエータで加振板を加振駆動することにより加振室に生ぜしめられた圧力変動をオリフィス通路を通じて受圧室に及ぼすようにした構造が、提案されている。このような構造においては、オリフィス通路を適当にチューニングすることにより、オリフィス通路を流動せしめられる流体の共振作用等に基づいて、加振室に惹起される圧力変動を効率的に受圧室に及ぼして大きな圧力変動を生ぜしめたり、加振室に惹起される圧力変動の高周波成分の受圧室への伝達を抑えて防振すべき振動に対して高精度に対応した圧力変動を受圧室に生ぜしめたりすることが可能となるのである。
【0005】
ところが、かくの如き構造の能動型流体封入式防振装置においては、仕切板を挟んで受圧室と加振室が主たる振動入力方向で直列的に形成位置せしめられることから、主たる振動入力方向における防振装置の外形寸法が大きくなってしまう傾向があり、それ故、例えば自動車用エンジンマウント等のように、装着のための配設スペースが制限される場合には、外形寸法の大きさが重大な問題となることがある。
【0006】
なお、外形寸法を小さく抑えるために、主たる振動入力方向において、受圧室や加振室の内寸法を小さくしたり、仕切板や加振板の板厚寸法を小さくすることが考えられるが、受圧室を小さくすると振動入力方向での本体ゴム弾性体の弾性変形量ひいては第一の取付部材と第二の取付部材の相対的変位量が制限されてしまって、振動入力時に部材の干渉が発生し易いという問題があり、加振室を小さくすると加振板の加振ストロークが制限されてしまって充分な圧力制御効果を得難くなるという問題がある。また、加振板の板厚寸法を小さくすると、加振板に対する支持ゴム弾性体の被着面積を充分に確保し難くなって支持ゴム弾性体の加振板からの剥離や亀裂発生等が問題となり易いという問題がある。
【0007】
【解決課題】
ここにおいて、本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、第一の取付部材と第二の取付部材の相対的変位量や加振板の加振ストローク量、更に加振板に対する支持ゴム弾性体の被着面積を、何れも充分に確保しつつ、主たる振動入力方向におけるコンパクト化が図られ得る、新規な構造の能動型流体封入式防振装置を提供することにある。
【0008】
【解決手段】
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載され、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。
【0009】
(本発明の態様1)
本発明の態様1は、第一の取付部材を第二の取付部材における筒状部の一方の開口部側に配設して、該第一の取付部材を該第二の取付部材に対して本体ゴム弾性体で連結することにより該筒状部の一方の開口部を流体密に閉塞する一方、該筒状部の他方の開口部側に加振板を配設して、該加振板を該第二の取付部材に対して支持ゴム弾性体で連結することにより該筒状部の他方の開口部を流体密に閉塞し、それら本体ゴム弾性体と支持ゴム弾性体の対向面間において該筒状部の略軸直角方向に広がる仕切板を配設して該仕切板を該第二の取付部材によって固定的に支持せしめることにより、該仕切板を挟んだ一方の側において該本体ゴム弾性体で壁部の一部が構成された受圧室を形成すると共に、該仕切板を挟んだ他方の側において該支持ゴム弾性体で壁部の一部が構成された加振室を形成して、それら受圧室と加振室に非圧縮性流体を充填すると共に、該受圧室と該加振室を相互に接続するオリフィス通路を形成し、更に該加振板に駆動力を及ぼすアクチュエータを設けて、該アクチュエータで該加振板を加振駆動することによって該加振室に惹起される圧力変動を該オリフィス通路を通じて該受圧室に及ぼすようにした能動型流体封入式防振装置であって、前記加振板の外周縁部において前記仕切板側に突出する環状の外周突部を形成して該加振板の中央部分を該仕切板に向かって開口する中央凹所とすると共に、該外周突部に前記支持ゴム弾性体を加硫接着せしめる一方、該仕切板の中央部分を該加振板の該中央凹所に向かって突出させて、該仕切板の該第一の取付部材に対向位置せしめられた部位の対向面を該第一の取付部材から離隔する中央凹面としたことを、特徴とする。
【0010】
このような本態様に従う構造とされた能動型流体封入式防振装置においては、加振板の外周突部によって加振板の外周縁部に加硫接着される支持ゴム弾性体の被着面積が有利に確保され得ると共に、加振板の中央部分に形成された中央凹所に向かって仕切板の中央部分が第一の取付部材から離隔する方向に突出せしめられていることにより、第一の取付部材と仕切板の主たる振動入力方向での対向面間距離が大きく確保され得て、大きな振動荷重の入力によって第一の取付部材が第二の取付部材に対して相対変位せしめられた場合の第一の取付部材の仕切板への干渉が回避され、第一の取付部材と第二の取付部材の相対的な変位ストロークが有利に確保され得ることとなる。
【0011】
しかも、加振板においては、支持ゴム弾性体の被着面積を外周突部で確保しつつ中央部分に中央凹所を形成し、第一の取付部材に対向位置する仕切板の中央部分を、加振板の外周突部を避けるようにして、かかる中央凹所を利用して加振板に接近配置せしめたことにより、加振板の加振ストロークと第一の取付部材の変位ストロークの何れも有利に確保しつつ、加振板に外周突部を設けて支持ゴム弾性体の被着面積を軸方向に大きく設定したことに伴うマウント軸方向(主たる振動入力方向)のサイズの大型化を抑えてコンパクトなマウントサイズを実現することが可能となるのである。
【0012】
(本発明の態様2)
本発明の態様2は、本発明の前記態様1に係る能動型流体封入式防振装置において、前記オリフィス通路を、前記仕切板の中央部分を貫通して形成したことを、特徴とする。本態様においては、オリフィス通路が加振板に対向して開口位置せしめられることから、加振板の変位に基づいて加振室に惹起される圧力変動がダイレクトにオリフィス通路に及ぼされて、オリフィス通路を通じての流体流動が一層効率的に且つ安定して生ぜしめられることとなり、加振室の加振制御による受圧室の圧力制御の精度の向上が図られ得る。
【0013】
(本発明の態様3)
本発明の態様3は、本発明の前記態様1又は2に係る能動型流体封入式防振装置において、前記仕切板における前記中央凹面の外周側を、前記受圧室側に環状に突出させて、該仕切板において、前記加振板の外周突部に対向位置せしめられた部位の対向面を該加振板から離隔する環状凹面としたことを、特徴とする。本態様においては、加振板の加振ストロークを有利に確保しつつ、第一の取付部材と仕切板および加振板のマウント軸方向での配設距離をより小さく設定することが可能となる。要するに、第一の取付部材の変位ストロークを仕切板の中央凹面で充分に確保しつつ、且つ加振板の加振ストロークを仕切板の環状凹面で充分に確保しつつ、仕切板と加振板を全体として受圧室側に入り込むようにして位置せしめることが可能となって、マウント全体での軸方向サイズを一層小さく設定することが出来るのである。
【0014】
(本発明の態様4)
本発明の態様4は、本発明の前記態様1乃至3の何れかに係る能動型流体封入式防振装置において、前記オリフィス通路を、防振すべき振動よりも高周波数域にチューニングすることにより、該オリフィス通路を通じて前記加振室から前記受圧室に伝達される圧力変動における、防振すべき振動の周波数域よりも高周波成分の圧力成分を抑えるフィルタ手段を構成したことを、特徴とする。本態様においては、加振室に惹起される高周波成分の受圧室への伝達をフィルタ手段で抑えることにより、受圧室の圧力変動を防振すべき振動に対してより高精度に対応付けることが可能となって、目的とする能動的防振効果を一層効果的に得ることが出来るのである。しかも、フィルタ手段を実現するオリフィス通路は、短い通路長さで実現可能であることから、単板構造の仕切板を板厚方向に貫通形成した単純な貫通孔によって、かかるオリフィス通路が有利に実現可能であり、それ故、オリフィス通路の形成によって第一の取付部材の変位ストロークや加振板の加振ストロークが制限されるようなこともないのである。
【0015】
(本発明の態様5)
本発明の態様5は、本発明の前記態様1乃至4の何れかに係る能動型流体封入式防振装置において、前記受圧室および前記加振室から実質的に独立して、壁部の一部が変形容易な可撓性膜で構成されて非圧縮性流体が封入された容積可変の平衡室を形成すると共に、該平衡室を該受圧室に連通せしめる第二のオリフィス通路を形成し、該第二のオリフィス通路を前記第一のオリフィス通路よりも低周波数域にチューニングしたことを、特徴とする。このような本態様においては、第二のオリフィス通路を流動せしめられる流体の共振作用等の流動作用を利用して、例えば低周波振動に対する受動的な防振効果を得ることが可能となり、一層広い周波数域での防振効果の向上が図られ得る。
【0016】
なお、本態様においては、特に、本体ゴム弾性体の外側を離隔して覆う可撓性膜を、前記第一の取付部材と前記第二の取付部材の間に跨がって周方向に連続して配設し、本体ゴム弾性体を挟んで前記受圧室と反対側に位置して周方向に広がる環状構造をもって前記平衡室を形成した構成が好適に採用され得る。このような構成を採用することにより、第一の取付部材と第二の取付部材の配設間距離やマウント軸方向サイズの大型化を抑えつつ、平衡室を有利に形成することが可能となる。
【0017】
【発明の実施形態】
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
【0018】
先ず、図1には、能動形防振用マウントに関する本発明の第一の実施形態としての自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16によって弾性的に連結された構造とされており、第一の取付金具12が図示しない自動車のパワーユニットに取り付けられる一方、第二の取付金具14が図示しない自動車のボデーに取り付けられることにより、パワーユニットをボデーに対して防振支持するようになっている。また、そのような装着状態下、第一の取付金具12と第二の取付金具14の間には、パワーユニットの分担荷重と、防振すべき主たる振動が、何れも、エンジンマウント10の略軸方向(図1中、上下方向)に入力されるようになっている。なお、以下の説明中、上下方向とは、原則として、図1中の上下方向を言うものとする。
【0019】
より詳細には、第一の取付金具12は、本体ゴムインナ金具18とダイヤフラムインナ金具20によって構成されていると共に、第二の取付金具14は、本体ゴムアウタ筒金具22とダイヤフラムアウタ筒金具24によって構成されている。そして、本体ゴム弾性体16に対して本体ゴムインナ金具18と本体ゴムアウタ筒金具22が加硫接着されて第一の一体加硫成形品28とされている一方、ダイヤフラムインナ金具20とダイヤフラムアウタ筒金具24が、可撓性膜としてのダイヤフラム30に対して加硫接着されて第二の一体加硫成形品32とされており、これら第一及び第二の一体加硫成形品28,32が相互に組み合わされている。
【0020】
ここにおいて、第一の一体加硫成形品28を構成する本体ゴムインナ金具18は、逆向きの略円錐台形状を有している。また、本体ゴムインナ金具18の上端面(大径側端面)には、嵌合凹部34が形成されていると共に、該嵌合凹部34の底面に開口するねじ穴38が設けられている。
【0021】
更にまた、本体ゴムアウタ筒金具22は、略大径円筒形状を有する筒壁部40を備えており、この筒壁部40の軸方向下端部には径方向外方に向かって広がるフランジ状部42が一体形成されている一方、筒壁部40の軸方向上端部分は、軸方向上方に行くに従って次第に拡開するテーパ筒状部44とされている。これによって、本体ゴムアウタ筒金具22の外周側には、外周面に開口して周方向に一周弱の長さで延びる周溝45が形成されている。そして、本体ゴムアウタ筒金具22の上方に離隔して、本体ゴムインナ金具18が略同一中心軸上で離隔配置されており、本体ゴムインナ金具18における逆テーパ形状の外周面と本体ゴムアウタ筒金具22におけるテーパ筒状部44が相互に離隔して対向位置せしめられており、これら本体ゴムインナ金具18と本体ゴムアウタ筒金具22の対向面間が、本体ゴム弾性体16によって弾性的に連結されている。
【0022】
かかる本体ゴム弾性体16は、全体として大径の円錐台形状を有しており、その中央部分には、本体ゴムインナ金具18が同軸的に配されて加硫接着されていると共に、その大径側端部外周面に対して本体ゴムアウタ筒金具22のテーパ筒状部44が重ね合わせられて加硫接着されている。これによって、本体ゴム弾性体16が、上述の如き本体ゴムインナ金具18および本体ゴムアウタ筒金具22を備えた第一の一体加硫成形品28として形成されている。
【0023】
また一方、第二の一体加硫成形品32を構成するダイヤフラムインナ金具20は、厚肉の円板形状を有している。また、ダイヤフラムインナ金具20の下面には、嵌合凸部46が形成されていると共に、該嵌合凸部46の形成部位を貫通して挿通孔52が形成されている。更にダイヤフラムインナ金具20には、上方に突出して取付板部58が一体形成されており、取付板部58の中央部分にはボルト挿通孔59が設けられている。
【0024】
また、ダイヤフラムアウタ筒金具24は、薄肉大径の円筒形状を有しており、その軸方向下側の開口部には、径方向外方に向かって広がる円環板形状のフランジ状部66が一体形成されており、更に、フランジ状部66の外周縁部には、軸方向下方に向かって突出する円環状のかしめ片68が一体形成されている。
【0025】
そして、ダイヤフラムアウタ筒金具24の軸方向上方に離隔して、ダイヤフラムインナ金具20が、略同一中心軸上に配設されており、それらダイヤフラムインナ金具20とダイヤフラムアウタ筒金具24が、ダイヤフラム30によって連結されている。
【0026】
ダイヤフラム30は、薄肉のゴム膜によって形成されており、容易に弾性変形が許容されるように大きな弛みを持った湾曲断面形状をもって周方向に延びる略円環形状を有している。そして、ダイヤフラム30の内周縁部が、ダイヤフラムインナ金具20の外周縁部に対して加硫接着されていると共に、ダイヤフラム30の外周縁部が、ダイヤフラムアウタ筒金具24の軸方向上側の開口部に加硫接着されている。これにより、ダイヤフラム30は、ダイヤフラムインナ金具20およびダイヤフラムアウタ筒金具24を備えた第二の一体加硫成形品32として形成されている。
【0027】
而して、かかる第二の一体加硫成形品32が、前述の第一の一体加硫成形品28に対して上方から重ね合わせられて組み付けられており、ダイヤフラムインナ金具20が本体ゴムインナ金具18に固着されていると共に、ダイヤフラムアウタ筒金具24が本体ゴムアウタ筒金具22に固着されており、更にダイヤフラム30が、本体ゴム弾性体16の外方に離隔して、本体ゴム弾性体16の外周面を全体に亘って覆うようにして配設されている。
【0028】
すなわち、ダイヤフラムインナ金具20が本体ゴムインナ金具18の上面に直接に重ね合わされて、ダイヤフラムインナ金具20の嵌合凸部46が本体ゴムインナ金具18の嵌合凹部34に嵌め込まれることによって、ダイヤフラムインナ金具20と本体ゴムインナ金具18が同一中心軸上に位置合わせされている。また、特に本実施形態では、嵌合凸部46と嵌合凹部34の各外周面に切欠状に形成された係合外周面50と係合内周面36の係合作用によって、ダイヤフラムインナ金具20と本体ゴムインナ金具18が周方向でも相互に位置決めされており、ダイヤフラムインナ金具20の挿通孔52と本体ゴムインナ金具18のねじ穴38が位置合わせされている。
【0029】
そして、図1に示されているように、本体ゴムインナ金具18とダイヤフラムインナ金具20を重ね合わせた状態下で、連結ボルト70が、ダイヤフラムインナ金具20の挿通孔52を通じて本体ゴムインナ金具18のねじ穴38に螺着されている。而して、これら本体ゴムインナ金具18とダイヤフラムインナ金具20が連結ボルト70で連結固定されることにより、第一の取付金具12が構成されている。
【0030】
一方、ダイヤフラムアウタ筒金具24は本体ゴムアウタ筒金具22に対して軸方向上方から外挿されている。また、本体ゴムアウタ筒金具22は、その下端部において、フランジ状部42の外周縁部がダイヤフラムアウタ筒金具24のフランジ状部66に対して軸方向に重ね合わされていると共に、その上端部において、テーパ筒状部44の開口端縁部がダイヤフラムアウタ筒金具24の内周面に対して径方向で重ね合わされている。
【0031】
そして、本体ゴムアウタ筒金具22のフランジ状部42の外周縁部に対して、ダイヤフラムアウタ筒金具24のかしめ片68がかしめ固定されることによって、本体ゴムアウタ筒金具22とダイヤフラムアウタ筒金具24が相互に固定されて組み付けられている。なお、これら本体ゴムアウタ筒金具22の上下両端部におけるダイヤフラムアウタ筒金具24との重ね合わせ部位には、それぞれ、本体ゴム弾性体16またはダイヤフラム30と一体成形されたシールゴムが介在されており、流体密にシールされている。これにより、本体ゴムアウタ筒金具22に形成された周溝45がダイヤフラムアウタ筒金具24で流体密に覆蓋されており、以て、本体ゴムアウタ筒金具22の筒壁部40とダイヤフラムアウタ筒金具24の径方向対向面間を周方向に所定長さで乃至は全周に亘って連続して延びる環状通路72が形成されている。
【0032】
さらに、本体ゴムアウタ筒金具22の下側開口部には、仕切板金具74と蓋部材76が組み付けられている。蓋部材76は、支持ゴム弾性体としての略円環板形状の支持ゴム板78に対して、その中央部分に加振板80が加硫接着されていると共に、その外周部分に環状保持金具82が加硫接着されており、それら加振板80と環状保持金具82が支持ゴム板78で弾性的に連結されている。
【0033】
加振板80は、円板形状を有しており、その外周縁部には上方に向かって突出する円環形状の外周突部84が一体形成されており、外周突部84で囲まれた上面中央部分には、上方に向かって開口する中央凹所85が形成されている。また、加振板80の中央部分には、中心軸上を下方に向かって延びる駆動軸86が一体形成されている。なお、加振板80は、外周突部84や駆動軸86を含んで、金属や合成樹脂等の硬質材で一体成形されている。一方、環状保持金具82は、円筒形状を有する筒状部88の上下開口部に対してそれぞれフランジ状に広がる取付板部90と位置決め突部92が一体形成されており、取付板部90の外周縁部には、更に下方に突出する円環状の圧入部94が一体形成されている。
【0034】
そして、環状保持金具82の径方向内方に離隔して略同一中心軸上に加振板80が配設されており、これら環状保持金具82と加振板80の径方向対向面間に広がるようにして支持ゴム板78が配設されている。また、かかる支持ゴム板78は、その内外周縁部が加振板80の外周突部84と環状保持金具82の筒状部88の対向面に対してそれぞれ加硫接着されており、加振板80と環状保持金具82の間が支持ゴム板78で流体密に閉塞されている。
【0035】
一方、仕切板金具74は、薄肉の円板形状を有しており、その外径寸法が、環状保持金具82における取付板部90の径方向中間部分まで至る大きさとされている。また、仕切板金具74の中央部分は、上述の環状保持金具82の内径と略同じ大きさの円形領域が台地状に上方に突出せしめられて台地状突部83が形成されていると共に、この台地状突部83の頂部中央が、上述の加振板の中央凹所85と略同じ大きさの円形領域において上方に凹陥状とされて中央凹陥部95とされている。また、かかる中央凹陥部95が形成された仕切板金具74の中心軸上には、オリフィス通路としてのオリフィス通孔96が板厚方向に貫設されている。
【0036】
そして、仕切板金具74は、ダイヤフラムアウタ筒金具24の下側開口部において、そこに組み付けられた本体ゴムアウタ筒金具22のフランジ状部42に対して外周縁部が重ね合わされて組み付けられている。更に、ダイヤフラムアウタ筒金具24の下側開口部には、仕切板金具74の下方から蓋部材76が組み付けられており、蓋部材76における環状保持金具82の取付板部90が、本体ゴムアウタ筒金具22と仕切板金具74に重ね合わされて、それぞれの外周縁部がダイヤフラムアウタ筒金具24のかしめ片68によってかしめ固定されている。
【0037】
これにより、ダイヤフラムアウタ筒金具24の下側開口部が、蓋部材76で流体密に覆蓋されており、第二の取付金具14で固定的に支持されて軸直角方向に広がって配設された仕切板金具74に対して、その上側には、壁部の一部が本体ゴム弾性体16で構成されて非圧縮性流体が封入された受圧室100が形成されている。即ち、この受圧室100には、第一の取付金具12と第二の取付金具14の間への振動入力時に本体ゴム弾性体16の弾性変形に基づいて振動が入力されて圧力変動が惹起されるようになっている。また一方、仕切板金具74を挟んで受圧室100と反対の下側には、壁部の一部が加振板80で構成されて非圧縮性流体が封入された加振室104が形成されている。この加振室104は、後述する電磁加振器114で加振板80が加振駆動されることにより、圧力変動が積極的に制御されるようになっている。
【0038】
また、このように仕切板金具74を挟んで上下に形成された受圧室100と加振室104は、仕切板金具74の中央に形成されたオリフィス通孔96を通じて相互に連通されており、加振板80の加振で加振室104に生ぜしめられた圧力変動がオリフィス通孔96を通じて受圧室100に及ぼされることにより、受圧室100の圧力を積極的に制御することが出来るようになっている。
【0039】
更にまた、本体ゴム弾性体16とダイヤフラム30が、それぞれの内周縁部と外周縁部において第一の取付金具12と第二の取付金具14に固着されることにより、本体ゴム弾性体16とダイヤフラム30の対向面間には、非圧縮性流体が封入された平衡室106が形成されている。即ち、この平衡室106は、壁部の一部が変形容易なダイヤフラム30で構成されており、該ダイヤフラム30の弾性変形に基づいて容易に容積変化が許容されるようになっているのである。なお、受圧室100や加振室104,平衡室106に封入される非圧縮性流体としては、これら各室100,104,106間で流動せしめられる流体の共振作用に基づいて有効な防振効果を効率的に得ることが出来るように、一般に、0.1Pa.s以下の低粘性流体が好適に採用される。
【0040】
さらに、第二の取付金具14内に形成された環状通路72が、その周方向両端部に形成された連通孔108,110を通じて受圧室100と平衡室106に接続されており、それによって、受圧室100と平衡室106を相互に連通せしめて両室100,106間での流体流動を許容する第二のオリフィス通路としてのオリフィス通路112が所定長さで形成されている。なお、オリフィス通路112は、振動入力時に受圧室100と平衡室106の間に惹起される圧力差に基づいて内部を流動せしめられる流体の共振作用に基づく防振効果が、例えばアイドリング振動等の特定の周波数域で有効に発揮されるように、その通路断面積や通路長さが適当に設定されてチューニングされている。
【0041】
また一方、蓋部材76を挟んで受圧室100と反対側には、アクチュエータとしての電磁加振器114が配設されている。この電磁加振器114は、従来から公知のものであって例えば特開平9−89040号公報や特開2001−1765号公報,特開2002−106633号公報等に開示のものが何れも採用可能であることからここでは詳述しないが、略カップ形状のハウジング116にコイル(図示せず)やヨーク部材が組み込まれていると共に、中心軸上で軸方向上方に突出する出力軸118が、軸方向で所定量だけ変位可能に組み付けられており、コイルに対して通電することにより、出力軸118に軸方向の加振駆動力が及ぼされるようになっている。
【0042】
そして、電磁加振器114は、ハウジング116の開口部に形成されたフランジ部120が、蓋部材76における環状保持金具82の取付板部90に重ね合わされて、環状保持金具82等と共に、かしめ片68で第二の取付金具14にかしめ固定されている。また、電磁加振器114の出力軸118が、加振板80の駆動軸86に連結固定されており、出力軸118と一体的に加振板80が変位せしめられるようになっている。
【0043】
さらに、電磁加振器114には、更に筒形ブラケット122が外挿されて組み付けられている。この筒形ブラケット122は、上端開口部にフランジ部124が形成されていると共に、下端開口部に取付板部126が形成されており、フランジ部124が、電磁加振器114のハウジング116のフランジ部120と共に、ダイヤフラムアウタ筒金具24のかしめ片68でかしめ固定されている。また、取付板部126には、複数の取付用孔(図示せず)が形成されている。
【0044】
そして、このような構造とされたエンジンマウント10は、図示されていないが、第一の取付金具12の取付板部58が、ボルト挿通孔59に挿通される固定ボルトでパワーユニットに取り付けられる一方、第二の取付金具14が、筒形ブラケット122を介して固定ボルトで自動車ボデーに取り付けられることにより、パワーユニットとボデーの間に装着されることとなる。そして、かかる装着状態下、第一の取付金具12と第二の取付金具14の間に振動が入力されると、本体ゴム弾性体16の弾性変形に伴って受圧室100と平衡室106の間に惹起される圧力差に基づいてオリフィス通路112を通じて流体流動が生ぜしめられて、かかる流体の共振作用等の流動作用に基づいて受動的な防振効果が発揮される。また、防振すべき振動に応じた周波数や位相で電磁加振器114を駆動制御して電磁加振器114で加振板80を加振駆動せしめることにより、加振室104からオリフィス通孔96を通じて受圧室100に圧力変動を及ぼし、受圧室100の圧力変動を能動制御することにより、入力振動に対して能動的な防振効果を得ることが出来るのである。
【0045】
そこにおいて、本実施形態のエンジンマウント10では、加振板80の外周縁部に形成された外周突部84に支持ゴム板78の内周縁部が加硫接着されていることにより、加振板80の肉厚寸法を小さく抑えつつ、支持ゴム板78の加硫接着面積を確保して支持ゴム板78の加振板80に対する接着強度と耐久性を充分に得ることが出来る。しかも、仕切板金具74には、加振板80の外周突部84が対向位置せしめられる部分に台地状突部83が形成されており、外周突部84を上方に逃げるようにして、仕切板金具74が受圧室100側に突出せしめられていることから、加振板80の仕切板金具74への当接が有利に回避されて、加振板80の加振ストロークが有利に確保され得る。
【0046】
また、加振板80の中央凹所85には、上方から仕切板金具74の中央凹陥部95が入り込むようにして形成されていることにより、仕切板金具74における第一の取付金具12に対する対向面が中央凹面としての凹陥面127とされており、第一の取付金具12と仕切板金具74との主たる振動入力方向(マウント中心軸方向)での対向面間距離が、大きく設定されている。それ故、加振板80に外周突部84を形成して、加振板80を受圧室100側に突出せしめたにも拘わらず、加振板80の中央凹所85内のスペースを巧く利用して第一の取付金具12の変位ストロークが充分に確保され得ることとなり、それによって、例えば大きな振動荷重の入力に際して不必要に第一の取付金具12が仕切板金具74に干渉することが防止されると共に、第一の取付金具12が仕切板金具74に接近してオリフィス通孔96が狭窄乃至は閉塞されることも有利に防止され得る。
【0047】
従って、上述の如き構造とされたエンジンマウント10においては、第一の取付金具12、仕切板金具74および加振板80を、相互に干渉を可及的に回避して仕切板金具74に対する第一の取付金具12と加振板80の各相対変位許容量を充分に確保しつつ、マウント軸方向で充分に近接配置することが出来ると共に、加振板80に対する支持ゴム板78の加硫接着面積も有利に確保することが出来るのであり、それによって、良好な防振性能と耐久性を確保しつつ、マウント軸方向サイズのコンパクト化が有利に実現可能となるのである。
【0048】
また、特に本実施形態のエンジンマウント10では、受圧室100に対してオリフィス通路112を通じて接続された平衡室106が、本体ゴム弾性体16の外側において環状に形成されていることから、マウント中心軸方向でのサイズの大型化を可及的に回避しつつ、平衡室106を形成することが可能であり、マウント軸方向サイズの一層のコンパクト化が図られ得ることとなる。
【0049】
以上、本発明の一実施形態について詳述してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものでなく、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
【0050】
例えば、前記実施形態では、仕切板金具74において、加振板80の外周突部84に対向位置する部分に台地状突部83が形成されており、この台地状突部83の中央部分に中央凹陥部95が形成されていたが、要求されるマウントサイズ等によっては、図2に示されているように、台地状突部83を設けることなく、略平坦な円板形状とされた仕切板金具74の中央部分において、加振板80の中央凹所85に入り込むようにして突出する中央凹陥部95だけを形成するようにしても良い。このような態様においても、加振板80の加振ストロークと第一の取付金具12の変位ストロークを共に有利に確保しつつ、仕切板金具74を上下に挟んで配設された第一の取付金具12と加振板80のマウント軸方向での配設間距離を小さくすることが可能となって、前記実施形態と同様な効果が有効に発揮され得るのである。
【0051】
なお、図2に示された本発明の第二の実施形態としてのエンジンマウント128では、仕切板金具74の下面において、中央凹陥部95の周囲で加振板80の外周突部84に対向する部分に環状の凹溝130が形成されていることにより、加振板80の仕切板金具74への干渉が軽減されているが、かかる凹溝130は、必ずしも必要でない。また、かかるエンジンマウント128では、仕切板金具74の中央にオリフィス通孔96が形成されておらず、その代わりに、蓋部材76を構成する環状保持金具82に形成された周溝132を仕切板金具74で覆蓋することにより、支持ゴム板78の外周側を周方向に所定長さで延びる形態をもってオリフィス通孔134が形成されている。このような構造のオリフィス通孔134では、充分な通路長さを設定することによって低い周波数域へのチューニングも容易となることから、加振板80の加振に基づいて発揮される能動的な防振効果を低周波数域において有効に利用することが可能となる。なお、図2においては、その理解を容易とするために、第一の実施形態と略同様な構造とされた部材および部位に対して、それぞれ、図中に、第一の実施形態と同一の符号を付しておく。
【0052】
【発明の効果】
上述の説明から明らかなように、本発明に従う構造とされた防振用アクチュエータにおいては、仕切板に対する第一の取付部材と加振板の各相対変位許容量を充分に確保しつつ、それら仕切板と第一の取付部材および加振板をマウント軸方向で充分に近接配置することが出来ることから、マウント防振性能を充分に確保しつつマウント軸方向サイズのコンパクト化が図られ得ると共に、加振板に対する支持ゴム弾性体の加硫接着面積も有利に確保することが出来、良好なマウント耐久性も発揮され得る。
【図面の簡単な説明】
【図1】本発明の第一の実施形態としてのエンジンマウントを示す縦断面図である。
【図2】本発明の第二の実施形態としてのエンジンマウントを示す縦断面図である。
【符号の説明】
10 エンジンマウント
12 第一の取付金具
14 第二の取付金具
16 本体ゴム弾性体
30 ダイヤフラム
74 仕切板金具
76 蓋部材
78 支持ゴム板
80 加振板
100 受圧室
104 加振室
106 平衡室
112 オリフィス通路
114 電磁加振器
[0001]
【Technical field】
The present invention provides an active control device capable of exerting a positive or canceling vibration damping effect on vibration to be damped by actively controlling the pressure of a pressure receiving chamber filled with an incompressible fluid with an actuator. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid-filled type vibration damping device, and more particularly to an active fluid-filled vibration damping device suitably used for an engine mount, a body mount, a vibration damping device, or the like for an automobile.
[0002]
[Background Art]
A first mounting member and a second mounting member are connected by a rubber elastic body as a kind of a vibration isolating device as a vibration isolating connection member or a vibration isolating support member interposed between members constituting a vibration transmission system. At least, a fluid-filled type in which a part of a wall portion is formed of the main rubber elastic body to form a pressure receiving chamber to which vibration is input, and the pressure of the pressure receiving chamber is actively controlled by an actuator. Are known. For example, the anti-vibration devices described in Patent Documents 1, 2, and 3 are such. Such an active vibration damping device, for example, exerts an exciting force corresponding to the vibration to be damped on a member to be vibration damped, thereby suppressing the vibration in a destructive manner, or using a spring characteristic of the mount. Is positively changed according to the input vibration to reduce the dynamic spring, etc., so that a positive vibration damping effect against vibration can be obtained. Have been.
[0003]
[Patent Document 1]
JP-A-2-42228
[Patent Document 2]
JP-A-11-247919
[Patent Document 3]
JP 2000-283214 A
[0004]
By the way, in such an anti-vibration device, in order to effectively exert an active anti-vibration effect, the pressure fluctuation of the pressure receiving chamber is controlled at a frequency and a phase corresponding to the vibration to be anti-vibrated with high accuracy, It is required that a large pressure fluctuation is efficiently applied to the pressure receiving chamber. Therefore, as described in Patent Documents 1, 2, and 3, the partition plate is supported by the second mounting member, and a vibration plate is disposed on the side opposite to the pressure receiving chamber with the partition plate interposed therebetween. Then, a vibration chamber having a part of a wall portion formed of a supporting rubber elastic body that elastically supports the vibration plate with respect to the second mounting member is formed, and the pressure receiving chamber and the vibration chamber are mutually connected. There has been proposed a structure in which a communicating orifice passage is provided so that a pressure fluctuation generated in a vibration chamber by vibrating a vibration plate by an actuator is exerted on a pressure receiving chamber through the orifice passage. In such a structure, by appropriately tuning the orifice passage, the pressure fluctuation caused in the vibration chamber is efficiently applied to the pressure receiving chamber based on the resonance action of the fluid flowing through the orifice passage. Generates large pressure fluctuations, or suppresses the transmission of high-frequency components of pressure fluctuations induced in the vibration chamber to the pressure receiving chamber, and generates pressure fluctuations in the pressure receiving chamber with high precision corresponding to vibrations to be damped. It becomes possible.
[0005]
However, in the active fluid-filled type vibration damping device having such a structure, the pressure receiving chamber and the vibration chamber are formed and positioned in series in the main vibration input direction with the partition plate interposed therebetween. The external dimensions of the vibration isolator tend to be large, so when the installation space for mounting is limited, for example, in the case of engine mounts for automobiles, the external dimensions are significant. Can be a serious problem.
[0006]
In order to keep the external dimensions small, it is conceivable to reduce the internal dimensions of the pressure receiving chamber and the vibration chamber in the main vibration input direction, and to reduce the thickness of the partition plate and the vibration plate. When the chamber is made smaller, the amount of elastic deformation of the main rubber elastic body in the vibration input direction, and consequently, the relative displacement of the first mounting member and the second mounting member is limited, and interference of the members occurs at the time of vibration input. When the vibration chamber is made small, there is a problem that the vibration stroke of the vibration plate is limited and it is difficult to obtain a sufficient pressure control effect. Also, when the thickness of the vibration plate is reduced, it is difficult to secure a sufficient area for the support rubber elastic body to be attached to the vibration plate, and the support rubber elastic body may peel off from the vibration plate or cause cracks. There is a problem that it is easy to become.
[0007]
[Solution]
Here, the present invention has been made in the background described above, and the problem to be solved is that the relative displacement between the first mounting member and the second mounting member and the vibration plate A new structure of active fluid-filled protection that can be compact in the main vibration input direction while sufficiently securing the vibration stroke amount and the area of the support rubber elastic body attached to the vibration plate. A vibration device is provided.
[0008]
[Solution]
Hereinafter, embodiments of the present invention made to solve such problems will be described. The components employed in each of the embodiments described below can be employed in any combination as much as possible. In addition, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or based on the invention ideas that can be understood by those skilled in the art from the descriptions. It should be understood that it is recognized on the basis of.
[0009]
(Aspect 1 of the present invention)
In the first aspect of the present invention, the first mounting member is disposed on one opening side of the cylindrical portion of the second mounting member, and the first mounting member is moved relative to the second mounting member. One opening of the cylindrical portion is fluid-tightly closed by coupling with the main body rubber elastic body, and a vibration plate is disposed on the other opening side of the cylindrical portion, and the vibration plate is Is connected to the second mounting member with a supporting rubber elastic body to close the other opening of the cylindrical portion in a fluid-tight manner, and between the opposing surfaces of the main rubber elastic body and the supporting rubber elastic body. By disposing a partition plate extending in a direction substantially perpendicular to the axis of the cylindrical portion and fixedly supporting the partition plate by the second mounting member, the main body rubber is provided on one side sandwiching the partition plate. A pressure receiving chamber having a part of a wall portion formed of an elastic body is formed, and the support groove is formed on the other side of the partition plate. A vibration chamber having a part of a wall portion formed of an elastic body is formed, the pressure receiving chamber and the vibration chamber are filled with an incompressible fluid, and the pressure receiving chamber and the vibration chamber are interconnected. An orifice passage is formed, and an actuator that exerts a driving force on the vibrating plate is further provided. By vibrating the vibrating plate with the actuator, pressure fluctuations caused in the vibrating chamber are reduced through the orifice passage. An active-type fluid-filled type vibration damping device that acts on the pressure receiving chamber, wherein an annular outer peripheral projection protruding toward the partition plate is formed at an outer peripheral edge of the vibration plate, and The central portion is a central recess opening toward the partition plate, and the supporting rubber elastic body is vulcanized and bonded to the outer peripheral projection, while the central portion of the partition plate is formed in the central concave portion of the vibration plate. To the first mounting member of the partition plate. That the facing surface of the position caused to be sites was central concave surface away from said first mounting member, and wherein.
[0010]
In the active-type fluid-filled type vibration damping device having such a structure according to the present aspect, the area covered by the supporting rubber elastic body vulcanized and bonded to the outer peripheral edge of the vibration plate by the outer peripheral projection of the vibration plate. Can be advantageously secured, and the central portion of the partition plate projects toward the central recess formed in the central portion of the vibration plate in a direction away from the first mounting member, whereby the first When a large distance between the facing surfaces of the mounting member and the partition plate in the main vibration input direction can be secured, and the first mounting member is displaced relative to the second mounting member due to the input of a large vibration load. The interference of the first mounting member with the partition plate is avoided, and the relative displacement stroke between the first mounting member and the second mounting member can be advantageously secured.
[0011]
Moreover, in the vibration plate, a central recess is formed in the central portion while securing the area covered by the supporting rubber elastic body with the outer peripheral protrusion, and the central portion of the partition plate facing the first mounting member is By using the central recess to dispose the vibration plate closer to the vibration plate so as to avoid the outer peripheral projection of the vibration plate, any one of the vibration stroke of the vibration plate and the displacement stroke of the first mounting member can be used. The size of the mount in the axial direction (main vibration input direction) is increased by providing the outer peripheral projections on the vibration plate and increasing the mounting area of the supporting rubber elastic body in the axial direction. It is possible to realize a compact mount size while suppressing it.
[0012]
(Aspect 2 of the present invention)
According to a second aspect of the present invention, in the active fluid-filled type vibration damping device according to the first aspect of the present invention, the orifice passage is formed so as to penetrate a central portion of the partition plate. In the present aspect, since the orifice passage is located at the opening position facing the vibrating plate, the pressure fluctuation caused in the vibrating chamber based on the displacement of the vibrating plate is directly applied to the orifice passage, and The fluid flow through the passage is more efficiently and stably generated, and the accuracy of the pressure control of the pressure receiving chamber by the vibration control of the vibration chamber can be improved.
[0013]
(Embodiment 3 of the present invention)
Aspect 3 of the present invention is the active-type fluid-filled type vibration damping device according to Aspect 1 or 2 of the present invention, wherein an outer peripheral side of the central concave surface of the partition plate is annularly projected toward the pressure receiving chamber, The partition plate is characterized in that a facing surface of a portion opposed to the outer peripheral projection of the vibration plate is an annular concave surface separated from the vibration plate. In this aspect, it is possible to set a smaller distance between the first mounting member, the partition plate, and the vibration plate in the mount axis direction while advantageously securing the vibration stroke of the vibration plate. . In short, while sufficiently securing the displacement stroke of the first mounting member at the central concave surface of the partition plate, and sufficiently securing the vibration stroke of the vibration plate at the annular concave surface of the partition plate, the partition plate and the vibration plate Can be positioned so as to enter the pressure receiving chamber side as a whole, and the axial size of the entire mount can be further reduced.
[0014]
(Embodiment 4 of the present invention)
According to a fourth aspect of the present invention, in the active fluid-filled type vibration damping device according to any one of the first to third aspects of the present invention, the orifice passage is tuned to a higher frequency range than the vibration to be damped. And a filter means for suppressing a pressure component of a higher frequency component than a frequency range of vibration to be damped in pressure fluctuation transmitted from the vibration chamber to the pressure receiving chamber through the orifice passage. In this aspect, by suppressing the transmission of the high-frequency component generated in the vibration chamber to the pressure receiving chamber by the filter means, it is possible to more accurately associate the pressure fluctuation in the pressure receiving chamber with the vibration to be damped. Thus, the intended active vibration damping effect can be more effectively obtained. Moreover, since the orifice passage that realizes the filter means can be realized with a short passage length, the orifice passage is advantageously realized by a simple through hole formed by penetrating a single-plate structure partition plate in the thickness direction. This is possible, and therefore, the formation stroke of the orifice passage does not limit the displacement stroke of the first mounting member or the excitation stroke of the excitation plate.
[0015]
(Embodiment 5 of the present invention)
According to a fifth aspect of the present invention, in the active fluid-filled type vibration damping device according to any one of the first to fourth aspects of the present invention, the wall portion is substantially independent of the pressure receiving chamber and the vibration chamber. The portion is formed of a flexible membrane that is easily deformed, forms a variable volume equilibrium chamber in which an incompressible fluid is sealed, and forms a second orifice passage that connects the equilibrium chamber to the pressure receiving chamber, The second orifice passage is tuned to a lower frequency range than the first orifice passage. In this embodiment, for example, a passive vibration damping effect against low-frequency vibrations can be obtained by using a flow action such as a resonance action of a fluid that is caused to flow through the second orifice passage, and a wider area can be obtained. An improvement in the vibration isolation effect in the frequency range can be achieved.
[0016]
In this embodiment, in particular, the flexible film that covers the outside of the main rubber elastic body at a distance is continuous in the circumferential direction across the first mounting member and the second mounting member. A configuration in which the equilibrium chamber is formed with an annular structure that is arranged on the opposite side of the pressure receiving chamber with the main rubber elastic body interposed therebetween and expands in the circumferential direction can be suitably adopted. By adopting such a configuration, the equilibrium chamber can be advantageously formed while suppressing an increase in the distance between the first mounting member and the second mounting member and the size of the mount in the axial direction. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0018]
First, FIG. 1 shows an automotive engine mount 10 as a first embodiment of the present invention relating to an active vibration isolating mount. The engine mount 10 has a structure in which a first mounting member 12 as a first mounting member and a second mounting member 14 as a second mounting member are elastically connected by a main rubber elastic body 16. The first mounting bracket 12 is mounted on a power unit of an automobile (not shown), and the second mounting bracket 14 is mounted on a body of the automobile (not shown), so that the power unit is supported on the body by vibration isolation. ing. Further, under such a mounted state, the load shared by the power unit and the main vibration to be damped between the first mounting bracket 12 and the second mounting bracket 14 are substantially the same as those of the engine mount 10. Direction (up and down direction in FIG. 1) is input. In the following description, the vertical direction refers to the vertical direction in FIG. 1 in principle.
[0019]
More specifically, the first mounting member 12 is formed by a main rubber inner member 18 and a diaphragm inner metal member 20, and the second mounting member 14 is formed by a main body rubber outer cylindrical member 22 and a diaphragm outer cylindrical member 24. Have been. The main rubber inner member 18 and the main rubber outer tube member 22 are vulcanized and bonded to the main rubber elastic body 16 to form a first integrally vulcanized molded product 28, while the diaphragm inner member 20 and the diaphragm outer tube member are provided. 24 is vulcanized and bonded to a diaphragm 30 as a flexible film to form a second integrally vulcanized molded product 32, and these first and second integrally vulcanized molded products 28, 32 are mutually bonded. Are combined.
[0020]
Here, the main rubber inner fitting 18 constituting the first integrally vulcanized molded product 28 has a substantially inverted truncated cone shape. A fitting recess 34 is formed on the upper end surface (large-diameter side end surface) of the main rubber inner fitting 18, and a screw hole 38 that opens to the bottom surface of the fitting recess 34 is provided.
[0021]
Furthermore, the main rubber outer cylindrical metal fitting 22 includes a cylindrical wall portion 40 having a substantially large-diameter cylindrical shape, and a flange-like portion 42 extending radially outward at a lower end portion in the axial direction of the cylindrical wall portion 40. Are formed integrally, while the upper end portion in the axial direction of the cylindrical wall portion 40 is a tapered cylindrical portion 44 that gradually expands as it goes upward in the axial direction. Thereby, on the outer peripheral side of the main rubber outer tube fitting 22, a peripheral groove 45 which is open to the outer peripheral surface and extends in the circumferential direction with a length of less than one round in the circumferential direction is formed. Further, the main rubber inner metal fitting 18 is spaced apart above the main rubber outer cylindrical metal fitting 22 on substantially the same central axis, and the reverse tapered outer peripheral surface of the main rubber inner metal fitting 18 and the taper of the main rubber outer cylindrical metal fitting 22 are provided. The cylindrical portions 44 are opposed to each other while being separated from each other, and the opposing surfaces of the main rubber inner metal fitting 18 and the main rubber outer cylindrical metal fitting 22 are elastically connected by the main rubber elastic body 16.
[0022]
The main rubber elastic body 16 has a large diameter truncated conical shape as a whole, and a main rubber inner metal fitting 18 is coaxially arranged and vulcanized and bonded to a central portion thereof. The tapered tubular portion 44 of the main rubber outer tubular fitting 22 is overlapped and vulcanized and bonded to the outer peripheral surface of the side end portion. Thereby, the main rubber elastic body 16 is formed as a first integrally vulcanized molded product 28 including the main rubber inner metal fitting 18 and the main rubber outer cylindrical metal fitting 22 as described above.
[0023]
On the other hand, the diaphragm inner fitting 20 constituting the second integrally vulcanized molded product 32 has a thick disk shape. In addition, a fitting projection 46 is formed on the lower surface of the diaphragm inner fitting 20, and an insertion hole 52 is formed to penetrate the formation part of the fitting projection 46. Further, the diaphragm inner fitting 20 is integrally formed with a mounting plate portion 58 protruding upward, and a bolt insertion hole 59 is provided in a central portion of the mounting plate portion 58.
[0024]
In addition, the diaphragm outer cylinder fitting 24 has a thin-walled, large-diameter cylindrical shape, and an annular plate-shaped flange portion 66 extending radially outward is provided in an axially lower opening portion. An annular caulking piece 68 is formed integrally with the outer peripheral edge of the flange-like portion 66 and protrudes downward in the axial direction.
[0025]
The diaphragm inner metal fittings 20 are arranged on the substantially same central axis at a distance above the diaphragm outer cylindrical metal fittings 24 in the axial direction, and the diaphragm inner metal fittings 20 and the diaphragm outer cylindrical metal fittings 24 are separated by the diaphragm 30. Are linked.
[0026]
The diaphragm 30 is formed of a thin rubber film, and has a substantially annular shape extending in the circumferential direction with a curved cross section having a large slack so that elastic deformation is easily allowed. The inner peripheral edge of the diaphragm 30 is vulcanized and bonded to the outer peripheral edge of the diaphragm inner metal fitting 20, and the outer peripheral edge of the diaphragm 30 is positioned in the axially upper opening of the diaphragm outer cylindrical metal fitting 24. Vulcanized adhesive. Thus, the diaphragm 30 is formed as a second integrally vulcanized molded product 32 including the diaphragm inner fitting 20 and the diaphragm outer tubular fitting 24.
[0027]
Thus, the second integrally vulcanized molded product 32 is assembled on the first integrally vulcanized molded product 28 by being overlapped from above, and the diaphragm inner fitting 20 is attached to the main rubber inner fitting 18. And a diaphragm outer tube fitting 24 is fixed to the main rubber outer tube fitting 22, and the diaphragm 30 is further separated outside the main rubber elastic body 16 to form an outer peripheral surface of the main rubber elastic body 16. Is disposed so as to cover the whole.
[0028]
That is, the diaphragm inner fitting 20 is directly superimposed on the upper surface of the main body rubber inner fitting 18, and the fitting convex portion 46 of the diaphragm inner fitting 20 is fitted into the fitting concave portion 34 of the main rubber inner fitting 18, whereby the diaphragm inner fitting 20 is formed. The main rubber inner fitting 18 is aligned with the same central axis. In the present embodiment, in particular, the inner peripheral surface 36 and the outer peripheral surface 50 formed in a notch on each outer peripheral surface of the fitting convex portion 46 and the fitting concave portion 34 act as a diaphragm inner fitting. 20 and the main rubber inner member 18 are positioned relative to each other also in the circumferential direction, and the insertion hole 52 of the diaphragm inner metal member 20 and the screw hole 38 of the main rubber inner member 18 are aligned.
[0029]
Then, as shown in FIG. 1, in a state where the main rubber inner metal fitting 18 and the diaphragm inner metal fitting 20 are overlapped, the connection bolt 70 is inserted into the screw hole of the main rubber inner metal fitting 18 through the insertion hole 52 of the diaphragm inner metal fitting 20. 38. The first mounting member 12 is formed by connecting and fixing the main rubber inner member 18 and the diaphragm inner member 20 with the connecting bolt 70.
[0030]
On the other hand, the diaphragm outer cylinder fitting 24 is externally inserted into the main rubber outer cylinder fitting 22 from above in the axial direction. Further, the outer peripheral edge of the flange-shaped portion 42 is axially overlapped with the flange-shaped portion 66 of the diaphragm outer cylindrical metal fitting 24 at the lower end thereof, and the upper end thereof is The opening edge of the tapered tubular portion 44 is radially overlapped with the inner peripheral surface of the diaphragm outer tubular fitting 24.
[0031]
Then, the caulking piece 68 of the diaphragm outer tube fitting 24 is caulked and fixed to the outer peripheral edge of the flange-shaped portion 42 of the main rubber outer tube fitting 22, so that the main rubber outer tube fitting 22 and the diaphragm outer tube fitting 24 are mutually connected. It is fixed and assembled. At the upper and lower end portions of the main rubber outer tube fitting 22, the seal rubber formed integrally with the main rubber elastic body 16 or the diaphragm 30 is interposed at the overlapping portions with the diaphragm outer tube fitting 24, respectively, to provide fluid tightness. Sealed. As a result, the peripheral groove 45 formed in the main rubber outer cylinder fitting 22 is covered with the diaphragm outer cylinder fitting 24 in a fluid-tight manner, so that the cylindrical wall portion 40 of the main rubber outer cylinder fitting 22 and the diaphragm outer cylinder fitting 24 are formed. An annular passage 72 is formed between the radially opposed surfaces and extends continuously at a predetermined length in the circumferential direction or over the entire circumference.
[0032]
Further, a partition plate fitting 74 and a lid member 76 are attached to the lower opening of the main rubber outer tubular fitting 22. The cover member 76 has a vibrating plate 80 vulcanized and adhered to a center portion of a supporting rubber plate 78 having a substantially annular plate shape as a supporting rubber elastic body, and an annular holding fitting 82 attached to an outer peripheral portion thereof. The vibrating plate 80 and the annular holding metal member 82 are elastically connected by a supporting rubber plate 78.
[0033]
The vibrating plate 80 has a disk shape, and an annular outer peripheral protrusion 84 that protrudes upward is integrally formed at an outer peripheral edge thereof, and is surrounded by the outer peripheral protrusion 84. At the center of the upper surface, a central recess 85 that opens upward is formed. Further, a drive shaft 86 extending downward on the central axis is formed integrally with a center portion of the vibration plate 80. The vibration plate 80 including the outer peripheral projection 84 and the drive shaft 86 is integrally formed of a hard material such as metal or synthetic resin. On the other hand, the annular holding metal fitting 82 has a mounting plate portion 90 and a positioning projection 92 which are formed integrally with the upper and lower openings of a cylindrical portion 88 having a cylindrical shape, respectively. An annular press-fit portion 94 that projects further downward is formed integrally with the peripheral portion.
[0034]
A vibrating plate 80 is disposed on substantially the same central axis so as to be spaced radially inward of the annular holding metal member 82, and spread between the annular holding metal member 82 and a radially opposed surface of the vibrating plate 80. Thus, the supporting rubber plate 78 is provided. The supporting rubber plate 78 has its inner and outer peripheral edges vulcanized and bonded to the outer peripheral projection 84 of the vibrating plate 80 and the opposing surfaces of the cylindrical portion 88 of the annular holding member 82, respectively. A support rubber plate 78 closes the space between 80 and the annular holding fitting 82 in a fluid-tight manner.
[0035]
On the other hand, the partition plate metal member 74 has a thin disk shape, and its outer diameter is set to a size that extends to a radially intermediate portion of the mounting plate portion 90 in the annular holding metal member 82. In the central portion of the partition plate 74, a circular region having substantially the same size as the inner diameter of the above-described annular holding member 82 is projected upward in a plateau shape to form a plateau-like projection 83, and The center of the top of the plateau-like projection 83 is recessed upward in a circular region having substantially the same size as the above-described center recess 85 of the vibration plate, thereby forming a center recess 95. Further, an orifice through hole 96 as an orifice passage extends through the center axis of the partition plate metal member 74 in which the central concave portion 95 is formed in the thickness direction.
[0036]
In the lower opening of the diaphragm outer tube fitting 24, the outer peripheral edge of the partition plate metal member 74 is overlapped with the flange-like portion 42 of the main rubber outer tube member 22 attached thereto. Further, a lid member 76 is attached to the lower opening of the diaphragm outer cylindrical metal member 24 from below the partition plate metal member 74, and the mounting plate portion 90 of the annular holding metal member 82 in the lid member 76 is attached to the main body rubber outer cylindrical metal member. The outer peripheral edge is superimposed and fixed by the caulking piece 68 of the diaphragm outer tubular metal fitting 24 while being superposed on the partition 22 and the partition plate fitting 74.
[0037]
As a result, the lower opening of the diaphragm outer cylinder fitting 24 is covered with the lid member 76 in a fluid-tight manner, is fixedly supported by the second mounting fitting 14, and is disposed so as to spread in the direction perpendicular to the axis. A pressure receiving chamber 100 in which a part of the wall is formed of the main rubber elastic body 16 and in which an incompressible fluid is sealed is formed above the partition plate metal fitting 74. That is, vibration is input to the pressure receiving chamber 100 based on the elastic deformation of the main rubber elastic body 16 at the time of vibration input between the first mounting member 12 and the second mounting member 14, and pressure fluctuation is caused. It has become so. On the other hand, on the lower side opposite to the pressure receiving chamber 100 with the partition plate metal fitting 74 interposed therebetween, there is formed an excitation chamber 104 in which a part of the wall portion is constituted by the excitation plate 80 and incompressible fluid is sealed. ing. In the vibration chamber 104, pressure fluctuation is positively controlled by driving the vibration plate 80 by an electromagnetic vibrator 114 described later.
[0038]
Further, the pressure receiving chamber 100 and the vibration chamber 104 formed vertically above and below the partition plate fitting 74 are communicated with each other through an orifice through hole 96 formed in the center of the partition plate fitting 74. When the pressure fluctuation generated in the vibration chamber 104 by the vibration of the vibration plate 80 is applied to the pressure receiving chamber 100 through the orifice through hole 96, the pressure in the pressure receiving chamber 100 can be positively controlled. ing.
[0039]
Furthermore, the main rubber elastic body 16 and the diaphragm 30 are fixed to the first fitting 12 and the second fitting 14 at the inner peripheral edge and the outer peripheral edge, respectively, so that the main rubber elastic body 16 and the diaphragm 30 are fixed. An equilibrium chamber 106 in which an incompressible fluid is sealed is formed between the opposing surfaces 30. That is, in the equilibrium chamber 106, a part of the wall portion is constituted by the diaphragm 30 which is easily deformed, and the volume change is easily allowed based on the elastic deformation of the diaphragm 30. The incompressible fluid sealed in the pressure receiving chamber 100, the vibration chamber 104, and the equilibrium chamber 106 is an effective vibration damping effect based on the resonance action of the fluid flowing between the chambers 100, 104, and 106. Is generally 0.1 Pa. A low-viscosity fluid of s or less is suitably employed.
[0040]
Further, the annular passage 72 formed in the second fitting 14 is connected to the pressure receiving chamber 100 and the equilibrium chamber 106 through the communication holes 108 and 110 formed at both ends in the circumferential direction. An orifice passage 112 as a second orifice passage which allows the chamber 100 and the equilibrium chamber 106 to communicate with each other to allow fluid flow between the two chambers 100 and 106 is formed with a predetermined length. The orifice passage 112 has an anti-vibration effect based on a resonance effect of a fluid caused to flow inside based on a pressure difference generated between the pressure receiving chamber 100 and the equilibrium chamber 106 at the time of vibration input. The passage cross-sectional area and the passage length are appropriately set and tuned so as to be effectively exerted in the frequency range described above.
[0041]
On the other hand, an electromagnetic vibrator 114 as an actuator is disposed on the opposite side of the pressure receiving chamber 100 with the lid member 76 interposed therebetween. The electromagnetic exciter 114 is conventionally known, and any of those disclosed in, for example, JP-A-9-89040, JP-A-2001-1765, and JP-A-2002-106633 can be adopted. Although not described in detail here, a coil (not shown) and a yoke member are incorporated in a housing 116 having a substantially cup shape, and an output shaft 118 protruding upward in the axial direction on the central axis is formed by an axis. It is mounted so as to be displaceable by a predetermined amount in the direction, and an excitation driving force in the axial direction is exerted on the output shaft 118 by energizing the coil.
[0042]
Then, the electromagnetic exciter 114 is configured such that the flange portion 120 formed in the opening of the housing 116 is overlapped with the mounting plate portion 90 of the annular holding metal member 82 in the lid member 76 and the caulking piece is formed together with the annular holding metal member 82 and the like. At 68, it is caulked and fixed to the second mounting member 14. Further, an output shaft 118 of the electromagnetic vibrator 114 is connected and fixed to a drive shaft 86 of the vibration plate 80, so that the vibration plate 80 is displaced integrally with the output shaft 118.
[0043]
Further, a cylindrical bracket 122 is further externally attached to the electromagnetic exciter 114. The cylindrical bracket 122 has a flange portion 124 formed at an upper end opening and a mounting plate portion 126 formed at a lower end opening, and the flange portion 124 is formed on a flange of a housing 116 of the electromagnetic vibrator 114. Together with the portion 120, it is caulked and fixed by the caulking piece 68 of the diaphragm outer tube fitting 24. The mounting plate 126 has a plurality of mounting holes (not shown).
[0044]
The engine mount 10 having such a structure is not shown, but the mounting plate portion 58 of the first mounting bracket 12 is attached to the power unit with fixing bolts inserted into the bolt insertion holes 59, The second mounting bracket 14 is mounted on the vehicle body with fixing bolts via the cylindrical bracket 122, so that the second mounting bracket 14 is mounted between the power unit and the body. Then, when vibration is input between the first mounting member 12 and the second mounting member 14 in this mounted state, the vibration between the pressure receiving chamber 100 and the equilibrium chamber 106 is caused by the elastic deformation of the main rubber elastic body 16. The fluid flow is generated through the orifice passage 112 based on the pressure difference caused by the pressure, and a passive vibration damping effect is exhibited based on the fluid action such as the resonance action of the fluid. Further, by driving and controlling the electromagnetic vibrator 114 at a frequency and a phase corresponding to the vibration to be damped, the vibrating plate 80 is driven to vibrate by the electromagnetic vibrator 114, so that the orifice through hole By exerting a pressure fluctuation on the pressure receiving chamber 100 through the 96 and actively controlling the pressure fluctuation in the pressure receiving chamber 100, an active vibration damping effect against input vibration can be obtained.
[0045]
Here, in the engine mount 10 of the present embodiment, the inner peripheral edge of the support rubber plate 78 is vulcanized and bonded to the outer peripheral projection 84 formed on the outer peripheral edge of the vibration plate 80, so that the vibration plate The vulcanization bonding area of the support rubber plate 78 is secured while the thickness of the support rubber plate 78 is kept small, and the adhesion strength and durability of the support rubber plate 78 to the vibration plate 80 can be sufficiently obtained. Moreover, a plateau-like projection 83 is formed in the partition plate metal fitting 74 at a portion where the outer peripheral projection 84 of the vibrating plate 80 is opposed to the outer peripheral projection 84, so that the outer peripheral projection 84 can escape upward. Since the metal fitting 74 is protruded toward the pressure receiving chamber 100, the contact of the vibration plate 80 with the partition plate metal member 74 is advantageously avoided, and the vibration stroke of the vibration plate 80 can be advantageously secured. .
[0046]
Also, the central recess 85 of the vibration plate 80 is formed so that the central recess 95 of the partition plate 74 is inserted from above, so that the partition plate 74 faces the first mounting member 12. The surface is a concave surface 127 as a central concave surface, and the distance between opposing surfaces of the first mounting member 12 and the partition plate member 74 in the main vibration input direction (mount central axis direction) is set large. . Therefore, despite the fact that the outer peripheral projection 84 is formed on the vibration plate 80 and the vibration plate 80 is made to protrude toward the pressure receiving chamber 100, the space in the central recess 85 of the vibration plate 80 is finely adjusted. By utilizing this, the displacement stroke of the first mounting bracket 12 can be sufficiently ensured, so that, for example, when a large vibration load is input, the first mounting bracket 12 may interfere with the partition plate bracket 74 unnecessarily. At the same time, it is also possible to advantageously prevent the first mounting member 12 from approaching the partition plate member 74 and narrowing or closing the orifice through hole 96.
[0047]
Accordingly, in the engine mount 10 having the above-described structure, the first mounting member 12, the partition plate metal member 74, and the vibration plate 80 are connected to the partition plate metal member 74 by avoiding mutual interference as much as possible. The mounting bracket 12 and the vibrating plate 80 can be arranged sufficiently close to each other in the axial direction of the mount while sufficiently securing the respective relative displacement allowances of the vibrating plate 80 and vulcanization bonding of the support rubber plate 78 to the vibrating plate 80. The area can also be advantageously secured, so that the size reduction in the axial direction of the mount can be advantageously achieved while securing good vibration isolation performance and durability.
[0048]
In particular, in the engine mount 10 of the present embodiment, since the equilibrium chamber 106 connected to the pressure receiving chamber 100 through the orifice passage 112 is formed in a ring shape outside the main rubber elastic body 16, the mount center shaft The balance chamber 106 can be formed while minimizing the size in the direction as much as possible, and the size in the mount axial direction can be further reduced.
[0049]
As described above, one embodiment of the present invention has been described in detail. However, this is merely an example, and the present invention is not to be construed as being limited by the specific description in the embodiment. Based on the knowledge of the trader, various changes, modifications, improvements, and the like can be implemented in embodiments, and any such embodiments may be implemented without departing from the spirit of the invention. It goes without saying that they are included in the range.
[0050]
For example, in the above-described embodiment, a plate-like protrusion 83 is formed at a portion of the partition plate metal fitting 74 that faces the outer peripheral protrusion 84 of the vibration plate 80, and a central portion of the plate-like protrusion 83 is formed at the center. Although the concave portion 95 was formed, depending on the required mount size and the like, as shown in FIG. 2, the partition plate was formed in a substantially flat disk shape without providing the plateau-shaped protrusion 83. In the central portion of the metal fitting 74, only the central concave portion 95 protruding so as to enter the central concave portion 85 of the vibration plate 80 may be formed. Also in such a mode, the first mounting member disposed so as to sandwich the partition plate member 74 vertically while advantageously securing both the vibration stroke of the vibration plate 80 and the displacement stroke of the first mounting member 12. This makes it possible to reduce the distance between the arrangement of the metal fitting 12 and the vibration plate 80 in the mount axis direction, so that the same effect as in the above embodiment can be effectively exerted.
[0051]
In the engine mount 128 according to the second embodiment of the present invention shown in FIG. 2, the lower surface of the partition plate 74 faces the outer peripheral projection 84 of the vibration plate 80 around the central recess 95. Since the annular groove 130 is formed in the portion, the interference of the vibration plate 80 with the partition plate fitting 74 is reduced, but such a groove 130 is not always necessary. In the engine mount 128, the orifice through hole 96 is not formed at the center of the partition metal fitting 74, and instead, the circumferential groove 132 formed in the annular holding metal fitting 82 constituting the lid member 76 is formed by the partition plate metal fitting 74. By covering with the metal fitting 74, the orifice through hole 134 is formed in a form extending in the circumferential direction at a predetermined length on the outer peripheral side of the support rubber plate 78. In the orifice through hole 134 having such a structure, tuning to a low frequency range becomes easy by setting a sufficient passage length. It is possible to effectively utilize the vibration isolation effect in a low frequency range. In FIG. 2, in order to facilitate understanding, members and portions having substantially the same structure as those of the first embodiment are denoted by the same reference numerals in the drawing as those of the first embodiment. A reference numeral is attached.
[0052]
【The invention's effect】
As is apparent from the above description, in the vibration damping actuator having the structure according to the present invention, the partitioning plate is secured while the relative displacement tolerances of the first mounting member and the vibration plate with respect to the partition plate are sufficiently secured. Since the plate, the first mounting member and the vibration plate can be arranged sufficiently close to each other in the mount axial direction, the size of the mount in the axial direction can be reduced while ensuring sufficient mount anti-vibration performance. The vulcanized adhesion area of the supporting rubber elastic body to the vibrating plate can be advantageously secured, and good mounting durability can be exhibited.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an engine mount as a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing an engine mount as a second embodiment of the present invention.
[Explanation of symbols]
10 Engine mount
12 First mounting bracket
14 Second mounting bracket
16 Rubber elastic body
30 diaphragm
74 Partition plate bracket
76 Lid member
78 Support rubber plate
80 Exciting plate
100 pressure receiving chamber
104 Excitation chamber
106 Equilibrium chamber
112 orifice passage
114 electromagnetic exciter

Claims (5)

第一の取付部材を第二の取付部材における筒状部の一方の開口部側に配設して、該第一の取付部材を該第二の取付部材に対して本体ゴム弾性体で連結することにより該筒状部の一方の開口部を流体密に閉塞する一方、該筒状部の他方の開口部側に加振板を配設して、該加振板を該第二の取付部材に対して支持ゴム弾性体で連結することにより該筒状部の他方の開口部を流体密に閉塞し、それら本体ゴム弾性体と支持ゴム弾性体の対向面間において該筒状部の略軸直角方向に広がる仕切板を配設して該仕切板を該第二の取付部材によって固定的に支持せしめることにより、該仕切板を挟んだ一方の側において該本体ゴム弾性体で壁部の一部が構成された受圧室を形成すると共に、該仕切板を挟んだ他方の側において該支持ゴム弾性体で壁部の一部が構成された加振室を形成して、それら受圧室と加振室に非圧縮性流体を充填すると共に、該受圧室と該加振室を相互に接続するオリフィス通路を形成し、更に該加振板に駆動力を及ぼすアクチュエータを設けて、該アクチュエータで該加振板を加振駆動することによって該加振室に惹起される圧力変動を該オリフィス通路を通じて該受圧室に及ぼすようにした能動型流体封入式防振装置であって、
前記加振板の外周縁部において前記仕切板側に突出する環状の外周突部を形成して該加振板の中央部分を該仕切板に向かって開口する中央凹所とすると共に、該外周突部に前記支持ゴム弾性体を加硫接着せしめる一方、該仕切板の中央部分を該加振板の該中央凹所に向かって突出させて、該仕切板の該第一の取付部材に対向位置せしめられた部位の対向面を該第一の取付部材から離隔する中央凹面としたことを特徴とする能動型流体封入式防振装置。
A first mounting member is disposed on one opening side of the cylindrical portion of the second mounting member, and the first mounting member is connected to the second mounting member by a rubber elastic body. By closing one opening of the cylindrical portion in a fluid-tight manner, a vibration plate is disposed on the other opening side of the cylindrical portion, and the vibration plate is attached to the second mounting member. The other opening of the cylindrical portion is fluid-tightly closed by being connected to the supporting rubber elastic body with respect to the main rubber elastic body and the supporting rubber elastic body. By disposing a partition plate extending in a right angle direction and fixedly supporting the partition plate by the second mounting member, one side of the partition plate is sandwiched between the main rubber elastic body and one wall. A pressure receiving chamber is formed, and the other side of the partition plate is sandwiched between the supporting rubber elastic body and one of the walls. Is formed, an incompressible fluid is filled in the pressure receiving chamber and the vibration chamber, and an orifice passage connecting the pressure receiving chamber and the vibration chamber is formed. An actuator that exerts a driving force on the vibrating plate is provided, so that the actuator drives the vibrating plate to vibrate, so that a pressure fluctuation caused in the vibrating chamber is applied to the pressure receiving chamber through the orifice passage. An active fluid-filled vibration isolator,
At the outer peripheral edge of the vibrating plate, an annular outer peripheral protruding portion protruding toward the partition plate is formed, and a central portion of the vibrating plate is formed as a central recess opening toward the partition plate. The support rubber elastic body is vulcanized and adhered to the projection, while the central portion of the partition plate is protruded toward the central recess of the vibrating plate to face the first mounting member of the partition plate. An active-type fluid-filled type vibration damping device, characterized in that a surface facing the located portion is a central concave surface separated from the first mounting member.
前記オリフィス通路を、前記仕切板の中央部分を貫通して形成した請求項1に記載の能動型流体封入式防振装置。2. The active fluid filled type vibration damping device according to claim 1, wherein the orifice passage is formed so as to penetrate a central portion of the partition plate. 前記仕切板における前記中央凹面の外周側を、前記受圧室側に環状に突出させて、該仕切板において、前記加振板の外周突部に対向位置せしめられた部位の対向面を該加振板から離隔する環状凹面とした請求項1又は2に記載の能動型流体封入式防振装置。An outer peripheral side of the central concave surface of the partition plate is annularly protruded toward the pressure receiving chamber, and the opposing surface of a portion of the partition plate which is opposed to an outer peripheral projection of the vibration plate is vibrated. 3. The active fluid-filled vibration damping device according to claim 1, wherein the ring-shaped concave surface is separated from the plate. 前記オリフィス通路を、防振すべき振動よりも高周波数域にチューニングすることにより、該オリフィス通路を通じて前記加振室から前記受圧室に伝達される圧力変動における、防振すべき振動の周波数域よりも高周波成分の圧力成分を抑えるフィルタ手段を構成した請求項1乃至3の何れかに記載の能動型流体封入式防振装置。By tuning the orifice passage to a higher frequency range than the vibration to be damped, the pressure fluctuation transmitted from the vibrating chamber to the pressure receiving chamber through the orifice passage can reduce the frequency range of the vibration to be damped. The active fluid-filled vibration damping device according to any one of claims 1 to 3, further comprising filter means for suppressing a pressure component of a high-frequency component. 前記受圧室および前記加振室から実質的に独立して、壁部の一部が変形容易な可撓性膜で構成されて非圧縮性流体が封入された容積可変の平衡室を形成すると共に、該平衡室を該受圧室に連通せしめる第二のオリフィス通路を形成し、該第二のオリフィス通路を前記第一のオリフィス通路よりも低周波数域にチューニングした請求項1乃至4の何れかに記載の能動型流体封入式防振装置。Substantially independent of the pressure receiving chamber and the vibration chamber, a part of the wall is formed of a flexible membrane which is easily deformed to form a variable volume equilibrium chamber in which an incompressible fluid is sealed. 5. A method according to claim 1, wherein a second orifice passage for connecting said equilibrium chamber with said pressure receiving chamber is formed, and said second orifice passage is tuned to a lower frequency range than said first orifice passage. The active fluid filled type vibration damping device as described in the above.
JP2003084437A 2003-03-26 2003-03-26 Active fluid filled vibration isolator Expired - Fee Related JP4019163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084437A JP4019163B2 (en) 2003-03-26 2003-03-26 Active fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084437A JP4019163B2 (en) 2003-03-26 2003-03-26 Active fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2004293603A true JP2004293603A (en) 2004-10-21
JP4019163B2 JP4019163B2 (en) 2007-12-12

Family

ID=33399608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084437A Expired - Fee Related JP4019163B2 (en) 2003-03-26 2003-03-26 Active fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP4019163B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555836A (en) * 2015-09-28 2017-04-05 本田技研工业株式会社 Antihunting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555836A (en) * 2015-09-28 2017-04-05 本田技研工业株式会社 Antihunting device

Also Published As

Publication number Publication date
JP4019163B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP3692815B2 (en) Fluid filled active vibration isolator
WO2010070850A1 (en) Fluid-filled vibration damping device
JP5641525B2 (en) Fluid filled active vibration isolator
JP2007162876A (en) Fluid-sealed vibration control device and its manufacturing method
JP4075054B2 (en) Fluid-filled engine mount for vehicles
JP3715230B2 (en) Active fluid filled vibration isolator
JPH11264436A (en) Fluid-filled vibration isolator
JP2003090382A (en) Pneumatic active type vibrationproof body and vibrationproof device using the same
JP2004232792A (en) Fluid enclosure type vibration control device
JPH1089402A (en) Liquid sealed-type mount equipment
JP3778013B2 (en) Fluid filled vibration isolator
JP2008121811A (en) Fluid-sealed vibration isolator
JP2006266425A (en) Liquid filled active vibration damper
JP4158108B2 (en) Pneumatic switching type fluid-filled engine mount
JP2004293603A (en) Active type fluid-filled vibration isolator
JP2004293604A (en) Fluid sealed type vibration control device
JP3487129B2 (en) Pneumatic control type fluid filled type vibration damping device
JP2005239084A (en) Active fluid inclusion type engine mount
JP3407616B2 (en) Fluid filled type vibration damping device
JP4623428B2 (en) Fluid filled vibration isolator
JP3784377B2 (en) Anti-vibration actuator and active vibration isolator using the same
JP4016343B2 (en) Anti-vibration actuator and active vibration isolator using the same
JP3940090B2 (en) Fluid filled vibration isolator
JPH10238586A (en) Fluid-sealed vibration control device
JP2002357239A (en) Fluid filled type vibration resistant device with air pressure controlling method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4019163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees