JP2004293026A - Polyvinyl alcohol-based binder fiber, and paper and nonwoven fabric comprising the same - Google Patents

Polyvinyl alcohol-based binder fiber, and paper and nonwoven fabric comprising the same Download PDF

Info

Publication number
JP2004293026A
JP2004293026A JP2004063323A JP2004063323A JP2004293026A JP 2004293026 A JP2004293026 A JP 2004293026A JP 2004063323 A JP2004063323 A JP 2004063323A JP 2004063323 A JP2004063323 A JP 2004063323A JP 2004293026 A JP2004293026 A JP 2004293026A
Authority
JP
Japan
Prior art keywords
pva
fiber
paper
cross
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004063323A
Other languages
Japanese (ja)
Other versions
JP3796248B2 (en
Inventor
Hideki Kamata
英樹 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2004063323A priority Critical patent/JP3796248B2/en
Publication of JP2004293026A publication Critical patent/JP2004293026A/en
Application granted granted Critical
Publication of JP3796248B2 publication Critical patent/JP3796248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyvinyl alcohol-based binder fiber having high paper strength dried under low calorie condition, for example, high-speed drying in a hot air drying system (e.g., air-through drier) or low-temperature drying in a multi-cylinder system or the like. <P>SOLUTION: The PVA binder fiber and paper or nonwoven fabric comprising the same has following characteristics: a cross-section circularity of at most 30%, a degree of swelling in water at 30°C. of at least 100%, and a degree of dissolution in water of at most 20%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱風乾燥方式のような高速乾燥や、マルチシリンダー方式のような低温乾燥等の低熱量の乾燥条件下で溶解可能であり、得られた紙または不織布が高い強力を発現させることを特徴とするポリビニルアルコール系バインダー繊維およびそれを用いてなる紙または不織布に関する。   The present invention is capable of dissolving under low-calorie drying conditions such as high-speed drying such as a hot-air drying method and low-temperature drying such as a multi-cylinder method, and that the obtained paper or nonwoven fabric exhibits high strength. The present invention relates to a polyvinyl alcohol-based binder fiber and paper or a nonwoven fabric using the same.

現在、ポリビニルアルコール(以下、PVAと略記する)系繊維は、その水溶性と強い接着性を有するという特徴を生かして、製紙用バインダー繊維として用いられている。PVA系バインダー繊維の十分な接着性は、抄紙工程において繊維が分散した水中で膨潤し、乾燥工程の熱により十分溶解し、乾燥しながら結晶化することにより達成される。
従来、PVA系繊維を用いて紙または不織布を製造する場合、乾燥工程において熱ドラム方式のヤンキードライヤーが一般的に使用されている。ヤンキードライヤーは乾燥熱量が大きいため乾燥時にPVA系バインダー繊維が十分に溶解し、接着性を発現する。しかし、近年になって乾燥の効率化や生産性向上のため、エアースルードライヤー等が用いられるケースが増加してきているが、エアースルードライヤーを用いて乾燥した場合、エアースルードライヤーは乾燥時間が短く、また乾燥熱量が小さいため、従来のPVA系バインダー繊維では十分に溶解できず、その結果、十分な接着性を発現できないという問題がある。
At present, polyvinyl alcohol (hereinafter abbreviated as PVA) fibers are used as papermaking binder fibers, taking advantage of their water solubility and strong adhesiveness. Sufficient adhesiveness of the PVA-based binder fiber is achieved by swelling in water in which the fiber is dispersed in the papermaking process, sufficiently dissolving by the heat of the drying process, and crystallizing while drying.
Conventionally, when paper or nonwoven fabric is manufactured using PVA-based fibers, a Yankee dryer of a heat drum type is generally used in a drying process. Since the Yankee dryer has a large amount of drying heat, the PVA-based binder fibers are sufficiently dissolved during drying, and exhibit adhesiveness. However, in recent years, in order to increase the efficiency of drying and improve productivity, the number of cases where an air through dryer is used has been increasing.When drying using an air through dryer, the drying time of the air through dryer is short. In addition, since the amount of drying heat is small, conventional PVA-based binder fibers cannot be sufficiently dissolved, and as a result, there is a problem that sufficient adhesiveness cannot be exhibited.

上記問題点を解決するために、一般的に原料であるPVA系樹脂に低ケン化度の樹脂を用いたり、またはPVA系樹脂にカルボキシル基やスルホン酸基、シリル基、四級アンモニウム塩等のカチオン性基などイオン性の官能基を導入することにより、溶解性を向上させる手法がとられている。例えば、樹脂の溶解性を向上させるために、PVA樹脂のケン化度を低下させ、かつPVA樹脂の重合度を低下させ溶解性を高める手法が提案されている(例えば、特許文献1、2参照。)。また、PVA樹脂にシリル基を導入したり、エチレン基の導入を行うことにより、溶解性および接着強力の向上を達成する技術が提案されている(例えば、特許文献3、4、5、6参照。)。   In order to solve the above problems, generally, a low saponification degree resin is used as a PVA-based resin as a raw material, or a carboxyl group, a sulfonic acid group, a silyl group, a quaternary ammonium salt, or the like is used as a PVA-based resin. A method of improving the solubility by introducing an ionic functional group such as a cationic group has been adopted. For example, in order to improve the solubility of the resin, a technique has been proposed in which the degree of saponification of the PVA resin is reduced, and the degree of polymerization of the PVA resin is reduced to increase the solubility (for example, see Patent Documents 1 and 2). .). In addition, a technique has been proposed in which a silyl group is introduced into a PVA resin or an ethylene group is introduced to achieve improvement in solubility and adhesive strength (for example, see Patent Documents 3, 4, 5, and 6). .).

上記特許文献1〜6では、バインダー繊維の接着性向上を達成するために、PVA樹脂の改質を中心とした検討がなされているが、これらのバインダー繊維は丸孔の紡糸口金を用いて溶融紡糸あるいは湿式紡糸により製造されるため、繊維断面形状は丸型〜繭型形状となり、繊維断面から断面充実度を算出する式より計算した断面充実度は35%以上となる。そのため、特許文献1〜6で得られるバインダー繊維は熱ドラム方式のヤンキードライヤー方式のような乾燥熱量の大きい乾燥方法では十分な接着性が得られるが、熱風乾燥方式のような高速乾燥や、マルチシリンダー方式のような低温・低熱量の乾燥条件下では接着性が不十分であるという問題点があった。   In the above-mentioned Patent Documents 1 to 6, in order to achieve an improvement in the adhesiveness of the binder fiber, studies have been made mainly on the modification of the PVA resin, but these binder fibers are melted by using a spinneret having a round hole. Since the fiber is manufactured by spinning or wet spinning, the cross-sectional shape of the fiber is round or cocoon-shaped, and the cross-sectional solidity calculated from the formula for calculating the cross-sectional solidity from the fiber cross-section is 35% or more. Therefore, the binder fibers obtained in Patent Documents 1 to 6 can obtain sufficient adhesiveness by a drying method having a large amount of drying heat such as a Yankee dryer method of a hot drum method. There is a problem that the adhesiveness is insufficient under low-temperature and low-calorie drying conditions such as a cylinder system.

特開昭51−96533号公報JP-A-51-96533 特開昭54−96534号公報JP-A-54-96534 特開昭60−231816号公報JP-A-60-231816 特開平4−126818号公報JP-A-4-126818 特開昭58−220806号公報JP-A-58-220806 特開2003−27328号公報JP 2003-27328 A

上記課題点を鑑みて、本発明者等は鋭意検討を重ねた結果、断面充実度が30%以下となるような紡糸口金を用いて紡糸し、繊維断面を扁平形状にして繊維の表面積を向上させることにより、従来の熱ドラム方式のヤンキードライヤー方式のような乾燥熱量の大きい乾燥方法を必要とせず、低温・低熱量の乾燥条件下でも高い紙力が得られ、しかも乾燥の効率化や生産性の向上が実現できる紙または不織布が得られることを見出した。   In view of the above problems, the present inventors have conducted intensive studies, and as a result, spun using a spinneret having a cross-sectional degree of 30% or less to improve the surface area of the fiber by making the fiber cross section flat. This eliminates the need for a drying method that requires a large amount of drying heat as in the conventional Yankee dryer method using a thermal drum, and provides high paper strength even under low-temperature, low-heat drying conditions. It has been found that a paper or a non-woven fabric which can achieve improvement in the properties can be obtained.

すなわち本発明は、繊維の断面充実度が30%以下であり、30℃の水中における繊維の膨潤度が100%以上、かつ溶出量が20%以下であることを特徴とするPVA系バインダー繊維であり、好ましくは繊維断面が扁平形状しており、その長辺の長さをA、その長辺の中央部(1/2A)の厚さをB、その長辺の端部より1/4Aの部分の厚さをCとしたときに、A/B≧3かつ0.6≦C/B≦1.2である上記のPVA系バインダー繊維であり、より好ましくは長辺の中央部(1/2A)の厚さBが6μm以下である上記のPVA系バインダー繊維であり、さらに好ましくはPVA系樹脂が、カルボン酸基、スルホン酸基、エチレン基、シラン基、シラノール基、アミン基、アンモニウム基のいずれかを0.1〜15モル%共重合されてなる樹脂である上記のPVA系バインダー繊維に関するものであり、さらに上記のPVA系バインダー繊維を1〜50質量%含有してなる紙または不織布に関するものである。   That is, the present invention relates to a PVA-based binder fiber, characterized in that the fiber has a cross-sectional integrity of 30% or less, a swelling degree of the fiber in water at 30 ° C. of 100% or more, and an elution amount of 20% or less. Yes, preferably the cross section of the fiber is flat, the length of the long side is A, the thickness of the central part (1 / 2A) of the long side is B, and 1 / 4A is larger than the end of the long side. When the thickness of the portion is C, the PVA-based binder fiber satisfies A / B ≧ 3 and 0.6 ≦ C / B ≦ 1.2, and more preferably the central part (1/1 / 2A) is a PVA-based binder fiber having a thickness B of 6 μm or less, more preferably a PVA-based resin having a carboxylic acid group, a sulfonic acid group, an ethylene group, a silane group, a silanol group, an amine group, and an ammonium group. Is 0.1 to 15 mol% copolymerized Relates above PVA binder fibers is a resin comprising Te, it relates more paper or nonwoven comprising a PVA binder fibers of the containing from 1 to 50% by weight.

本発明の単繊維の断面充実度が30%以下であり、30℃の水中における繊維の膨潤度が100%以上かつ溶出量が20%以下であるPVA系バインダー繊維を用いることにより、熱風乾燥方式のような高速乾燥や、マルチシリンダー方式のような低温乾燥等の低熱量の乾燥条件下でも高強力な紙または不織布を得ることが可能となる。   The hot air drying method is performed by using a PVA-based binder fiber in which the cross-sectional degree of the single fiber of the present invention is 30% or less and the swelling degree of the fiber in water at 30 ° C. is 100% or more and the elution amount is 20% or less. A high-strength paper or nonwoven fabric can be obtained even under low heat drying conditions such as high-speed drying as described above and low-temperature drying as in a multi-cylinder system.

PVA系バインダー繊維の十分な接着性は、抄紙工程において繊維が分散した水中で膨潤し、乾燥工程の熱により十分溶解し、乾燥しながら結晶化することにより達成される。しかしながら従来のPVA系バインダー繊維では近年増加傾向のある高速乾燥、低温乾燥など低熱量の乾燥条件では溶解性が不十分なため、十分な接着性を得ることは困難である。従来の技術では溶解性の向上すなわちその指標である結晶融解温度を低下させるために、前記したようにケン化度の低下や変性基導入による結晶サイズの低下を利用したのに対し、本発明では繊維の断面充実度を大幅に低下させ、接着面積を増大させることで紙力の向上を達成することに特徴を有する。   Sufficient adhesiveness of the PVA-based binder fiber is achieved by swelling in water in which the fiber is dispersed in the papermaking process, sufficiently dissolving by the heat of the drying process, and crystallizing while drying. However, conventional PVA-based binder fibers have insufficient solubility under low-calorie drying conditions such as high-speed drying and low-temperature drying, which tend to increase in recent years, so that it is difficult to obtain sufficient adhesiveness. In the prior art, in order to improve the solubility, that is, to lower the crystal melting temperature, which is an indicator thereof, a reduction in the degree of saponification or a reduction in the crystal size due to the introduction of a modifying group was used as described above. It is characterized in that the cross-sectional integrity of the fiber is significantly reduced and the bonding area is increased, thereby improving the paper strength.

本発明のPVA系バインダー繊維は繊維の断面充実度が30%以下であるような断面形状をとる必要がある。繊維断面を断面充実度が30%以下であるような断面形状にして繊維の表面積を向上させることにより、後述するが本発明のPVA系バインダー繊維を用いて紙または不織布を製造した場合、低温・低熱量の乾燥条件下でも高い紙力を得ることが可能となる。好ましくは27%以下、より好ましくは25%以下である。繊維の断面充実度を30%以下にする方法として好適なのは扁平形状とすることである。好ましくは図1に示すように扁平形状の長辺の長さをA、その長辺の中央部(1/2A)の厚さをB、その長辺の端部より1/4Aの部分の厚さをCとしたときに、A/B≧3かつ0.6≦C/B≦1.2であることが好ましい。A/B<3である場合、断面充実度が30%よりも大きくなり好ましくない。またC/B<0.6あるいはC/B>1.2となる場合、本発明の目的とする扁平形状を形成しないためバインダー繊維の表面積が低下し、効率的なバインダー効果が発現しない。より好ましくはA/B≧5かつ0.8≦C/B≦1.2であり、さらに好ましくはA/B≧6かつ0.9≦C/B≦1.1である。また好ましくは厚さBを6μm以下、より好ましくは5μm以下とすることで接着効率はより一層向上する。
なお、繊維の断面充実度、断面形状は走査型電子顕微鏡にて測定されたものを示す。
The PVA-based binder fiber of the present invention needs to have a cross-sectional shape such that the cross-sectional degree of the fiber is 30% or less. As will be described later, when a paper or nonwoven fabric is produced using the PVA-based binder fiber of the present invention, the fiber cross section is formed so that the cross section of the fiber has a cross-sectional degree of 30% or less and the fiber surface area is improved. High paper strength can be obtained even under a low calorie drying condition. It is preferably at most 27%, more preferably at most 25%. A preferable method for reducing the fiber cross-sectional solidity to 30% or less is a flat shape. Preferably, as shown in FIG. 1, the length of the long side of the flat shape is A, the thickness of the central portion (1 / A) of the long side is B, and the thickness of the portion 1 / A from the end of the long side. It is preferable that A / B ≧ 3 and 0.6 ≦ C / B ≦ 1.2, where C is the height. When A / B <3, the cross-sectional solidity is larger than 30%, which is not preferable. When C / B <0.6 or C / B> 1.2, the flattened shape intended for the present invention is not formed, so that the surface area of the binder fiber is reduced, and an efficient binder effect is not exhibited. More preferably, A / B ≧ 5 and 0.8 ≦ C / B ≦ 1.2, and even more preferably, A / B ≧ 6 and 0.9 ≦ C / B ≦ 1.1. Further, by setting the thickness B to preferably 6 μm or less, more preferably 5 μm or less, the bonding efficiency is further improved.
The fiber cross-sectional degree and cross-sectional shape are those measured with a scanning electron microscope.

また本発明のPVA系バインダー繊維は30℃の水中における繊維の膨潤度が100%以上である必要がある。膨潤度が100%未満であるとバインダーとしての性能が十分に発現しない。好ましくは120%以上、より好ましくは140%以上である。   Further, the PVA-based binder fiber of the present invention needs to have a swelling degree of the fiber in water at 30 ° C. of 100% or more. When the degree of swelling is less than 100%, the performance as a binder is not sufficiently exhibited. It is preferably at least 120%, more preferably at least 140%.

本発明において使用されるPVA系樹脂は特に制限はなく、例えば低ケン化度PVAやカルボン酸基、スルホン酸基、エチレン基、シラン基、シラノール基、アミン基、アンモニウム基のいずれか一つまたは二つ以上共重合していても構わないが、中でもカルボン酸基、スルホン酸基、エチレン基、シラン基、シラノール基、アミン基、アンモニウム基のいずれかを0.1〜15モル%共重合されていることがより好ましい。しかしながら共重合成分のないPVA系樹脂あるいは上記共重合成分が共重合されたPVA系樹脂から得られる本発明のPVA系バインダー繊維は、30℃の水中における繊維の溶出量が20%以下である必要がある。溶出量が20%を超えると、歩留まり悪化によるコストアップ、白水(抄紙中に使用する水)への溶出による排水負荷の上昇や、例えば紙にした場合、溶出したPVAの再付着による紙品位の低下(紙の風合いが硬くなる等)が生じる。好ましくは10%以下、より好ましくは5%以下である。   The PVA-based resin used in the present invention is not particularly limited. For example, a low saponification degree PVA or any one of a carboxylic acid group, a sulfonic acid group, an ethylene group, a silane group, a silanol group, an amine group, an ammonium group or Although two or more copolymers may be copolymerized, any of carboxylic acid groups, sulfonic acid groups, ethylene groups, silane groups, silanol groups, amine groups, and ammonium groups is copolymerized in an amount of 0.1 to 15 mol%. Is more preferable. However, the PVA-based binder fiber of the present invention obtained from a PVA-based resin having no copolymerized component or a PVA-based resin obtained by copolymerizing the above-mentioned copolymerized component must have a fiber elution amount of 20% or less in water at 30 ° C. There is. If the amount of elution exceeds 20%, the cost will increase due to the decrease in yield, the drainage load will increase due to elution into white water (water used during papermaking), and if paper is used, the paper quality will be reduced due to the reattachment of the eluted PVA. Degradation (such as hardening of paper texture) occurs. It is preferably at most 10%, more preferably at most 5%.

本発明で用いるPVA系樹脂の重合度については、得られるPVA系バインダー繊維の溶出量の面からは300以上、一方生産性、コストの面からは3000以下であることが好ましい。より好ましくは800〜2000である。またPVAのケン化度についてはPVAの溶出の面からは95モル%以上であることが好ましい。PVAのケン化度が95モル%よりも低いと、バインダー使用時のPVAの溶出が著しく、歩留まりの悪化および排水への溶出等の問題が発生したり、またバインダーとして使用された後も耐水性が極めて低く、特に湿潤条件でバインダー性能が著しく低下する。より好ましくはケン化度96〜99.9モル%の範囲である。   The degree of polymerization of the PVA-based resin used in the present invention is preferably 300 or more in terms of the amount of PVA-based binder fiber to be eluted, and 3000 or less in terms of productivity and cost. More preferably, it is 800 to 2000. The degree of saponification of PVA is preferably at least 95 mol% from the viewpoint of PVA elution. If the degree of saponification of PVA is lower than 95 mol%, the dissolution of PVA at the time of use of the binder is remarkable, causing problems such as deterioration in yield and dissolution into drainage, and water resistance even after being used as a binder. Is extremely low, and particularly under wet conditions, the binder performance is significantly reduced. The saponification degree is more preferably in the range of 96 to 99.9 mol%.

本発明のPVA系バインダー繊維は、上記したPVA系樹脂を水に対して8〜18質量%溶解させた紡糸原液を、該樹脂に対して固化能を有する塩類の水溶液からなる凝固浴中に吐出させ繊維状とした後、2〜5倍湿延伸を行い、乾燥することにより得られる。水に溶解するPVA系樹脂の濃度が18質量%より高い場合、PVAポリマーが溶解した溶液の粘度が高くなり、紡糸が不可能となる。好ましくは10〜16質量%である。   The PVA-based binder fiber of the present invention discharges a spinning solution obtained by dissolving the above-mentioned PVA-based resin in water in an amount of 8 to 18% by mass into a coagulation bath comprising an aqueous solution of a salt having a solidifying ability for the resin. It is obtained by performing 2 to 5 times wet stretching after drying into a fibrous form and drying. When the concentration of the PVA-based resin dissolved in water is higher than 18% by mass, the viscosity of the solution in which the PVA polymer is dissolved becomes high, and spinning becomes impossible. Preferably it is 10 to 16% by mass.

固化能を有する塩類の水溶液としては、硫酸ナトリウム(芒硝)、硫酸アンモニウム、炭酸ナトリウム等が挙げられる。上記した固化能を有する塩類の水溶液からなる凝固浴中に吐出させ繊維状とした後に湿延伸を行うが、湿延伸倍率が2倍より低いと正常な紡糸が行えず、一方湿延伸倍率が5倍を越える延伸を行うと、PVA分子の配向が著しく進行するため結晶融解温度が上昇し、得られた繊維は水に対する膨潤度が低下し、バインダーとして機能しなくなる。   Examples of the aqueous solution of a salt having a solidifying ability include sodium sulfate (Glauber's salt), ammonium sulfate, sodium carbonate, and the like. The wet drawing is performed after discharging into a coagulation bath comprising an aqueous solution of a salt having the above-mentioned solidifying ability to form a fiber. If the wet drawing ratio is lower than 2 times, normal spinning cannot be performed. If the stretching is performed more than twice, the orientation of PVA molecules is remarkably advanced, so that the crystal melting temperature is increased, and the obtained fiber has a reduced degree of swelling in water and does not function as a binder.

本発明の断面形状が断面充実度30%以下のPVA系バインダー繊維を製造するためには幅80〜800μm、厚さ20〜80μmの矩形孔の紡糸口金を使用して紡糸原液を固化能を有する塩類の水溶液中に吐出させ、紡糸口金の金板面と第一ローラーとの間の張力を0.003〜0.01cN/dtexの範囲になるようにして紡糸することが好ましい。この張力が0.003cN/dtex未満であると、繊維の断面が変形して断面形状が繭型となってしまい、本発明の目的とする断面形状の繊維を得ることができない。一方、張力が0.01cN/dtex以上になると凝固浴中で繊維が断糸し、正常に紡糸することができない。より好ましくは0.0035〜0.006cN/dtexである。   In order to produce a PVA-based binder fiber having a cross-sectional shape of 30% or less in cross-section according to the present invention, a spinneret having a rectangular hole having a width of 80 to 800 μm and a thickness of 20 to 80 μm is used, and has a solidifying ability for a spinning solution. It is preferable that the spinning is performed by discharging the solution into an aqueous solution of a salt so that the tension between the metal plate surface of the spinneret and the first roller is in the range of 0.003 to 0.01 cN / dtex. If this tension is less than 0.003 cN / dtex, the cross section of the fiber is deformed and the cross section becomes a cocoon shape, and the fiber having the cross section aimed at by the present invention cannot be obtained. On the other hand, if the tension is not less than 0.01 cN / dtex, the fibers break in the coagulation bath and cannot be spun normally. More preferably, it is 0.0035 to 0.006 cN / dtex.

本発明で用いられるPVA系バインダー繊維の単繊維の平均繊度に特に制限はないが、0.01〜50dtexの範囲であることが好ましい。平均繊度が0.01dtexより小さい場合は繊維の製造が困難となり生産性が低下し、コストアップとなる。一方、平均繊度が50dtexよりも大きくなると、単繊維の繊維径自体が太くなるため接着性が低下するようになる。より好ましくは0.1〜5.0dtexである。本発明の繊維はあらゆる形態で使用することができ、例えばカットファイバー、フィラメントヤーン、紡績糸等としても構わない。   The average fineness of the single fibers of the PVA-based binder fibers used in the present invention is not particularly limited, but is preferably in the range of 0.01 to 50 dtex. If the average fineness is smaller than 0.01 dtex, it becomes difficult to produce fibers, the productivity is reduced, and the cost is increased. On the other hand, when the average fineness is larger than 50 dtex, the fiber diameter itself of the single fiber becomes large, so that the adhesiveness decreases. More preferably, it is 0.1 to 5.0 dtex. The fiber of the present invention can be used in any form, and may be, for example, a cut fiber, a filament yarn, a spun yarn, or the like.

本発明のPVA系バインダー繊維を用いて紙または不織布を製造するが、紙または不織布中の該PVA系バインダー繊維は全固形分に対して1〜50質量%含んでいることが好ましい。紙または不織布中の該PVA系バインダー繊維の含有量が1質量%よりも少ないと、繊維の構成本数が少ないためバインダーとして機能せず、したがって接着性が発現しなくなる。一方、紙または不織布中の該PVA系バインダー繊維の含有量が50質量%よりも多いと、バインダー繊維が主体となるため、バインダー繊維の収縮による紙または不織布の表面平滑性の低下や、風合いが硬くなる等の品位の低下を招く恐れがある。より好ましくは2〜30質量%、より好ましくは5〜25質量%である。   A paper or nonwoven fabric is produced using the PVA-based binder fiber of the present invention, and the PVA-based binder fiber in the paper or nonwoven fabric preferably contains 1 to 50% by mass based on the total solid content. If the content of the PVA-based binder fiber in the paper or nonwoven fabric is less than 1% by mass, the number of fibers constituting the fiber is so small that the fiber does not function as a binder, and therefore, the adhesiveness is not exhibited. On the other hand, when the content of the PVA-based binder fiber in the paper or nonwoven fabric is more than 50% by mass, the binder fiber is mainly used, and thus the surface smoothness of the paper or nonwoven fabric is reduced due to shrinkage of the binder fiber, and the texture is reduced. There is a risk of lowering the quality such as hardening. More preferably, it is 2 to 30% by mass, more preferably 5 to 25% by mass.

以下実施例により本発明を説明するが、本発明はこれら実施例により限定されるものではない。なお本発明の実施例において、PVA樹脂の重合度、PVAバインダー繊維の断面充実度、断面形状、溶出量、膨潤度、およびPVAバインダー繊維を用いて製造した紙の湿裂断長(WB)、乾裂断長(DB)は以下の測定方法によって測定されたものを示す。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In Examples of the present invention, the degree of polymerization of the PVA resin, the degree of cross-sectional solidity of the PVA binder fiber, the cross-sectional shape, the elution amount, the degree of swelling, and the wet breaking length (WB) of the paper produced using the PVA binder fiber, The dry crack length (DB) indicates a value measured by the following measurement method.

[PVA樹脂の重合度]
PVA系ポリマーを1〜10g/lの濃度(Cv)になるように熱水で溶解して得られた溶液の相対粘度ηrelをJIS K6726試験法に準拠して30℃で測定し、下記(1)式より極限粘度[η]を求め、さらに(2)式より重合度PAを算出する。
[η]=2.303log(ηrel)/Cv ・・・(1)
PA=([η]×104/8.29)×1.613 ・・・(2)
[Polymerization degree of PVA resin]
The relative viscosity η rel of a solution obtained by dissolving a PVA-based polymer with hot water so as to have a concentration (Cv) of 1 to 10 g / l was measured at 30 ° C. in accordance with JIS K6726 test method. The intrinsic viscosity [η] is determined from the equation (1), and the polymerization degree PA is calculated from the equation (2).
[Η] = 2.303 log (η rel ) / Cv (1)
PA = ([η] × 104 / 8.29) × 1.613 (2)

[PVAバインダー繊維の断面充実度 %]
走査型電子顕微鏡〔(株)日立製作所製〕にて繊維の断面形状を測定し、繊維の断面積をS1、その繊維を取り囲む最小円の面積をS2とし、以下の式により求める。
断面充実度(%)=(S1/S2)×100
[Cross section of PVA binder fiber%]
The cross-sectional shape of the fiber is measured by a scanning electron microscope (manufactured by Hitachi, Ltd.), and the cross-sectional area of the fiber is S1, and the area of the smallest circle surrounding the fiber is S2, and is obtained by the following equation.
Cross section solidity (%) = (S1 / S2) x 100

[PVAバインダー繊維の断面形状 A/B、C/B、B(μm)]
走査型電子顕微鏡〔(株)日立製作所製〕にて繊維の断面形状を測定し、求めた。
[Cross-sectional shape of PVA binder fiber A / B, C / B, B (μm)]
The cross-sectional shape of the fiber was measured with a scanning electron microscope (manufactured by Hitachi, Ltd.) and determined.

[PVAバインダー繊維のPVA溶出量 %]
繊維中のPVA樹脂純分が1gとなるように換算量を秤量したのち、30℃の水100ml中に浸漬し、液温を30℃に保ったまま30分静置する。静置後、未溶解部分を除去した上澄み液50mlを採取し、水蒸気浴上で蒸発乾固したのち、105℃の乾燥機中で4時間乾燥させ、乾燥後乾燥残分a(g)を計量する。この乾燥残分にはPVAと硫酸ナトリウム等の無機分が含まれるため、さらに500〜800℃でPVA成分が完全に無くなるまで焼成する。焼成後、残分b(g)を測定し、下記の式から溶出量を求める。
溶出量(%)=(a−b)×200
[PVA elution amount of PVA binder fiber%]
After weighing the converted amount so that the pure content of PVA resin in the fiber becomes 1 g, the fiber is immersed in 100 ml of water at 30 ° C., and allowed to stand for 30 minutes while keeping the liquid temperature at 30 ° C. After standing, 50 ml of the supernatant liquid from which the undissolved portion was removed was collected, evaporated to dryness on a steam bath, dried in a dryer at 105 ° C. for 4 hours, and the dried residue a (g) was measured after drying. I do. Since the dried residue contains PVA and inorganic components such as sodium sulfate, it is further fired at 500 to 800 ° C. until the PVA component is completely eliminated. After the calcination, the residue b (g) is measured, and the elution amount is determined from the following equation.
Elution amount (%) = (ab) × 200

[PVAバインダー繊維の膨潤度 %]
繊維中のPVA樹脂純分が1gとなるように換算量を秤量したのち、30℃の水100ml中に浸漬し、液温を30℃に保ったまま30分静置する。静置後、繊維分を濾取して回転数3000rpmの延伸脱水機で10分間脱水し、脱水後の質量(M1)を測定する。質量測定したサンプルを105℃の熱風乾燥機中で4時間乾燥後、質量(M2)を測定し、以下の式から膨潤度を求める。
膨潤度(%)=[(M1−M2)/M2]×100
[Swelling degree of PVA binder fiber%]
After weighing the converted amount so that the pure content of PVA resin in the fiber becomes 1 g, the fiber is immersed in 100 ml of water at 30 ° C., and allowed to stand for 30 minutes while keeping the liquid temperature at 30 ° C. After standing, the fiber content is collected by filtration and dewatered for 10 minutes with a drawing dehydrator having a rotation speed of 3000 rpm, and the mass after dehydration (M1) is measured. After the sample whose mass has been measured is dried in a hot-air dryer at 105 ° C. for 4 hours, the mass (M2) is measured, and the degree of swelling is determined from the following equation.
Swelling degree (%) = [(M1-M2) / M2] × 100

[紙の湿裂断長WB、乾裂断長DB N・m/g]
紙の湿裂断長WBは紙を20℃の水中で24時間吸水させた後、幅15mm、長さ170mmの試料を把持長さ100mm、引張速度50mm/分で測定した強力WS(N)と試料の秤量W(g/m)より下記式にて求めた。
WB=WS/(15×W)×1000(N・m/g)
一方、紙の乾裂断長DBは、23℃×50%RH室内で24時間調湿した後、幅15mm、長さ170mmの試料を把持長さ100mm、引張速度50mm/分で測定した強力DS(N)と試料の秤量W(g/m)より下記式にて求めた。
DB=DS/(15×W)×1000(N・m/g)
[Wet breaking length WB, Dry breaking length DB N · m / g of paper]
The wet tear length WB of the paper was determined by measuring the strength of the sample (15 mm wide and 170 mm long) with a strong WS (N) measured at a gripping length of 100 mm and a pulling speed of 50 mm / min after absorbing the paper in water at 20 ° C. for 24 hours. It was determined by the following equation from the weight W (g / m 2 ) of the sample.
WB = WS / (15 × W) × 1000 (N · m / g)
On the other hand, the dry crack length DB of the paper was determined by controlling the humidity in a chamber at 23 ° C. × 50% RH for 24 hours, and then measuring the strength DS (measuring a sample having a width of 15 mm and a length of 170 mm at a gripping length of 100 mm and a tensile speed of 50 mm / min). N) and the weight W (g / m 2 ) of the sample were determined by the following equation.
DB = DS / (15 × W) × 1000 (N · m / g)

[実施例1]
(1)平均重合度1700、ケン化度98.0モル%のPVA樹脂14質量%水溶液からなる紡糸原液を孔数4000、縦30μm×横180μmの長方形のスリット型の紡糸口金より飽和硫酸ナトリウムからなる凝固浴中に吐出させ、紡糸口金の金板面と第一ローラーとの間の張力が0.035〜0.045cN/dtexとなるように第1ローラーで巻き取った後、4倍の湿延伸を行い、定長乾燥機中にて120℃で10分間乾燥させ、表1に示すように、断面充実度23%、断面形状がA/B=6.3、C/B=0.97、B=4.5μmの繊度1.5dtexの扁平形状PVA繊維を得た。また得られた扁平状PVA繊維の膨潤度は182%、PVAの溶出量は6.9%であった。
(2)上記(1)で得られたPVA繊維を3mmにカットしたものを繊維純分として20質量部、ガラス繊維(旭ファイバーグラス株式会社製「GP024」、繊維径9μm、繊維長6mm)を80質量部混合して均一に混合攪拌してスラリーを調製した。かかるスラリーを用いてTAPPI式抄紙機に供給して抄造した後、乾燥温度210℃のネット式エアースルードライヤーを用いて乾燥し、秤量40g/mの紙を製造した。得られた紙のDB、WBは表1に示すように各々4.59N・m/g、0.34N・m/gであった。
[Example 1]
(1) A spinning solution comprising a 14% by mass aqueous solution of a PVA resin having an average degree of polymerization of 1700 and a saponification degree of 98.0 mol% was prepared from saturated sodium sulfate by a rectangular slit type spinneret having 4,000 holes and a length of 30 μm × 180 μm. Into a coagulation bath, and wound up with the first roller so that the tension between the metal plate surface of the spinneret and the first roller is 0.035 to 0.045 cN / dtex. The film is stretched and dried in a fixed-length dryer at 120 ° C. for 10 minutes. As shown in Table 1, the cross-sectional solidity is 23%, the cross-sectional shape is A / B = 6.3, and the C / B is 0.97. , B = 4.5 μm and a flat PVA fiber having a fineness of 1.5 dtex. The swelling degree of the obtained flat PVA fiber was 182%, and the elution amount of PVA was 6.9%.
(2) The PVA fiber obtained in the above (1) was cut into 3 mm, and 20 parts by mass of glass fiber (“GP024” manufactured by Asahi Fiberglass Co., Ltd., fiber diameter 9 μm, fiber length 6 mm) as a pure fiber was used. 80 parts by mass were mixed and uniformly mixed and stirred to prepare a slurry. The slurry was supplied to a TAPPI-type paper machine to form a paper, and then dried using a net-type air-through dryer at a drying temperature of 210 ° C. to produce a paper weighing 40 g / m 2 . As shown in Table 1, the DB and WB of the obtained paper were 4.59 N · m / g and 0.34 N · m / g, respectively.

[実施例2]
(1)平均重合度1700、ケン化度98.0モル%、エチレン含有量5モル%のPVA樹脂14質量%水溶液からなる紡糸原液を実施例1と同一条件にて紡糸、延伸、熱処理を行い、表1に示すように、断面充実度23%、断面形状がA/B=6.1、C/B=0.97、B=4.5μmの繊度1.5dtexの扁平形状PVA繊維を得た。また得られた扁平状PVA繊維の膨潤度は154%、PVAの溶出量は2.3%であった。
(2)上記(1)で得られたPVA繊維を実施例1と同一条件にて紙を製造した。得られた紙のDB、WBは表1に示すように各々4.63N・m/g、0.78N・m/gであった。
[Example 2]
(1) A spinning dope composed of a 14% by mass aqueous solution of a PVA resin having an average degree of polymerization of 1700, a saponification degree of 98.0 mol%, and an ethylene content of 5 mol% was spun, stretched and heat-treated under the same conditions as in Example 1. As shown in Table 1, a flat-shaped PVA fiber having a fineness of 1.5 dtex and a cross-sectional shape of 23% and a cross-sectional shape of A / B = 6.1, C / B = 0.97, and B = 4.5 μm was obtained. Was. The swelling degree of the obtained flat PVA fiber was 154%, and the elution amount of PVA was 2.3%.
(2) Paper was produced from the PVA fiber obtained in the above (1) under the same conditions as in Example 1. As shown in Table 1, the DB and WB of the obtained paper were 4.63 N · m / g and 0.78 N · m / g, respectively.

[実施例3]
(1)平均重合度1700、ケン化度99.9モル%のPVA樹脂14質量%水溶液からなる紡糸原液を実施例1と同一条件にて紡糸、延伸、熱処理を行い、表1に示すように、断面充実度23%、断面形状がA/B=6.2、C/B=0.99、B=4.4μmの繊度1.5dtexの扁平形状PVA繊維を得た。また得られた扁平状PVA繊維の膨潤度は143%、PVAの溶出量は0.9%であった。
(2)上記(1)で得られたPVA繊維を実施例1と同一条件にて紙を製造した。得られた紙のDB、WBは表1に示すように各々2.80N・m/g、0.38N・m/gであった。
[Example 3]
(1) A spinning dope composed of a 14% by mass aqueous solution of a PVA resin having an average degree of polymerization of 1700 and a saponification degree of 99.9 mol% was spun, stretched, and heat-treated under the same conditions as in Example 1, and as shown in Table 1. A flat PVA fiber having a fineness of 1.5 dtex and a cross-sectional degree of 23%, a cross-sectional shape of A / B = 6.2, C / B = 0.99, and B = 4.4 μm was obtained. The swelling degree of the obtained flat PVA fiber was 143%, and the PVA elution amount was 0.9%.
(2) Paper was produced from the PVA fiber obtained in the above (1) under the same conditions as in Example 1. The DB and WB of the obtained paper were 2.80 N · m / g and 0.38 N · m / g, respectively, as shown in Table 1.

[実施例4]
(1)平均重合度1700、ケン化度98.0モル%のPVA樹脂14質量%水溶液からなる紡糸原液を孔数4000、縦30μm×横450μmの長方形のスリット型の紡糸口金より飽和硫酸ナトリウムからなる凝固浴中に吐出させ、紡糸口金の金板面と第一ローラーとの間の張力が0.035〜0.045cN/dtexとなるように第1ローラーで巻き取った後、4倍の湿延伸を行い、定長乾燥機中にて120℃で10分間乾燥させ、表1に示すように、断面充実度9%、断面形状がA/B=16、C/B=0.98、B=4.5μmの繊度3.8dtexの扁平形状PVA繊維を得た。また得られた扁平状PVA繊維の膨潤度は162%、PVAの溶出量は3.1%であった。
(2)上記(1)で得られたPVA繊維を実施例1と同一条件にて紙を製造した。得られた紙のDB、WBは表1に示すように各々4.48N・m/g、0.35N・m/gであった。
[Example 4]
(1) An undiluted spinning solution composed of a 14% by mass aqueous solution of a PVA resin having an average degree of polymerization of 1700 and a saponification degree of 98.0 mol% was prepared from saturated sodium sulfate from a rectangular slit-type spinneret having 4,000 holes and a length of 30 μm × width of 450 μm. Into a coagulation bath, and wound up with the first roller so that the tension between the metal plate surface of the spinneret and the first roller is 0.035 to 0.045 cN / dtex. The film was stretched, dried at 120 ° C. for 10 minutes in a fixed-length dryer, and as shown in Table 1, the cross-sectional solidity was 9%, the cross-sectional shape was A / B = 16, C / B = 0.98, B = 4.5 μm and a flat PVA fiber having a fineness of 3.8 dtex. The swelling degree of the obtained flat PVA fiber was 162%, and the elution amount of PVA was 3.1%.
(2) Paper was produced from the PVA fiber obtained in the above (1) under the same conditions as in Example 1. As shown in Table 1, DB and WB of the obtained paper were 4.48 N · m / g and 0.35 N · m / g, respectively.

[実施例5]
(1)平均重合度1700、ケン化度98.0モル%のPVA樹脂14質量%水溶液からなる紡糸原液を実施例1と同一条件で紡糸、湿延伸を行い、さらに15〜30℃の水中にて定長水洗した後、定長乾燥機中にて120℃で10分間乾燥させ、表1に示すように、断面充実度23%、断面形状がA/B=6.1、C/B=0.97、B=4.4μmの繊度1.5dtexのソルトフリーの扁平形状PVA繊維を得た。また得られた扁平状PVA繊維の膨潤度は160%、PVAの溶出量は1.1%であった。
(2)上記(1)で得られたPVA繊維を実施例1と同一条件にて紙を製造した。得られた紙のDB、WBは表1に示すように各々4.22N・m/g、0.33N・m/gであった。
[Example 5]
(1) A spinning stock solution comprising a 14% by mass aqueous solution of a PVA resin having an average degree of polymerization of 1700 and a saponification degree of 98.0 mol% was spun and wet stretched under the same conditions as in Example 1, and further placed in water at 15 to 30 ° C. And then dried in a constant-length drier at 120 ° C. for 10 minutes. As shown in Table 1, the solidity was 23% in cross-section, A / B = 6.1, and C / B = 0.97, B = 4.4 μm, and a salt-free flat PVA fiber having a fineness of 1.5 dtex were obtained. The swelling degree of the obtained flat PVA fiber was 160%, and the elution amount of PVA was 1.1%.
(2) Paper was produced from the PVA fiber obtained in the above (1) under the same conditions as in Example 1. As shown in Table 1, the DB and WB of the obtained paper were 4.22 N · m / g and 0.33 N · m / g, respectively.

[実施例6]
(1)平均重合度1700、ケン化度98.0モル%のPVA樹脂18質量%のDMSO(ジメチルスルホキシド)溶液からなる紡糸原液を孔数20000、縦30μm×横180μmの長方形のスリット型の紡糸口金よりメタノールからなる固化浴中に吐出させ、紡糸口金の金板面と第一ローラーとの間の張力が0.035〜0.045cN/dtexとなるように第1ローラーで巻き取った後、3倍の湿延伸を行い、定長乾燥機中にて140℃で10分間乾燥させ、表1に示すように、断面充実度25%、断面形状がA/B=5.5、C/B=0.95、B=4.7μmの繊度2.2dtexのソルトフリーの扁平形状PVA繊維を得た。また得られた扁平状PVA繊維の膨潤度は170%、PVAの溶出量は3.3%であった。
(2)上記(1)で得られたPVA繊維を実施例1と同一条件にて紙を製造した。得られた紙のDB、WBは表1に示すように各々4.32N・m/g、0.34N・m/gであった。
[Example 6]
(1) A rectangular spinning spinning solution having a number of pores of 20,000, a length of 30 μm and a width of 180 μm was prepared by spinning a spinning dope comprising a DMSO (dimethyl sulfoxide) solution containing 18% by mass of a PVA resin having an average degree of polymerization of 1700 and a saponification degree of 98.0 mol% After discharging into a solidification bath made of methanol from the spinneret and winding it up with the first roller so that the tension between the metal plate surface of the spinneret and the first roller is 0.035 to 0.045 cN / dtex, After performing 3 times wet stretching and drying in a constant-length dryer at 140 ° C. for 10 minutes, as shown in Table 1, the cross-sectional solidity is 25%, the cross-sectional shape is A / B = 5.5, and the C / B is = 0.95, B = 4.7 µm, and a salt-free flat PVA fiber having a fineness of 2.2 dtex was obtained. The swelling degree of the obtained flat PVA fiber was 170%, and the elution amount of PVA was 3.3%.
(2) Paper was produced from the PVA fiber obtained in the above (1) under the same conditions as in Example 1. As shown in Table 1, DB and WB of the obtained paper were 4.32 N · m / g and 0.34 N · m / g, respectively.

[比較例1]
(1)平均重合度1700、ケン化度99.9モル%のPVA樹脂14質量%水溶液からなる紡糸原液を孔径60μm、孔数4000の紡糸口金より飽和硫酸ナトリウムからなる凝固浴中に吐出させ、第1ローラーで巻き取った後、4倍の湿延伸を行い、定長乾燥機中にて120℃で10分間乾燥させ、表1に示すように、断面充実度39%、繊度1.0dtexの繭型形状のPVA繊維を得た。また得られた繭型形状PVA繊維の膨潤度は145%、PVAの溶出量は1.0%であった。
(2)上記(1)で得られたPVA繊維を実施例1と同一条件にて紙を製造した。得られた紙のDB、WBは表1に示すように各々0.35N・m/g、0.05N・m/gであり、紙力が本発明で得られたPVAバインダー繊維を用いた紙(実施例1〜6)と比べて著しく劣るものであった。
[Comparative Example 1]
(1) A spinning stock solution comprising a 14% by mass aqueous solution of a PVA resin having an average degree of polymerization of 1700 and a saponification degree of 99.9 mol% is discharged from a spinneret having a pore diameter of 60 μm and a number of holes of 4000 into a coagulation bath composed of saturated sodium sulfate, After being wound up by the first roller, the film is wet stretched 4 times, dried in a constant-length dryer at 120 ° C. for 10 minutes, and as shown in Table 1, has a cross-sectional area of 39% and a fineness of 1.0 dtex. A cocoon-shaped PVA fiber was obtained. The degree of swelling of the obtained cocoon-shaped PVA fiber was 145%, and the amount of eluted PVA was 1.0%.
(2) Paper was produced from the PVA fiber obtained in the above (1) under the same conditions as in Example 1. The DB and WB of the obtained paper are 0.35 N · m / g and 0.05 N · m / g, respectively, as shown in Table 1, and the paper strength is a paper using the PVA binder fiber obtained by the present invention. It was significantly inferior to (Examples 1 to 6).

[比較例2]
(1)平均重合度1700、ケン化度98.0モル%のPVA樹脂14質量%水溶液からなる紡糸原液を比較例1と同一条件にて紡糸、延伸、熱処理を行い、表1に示すように、断面充実度39%、繊度1.0dtexの繭型形状のPVA繊維を得た。また得られた繭型形状PVA繊維の膨潤度は162%、PVAの溶出量は3.1%であった。
(2)上記(1)で得られたPVA繊維を実施例1と同一条件にて紙を製造した。得られた紙のDB、WBは表1に示すように各々1.52N・m/g、0.29N・m/gであり、紙力が本発明で得られたPVAバインダー繊維を用いた紙(実施例1〜6)と比べて劣るものであった。
[Comparative Example 2]
(1) A spinning dope composed of a 14% by mass aqueous solution of a PVA resin having an average degree of polymerization of 1700 and a saponification degree of 98.0 mol% was spun, stretched, and heat-treated under the same conditions as in Comparative Example 1, and as shown in Table 1. A cocoon-shaped PVA fiber having a cross-sectional degree of 39% and a fineness of 1.0 dtex was obtained. The cocoon-shaped PVA fiber obtained had a swelling degree of 162% and an elution amount of PVA of 3.1%.
(2) Paper was produced from the PVA fiber obtained in the above (1) under the same conditions as in Example 1. The DB and WB of the obtained paper are 1.52 N · m / g and 0.29 N · m / g, respectively, as shown in Table 1, and the paper strength is a paper using the PVA binder fiber obtained by the present invention. It was inferior to (Examples 1 to 6).

[比較例3]
PVAバインダー繊維として、株式会社ニチビ製の断面充実度43%、断面形状がA/B=3.7、C/B=1.4、B=7.1μmのダンベル型断面形状のソルブロン「NL2003」を用いて紙を製造した。表1に示すように該バインダー繊維の膨潤度は160%、PVAの溶出量は10%であり、得られた紙のDB、WBは各々1.81N・m/g、0.01N・m/gであり、紙力が本発明で得られたPVAバインダー繊維を用いた紙(実施例1〜6)と比べて著しく劣るものであった。
[Comparative Example 3]
As a PVA binder fiber, NL2003 manufactured by Nichibi Co., Ltd. has a dumbbell-shaped cross-sectional shape of 43% cross-section, A / B = 3.7, C / B = 1.4, and B = 7.1 μm. Was used to produce paper. As shown in Table 1, the swelling degree of the binder fiber was 160%, the elution amount of PVA was 10%, and the DB and WB of the obtained paper were 1.81 Nm / g and 0.01 Nm / g, respectively. g, and the paper strength was remarkably inferior to the paper using the PVA binder fiber obtained in the present invention (Examples 1 to 6).

Figure 2004293026
Figure 2004293026

本発明の単繊維の断面充実度が30%以下であり、30℃の水中における繊維の膨潤度が100%以上かつ溶出量が20%以下であるPVA系バインダー繊維を用いることにより、熱風乾燥方式のような高速乾燥や、マルチシリンダー方式のような低温乾燥等の低熱量の乾燥条件下でも高強力な紙または不織布を得ることが可能となる。   The hot air drying method is performed by using a PVA-based binder fiber in which the cross-sectional degree of the single fiber of the present invention is 30% or less and the swelling degree of the fiber in water at 30 ° C. is 100% or more and the elution amount is 20% or less. A high-strength paper or nonwoven fabric can be obtained even under low heat drying conditions such as high-speed drying as described above and low-temperature drying as in a multi-cylinder system.

扁平断面繊維の断面形状模式図。FIG. 4 is a schematic cross-sectional view of a flat cross-section fiber.

Claims (5)

繊維の断面充実度が30%以下であり、30℃の水中における繊維の膨潤度が100%以上、かつ溶出量が20%以下であることを特徴とするポリビニルアルコール系バインダー繊維。   A polyvinyl alcohol-based binder fiber, wherein the fiber has a cross-sectional integrity of 30% or less, a swelling degree of the fiber in water at 30 ° C of 100% or more, and an elution amount of 20% or less. 繊維断面が扁平形状しており、その長辺の長さをA、その長辺の中央部(1/2A)の厚さをB、その長辺の端部より1/4Aの部分の厚さをCとしたときに、A/B≧3かつ0.6≦C/B≦1.2である請求項1記載のポリビニルアルコール系バインダー繊維。   The fiber cross section is flat, the length of the long side is A, the thickness of the center part (1 / A) of the long side is B, and the thickness of the part of 1 / A from the end of the long side 2. The polyvinyl alcohol-based binder fiber according to claim 1, wherein A / B ≧ 3 and 0.6 ≦ C / B ≦ 1.2, where C is C. 長辺の中央部(1/2A)の厚さBが6μm以下である請求項2記載のポリビニルアルコール系バインダー繊維。   The polyvinyl alcohol-based binder fiber according to claim 2, wherein a thickness B of a central portion (1 / 2A) of the long side is 6 µm or less. ポリビニルアルコール系樹脂が、カルボン酸基、スルホン酸基、エチレン基、シラン基、シラノール基、アミン基、アンモニウム基のいずれかを0.1〜15モル%共重合されてなる樹脂である請求項1〜3のいずれか1項記載のポリビニルアルコール系バインダー繊維。   2. The polyvinyl alcohol resin is a resin obtained by copolymerizing 0.1 to 15 mol% of any one of a carboxylic acid group, a sulfonic acid group, an ethylene group, a silane group, a silanol group, an amine group, and an ammonium group. 4. The polyvinyl alcohol-based binder fiber according to any one of items 1 to 3. 請求項1〜4のいずれか1項記載のポリビニルアルコール系バインダー繊維を1〜50質量%含有してなる紙または不織布。
A paper or nonwoven fabric comprising 1 to 50% by mass of the polyvinyl alcohol-based binder fiber according to any one of claims 1 to 4.
JP2004063323A 2003-03-10 2004-03-08 Polyvinyl alcohol binder fiber and paper or nonwoven fabric using the same Expired - Fee Related JP3796248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063323A JP3796248B2 (en) 2003-03-10 2004-03-08 Polyvinyl alcohol binder fiber and paper or nonwoven fabric using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003063205 2003-03-10
JP2004063323A JP3796248B2 (en) 2003-03-10 2004-03-08 Polyvinyl alcohol binder fiber and paper or nonwoven fabric using the same

Publications (2)

Publication Number Publication Date
JP2004293026A true JP2004293026A (en) 2004-10-21
JP3796248B2 JP3796248B2 (en) 2006-07-12

Family

ID=33421474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063323A Expired - Fee Related JP3796248B2 (en) 2003-03-10 2004-03-08 Polyvinyl alcohol binder fiber and paper or nonwoven fabric using the same

Country Status (1)

Country Link
JP (1) JP3796248B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308038A (en) * 2003-04-04 2004-11-04 Kuraray Co Ltd Low-density wet type nonwoven fabric

Also Published As

Publication number Publication date
JP3796248B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
US6924030B2 (en) Polyvinyl alcohol binder fibers, and paper or nonwoven fabric comprising them
TWI290593B (en) Polyvinyl alcohol fibers, and nonwoven fabric comprising them and method for manufacture nonwoven fabric
KR101441723B1 (en) Thin paper
JP6548634B2 (en) Polyester binder fiber
JP2009299222A (en) Method for producing short-cut nanofiber, and wet-laid nonwoven fabric
JP6680780B2 (en) Easily fibrillated polyvinyl alcohol fiber and method for producing the same
JP2003089954A (en) Acoustic vibration member
JP3796248B2 (en) Polyvinyl alcohol binder fiber and paper or nonwoven fabric using the same
JP3828550B2 (en) Polyvinyl alcohol fiber and non-woven fabric using the same
JP2004308038A (en) Low-density wet type nonwoven fabric
JP2003138424A (en) Polyester fiber for binder
JPS6012479B2 (en) Method for manufacturing sheet-like structure
JPH02216295A (en) Production of highly strong polyester fiber paper
JP2001303359A (en) Method for producing polyvinyl alcohol-based fiber
JP2003027328A (en) Polyvinyl alcohol-based binder fiber
JP4031435B2 (en) Polyester binder fiber for papermaking
JPH0491230A (en) Production of precursor
WO2018123986A1 (en) Polyester binder fiber
JP2002275728A (en) Polyvinyl alcohol-based water-soluble fiber and method for producing the same
JP2002339287A (en) Undrawn polyester fiber for paper-making use
JP2000136431A (en) Polyvinyl alcohol-based fiber and its production
JP3556510B2 (en) Acrylic binder fiber
JPS641565B2 (en)
JPH09176983A (en) Polyvinyl alcohol-based pulp and its production
JPS61163151A (en) Acrylonitrilic chopped fiber and manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R150 Certificate of patent or registration of utility model

Ref document number: 3796248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees