JP2004293024A - Divided-type polyester conjugated fiber - Google Patents

Divided-type polyester conjugated fiber Download PDF

Info

Publication number
JP2004293024A
JP2004293024A JP2004030366A JP2004030366A JP2004293024A JP 2004293024 A JP2004293024 A JP 2004293024A JP 2004030366 A JP2004030366 A JP 2004030366A JP 2004030366 A JP2004030366 A JP 2004030366A JP 2004293024 A JP2004293024 A JP 2004293024A
Authority
JP
Japan
Prior art keywords
polyester
component
polyester component
conjugate fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030366A
Other languages
Japanese (ja)
Other versions
JP4361387B2 (en
Inventor
Ryoji Tsukamoto
亮二 塚本
Tomoo Mizumura
知雄 水村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2004030366A priority Critical patent/JP4361387B2/en
Publication of JP2004293024A publication Critical patent/JP2004293024A/en
Application granted granted Critical
Publication of JP4361387B2 publication Critical patent/JP4361387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a divided-type polyester conjugated fiber having such excellent performance that foreign matter formed on a spinning nozzle is extremely decreased, even when the fiber is continuously spun through the spinning nozzle for a long time, and processability of the fiber is excellent. <P>SOLUTION: This divided-type polyester conjugated fiber is composed of a polyester component A and a polyester component B, wherein the fiber has a cross-sectional shape in which the component B is divided into a plurality of parts by the component A. Further, the conjugated fiber is so formed that (1) the polyester component A comprises a copolymerized polyester composition containing a polyoxyalkylene glycol having a number-average molecular weight of 400-30,000 in an amount of 1-20 wt% based on the polyester component A and a hindered phenol-type antioxidant in an amount of 0.02-3 wt% in a copolymerized polyester which is copolymerized with a compound containing a sulfoisophthalic acid metal salt group in an amount of 1-8 mol% based on the total acid components composing the polyester, (2) the polyester component B has ethylene terephthalate units as main repeating units, and an amount of antimony and germanium metal elements contained in the conjugated fiber is not more than 20 ppm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一方の成分が他方の成分により複数個に分割された繊維横断面形状を有する分割型ポリエステル複合繊維に関する。さらに詳しくは、紡糸口金を通して長時間連続的に紡糸しても口金付着物の発生量が非常に少なく、成形性に優れているという優れた性能を有する分割型ポリエステル複合繊維、及びその複合繊維をアルカリ水溶液または熱水で処理することによって容易、且つ効率的に提供できる極細繊度のポリエステル繊維に関する。   The present invention relates to a splittable polyester conjugate fiber having a fiber cross-sectional shape in which one component is split into a plurality by the other component. More specifically, even if the spinning is continuously performed for a long time through the spinneret, the amount of the deposit attached to the spinneret is extremely small, and the splittable polyester conjugate fiber having excellent performance of being excellent in moldability, and the conjugated fiber are provided. The present invention relates to an ultrafine polyester fiber which can be easily and efficiently provided by treating with an aqueous alkali solution or hot water.

従来、アルカリ易溶解性成分が、アルカリ難溶解性成分(もしくはアルカリ非溶解性成分)を複数個に分割するように配置された分割型複合繊維は、アルカリ易溶解性成分を除去することによって、極細繊維糸条が得られること、及び該複合繊維を布帛となした後にアルカリ処理すると絹様風合を呈する布帛を得られること等が広く知られている(例えば、特許文献1、2、3、4参照。)。   Conventionally, a splittable conjugate fiber in which an alkali-soluble component is divided into a plurality of alkali-insoluble components (or an alkali-insoluble component) by removing the alkali-soluble component, It is widely known that an ultrafine fiber yarn can be obtained, and that a cloth exhibiting a silky feeling can be obtained by treating the composite fiber with alkali after forming the cloth (for example, Patent Documents 1, 2, and 3). , 4).

また、このような方法によって得られる極細ポリエステル繊維は、高融点、高強度、高ヤング率、良好な電気的特性、及び耐薬品性などの優れた特性を有していることから、絹様織編物、スポーツ衣料、若しくはその他の各種衣料用分野、又はフィルター、その他の工業用分野への展開が期待されている。   In addition, the ultrafine polyester fiber obtained by such a method has excellent properties such as high melting point, high strength, high Young's modulus, good electrical properties, and chemical resistance. It is expected to be used in knitted fabrics, sports clothing, and various other clothing fields, or filters and other industrial fields.

一方、ポリエチレンテレフタレートに代表されるポリエステルは、その機械的、物理的、化学的性能が優れているため、繊維、フィルム、又はその他の成形物に広く利用されている。ここでポリエステルの重縮合反応段階で使用する触媒の種類によって、反応速度及び得られるポリエステルの品質が大きく左右されることはよく知られている。ポリエチレンテレフタレートの重縮合反応触媒としては、アンチモン化合物が優れた重縮合反応触媒性能を有し、かつ、色調の良好なポリエステルが得られるなどの理由から最も広く使用されている。   On the other hand, polyesters represented by polyethylene terephthalate are widely used for fibers, films or other molded products because of their excellent mechanical, physical and chemical properties. It is well known that the type of catalyst used in the polyester polycondensation reaction step greatly affects the reaction rate and the quality of the obtained polyester. As a polycondensation reaction catalyst for polyethylene terephthalate, an antimony compound is most widely used because it has excellent polycondensation reaction catalyst performance and a polyester having a good color tone can be obtained.

しかしながらポリエステルを用いて、このような分割型複合繊維を製造する際、長時間にわたって連続的に溶融紡糸すると、口金孔周辺に異物(以下、単に口金異物と称することがある。)が付着堆積し、溶融ポリマー流れの曲がり現象(ベンディング)が発生し、これが原因となって紡糸、延伸工程において毛羽及び/又は断糸などを発生するという成形性の問題がある。   However, when such a splittable conjugate fiber is manufactured using polyester, if melt spinning is performed continuously for a long time, foreign substances (hereinafter, sometimes simply referred to as die foreign substances) adhere and accumulate around the die hole. In addition, a bending phenomenon (bending) of the flow of the molten polymer occurs, which causes a problem of moldability such as generation of fluff and / or breakage in the spinning and drawing steps.

該アンチモン化合物以外の重縮合反応触媒として、チタンテトラブトキシドのようなチタン化合物を用いることも提案されているが、このようなチタン化合物を使用した場合、上記のような、口金異物の堆積に起因する成形性の問題は解決できるが、得られたポリエステル自身が黄色く着色されており、また、溶融熱安定性も不良であるという新たな問題が発生する。   As a polycondensation reaction catalyst other than the antimony compound, it has been proposed to use a titanium compound such as titanium tetrabutoxide. However, a new problem arises in that the obtained polyester itself is colored yellow and the melt heat stability is poor.

上記着色問題を解決するために、コバルト化合物をポリエステルに添加して黄味を抑えることが一般的に行われている。確かにコバルト化合物を添加することによってポリエステルの色調(b値)は改善することができるが、コバルト化合物を添加することによってポリエステルの溶融熱安定性が低下し、ポリマーの分解も起こりやすくなるという問題がある。   In order to solve the above-mentioned coloring problem, it is common practice to add a cobalt compound to polyester to suppress yellowing. Certainly, the color tone (b value) of the polyester can be improved by adding the cobalt compound, but the problem that the addition of the cobalt compound lowers the melting heat stability of the polyester and the polymer is likely to be decomposed. There is.

また、他のチタン化合物として、水酸化チタンをポリエステル製造用触媒として用いること(例えば特許文献5参照。)、またα−チタン酸をポリエステル製造用触媒として用いること(例えば特許文献6参照。)が開示されている。しかしながら、前者の方法では水酸化チタンの粉末化が容易でなく、一方、後者の方法ではα−チタン酸が変質し易いため、その保存、取り扱いが容易でなく、したがっていずれも工業的に採用するには適当ではなく、更に、良好な色調(b値)のポリマーを得ることも困難である。   As other titanium compounds, use of titanium hydroxide as a catalyst for producing polyester (for example, see Patent Document 5) and use of α-titanic acid as a catalyst for producing polyester (for example, see Patent Document 6). It has been disclosed. However, in the former method, powdering of titanium hydroxide is not easy. On the other hand, in the latter method, α-titanic acid is easily deteriorated, so that its storage and handling are not easy. In addition, it is difficult to obtain a polymer having a good color tone (b value).

また、チタン化合物とトリメリット酸とを反応させて得られた生成物をポリエステルの製造用触媒として用いること(例えば特許文献7参照。)、またチタン化合物と亜リン酸エステルとを反応させて得られた生成物をポリエステル製造用触媒として使用すること(例えば特許文献8参照。)が開示されている。   Further, a product obtained by reacting a titanium compound with trimellitic acid is used as a catalyst for producing a polyester (see, for example, Patent Document 7), or a product obtained by reacting a titanium compound with a phosphite. It is disclosed that the obtained product is used as a catalyst for producing polyester (see, for example, Patent Document 8).

確かに、これらの方法によれば、ポリエステルの溶融熱安定性はある程度向上しているものの、得られるポリマーの色調が十分なものではなく、したがってポリマー色調のさらなる改善が望まれている。また、チタン化合物と特定のホスホン酸化合物を反応させた触媒の使用すること(例えば特許文献9参照。)が開示されている。この方法ではポリマー色調が大きく改良されているが、ポリエステルの耐熱性の改良はまだ十分なレベルに達していない。   Certainly, according to these methods, although the melt heat stability of the polyester is improved to some extent, the color tone of the obtained polymer is not sufficient, and thus further improvement of the polymer color tone is desired. Further, the use of a catalyst obtained by reacting a titanium compound with a specific phosphonic acid compound is disclosed (for example, see Patent Document 9). Although this method greatly improves the color of the polymer, the improvement in the heat resistance of the polyester has not yet reached a sufficient level.

特開昭54−138620号公報JP-A-54-138620 特開平1−162825号公報JP-A-1-162825 特開平5−9811号公報JP-A-5-9811 特開平8−109522公報JP-A-8-109522 特公昭48−2229号公報JP-B-48-2229 特公昭47−26597号公報JP-B-47-26597 特公昭59−46258号公報JP-B-59-46258 特開昭58−38722号公報JP-A-58-38722 国際公開第01/00706号パンフレットWO 01/00706 pamphlet

本発明の目的は、上記従来技術が有していた問題点を解消し、紡糸口金を通して長時間連続的に紡糸しても口金異物の発生量が非常に少なく、成形性に優れているという優れた性能を有する分割型ポリエステル複合繊維を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and to produce an extremely small amount of foreign matter in a spinneret even when spinning continuously for a long time through a spinneret, and to have excellent moldability. Another object of the present invention is to provide a splittable polyester composite fiber having excellent performance.

さらに、本発明の他の目的は、前記複合繊維をアルカリ水溶液または熱水で処理することによって容易、且つ効率的に極細繊度のポリエステル繊維を提供することにある。   Still another object of the present invention is to provide a polyester fiber having an ultrafine size easily and efficiently by treating the conjugate fiber with an aqueous alkali solution or hot water.

本発明者らは上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。
すなわち、本発明の目的は、ポリエステル成分A及びポリエステル成分Bとからなり、該ポリエステル成分Bが該ポリエステル成分Aにより複数個に分割された横断面形状を有する複合繊維であって、
(1)該ポリエステル成分Aが、スルホイソフタル酸金属塩基を含む化合物をポリエステルを構成する全酸成分を基準として1〜8モル%共重合した共重合ポリエステルに、さらに該ポリエステル成分Aを基準として数平均分子量が400〜30000のポリオキシアルキレングリコールを1〜20重量%、ヒンダードフェノール型酸化防止剤を0.02〜3重量%含有する共重合ポリエステル組成物であり、
(2)該ポリエステル成分Bがエチレンテレフタレート単位を主たる繰り返し単位とするポリエステルであり、
且つ、該複合繊維中に含有されるアンチモン及びゲルマニウム金属元素量が20ppm以下である分割型ポリエステル複合繊維によって達成される。
The present inventors have conducted intensive studies in view of the above-mentioned conventional technology, and as a result, completed the present invention.
That is, an object of the present invention is a composite fiber comprising a polyester component A and a polyester component B, wherein the polyester component B has a cross-sectional shape divided into a plurality by the polyester component A,
(1) The polyester component A is a copolymerized polyester obtained by copolymerizing a compound containing a metal salt of sulfoisophthalate in an amount of 1 to 8 mol% based on all the acid components constituting the polyester. A copolymerized polyester composition containing 1 to 20% by weight of a polyoxyalkylene glycol having an average molecular weight of 400 to 30,000 and 0.02 to 3% by weight of a hindered phenol type antioxidant,
(2) The polyester component B is a polyester having an ethylene terephthalate unit as a main repeating unit,
Further, the present invention is achieved by a splittable polyester composite fiber in which the amount of antimony and germanium metal elements contained in the composite fiber is 20 ppm or less.

さらに本発明の他の目的は、該複合繊維をアルカリ水溶液及び/又は熱水を用いて該複合繊維中のポリエステル成分Aを除去してなる極細ポリエステル繊維によって達成することができる。   Still another object of the present invention can be achieved by an ultrafine polyester fiber obtained by removing the polyester component A in the conjugate fiber using an aqueous alkaline solution and / or hot water.

本発明によれば、紡糸口金を通して長時間連続的に紡糸しても口金異物の発生量が非常に少なく、成形性に優れているという優れた性能を有する分割型ポリエステル複合繊維を提供することができる。また、複合繊維にアルカリ減量等を施すことにより、容易に極細繊維を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it spins continuously through a spinneret for a long time, the generation | occurrence | production amount of a foreign matter of a die is very small, and the split type polyester composite fiber which has the outstanding performance that it is excellent in moldability can be provided. it can. In addition, ultrafine fibers can be easily provided by subjecting the conjugate fibers to alkali reduction or the like.

以下、本発明について詳しく説明する。
本発明の分割型複合繊維は、ポリエステル成分Aとポリエステル成分Bとからなり、該ポリエステル成分Bが該ポリエステル成分Aにより複数個に分割された横断面形状を有する複合繊維である。
Hereinafter, the present invention will be described in detail.
The splittable conjugate fiber of the present invention is a conjugate fiber comprising a polyester component A and a polyester component B, wherein the polyester component B is divided into a plurality by the polyester component A and has a cross-sectional shape.

ここで該ポリエステル成分Aは、スルホイソフタル酸金属塩基を含む化合物をポリエステルを構成する全酸成分を基準として1〜8モル%共重合した共重合ポリエステルに、さらに該ポリエステル成分Aを基準として数平均分子量400〜30000のポリオキシアルキレングリコールを1〜20重量%、ヒンダードフェノール化合物を0.02〜3重量%含有する共重合ポリエステル組成物である。   Here, the polyester component A is a copolymerized polyester obtained by copolymerizing a compound containing a metal salt of sulfoisophthalate in an amount of 1 to 8 mol% based on all the acid components constituting the polyester, and a number average based on the polyester component A. It is a copolymerized polyester composition containing 1 to 20% by weight of a polyoxyalkylene glycol having a molecular weight of 400 to 30,000 and 0.02 to 3% by weight of a hindered phenol compound.

ここで、該ポリエステルはエチレンテレフタレートを主たる繰り返し単位とすることが好ましく、すなわち共重合ポリエチレンテレフタレートであることが好ましい。ここで「主たる」とは全繰り返し単位のうち80モル%以上であることを表す。更に該共重合ポリエステルはスルホイソフタル酸金属塩基を含む化合物、及びポリオキシアルキレングリコール以外の成分が少量、好ましくは10モル%以下共重合されていても良い。   Here, the polyester preferably has ethylene terephthalate as a main repeating unit, that is, it is preferably a copolymerized polyethylene terephthalate. Here, “main” means that it is 80 mol% or more of all the repeating units. Further, the copolymerized polyester may be copolymerized with a compound containing a metal salt of sulfoisophthalate and a component other than polyoxyalkylene glycol in a small amount, preferably 10 mol% or less.

ここで、スルホイソフタル酸金属塩基とは、イソフタル酸基にスルホン酸リチウム基、スルホン酸ナトリウム基、又はスルホン酸カリウム基等が結合した基が挙げられる。さらにスルホイソフタル酸金属塩基を含む化合物としては、5−リチウムスルホイソフタル酸、5−ナトリウムスルホイソフタル酸、5−カリウムスルホイソフタル酸等を挙げることができ、これらのスルホイソフタル酸金属塩基を含む化合物は、共重合ポリエステルを構成する全酸成分を基準として1〜8モル%共重合されていることが必要である。該共重合量が1モル%未満の場合は、十分なアルカリ減量性が得られない。一方8モル%より多い場合は、溶融粘度が上昇して、高重合度のポリマーが得られず、複合繊維紡糸時の断糸が増加し、工程安定性が悪化する傾向があるので不適当である。スルホイソフタル酸金属塩基を含む化合物の共重合量は1〜5モル%の範囲が好ましく、2〜4モル%の範囲が更に好ましい。   Here, the metal sulfoisophthalate group includes a group in which a lithium sulfonate group, a sodium sulfonate group, a potassium sulfonate group, or the like is bonded to an isophthalic acid group. Examples of the compound containing a sulfoisophthalic acid metal base further include 5-lithium sulfoisophthalic acid, 5-sodium sulfoisophthalic acid, and 5-potassium sulfoisophthalic acid. It is necessary that 1 to 8 mol% is copolymerized based on all the acid components constituting the copolymerized polyester. When the copolymerization amount is less than 1 mol%, sufficient alkali weight loss cannot be obtained. On the other hand, if it is more than 8 mol%, the melt viscosity increases, a polymer having a high degree of polymerization cannot be obtained, the number of yarn breaks during spinning of the conjugate fiber increases, and the process stability tends to deteriorate. is there. The copolymerization amount of the compound containing a metal sulfoisophthalate is preferably in the range of 1 to 5 mol%, more preferably in the range of 2 to 4 mol%.

また、このポリエステル成分Aとして用いる共重合ポリエステル組成物は、数平均分子量が400〜30000のポリオキシアルキレングリコールを1〜20重量%含有していることが必要である。該ポリオキシアルキレングリコールの数平均分子量が400未満では、十分なアルカリ減量速度が得られず、30000を超える場合、コストが高くなる為好ましくない。   Further, the copolymerized polyester composition used as the polyester component A needs to contain 1 to 20% by weight of a polyoxyalkylene glycol having a number average molecular weight of 400 to 30,000. If the number average molecular weight of the polyoxyalkylene glycol is less than 400, a sufficient alkali weight loss rate cannot be obtained, and if it exceeds 30,000, the cost increases, which is not preferable.

また、該ポリオキシアルキレングリコールの含有量が1重量%未満の場合は、十分なアルカリ減量速度が得られず、該ポリオキシアルキレングリコールの含有量が20重量%より多い場合は、耐熱性が低下して複合繊維紡糸時の断糸が増加し、工程安定性が悪化する傾向があるので不適当である。該ポリオキシアルキレングリコールはポリエステル成分Aに共重合されていることが好ましい為、数平均分子量は600〜10000の範囲が好ましく、1000〜6000の範囲が更に好ましい。また該ポリオキシアルキレングリコールの含有量は3〜15重量%の範囲が好ましく、5〜12重量%の範囲が更に好ましい。   Further, when the content of the polyoxyalkylene glycol is less than 1% by weight, a sufficient alkali weight loss rate cannot be obtained, and when the content of the polyoxyalkylene glycol is more than 20% by weight, heat resistance decreases. As a result, the number of yarn breaks during spinning of the conjugate fiber increases, and the process stability tends to deteriorate. Since the polyoxyalkylene glycol is preferably copolymerized with the polyester component A, the number average molecular weight is preferably in the range of 600 to 10,000, more preferably in the range of 1,000 to 6,000. The content of the polyoxyalkylene glycol is preferably in the range of 3 to 15% by weight, more preferably in the range of 5 to 12% by weight.

ここでポリオキシアルキレングリコールとして、具体的にはポリエチレングリコール、ポリプロピレングリコール、又はポリテトラメチレングリコールが例示されるが、アルカリ減量速度等の観点からポリエチレングリコールが特に好ましい。   Here, specific examples of the polyoxyalkylene glycol include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, and polyethylene glycol is particularly preferable from the viewpoint of the alkali reduction rate and the like.

さらに加えて、ポリエステル成分Aとして用いる共重合ポリエステル組成物は、ヒンダードフェノール化合物を0.02〜3重量%、好ましくは0.1〜2重量%含有していることが必要である。該ヒンダードフェノール化合物の含有量が0.02重量%未満の場合は、熱安定性が悪く、複合繊維紡糸時の断糸が増加し、工程安定性が悪くなり、一方、3重量%を越えた場合も、紡糸時の断糸が増加し工程安定性が悪化する。該ヒンダードフェノール化合物としては、具体的には、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン{住友化学工業(株)製「スミライザー」GA−80と同じ。}、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンゼン)イソフタル酸、トリエチルグリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2−チオ−ジエチレン−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、又はオクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]等が挙げられる。またこれらヒンダードフェノール化合物とチオエーテル系二次酸化防止剤を併用して用いることも好ましく実施される。   In addition, the copolymerized polyester composition used as the polyester component A needs to contain a hindered phenol compound in an amount of 0.02 to 3% by weight, preferably 0.1 to 2% by weight. When the content of the hindered phenol compound is less than 0.02% by weight, heat stability is poor, thread breakage during spinning of the conjugate fiber is increased, and process stability is deteriorated. In this case, yarn breakage during spinning increases, and the process stability deteriorates. As the hindered phenol compound, specifically, pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl {-2,4,8,10-tetraoxaspiro [5,5] undecane} Sumitomo Chemical ( Same as “Sumilyzer” GA-80 manufactured by K.K. }, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert -Butyl-4-hydroxybenzyl) benzene, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzene) isophthalic acid, triethylglycol-bis [3- (3-tert- Butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,2-thio- Diethylene-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] or octadecyl-3- (3,5-di-te t- butyl-4-hydroxyphenyl) propionate] and the like. It is also preferable to use these hindered phenol compounds in combination with a thioether-based secondary antioxidant.

該ヒンダードフェノール化合物のポリエステルへの添加方法は特に制限はないが、好ましくはエステル交換反応、又はエステル化反応終了後であって、重合反応が完了するまでの間の任意の段階で添加する方法が挙げられる。   The method for adding the hindered phenol compound to the polyester is not particularly limited, but is preferably a method in which the hindered phenol compound is added at an arbitrary stage after the transesterification reaction or the esterification reaction is completed and before the polymerization reaction is completed. Is mentioned.

さらに本発明においてポリエステル成分Aを構成する共重合ポリエステルは、その共重合ポリエステルを基準として、ジエチレングリコール単位が0.5〜5.0重量%共重合されているポリエステルであることが好ましい。共重合ポリエステルのジエチレングリコール単位の共重合量をこの範囲とする為には、重縮合反応の温度や時間を制御する他に、共重合ポリエステルの重縮合反応を実施する際にカルボン酸アルカリ金属塩を、共重合ポリエステルを構成する全酸成分を基準として20〜500ミリモル%、好ましくは100〜400ミリモル%含有せしめることが好ましく実施される。該カルボン酸アルカリ金属塩の含有量が20ミリモル%未満の場合は、ジエチレングリコール(DEG)含有量が増加して、5.0重量%を超えることが予想され、複合繊維紡糸時の断糸が増加し、工程安定性が悪くなる。一方500ミリモル%を越えた場合も、熱安定性が悪化して、紡糸時の断糸が増加し、紡糸調子が悪くなる。同様にジエチレングリコール単位の共重合量が0.5重量%未満であると、熱安定性が悪化して、紡糸時の断糸が増加し、紡糸調子が悪くなる。5.0重量%を超えると、複合繊維紡糸時の断糸が増加し、工程安定性が悪くなる。該カルボン酸アルカリ金属塩としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウムなどを挙げることができる。尚、該ジエチレングリコール単位の共重合量を0.5重量%未満とする為には、多大な設備投資費用、生産性低下が発生する為好ましくない。   Further, in the present invention, the copolymerized polyester constituting the polyester component A is preferably a polyester in which a diethylene glycol unit is copolymerized in an amount of 0.5 to 5.0% by weight based on the copolymerized polyester. In order to control the copolymerization amount of the diethylene glycol unit of the copolymerized polyester within this range, in addition to controlling the temperature and time of the polycondensation reaction, when performing the polycondensation reaction of the copolymerized polyester, an alkali metal carboxylate is used. It is preferred to incorporate 20 to 500 mmol%, preferably 100 to 400 mmol%, based on the total acid components constituting the copolymerized polyester. When the content of the alkali metal carboxylate is less than 20 mmol%, the content of diethylene glycol (DEG) is expected to increase to exceed 5.0% by weight, resulting in an increase in thread breakage during spinning of the conjugate fiber. As a result, the process stability deteriorates. On the other hand, if it exceeds 500 mmol%, the thermal stability also deteriorates, the number of breaks during spinning increases, and the spinning condition deteriorates. Similarly, if the copolymerization amount of the diethylene glycol unit is less than 0.5% by weight, the thermal stability is deteriorated, the breakage during spinning is increased, and the spinning condition is deteriorated. If it exceeds 5.0% by weight, the number of breaks during spinning of the conjugate fiber increases, and the process stability deteriorates. Examples of the alkali metal carboxylate include lithium acetate, sodium acetate, and potassium acetate. In addition, it is not preferable that the copolymerization amount of the diethylene glycol unit is less than 0.5% by weight because a large capital investment cost and a decrease in productivity occur.

本発明において、ポリエステル成分Bは、エチレンテレフタレートを主たる繰り返し単位とするポリエステルである。ここで「主たる」とは全繰り返し単位のうち80モル%以上であることを表す。ここで該ポリエステル成分Bは、エチレンテレフタレート単位を構成する成分以外の第3成分を共重合した、共重合ポリエチレンテレフタレートであってもよい。上記第3成分(共重合成分)は、ジカルボン酸成分またはグリコール成分のいずれでもよい。第3成分として好ましく用いられる成分としては、ジカルボン酸成分として、2,6−ナフタレンジカルボン酸、イソフタル酸、若しくはフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、若しくはデカンジカルボン酸等の脂肪族ジカルボン酸、又はシクロヘキサンジカルボン酸等の脂環式ジカルボン酸等が挙げられる。グリコール成分としてはトリメチレングリコール、テトラメチレングリコール、ジエチレングリコール、ポリエチレングリコール、ヘキサメチレングリコール、シクロヘキサンジメタノール、又は2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン等が例示され、これらは単独又は二種以上を使用することができる。   In the present invention, the polyester component B is a polyester containing ethylene terephthalate as a main repeating unit. Here, “main” means that it is 80 mol% or more of all the repeating units. Here, the polyester component B may be a copolymerized polyethylene terephthalate obtained by copolymerizing a third component other than the component constituting the ethylene terephthalate unit. The third component (copolymer component) may be either a dicarboxylic acid component or a glycol component. As a component preferably used as the third component, as a dicarboxylic acid component, an aromatic dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, isophthalic acid, or phthalic acid, adipic acid, azelaic acid, sebacic acid, or decanedicarboxylic acid And alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid. Examples of the glycol component include trimethylene glycol, tetramethylene glycol, diethylene glycol, polyethylene glycol, hexamethylene glycol, cyclohexane dimethanol, and 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane. One type or two or more types can be used.

本発明におけるポリエステル成分A及びBの固有粘度については特に限定はないが、好ましくは、ポリエステル成分Aは0.3〜1.0の範囲に、ポリエステル成分Bは0.5〜0.8の範囲にあることが好ましい。特にポリエステル成分Bの固有粘度が0.5未満の場合、最終的に得られる極細繊維の強度が低下し好ましくない。   The intrinsic viscosities of the polyester components A and B in the present invention are not particularly limited, but preferably, the polyester component A is in the range of 0.3 to 1.0, and the polyester component B is in the range of 0.5 to 0.8. Is preferred. In particular, when the intrinsic viscosity of the polyester component B is less than 0.5, the strength of the finally obtained ultrafine fibers is undesirably reduced.

本発明の分割型ポリエステル複合繊維中に含有されるアンチモン及びゲルマニウム金属元素量は20ppm以下である必要がある。また0ppmに極めて近い方がより好ましい。ここでいうアンチモン及びゲルマニウム金属元素とは、通常ポリエステル製造時の重合触媒として使用されている。このアンチモン金属元素量が多いと複合繊維成形時に紡糸口金周辺への付着物が増加し、安定した繊維の製造が困難となり、またゲルマニウム元素量が多いと繊維製造に必要なポリエステルのコストがアップする為好ましくない。アンチモン及びゲルマニウム金属元素量は15ppm以下にあることが好ましく、10ppm以下にあることが更に好ましい。   The amount of the antimony and germanium metal elements contained in the splittable polyester composite fiber of the present invention must be 20 ppm or less. Further, it is more preferable to be very close to 0 ppm. Here, the antimony and germanium metal elements are usually used as a polymerization catalyst in the production of polyester. If the amount of the antimony metal element is large, the amount of deposits around the spinneret at the time of forming the composite fiber increases, making it difficult to produce a stable fiber.If the amount of the germanium element is large, the cost of polyester required for fiber production increases. Therefore, it is not preferable. The content of the antimony and germanium metal elements is preferably at most 15 ppm, more preferably at most 10 ppm.

また、本発明におけるポリエステル成分A及びポリエステル成分Bはチタン化合物を重合触媒として用いて重合されていることが好ましい。ここで言うチタン化合物とは酸化チタンのような無機粒子のものではなく、実質的にポリマーに可溶なチタン化合物のことである。   The polyester component A and the polyester component B in the present invention are preferably polymerized using a titanium compound as a polymerization catalyst. Here, the titanium compound is not a compound of inorganic particles such as titanium oxide, but a titanium compound substantially soluble in a polymer.

本発明の分割型ポリエステル複合繊維中に含有されるポリエステルに可溶なチタン金属元素量は5〜120ppmの範囲にあることが好ましい。該チタン金属元素とは上述した重合触媒として用いられるチタン金属元素であり、酸化チタンのような無機粒子のものは含まれず、実質的にはポリエステル成分A及びポリエステル成分Bの重合触媒の総量である。これらの重合触媒は、例えばポリエステルをオルトクロロフェノールに溶解後塩酸抽出することにより、無機粒子のものと分離して分析ができる。該ポリエステル系複合繊維中のポリエステルに可溶なチタン金属元素量は7〜100ppmの範囲が好ましく、10〜70ppmの範囲が更に好ましい。   The amount of the titanium metal element soluble in the polyester contained in the splittable polyester conjugate fiber of the present invention is preferably in the range of 5 to 120 ppm. The titanium metal element is a titanium metal element used as the above-mentioned polymerization catalyst, does not include inorganic particles such as titanium oxide, and is substantially the total amount of the polymerization catalyst of the polyester component A and the polyester component B. . These polymerization catalysts can be separated from inorganic particles and analyzed by, for example, dissolving the polyester in orthochlorophenol and extracting with hydrochloric acid. The amount of titanium metal element soluble in the polyester in the polyester composite fiber is preferably in the range of 7 to 100 ppm, more preferably in the range of 10 to 70 ppm.

本発明にポリエステル成分を重合するのに用いられる重合触媒としてのチタン化合物は、特に限定されず、ポリエステルの重合触媒として一般的なチタン化合物、例えば、酢酸チタンやテトラ−n−ブトキシチタンなどが挙げられる。更にポリエステル成分(B)を重合するにあたっては特に好ましいのは、下記一般式(I)で表されるチタン化合物、又は下記一般式(I)で表されるチタン化合物及び下記一般式(II)で表される芳香族多価カルボン酸若しくはその無水物とを反応させた生成物からなる群から選ばれた少なくとも一種を含むチタン化合物成分、並びにリン元素換算で5〜80ミリモル%の下記一般式(III)により表されるリン化合物との未反応混合物を重合触媒系として用いることが好ましい。   The titanium compound as a polymerization catalyst used for polymerizing the polyester component in the present invention is not particularly limited, and a general titanium compound as a polymerization catalyst for polyester, for example, titanium acetate, tetra-n-butoxytitanium, etc. Can be In the case of further polymerizing the polyester component (B), particularly preferred are a titanium compound represented by the following general formula (I), or a titanium compound represented by the following general formula (I) and a titanium compound represented by the following general formula (II). A titanium compound component containing at least one selected from the group consisting of a product obtained by reacting an aromatic polycarboxylic acid or an anhydride thereof represented by the formula, and 5 to 80 mmol% of the following general formula (in terms of phosphorus element): It is preferable to use an unreacted mixture with the phosphorus compound represented by III) as the polymerization catalyst system.

Figure 2004293024
[上記式中、R、R、R及びRはそれぞれ同一若しくは異なって、アルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、それぞれ同一であっても異なっていてもどちらでもよい。]
Figure 2004293024
[Wherein R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m represents 2, 3 or 4 In this case, two, three or four R 2 and R 3 may be the same or different. ]

Figure 2004293024
[上記式中、nは2〜4の整数を表わす。]
Figure 2004293024
[In the above formula, n represents an integer of 2 to 4. ]

Figure 2004293024
[上記式中、R、R及びRは、同一又は異なって炭素数原子数1〜4のアルキル基を示し、Xは、−CH−又は―CH(Y)を示す(Yは、ベンゼン環を示す)。]
Figure 2004293024
[In the above formula, R 5 , R 6 and R 7 are the same or different and represent an alkyl group having 1 to 4 carbon atoms, X represents —CH 2 — or —CH (Y) (Y represents , A benzene ring). ]

ここで、一般式(I)で表されるチタン化合物としては、具体的にはテトライソプロポキシチタン、テトラプロポキシチタン、テトラ−n−ブトキシチタン、テトラエトキシチタン、テトラフェノキシチタン、オクタアルキルトリチタネート、又はヘキサアルキルジチタネートなどが好ましく用いられる。   Here, as the titanium compound represented by the general formula (I), specifically, tetraisopropoxytitanium, tetrapropoxytitanium, tetra-n-butoxytitanium, tetraethoxytitanium, tetraphenoxytitanium, octaalkyltrititanate, Alternatively, hexaalkyl dititanate and the like are preferably used.

また、該チタン化合物と反応させる一般式(II)で表される芳香族多価カルボン酸又はその無水物としては、フタル酸、トリメリット酸、ヘミメリット酸、若しくはピロメリット酸又はこれらの無水物が好ましく用いられる。   Further, as the aromatic polycarboxylic acid represented by the general formula (II) or an anhydride thereof to be reacted with the titanium compound, phthalic acid, trimellitic acid, hemi-mellitic acid, or pyromellitic acid or an anhydride thereof Is preferably used.

上記チタン化合物と芳香族多価カルボン酸又はその無水物とを反応させる場合には、溶媒に芳香族多価カルボン酸又はその無水物の一部又は全部を溶解し、この混合液にチタン化合物を滴下し、0〜200℃の温度で少なくとも30分間、好ましくは30〜150℃の温度で40〜90分間加熱することによって行われる。この際の反応圧力については特に制限はなく、常圧で十分である。   When reacting the titanium compound with an aromatic polycarboxylic acid or an anhydride thereof, part or all of the aromatic polycarboxylic acid or an anhydride thereof is dissolved in a solvent, and the titanium compound is added to the mixed solution. It is carried out by dropping and heating at a temperature of 0 to 200 ° C for at least 30 minutes, preferably at a temperature of 30 to 150 ° C for 40 to 90 minutes. The reaction pressure at this time is not particularly limited, and normal pressure is sufficient.

なお、芳香族多価カルボン酸又はその無水物を溶解させる溶媒としては、エタノール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ベンゼン又はキシレン等から所望に応じていずれを用いることもできる。   As a solvent for dissolving the aromatic polycarboxylic acid or its anhydride, any of ethanol, ethylene glycol, trimethylene glycol, tetramethylene glycol, benzene and xylene can be used as desired.

ここで、チタン化合物と芳香族多価カルボン酸又はその無水物との反応モル比には特に限定はないが、チタン化合物の割合が高すぎると、得られるポリエステルの色調が悪化したり、軟化点が低下したりすることがあり、逆にチタン化合物の割合が低すぎると重合反応が進みにくくなることがある。このため、チタン化合物と芳香族多価カルボン酸又はその無水物との反応モル比は、2/1〜2/5の範囲内とすることが好ましい。またこれ以外の条件によっても上記チタン化合物と芳香族多価カルボン酸又はその無水物とを反応させることができる条件であれば特に限定はない。   Here, the reaction molar ratio of the titanium compound and the aromatic polycarboxylic acid or its anhydride is not particularly limited, but if the ratio of the titanium compound is too high, the color tone of the obtained polyester is deteriorated or the softening point is lowered. May decrease, and conversely, if the proportion of the titanium compound is too low, the polymerization reaction may be difficult to proceed. Therefore, the reaction molar ratio of the titanium compound to the aromatic polycarboxylic acid or its anhydride is preferably in the range of 2/1 to 2/5. Further, other conditions are not particularly limited as long as the conditions allow the above-mentioned titanium compound to react with the aromatic polycarboxylic acid or its anhydride.

本発明において重合触媒として用いる重合触媒系は、上記のチタン化合物成分と、前記一般式(III)により表されるリン化合物との未反応混合物から実質的になるものであり、該リン化合物としては、カルボメトキシメタンホスホン酸、カルボエトキシメタンホスホン酸、カルボプロポキシメタンホスホン酸、カルボプトキシメタンホスホン酸、カルボメトキシ−ホスホノ−フェニル酢酸、カルボエトキシ−ホスホノ−フェニル酢酸、カルボプロトキシ−ホスホノ−フェニル酢酸若しくはカルボブトキシ−ホスホノ−フェニル酢酸のジメチルエステル類、ジエチルエステル類、ジプロピルエステル類又はジブチルエステル類から選ばれることが好ましい。   The polymerization catalyst system used as a polymerization catalyst in the present invention substantially consists of an unreacted mixture of the above-mentioned titanium compound component and the phosphorus compound represented by the general formula (III). , Carbomethoxymethanephosphonic acid, carbethoxymethanephosphonic acid, carbopropoxymethanephosphonic acid, carboxyphenoxymethanephosphonic acid, carbomethoxy-phosphono-phenylacetic acid, carbethoxy-phosphono-phenylacetic acid, carboxypropyl-phosphono-phenylacetic acid Alternatively, carboxy-phosphono-phenylacetic acid is preferably selected from dimethyl esters, diethyl esters, dipropyl esters and dibutyl esters.

上記のリン化合物は、通常安定剤として使用されるリン化合物に比較して、チタン化合物又はチタン化合物成分(以下「チタン化合物等」と略称する。)との反応が比較的緩やかに進行するので、反応中におけるチタン化合物等の触媒活性持続時間が長く、結果として該チタン化合物のポリエステルへの添加量を少なくすることができ、また、本発明のように触媒に対し多量に安定剤を添加する場合であっても、ポリエステルの熱安定性を損ない難い特性を有している。   Since the reaction of the above phosphorus compound with a titanium compound or a titanium compound component (hereinafter abbreviated as “titanium compound or the like”) proceeds relatively slowly as compared with a phosphorus compound usually used as a stabilizer, When the duration of the catalytic activity of the titanium compound or the like during the reaction is long, the amount of the titanium compound added to the polyester can be reduced, and when a large amount of a stabilizer is added to the catalyst as in the present invention. Even so, it has a property that the thermal stability of the polyester is not easily impaired.

上述のリン化合物は、リン元素換算で5〜80ミリモル%の範囲にあることが好ましい。該リン化合物が5ミリモル%未満であるとポリエステルの色調が低下しやすくなり、また80ミリモル%を超えると重合反応が進行しにくくなる為好ましくない。該リン化合物の添加量は10〜60ミリモル%の範囲にあることが更に好ましい。   The above-mentioned phosphorus compound is preferably in the range of 5 to 80 mmol% in terms of elemental phosphorus. If the amount of the phosphorus compound is less than 5 mmol%, the color tone of the polyester tends to decrease, and if it exceeds 80 mmol%, the polymerization reaction is difficult to proceed, which is not preferable. More preferably, the amount of the phosphorus compound is in the range of 10 to 60 mmol%.

また、前記の重合触媒系は、ポリエステル成分Bの重合触媒として用いるだけでなく、ポリエステル成分Aの重合触媒として用い、ポリエステル成分A及びポリエステル成分Bのそれぞれが前記重合触媒系を用いて重合されていることが好ましい。   Further, the polymerization catalyst system is used not only as a polymerization catalyst for the polyester component B but also as a polymerization catalyst for the polyester component A, and each of the polyester component A and the polyester component B is polymerized using the polymerization catalyst system. Is preferred.

本発明に用いるポリエステル成分A及びポリエステル成分Bの製造方法については特に限定はなく、テレフタル酸をグリコール成分と直接エステル化反応させた後重合させる方法、又はテレフタル酸のエステル形成性誘導体をグリコール成分とエステル交換反応させた後重合させる方法のいずれを採用しても良い。ここでエステル形成性誘導体とは低級アルキルエステル、低級アリールエステル等を表わす。   The method for producing the polyester component A and the polyester component B used in the present invention is not particularly limited, and is a method in which terephthalic acid is directly esterified with a glycol component and then polymerized, or an ester-forming derivative of terephthalic acid is combined with a glycol component. Any of the methods of performing polymerization after transesterification may be employed. Here, the ester-forming derivative represents a lower alkyl ester, a lower aryl ester, or the like.

しかしながら、芳香族ジカルボン酸のエステル形成性誘導体を原料とし、エステル交換反応を経由する製造方法とすることが好ましい。該製造方法は、テレフタル酸を原料とする製造方法に比較し、重縮合反応中に安定剤として添加したリン化合物の飛散が少ないという利点がある。   However, it is preferable to use an ester-forming derivative of an aromatic dicarboxylic acid as a raw material and to carry out a production method via a transesterification reaction. The production method has an advantage that the phosphorus compound added as a stabilizer during the polycondensation reaction is less scattered than the production method using terephthalic acid as a raw material.

また、その中でもジメチルテレフタレートを原料物質とする製造方法では、チタン化合物等の添加量を低減できる。このときチタン化合物の一部又は全量をエステル交換反応開始前に添加し、エステル交換反応触媒と重縮合反応触媒の二つ触媒を兼用させる製造方法が好ましい。尚、該エステル交換反応は常圧反応で実施しても、0.05〜0.20MPaの加圧下にて実施してもよい。   Among them, in the production method using dimethyl terephthalate as a raw material, the addition amount of a titanium compound or the like can be reduced. At this time, a production method in which part or all of the titanium compound is added before the start of the transesterification reaction, and the two catalysts of the transesterification catalyst and the polycondensation reaction catalyst are also used. The transesterification reaction may be carried out at normal pressure or under a pressure of 0.05 to 0.20 MPa.

また本発明に用いられるポリエステル成分Bを、エステル交換反応を経由して得る場合にはエステル交換反応触媒として、カルシウム化合物及び/又はマグネシウム化合物を使用することが好ましい。ここで言うカルシウム化合物、マグネシウム化合物とは、エステル交換反応触媒として活性がある化合物のことである。具体的には、マグネシウム化合物としては酢酸カルシウム、硫酸カルシウム、炭酸カルシウム、塩化カルシウム、安息香酸カルシウム、蟻酸カルシウム、若しくはステアリン酸カルシウム酸又はこれらの水和物などを、マグネシウム化合物としては酢酸マグネシウム、硫酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、安息香酸マグネシウム、蟻酸マグネシウム、若しくはステアリン酸マグネシウム又はこれらの水和物等がそれぞれ好ましく使用され、これらは単独で用いても2種以上を併用しても良い。   When the polyester component B used in the present invention is obtained via a transesterification reaction, it is preferable to use a calcium compound and / or a magnesium compound as a transesterification catalyst. Here, the calcium compound and the magnesium compound are compounds that are active as a transesterification catalyst. Specifically, as the magnesium compound, calcium acetate, calcium sulfate, calcium carbonate, calcium chloride, calcium benzoate, calcium formate, or calcium stearate or a hydrate thereof, or the like, and as the magnesium compound, magnesium acetate, magnesium sulfate. , Magnesium carbonate, magnesium chloride, magnesium benzoate, magnesium formate, magnesium stearate, or a hydrate thereof are preferably used, and these may be used alone or in combination of two or more.

本発明に用いられるポリエステル成分A及びポリエステル成分Bには、必要に応じて少量の添加剤、例えば滑剤、顔料、染料、酸化防止剤、固相重合促進剤、蛍光増白剤、帯電防止剤、抗菌剤、紫外線吸収剤、光安定剤、熱安定剤、遮光剤、又は艶消剤等を含んでいてもよく、特にポリエステル成分Bには、艶消剤として酸化チタンなどが好ましく添加される。   In the polyester component A and the polyester component B used in the present invention, if necessary, a small amount of additives such as a lubricant, a pigment, a dye, an antioxidant, a solid phase polymerization accelerator, a fluorescent brightener, an antistatic agent, It may contain an antibacterial agent, an ultraviolet absorber, a light stabilizer, a heat stabilizer, a light-shielding agent, a matting agent, and the like. In particular, to the polyester component B, titanium oxide or the like is preferably added as a matting agent.

以上に説明したポリエステル成分A及びポリエステル成分Bを用いて本発明の分割型ポリエステル複合繊維を製造するには、従来公知の複合紡糸口金及び複合紡糸装置を用い、任意の製糸条件を何らの支障なく採用することができる。例えば500〜2500m/分の速度で溶融紡糸し、延伸、熱処理する方法、1500〜5000m/分の速度で溶融紡糸し、延伸と仮撚加工とを同時に若しくは続いて行う方法、又は5000m/分以上の高速で溶融紡糸し、用途によっては延伸工程を省略する方法等において任意の製糸条件を採用することができる。また得られた繊維又はこの繊維から製造された織編物を、100℃以上の温度で熱処理して構造の安定性を向上させても良いし、さらに必要に応じて弛緩熱処理などを併用してもよい。   In order to produce the splittable polyester composite fiber of the present invention using the polyester component A and the polyester component B described above, a conventionally known composite spinneret and a composite spinning apparatus are used, and any spinning conditions can be adjusted without any trouble. Can be adopted. For example, a method of melt-spinning at a speed of 500 to 2500 m / min, stretching and heat treatment, a method of melt-spinning at a speed of 1500 to 5000 m / min, and performing stretching and false twisting simultaneously or successively, or 5000 m / min or more Any spinning conditions can be adopted by a method such as melt spinning at a high speed and omitting the stretching step depending on the application. Further, the obtained fiber or a woven or knitted fabric produced from this fiber may be subjected to a heat treatment at a temperature of 100 ° C. or higher to improve the stability of the structure, or may be used together with a relaxation heat treatment if necessary. Good.

具体的なポリエステル成分Aとポリエステル成分Bとの複合形状及び夫々の成分の横断面形状は、ポリエステル成分Aによりポリエステル成分Bが複数個に分割された形状を示すものであれば任意であり、そのいくつかの例を図1(a)〜(i)に示す。   The specific composite shape of the polyester component A and the polyester component B and the cross-sectional shape of each component are arbitrary as long as the polyester component B shows a shape obtained by dividing the polyester component B into a plurality of pieces. Some examples are shown in FIGS.

図1において、Aは共重合ポリエステル組成物(ポリエステル成分A)であり、Bはポリエステル(ポリエステル成分B)である。図中(a)〜(c)は、ポリエステル成分Bがポリエステル成分Aにより16に分割されている分割型複合繊維の横断面形状を示した模式図である。また、図中(d)は、ポリエステル成分Aを海、ポリエステル成分Bを島とした海島型の分割型複合繊維の横断面形状を示した模式図であり、ポリエステル成分Bがポリエステル成分Aにより26に分割されている。さらに、図中(e)、(f)は、偏平断面形状の分割型複合繊維の横断面形状を示した模式図であり、最後に図中(g)〜(i)は、それぞれ(a)〜(c)の繊維に対し、さらに外周部をポリエステル成分Aで被覆したものである。   In FIG. 1, A is a copolymerized polyester composition (polyester component A), and B is a polyester (polyester component B). (A)-(c) in the figure are schematic diagrams showing the cross-sectional shapes of the splittable conjugate fibers in which the polyester component B is divided into 16 by the polyester component A. (D) is a schematic diagram showing the cross-sectional shape of the sea-island splittable conjugate fiber in which the polyester component A is the sea and the polyester component B is the island. Is divided into Further, (e) and (f) in the figures are schematic views showing the cross-sectional shapes of the splittable conjugate fibers having a flat cross-sectional shape. Finally, (g) to (i) in the figures respectively show (a) The fibers (c) to (c) are further covered with a polyester component A on the outer periphery.

上記分割型複合繊維は、布帛になした後、アルカリ処理及び/又は熱水で処理することによってポリエステル成分Aを除去し極細繊維となすことができる。また同時に繊維間に空間を持たせることができるので、嵩高でソフトな風合を呈する布帛を得るのに適している。ここでアルカリ水溶液の処理を行うには特に限定はないが、例えば濃度10〜100g/Lの水酸化ナトリウム水溶液を60℃以上に保ち、この溶液中に布帛を浸す方法が通常行われる。処理時間は共重合ポリエステル成分Aを除去するのに適切な時間であり、通常0.5〜30時間である。この処理は連続式で行っても、バッチ式で行ってもなんら問題はない。この処理の終了後、洗浄・乾燥処理などを行い、上述のような極細繊維を得ることができる。この本発明の極細繊維は実質的にポリエステルB成分のみからなる一つの構成単位(単糸)を0.001〜0.3dtexとするのが好ましく、且つ該構成単位の数を16以上、特に24以上とする時、得られる効果(嵩高でソフトな風合を呈すること)が顕著となり好ましい。   After forming the splittable conjugate fiber into a fabric, the polyester component A can be removed by treating the fabric with an alkali treatment and / or hot water to form an ultrafine fiber. At the same time, since a space can be provided between the fibers, it is suitable for obtaining a bulky and soft fabric. Although there is no particular limitation on the treatment of the aqueous alkali solution, for example, a method of maintaining a sodium hydroxide aqueous solution having a concentration of 10 to 100 g / L at 60 ° C. or higher and immersing the cloth in this solution is usually performed. The treatment time is an appropriate time for removing the copolyester component A, and is usually 0.5 to 30 hours. There is no problem whether this processing is performed in a continuous manner or in a batch manner. After the completion of this treatment, a washing / drying treatment is performed to obtain the above-mentioned ultrafine fibers. In the ultrafine fiber of the present invention, it is preferable that one structural unit (single yarn) substantially consisting only of the polyester B component is 0.001 to 0.3 dtex, and the number of the structural units is 16 or more, particularly 24 In the case of the above, the obtained effect (presenting a bulky and soft feel) is remarkable, which is preferable.

ポリエステル成分Aとポリエステル成分Bとの分割型ポリエステル複合繊維における複合比率は、アルカリ処理による分割の容易性と複合繊維の繊維物性とを両立させるという観点から、(成分A:成分B)は重量比で(80:20)〜(2:98)の範囲とすることが好ましく、(60:40)〜(5:95)の範囲とすることがさらに好ましい。   The composite ratio of the polyester component A and the polyester component B in the splittable polyester composite fiber is such that (component A: component B) is a weight ratio from the viewpoint of achieving both the ease of division by alkali treatment and the fiber properties of the composite fiber. Is preferably in the range of (80:20) to (2:98), and more preferably in the range of (60:40) to (5:95).

以下、本発明を下記実施例によりさらに具体的に説明するが、本発明はこれにより何等限定を受けるものでは無い。尚、実施例中の各値は、以下の方法に従って求めた。
(1)固有粘度:
ポリエステルポリマーの固有粘度は、35℃オルトクロロフェノール溶液で、常法に従って35℃において測定した粘度の値から求めた。
(2)ジエチレングリコール量:
抱水ヒドラジン(ヒドラジンヒドラート)を用いてサンプルを分解し、分解物をガスクロマトグラフィー(HEWLETT PACKARD社製、HP6890 Series GC System)を用いてジエチレングリコール量を定量した。定量値から測定したポリマーの重量を基準とした時の共重合量の重量百分率を求めた。
(3)ポリマー色調(カラーL値及びカラーb値):
ポリマーチップを130℃、1時間乾燥結晶化処理後、日本電色工業株式会社製測色色差計Z−1001DPを用いて測定した。L値は明度を示し、その数値が大きいほど明度が高いことを示し、b値はその値が大きいほど黄色味の度合いが大きいことを示す。他の詳細な測定手法はJIS Z−8729に従って行った。
(4)布帛(平織物)色調(カラーL値及びカラーb値):
定法に従い平織物を作成しその布帛(平織物)を八つ折りにし、グレタグ・マクベス社(GretagMacbeth)製C3100測色色差計を用いて測定した。
(5)チタン、アンチモン、ゲルマニウム、カルシウム、及びナトリウム含有量:
複合繊維サンプルをオルトクロロフェノールに溶解した後、0.5規定塩酸で抽出操作を行った。この抽出液について株式会社日立製作所製Z−8100型原子吸光光度計を用いて定量を行った。
(6)共重合ポリエステル成分A中のスルホイソフタル酸金属塩化合物及びポリマー中のリン元素の含有量:
ポリマーサンプルをアルミ板上で加熱溶融した後、圧縮プレス機で平坦面を有する試験成形体を作成し、蛍光X線装置(理学電機工業株式会社製3270E型)を用いて硫黄元素の含有量を測定して、全酸成分に対する共重合モル%を求めた。更にリン元素の含有量を測定し、リン化合物の添加ミリモル%を求めた。
(7)共重合ポリエステル成分A中のポリエチレングリコール及びヒンダードフェノール型酸化防止剤の含有量:
ポリマーサンプルを重水素化トリフルオロ酢酸/重水素化クロロホルム=1/1混合溶媒に溶解後、日本電子(株)製JEOL A−600 超伝導FT−NMRを用いて核磁気共鳴スペクトル(H−NMR)を測定した。そのスペクトルパターンから常法に従って、ポリエチレングリコール成分含有量及びヒンダードフェノール型酸化防止剤含有量を定量した。
(8)共重合ポリエステル成分A中のポリエチレングリコールの数平均分子量:
サンプルを過剰量のメタノールとともに封管し、オートクレーブ中260℃、4時間メタノール分解し、分解物をクロロホルムで10倍に希釈した。その後、昭和電工(株)製Shodex GPC−101を用いて、展開溶剤にクロロホルムを使用し、分子量測定を行って、得られた分子量分布曲線から数平均分子量を算出し、有効数字1桁で記した。
(9)紡糸口金に発生する付着物の層:
2日間紡糸し、口金の吐出口外縁に発生する付着物の層の高さを測定した。この付着物層の高さが大きいほど吐出されたポリエステルメルトのフィラメント状流にベンディングが発生しやすく、このポリエステルの成形性は低くなる。すなわち、紡糸口金に発生する付着物層の高さは、当該ポリエステルの成形性の指標である。
Hereinafter, the present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto. In addition, each value in an Example was calculated | required according to the following method.
(1) Intrinsic viscosity:
The intrinsic viscosity of the polyester polymer was determined from the value of the viscosity measured at 35 ° C. in a 35 ° C. orthochlorophenol solution according to a conventional method.
(2) Amount of diethylene glycol:
The sample was decomposed using hydrazine hydrate (hydrazine hydrate), and the amount of diethylene glycol in the decomposed product was quantified using gas chromatography (HP6890 Series GC System, manufactured by HEWLETT PACKARD). The weight percentage of the copolymerization amount based on the weight of the polymer measured from the quantitative value was determined.
(3) Polymer color tone (color L value and color b value):
After the polymer chip was dried and crystallized at 130 ° C. for 1 hour, the measurement was performed using a colorimetric colorimeter Z-1001DP manufactured by Nippon Denshoku Industries Co., Ltd. The L value indicates lightness, and the larger the numerical value, the higher the lightness, and the larger the b value, the greater the yellowness. Other detailed measurement methods were performed according to JIS Z-8729.
(4) Cloth (plain woven) color tone (color L value and color b value):
A plain fabric was prepared according to a standard method, the fabric (plain fabric) was folded in eight, and the measurement was performed using a C3100 colorimetric colorimeter manufactured by Gretag Macbeth.
(5) Titanium, antimony, germanium, calcium, and sodium content:
After dissolving the composite fiber sample in orthochlorophenol, an extraction operation was performed with 0.5 N hydrochloric acid. This extract was quantified using an atomic absorption spectrophotometer model Z-8100 manufactured by Hitachi, Ltd.
(6) Content of metal sulfoisophthalate compound in copolymerized polyester component A and phosphorus element in polymer:
After the polymer sample was heated and melted on an aluminum plate, a test molded body having a flat surface was prepared using a compression press machine, and the content of the sulfur element was measured using a fluorescent X-ray apparatus (model 3270E manufactured by Rigaku Corporation). By measuring, the copolymer mol% based on all the acid components was determined. Further, the content of the phosphorus element was measured, and the mmol% of the phosphorus compound added was determined.
(7) Content of polyethylene glycol and hindered phenol type antioxidant in copolymerized polyester component A:
After dissolving the polymer sample in deuterated trifluoroacetic acid / deuterated chloroform = 1/1 mixed solvent, JEOL Ltd. JEOL A-600 nuclear magnetic resonance spectrum with superconducting FT-NMR (1 H- NMR). From the spectrum pattern, the content of the polyethylene glycol component and the content of the hindered phenol type antioxidant were quantified according to a conventional method.
(8) Number average molecular weight of polyethylene glycol in copolymerized polyester component A:
The sample was sealed with an excess amount of methanol, methanol-decomposed in an autoclave at 260 ° C. for 4 hours, and the decomposition product was diluted 10-fold with chloroform. After that, using Showex GPC-101 Shodex GPC-101, chloroform was used as a developing solvent, and the molecular weight was measured. The number average molecular weight was calculated from the obtained molecular weight distribution curve, and the result was recorded with one significant digit. did.
(9) Layer of deposits generated on spinneret:
Spinning was performed for 2 days, and the height of the layer of deposits generated on the outer edge of the discharge port of the die was measured. As the height of the deposit layer increases, bending tends to occur in the filamentary flow of the discharged polyester melt, and the moldability of the polyester decreases. That is, the height of the deposit layer generated on the spinneret is an index of the moldability of the polyester.

[参考例1]
ポリエステル成分A用ポリマーの製造:
テレフタル酸ジメチル97.5部、5−ナトリウムスルホイソフタル酸ジメチル3.8部、エチレングリコール65部との混合物に、テトラ−n−ブトキシチタン0.017部、酢酸ナトリウム0.109部を撹拌機、精留塔及びメタノール留出コンデンサーを設けた反応器に仕込み、140℃から徐々に昇温しつつ、反応の結果生成するメタノールを系外に留出させながら、240℃まで昇温してエステル交換反応を行った。
[Reference Example 1]
Preparation of polymer for polyester component A:
To a mixture of 97.5 parts of dimethyl terephthalate, 3.8 parts of dimethyl 5-sodium sulfoisophthalate, and 65 parts of ethylene glycol, 0.017 part of tetra-n-butoxytitanium and 0.109 part of sodium acetate were stirred. Charged into a reactor equipped with a rectification tower and a methanol distillation condenser, and while gradually increasing the temperature from 140 ° C, distilling the methanol produced as a result of the reaction out of the system, and then increasing the temperature to 240 ° C to transesterify. The reaction was performed.

次いで、得られた反応生成物に数平均分子量4000のポリエチレングリコール11部、ヒンダードフェノール化合物(住友化学工業株式会社製、「スミライザー」GA−80)0.30部を添加し、撹拌機及びグリコール留出コンデンサーを設けた別の反応器に移し、240℃から285℃に徐々に昇温すると共に、70Pa以下の高真空に圧力を下げながら重合反応を行った。反応系の溶融粘度をトレースしつつ、固有粘度が0.70となる時点で重合反応を打ち切った。
溶融ポリマーを反応器底部よりストランド状に冷却水中に押し出し、ストランドカッターを用いて切断してチップ化した。結果を表1に示す。
Next, 11 parts of polyethylene glycol having a number average molecular weight of 4000 and 0.30 parts of a hindered phenol compound (“Sumilyzer” GA-80, manufactured by Sumitomo Chemical Co., Ltd.) were added to the obtained reaction product, and a stirrer and glycol were added. It was transferred to another reactor provided with a distillation condenser, and while gradually raising the temperature from 240 ° C. to 285 ° C., the polymerization reaction was carried out while reducing the pressure to a high vacuum of 70 Pa or less. While tracing the melt viscosity of the reaction system, the polymerization reaction was terminated when the intrinsic viscosity became 0.70.
The molten polymer was extruded from a reactor bottom into strands into cooling water, and cut into chips using a strand cutter. Table 1 shows the results.

[参考例2]
ポリエステル成分A用ポリマーの製造:
参考例1において、エステル交換反応終了時にトリエチルホスホノアセテート0.023部を添加し、エステル交換反応を終了させたこと以外は同様の操作を行った。結果を表1に示す。
[Reference Example 2]
Preparation of polymer for polyester component A:
In Reference Example 1, the same operation was performed except that at the end of the transesterification reaction, 0.023 parts of triethylphosphonoacetate was added to terminate the transesterification reaction. Table 1 shows the results.

[比較参考例1]
ポリエステル成分A用ポリマーの製造:
テレフタル酸ジメチル97.5部、5−ナトリウムスルホイソフタル酸ジメチル3.8部、エチレングリコール65部との混合物に、酢酸マンガン四水和物0.03部、酢酸ナトリウム0.109部を撹拌機、精留塔及びメタノール留出コンデンサーを設けた反応器に仕込み、140℃から徐々に昇温しつつ、反応の結果生成するメタノールを系外に留出させながら、240℃まで昇温してエステル交換反応を行った。その後、リン酸トリメチル0.02重量部を添加し、エステル交換反応を終了させた。
[Comparative Reference Example 1]
Preparation of polymer for polyester component A:
To a mixture of 97.5 parts of dimethyl terephthalate, 3.8 parts of dimethyl 5-sodium sulfoisophthalate, and 65 parts of ethylene glycol, 0.03 part of manganese acetate tetrahydrate and 0.109 part of sodium acetate were stirred. Charged into a reactor equipped with a rectification tower and a methanol distillation condenser, and while gradually increasing the temperature from 140 ° C, distilling the methanol produced as a result of the reaction out of the system, and then increasing the temperature to 240 ° C to transesterify. The reaction was performed. Thereafter, 0.02 parts by weight of trimethyl phosphate was added to terminate the transesterification reaction.

次いで、得られた反応生成物に数平均分子量4000のポリエチレングリコール11部、ヒンダードフェノール化合物(住友化学工業株式会社製、「スミライザー」GA−80)0.30部、三酸化二アンチモン0.045部を添加し、撹拌機及びグリコール留出コンデンサーを設けた別の反応器に移し、240℃から285℃に徐々に昇温すると共に、70Pa以下の高真空に圧力を下げながら重合反応を行った。反応系の溶融粘度をトレースしつつ、固有粘度が0.70となる時点で重合反応を打ち切った。
溶融ポリマーを反応器底部よりストランド状に冷却水中に押し出し、ストランドカッターを用いて切断してチップ化した。結果を表1に示す。
Next, 11 parts of polyethylene glycol having a number average molecular weight of 4000, 0.30 parts of a hindered phenol compound (“Sumilyzer” GA-80, manufactured by Sumitomo Chemical Co., Ltd.) and 0.045 of diantimony trioxide were added to the obtained reaction product. Was added, and the mixture was transferred to another reactor equipped with a stirrer and a glycol distilling condenser, and while gradually raising the temperature from 240 ° C. to 285 ° C., the polymerization reaction was performed while reducing the pressure to a high vacuum of 70 Pa or less. . While tracing the melt viscosity of the reaction system, the polymerization reaction was terminated when the intrinsic viscosity became 0.70.
The molten polymer was extruded from a reactor bottom into strands into cooling water, and cut into chips using a strand cutter. Table 1 shows the results.

[参考例3]
ポリエステル成分B用ポリマーの製造:
テレフタル酸ジメチル100部とエチレングリコール70部との混合物に、テトラ−n−ブトキシチタン0.009部を加圧反応が可能なステンレス製容器に仕込み、0.07MPaの加圧を行い140℃から240℃に昇温しながらエステル交換反応させた後、トリエチルホスホノアセテート0.023部、テラゾールブルー0.00005部を添加し、エステル交換反応を終了させた。
[Reference Example 3]
Preparation of polymer for polyester component B:
To a mixture of 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol, 0.009 part of tetra-n-butoxytitanium is charged into a stainless steel container capable of performing a pressure reaction, and is pressurized at 0.07 MPa to 140 ° C. to 240 ° C. After the transesterification reaction while raising the temperature to ° C, 0.023 parts of triethylphosphonoacetate and 0.00005 parts of terazole blue were added to terminate the transesterification reaction.

次いで、得られた反応生成物に酸化チタン20重量%のエチレングリコールスラリーを1.5部添加後、撹拌機及びグリコール留出コンデンサーを設けた別の反応器に移し、240℃から285℃に徐々に昇温すると共に、70Pa以下の高真空に圧力を下げながら重合反応を行った。反応系の溶融粘度をトレースしつつ、固有粘度が0.63となる時点で重合反応を打ち切った。
溶融ポリマーを反応器底部よりストランド状に冷却水中に押し出し、ストランドカッターを用いて切断してチップ化した。結果を表1に示す。
Next, 1.5 parts of an ethylene glycol slurry containing 20% by weight of titanium oxide was added to the obtained reaction product, and the mixture was transferred to another reactor equipped with a stirrer and a glycol distillation condenser, and gradually heated from 240 ° C to 285 ° C. And the polymerization reaction was carried out while reducing the pressure to a high vacuum of 70 Pa or less. While tracing the melt viscosity of the reaction system, the polymerization reaction was stopped when the intrinsic viscosity reached 0.63.
The molten polymer was extruded from a reactor bottom into strands into cooling water, and cut into chips using a strand cutter. Table 1 shows the results.

[参考例4]
トリメリット酸チタンの調整:
無水トリメリット酸のエチレングリコール溶液(0.2%)にテトラブトキシチタンを無水トリメリット酸に対して1/2モル添加し、空気中常圧下で80℃に保持して60分間反応させた。その後、常温に冷却し、10倍量のアセトンによって生成触媒を再結晶化させ、析出物を濾紙で濾過し、100℃で2時間乾燥させて目的の触媒を得た。
[Reference Example 4]
Adjustment of titanium trimellitate:
To a solution of trimellitic anhydride in ethylene glycol (0.2%), ブ mole of tetrabutoxytitanium was added with respect to trimellitic anhydride, and the mixture was reacted at 80 ° C. under normal pressure in the air for 60 minutes. Thereafter, the mixture was cooled to room temperature, the produced catalyst was recrystallized with 10 times the amount of acetone, and the precipitate was filtered with filter paper and dried at 100 ° C. for 2 hours to obtain the desired catalyst.

[参考例5]
ポリエステル成分B用ポリマーの製造:
参考例3において、チタン化合物として、上記参考例の方法で調整したトリメリット酸チタン0.016部に変更したこと以外は同様の操作を行った。結果を表1に示す。
[Reference Example 5]
Preparation of polymer for polyester component B:
In Reference Example 3, the same operation was performed except that the titanium compound was changed to 0.016 parts of titanium trimellitate adjusted by the method of the above Reference Example. Table 1 shows the results.

[参考例6]
ポリエステル成分B用ポリマーの製造:
テレフタル酸ジメチル100重量部とエチレングリコール70重量部との混合物に、酢酸カルシウム一水和物0.064重量部を撹拌機、精留塔及びメタノール留出コンデンサーを設けた反応器に仕込み、140℃から240℃まで徐々に昇温しつつ、反応の結果生成するメタノールを系外に留出させながら、エステル交換反応を行った。その後、56重量%濃度のリン酸水溶液0.044重量部を添加し、エステル交換反応を終了させた。
[Reference Example 6]
Preparation of polymer for polyester component B:
A mixture of 100 parts by weight of dimethyl terephthalate and 70 parts by weight of ethylene glycol was charged with 0.064 parts by weight of calcium acetate monohydrate in a reactor equipped with a stirrer, a rectification column and a methanol distillation condenser, and charged at 140 ° C. The transesterification reaction was carried out while gradually increasing the temperature from the temperature to 240 ° C. while distilling methanol generated as a result of the reaction out of the system. Thereafter, 0.044 parts by weight of a 56% by weight phosphoric acid aqueous solution was added to terminate the transesterification reaction.

次いで、得られた反応生成物に上記参考例の方法で合成したトリメリット酸チタン0.016部、トリエチルホスホノアセテート0.023部、テラゾールブルー0.00005部、及び酸化チタン20重量%のエチレングリコールスラリー1.5部を添加後、撹拌装置、窒素導入口、減圧口、及び蒸留装置を備えた反応容器に移し、240℃から285℃に徐々に昇温すると共に、70Pa以下の高真空に圧力を下げながら重合反応を行った。反応系の溶融粘度をトレースしつつ、固有粘度が0.63となる時点で重合反応を打ち切った。
溶融ポリマーを反応器底部よりストランド状に冷却水中に押し出し、ストランドカッターを用いて切断してチップ化した。結果を表1に示す。
Next, 0.016 parts of titanium trimellitate, 0.023 parts of triethylphosphonoacetate, 0.00005 parts of terazole blue, and 20% by weight of titanium oxide were added to the obtained reaction product. After adding 1.5 parts of ethylene glycol slurry, the mixture was transferred to a reaction vessel equipped with a stirrer, a nitrogen inlet, a pressure reducing port, and a distillation apparatus, and the temperature was gradually raised from 240 ° C. to 285 ° C. and a high vacuum of 70 Pa or less. The polymerization reaction was carried out while lowering the pressure. While tracing the melt viscosity of the reaction system, the polymerization reaction was stopped when the intrinsic viscosity reached 0.63.
The molten polymer was extruded from a reactor bottom into strands into cooling water, and cut into chips using a strand cutter. Table 1 shows the results.

[参考例7]
ポリエステル成分B用ポリマーの製造:
参考例3において、チタン化合物として、上記参考例の方法で調整したトリメリット酸チタン0.016部に変更し、トリエチルホスホノアセテートを添加しなかったこと以外は同様の操作を行った。結果を表1に示す。
[Reference Example 7]
Preparation of polymer for polyester component B:
In Reference Example 3, the same operation was performed except that the titanium compound was changed to 0.016 part of titanium trimellitate adjusted by the method of the above Reference Example, and triethylphosphonoacetate was not added. Table 1 shows the results.

[比較参考例2]
ポリエステル成分B用ポリマーの製造:
テレフタル酸ジメチル100重量部とエチレングリコール70重量部との混合物に、酢酸カルシウム一水和物0.064重量部を撹拌機、精留塔及びメタノール留出コンデンサーを設けた反応器に仕込み、140℃から240℃まで徐々に昇温しつつ、反応の結果生成するメタノールを系外に留出させながら、エステル交換反応を行った。その後、56重量%濃度のリン酸水溶液0.072重量部を添加し、エステル交換反応を終了させた。
[Comparative Reference Example 2]
Preparation of polymer for polyester component B:
A mixture of 100 parts by weight of dimethyl terephthalate and 70 parts by weight of ethylene glycol was charged with 0.064 parts by weight of calcium acetate monohydrate in a reactor equipped with a stirrer, a rectification column and a methanol distillation condenser, and charged at 140 ° C. The transesterification reaction was carried out while gradually increasing the temperature from the temperature to 240 ° C. while distilling methanol generated as a result of the reaction out of the system. Thereafter, 0.072 parts by weight of a 56% by weight phosphoric acid aqueous solution was added to terminate the transesterification reaction.

次いで得られた反応生成物に、三酸化二アンチモン0.045部、酸化チタン20重量%のエチレングリコールスラリー1.5部を添加後、撹拌装置、窒素導入口、減圧口及び蒸留装置を備えた反応容器に移し、240℃から285℃に徐々に昇温すると共に、70Pa以下の高真空に圧力を下げながら重合反応を行った。反応系の溶融粘度をトレースしつつ、固有粘度が0.63となる時点で重合反応を打ち切った。
溶融ポリマーを反応器底部よりストランド状に冷却水中に押し出し、ストランドカッターを用いて切断してチップ化した。結果を表1に示す。
Next, 0.045 parts of diantimony trioxide and 1.5 parts of an ethylene glycol slurry containing 20% by weight of titanium oxide were added to the obtained reaction product, and then a stirrer, a nitrogen inlet, a pressure reducing port, and a distillation apparatus were provided. It was transferred to a reaction vessel, and while gradually raising the temperature from 240 ° C. to 285 ° C., the polymerization reaction was performed while reducing the pressure to a high vacuum of 70 Pa or less. While tracing the melt viscosity of the reaction system, the polymerization reaction was stopped when the intrinsic viscosity reached 0.63.
The molten polymer was extruded from a reactor bottom into strands into cooling water, and cut into chips using a strand cutter. Table 1 shows the results.

Figure 2004293024
Figure 2004293024

[実施例1〜5、比較例1〜4]
ポリエステル成分A及びポリマー成分Bとして、表2に示すように、参考例1〜3、参考例5〜7及び比較参考例1〜2で得られたポリマーを用い、図1の(d)に示す型の口金を使用し、ポリエステル成分Aを海成分、ポリエステルB成分を島成分として複合紡糸口金から島及び海成分を同時紡糸し、海島型複合未延伸糸を得た。その際の紡糸温度は290℃、紡糸速度は3000m/分で、総繊度は83dtex、フィラメント数は20本、1フィラメント中の島数は26、島成分の重量割合は50%(島成分の単繊度は0.08dtex)、海成分50%の未延伸糸を得た。この複合未延伸糸を、加熱プレート温度は200℃、延伸倍率1.15倍で延伸糸を得た。次いで、得られた複合繊維を平織物とし、温度90℃の水酸化ナトリウム水溶液(濃度35g/リットル)中で、50重量%のアルカリ減量処理を行い、極細繊維の織物を得た。結果を表2に示す。
[Examples 1 to 5, Comparative Examples 1 to 4]
As shown in Table 2, as the polyester component A and the polymer component B, the polymers obtained in Reference Examples 1 to 3, Reference Examples 5 to 7 and Comparative Reference Examples 1 and 2 were used, and the results are shown in FIG. Using a mold die, the polyester component A was the sea component and the polyester B component was the island component, and the island and sea components were simultaneously spun from the composite spinneret to obtain a sea-island composite undrawn yarn. The spinning temperature at that time was 290 ° C., the spinning speed was 3000 m / min, the total fineness was 83 dtex, the number of filaments was 20, the number of islands in one filament was 26, and the weight ratio of the island component was 50% (the single fineness of the island component was 0.08 dtex) and an undrawn yarn having a sea component of 50% was obtained. The composite undrawn yarn was obtained at a heating plate temperature of 200 ° C. and a draw ratio of 1.15 times. Next, the obtained composite fiber was made into a plain woven fabric, and subjected to a 50% by weight alkali weight reduction treatment in an aqueous sodium hydroxide solution (concentration: 35 g / liter) at a temperature of 90 ° C., to obtain a woven fabric of ultrafine fibers. Table 2 shows the results.

Figure 2004293024
Figure 2004293024

表2からも明らかなように、本発明の範囲にあるものは口金異物の発生量が少なく良好な成形性を示したが、本発明の範囲を外れる場合(比較例1〜4)は、口金異物量が非常に多く、成形性が劣るものであった。更に本発明の請求項1〜5までを満たす範囲にあるもの(実施例1〜3、5)は最終的に得られる極細繊維製品の色調も良好なものであった。   As is clear from Table 2, those in the range of the present invention showed a small amount of foreign matter in the die and showed good moldability, but when out of the range of the present invention (Comparative Examples 1 to 4), the die was The amount of foreign matters was very large, and the moldability was poor. Further, those which fall within the range satisfying claims 1 to 5 of the present invention (Examples 1 to 3 and 5) also have excellent color tone of the finally obtained ultrafine fiber product.

本発明によれば、紡糸口金を通して長時間連続的に紡糸しても口金異物の発生量が非常に少なく、成形性に優れているという性能を有する分割型ポリエステル複合繊維を提供することができる。また、複合繊維にアルカリ減量等を施すことにより、容易に極細繊維を提供することが出来る。その複合繊維を用いて織編物を作成し、その後にアルカリ減量等を行うと繊維間に空間を持たせることができる。その結果その織編物は嵩高でソフトな風合を呈する布帛を得るのに適している。   ADVANTAGE OF THE INVENTION According to this invention, even if it spins continuously for a long time through a spinneret, the generation | occurrence | production amount of a nozzle | bodies foreign substance is very small, and the split type polyester composite fiber which has the performance that it is excellent in moldability can be provided. In addition, ultrafine fibers can be easily provided by subjecting the conjugate fibers to weight reduction or the like. When a woven or knitted fabric is prepared using the composite fiber, and then alkali reduction is performed, a space can be provided between the fibers. As a result, the woven or knitted fabric is suitable for obtaining a cloth having a bulky and soft feel.

また本発明においてはアルカリ減量等がおこりやすいポリエステル成分A中のアンチモン元素含有量が少ないので、アルカリ減量排水中に含まれるアンチモン金属元素を低減させることが可能であるので工業上の意義は極めて大きい。   Further, in the present invention, the antimony element content in the polyester component A, which is liable to cause alkali weight loss and the like, is small, so that it is possible to reduce the antimony metal element contained in the alkali weight loss wastewater, so that the industrial significance is extremely large. .

本発明の分割型ポリエステル複合繊維の例を示す拡大横断面図である。1 is an enlarged cross-sectional view illustrating an example of a splittable polyester composite fiber of the present invention.

符号の説明Explanation of reference numerals

A ポリエステル成分A
B ポリエステル成分B
A Polyester component A
B Polyester component B

Claims (9)

ポリエステル成分A及びポリエステル成分Bとからなり、該ポリエステル成分Bが該ポリエステル成分Aにより複数個に分割された横断面形状を有する複合繊維であって、
(1)該ポリエステル成分Aが、スルホイソフタル酸金属塩基を含む化合物をポリエステルを構成する全酸成分を基準として1〜8モル%共重合した共重合ポリエステルに、さらに該ポリエステル成分Aを基準として数平均分子量が400〜30000のポリオキシアルキレングリコールを1〜20重量%、ヒンダードフェノール型酸化防止剤を0.02〜3重量%含有する共重合ポリエステル組成物であり、
(2)該ポリエステル成分Bがエチレンテレフタレート単位を主たる繰り返し単位とするポリエステルであり、
且つ、該複合繊維中に含有されるアンチモン及びゲルマニウム金属元素量が20ppm以下である分割型ポリエステル複合繊維。
A conjugate fiber comprising a polyester component A and a polyester component B, wherein the polyester component B has a cross-sectional shape divided into a plurality by the polyester component A,
(1) The polyester component A is a copolymerized polyester obtained by copolymerizing a compound containing a metal salt of sulfoisophthalate in an amount of 1 to 8 mol% based on all the acid components constituting the polyester. A copolymerized polyester composition containing 1 to 20% by weight of a polyoxyalkylene glycol having an average molecular weight of 400 to 30,000 and 0.02 to 3% by weight of a hindered phenol type antioxidant,
(2) The polyester component B is a polyester having an ethylene terephthalate unit as a main repeating unit,
In addition, a splittable polyester composite fiber in which the amount of antimony and germanium metal elements contained in the composite fiber is 20 ppm or less.
該共重合ポリエステルがジエチレングリコール単位を0.5〜5.0重量%共重合されているポリエステルである請求項1に記載の複合繊維。   The conjugate fiber according to claim 1, wherein the copolymerized polyester is a polyester obtained by copolymerizing 0.5 to 5.0% by weight of a diethylene glycol unit. ポリエステル成分Aがカルボン酸アルカリ金属塩を、共重合ポリエステルを構成する全酸成分を基準として20〜500ミリモル%含有する共重合ポリエステル組成物である請求項1に記載の複合繊維。   The conjugate fiber according to claim 1, wherein the polyester component A is a copolymerized polyester composition containing 20 to 500 mmol% of an alkali metal carboxylate based on all acid components constituting the copolymerized polyester. ポリエステル成分A及びポリエステル成分Bがチタン化合物を重合触媒として重合されたポリエステルである請求項1〜3のいずれか1項に記載の複合繊維。   The conjugate fiber according to any one of claims 1 to 3, wherein the polyester component A and the polyester component B are polyesters polymerized using a titanium compound as a polymerization catalyst. 複合繊維中に含有されるポリエステルに可溶なチタン金属元素量が5〜120ppmである請求項4に記載の複合繊維。   The conjugate fiber according to claim 4, wherein the amount of the titanium metal element soluble in the polyester contained in the conjugate fiber is 5 to 120 ppm. ポリエステル成分Bが、下記一般式(I)で表されるチタン化合物、又は下記一般式(I)で表されるチタン化合物及び下記一般式(II)で表される芳香族多価カルボン酸若しくはその無水物とを反応させた生成物からなる群から選ばれた少なくとも一種を含むチタン化合物成分、並びにリン元素換算で5〜80ミリモル%の下記一般式(III)により表されるリン化合物との未反応混合物から実質的になる重合触媒系により重合されたものである請求項4または5に記載の複合繊維。
Figure 2004293024
[上記式中、R、R、R及びRはそれぞれ同一若しくは異なって、アルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、それぞれ同一であっても異なっていてもどちらでもよい。]
Figure 2004293024
[上記式中、nは2〜4の整数を表わす。]
Figure 2004293024
[上記式中、R、R及びRは、同一又は異なって炭素数原子数1〜4のアルキル基を示し、Xは、−CH−又は―CH(Y)を示す(Yは、ベンゼン環を示す)。]
Polyester component B is a titanium compound represented by the following general formula (I), or a titanium compound represented by the following general formula (I) and an aromatic polycarboxylic acid represented by the following general formula (II) A titanium compound component containing at least one selected from the group consisting of products obtained by reacting with an anhydride; and 5 to 80 mmol% of a phosphorus compound represented by the following general formula (III) in terms of phosphorus element. The conjugate fiber according to claim 4 or 5, which is polymerized by a polymerization catalyst system substantially consisting of a reaction mixture.
Figure 2004293024
[Wherein R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m represents 2, 3 or 4 In this case, two, three or four R 2 and R 3 may be the same or different. ]
Figure 2004293024
[In the above formula, n represents an integer of 2 to 4. ]
Figure 2004293024
[In the above formula, R 5 , R 6 and R 7 are the same or different and represent an alkyl group having 1 to 4 carbon atoms, X represents —CH 2 — or —CH (Y) (Y represents , A benzene ring). ]
ポリエステル成分Aが該重合触媒系によって重合されたものである請求項4〜6のいずれか1項に記載の複合繊維。   The conjugate fiber according to any one of claims 4 to 6, wherein the polyester component A is polymerized by the polymerization catalyst system. ポリエステル成分Bがエステル交換反応を経由して重縮合して得られるものであって、該エステル交換反応に用いる触媒がカルシウム化合物及び/又はマグネシウム化合物である請求項1〜7のいずれか1項に記載の複合繊維。   The polyester component B is obtained by polycondensation via a transesterification reaction, and the catalyst used for the transesterification reaction is a calcium compound and / or a magnesium compound. The conjugate fiber according to the above. 請求項1〜8のいずれか1項に記載の複合繊維を、アルカリ水溶液及び/又は熱水を用いて該複合繊維中のポリエステル成分Aを除去してなる極細ポリエステル繊維。   An ultrafine polyester fiber obtained by removing the polyester component A from the conjugate fiber according to any one of claims 1 to 8 using an aqueous alkaline solution and / or hot water.
JP2004030366A 2003-03-11 2004-02-06 Split polyester composite fiber Expired - Lifetime JP4361387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030366A JP4361387B2 (en) 2003-03-11 2004-02-06 Split polyester composite fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003064810 2003-03-11
JP2004030366A JP4361387B2 (en) 2003-03-11 2004-02-06 Split polyester composite fiber

Publications (2)

Publication Number Publication Date
JP2004293024A true JP2004293024A (en) 2004-10-21
JP4361387B2 JP4361387B2 (en) 2009-11-11

Family

ID=33421524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030366A Expired - Lifetime JP4361387B2 (en) 2003-03-11 2004-02-06 Split polyester composite fiber

Country Status (1)

Country Link
JP (1) JP4361387B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233390A (en) * 2005-02-28 2006-09-07 Toray Ind Inc Polyester fiber and fabric
JP2007056401A (en) * 2005-08-24 2007-03-08 Toray Ind Inc Woven or knitted fabric comprising blended yarn
JP2008075228A (en) * 2006-09-25 2008-04-03 Teijin Fibers Ltd False-twist textured yarn and method for producing the same
JP2010275649A (en) * 2009-05-27 2010-12-09 Teijin Fibers Ltd Fiber structure and textile product
JP2020165027A (en) * 2019-03-29 2020-10-08 帝人フロンティア株式会社 Sea-island type conjugate fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233390A (en) * 2005-02-28 2006-09-07 Toray Ind Inc Polyester fiber and fabric
JP4613639B2 (en) * 2005-02-28 2011-01-19 東レ株式会社 Polyester fiber and fabric
JP2007056401A (en) * 2005-08-24 2007-03-08 Toray Ind Inc Woven or knitted fabric comprising blended yarn
JP2008075228A (en) * 2006-09-25 2008-04-03 Teijin Fibers Ltd False-twist textured yarn and method for producing the same
JP2010275649A (en) * 2009-05-27 2010-12-09 Teijin Fibers Ltd Fiber structure and textile product
JP2020165027A (en) * 2019-03-29 2020-10-08 帝人フロンティア株式会社 Sea-island type conjugate fiber

Also Published As

Publication number Publication date
JP4361387B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP2005154450A (en) Copolyester and splittable polyester conjugate fiber
JP4817654B2 (en) Cationic dyeable polyester and high strength cationic dyeable polyester fiber
KR100635839B1 (en) Polyester fiber
JP2004183143A (en) Polyester fiber and method for producing the same
JP2004067924A (en) Polyester, manufacturing process therefor and fiber thereof
JP4361387B2 (en) Split polyester composite fiber
JP4181002B2 (en) Split polyester composite fiber
JP2007284599A (en) Copolymer polyester composition and fiber
WO2003004548A1 (en) Polytrimethylene terephthalate polyester
JP5415878B2 (en) Method for producing polyester composition
JP2004238553A (en) Polyester for atmospheric pressure dyeing and fiber
JP2020165027A (en) Sea-island type conjugate fiber
JP2004217751A (en) Polyester and its fiber for atmospheric dyeing
JP4700336B2 (en) Copolyester composition, method for producing the same, and fiber
JP2013170251A (en) Copolyester and polyester fiber
JPH01103650A (en) Improved polyester composition
JP3888871B2 (en) Method for producing polyester fiber
JP4216508B2 (en) Polytrimethylene terephthalate polyester having improved light resistance, method for producing the same, and fiber comprising the same
JP4216493B2 (en) Polytrimethylene terephthalate polyester having improved light resistance, method for producing the same, and fiber comprising the same
JP2007119571A (en) Polyether ester elastomer and elastic fiber
JP2004285499A (en) Polyester-based conjugated fiber
JP5350814B2 (en) Polyester composition and polyester fiber
JP2004250812A (en) Polyester fiber
JP2000282324A (en) Copolymer polyethylene naphthalate yarn
JP2002293895A (en) Polytrimethylene-terephthalate based polyester and fiber formed thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Ref document number: 4361387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term