JP2004292699A - Method for decomposing solid polymer electrolyte - Google Patents

Method for decomposing solid polymer electrolyte Download PDF

Info

Publication number
JP2004292699A
JP2004292699A JP2003089067A JP2003089067A JP2004292699A JP 2004292699 A JP2004292699 A JP 2004292699A JP 2003089067 A JP2003089067 A JP 2003089067A JP 2003089067 A JP2003089067 A JP 2003089067A JP 2004292699 A JP2004292699 A JP 2004292699A
Authority
JP
Japan
Prior art keywords
solid electrolyte
decomposing
polymer
resins
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089067A
Other languages
Japanese (ja)
Inventor
Mutsuhiro Matsuyama
睦宏 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003089067A priority Critical patent/JP2004292699A/en
Publication of JP2004292699A publication Critical patent/JP2004292699A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for decomposing resins, such as thermosetting resins contained in plant-discharged industrial wastes or in general wastes with their recycling yet to be achieved or solid polymer electrolytes from hardworked secondary batteries, whereby they are decomposed with speed and safety, and in bulk, for recycling. <P>SOLUTION: In a solvent mainly comprising water and containing 5-95 wt.% of ionic compositions, resin compositions such as phenol resins, epoxy resins, phenol-modified melamine resins, and also solid polymer electrolytes for use with secondary batteries, are treated at high-temperature/high pressure conditions for a specified length of time, whereby they are reduced to the molecular weight levels of monomers or oligomers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高分子固体電解質の分解処理方法に関する。さらに詳しくは、この発明は、高分子固体電解質に用いた樹脂をモノマーないしオリゴマーに分解し、回収・再利用することを可能とする固体高分子電解質の分解処理方法に関するものである。
【0002】
【従来の技術】
近年、熱硬化性樹脂を、超臨界状態あるいは亜臨界状態の水を用いて加水分解し、有用化合物を選択的に回収する方法が検討されており、エポキシ樹脂のように、構造中にエーテル結合、エステル結合、酸アミド結合を有する熱硬化性樹脂を、酸触媒や、アルカリ触媒を添加することなく、400℃、37MPa、10分間程度の条件で、完全にテトラヒドロフラン(THF)可溶までに分解することが可能である(例えば、特許文献1参照)。
【0003】
このように、熱硬化性樹脂を短時間で効率的に分解して、有用な低〜中分子化合物として回収、分離、精製して再利用することは、広く望まれており、未だ実現できていないが各方面で実用化に向けて検討が急がれている。
【0004】
一方で、近年の携帯機器の市場拡大に伴い、破損もしくは老朽化し廃棄される携帯機器の数量も増加しつつあるが、携帯機器においては小型の二次電池が用いられており、これに含まれる高分子固体電解質中の樹脂の回収、再生利用についても望まれている。
【0005】
【特許文献1】
特開平10−24274号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みなされたものであって、使い古された二次電池用高分子固体電解質を、短時間で、且つ、大量に分解処理し、再利用することを可能とする高分子固体電解質の分解処理方法を提供するものである。
【0007】
【課題を解決するための手段】
即ち、本発明は、
1. 高分子固体電解質に、イオン性組成物を5〜95wt%の割合で添加し、水を主成分とする溶媒中で、超臨界もしくは亜臨界条件下で分解処理を行うことを特徴とする高分子固体電解質の分解処理方法、
2. イオン性組成物が、含窒素複素環式カチオンもしくはアルキル4級アンモニウムカチオンと、有機酸アニオンもしくは無機アニオンとからなるものである、第1項記載の高分子電解質の分解処理方法、
3. 高分子固体電解質が、アクリル・メタクリル樹脂及び/またはポリアリール樹脂を含んでなるものである第1項1または第2項記載の高分子固体電解質の分解処理方法、
4. イオン性組成物が、第1項〜第3項のいずれかに記載の分解処理方法に用いたイオン性組成物を、回収、分離し、再利用したものである第1項〜第3項のいずれかに記載の高分子固体電解質の分解処理方法、
を提供するものである。
【0008】
【発明の実施の形態】
本発明によれば、各種の無機塩、有機塩や可塑剤、安定剤等を含んだ高分子固体電解質に含まれる樹脂を分解することができる。
【0009】
前記高分子固体電解質に含まれる樹脂の種類としては、特に限定されるものではないが、フェノール樹脂、エポキシ樹脂、フェノール変性メラミン樹脂の他、アクリル・メタクリル樹脂、ポリアリール樹脂について、好適である。また、高分子固体電解質に含まれる可塑剤や添加塩の種類は、特に問わないが、一般的に使用されるプロピレンカーボネート等の環状カーボネートや、LiPF等のリチウム塩が含んでいるものに好適である。
【0010】
本発明に用いるイオン性組成物は、それぞれ独立したカチオン及びアニオンから構成される分子塩、または、同一分子内にカチオン性官能基及びアニオン性官能基を備えた分子内塩であることが好ましい。このカチオン及びアニオンの、それぞれのイオン半径が比較的小さい場合は、イオン性組成物を常温常圧下で単離した場合、固体状の分子結晶として回収されるが、カチオン及びアニオンの、それぞれのイオン半径が比較的大きい場合は、常温常圧下では不定形固体もしくは粘凋な液体もしくはペースト状化合物として回収される。
本発明の方法に用いるイオン性組成物としては、常温常圧下に於いて液状もしくは粘凋なペースト状である化合物がより好適に使用される。
【0011】
前記カチオンとしては、ブチルメチルイミダゾリウムなどのイミダゾリウム系化合物やピリジニウム系化合物などからなる含窒素複素式カチオン、アルキル4級アンモニウム系化合物からなるアルキル4級アンモニウムカチオン等からなるものが好ましく用いられる。これらの化合物は、その融点を低下させる目的で、各種置換基が付与されていても構わない。
【0012】
また、前記アニオンとしては、各種Cl、Brなどの各種ハロゲンアニオンの他、PF 、BF 、(CFSO、(CFCFSO等の各種無機アニオンまたはアルキルスルホン酸、アルキルカルボン酸等の有機アニオンが適用できる。これらのカチオンとアニオンを組み合わせて得られるイオン性組成物の融点を下げるためには、よりイオン半径の大きなアニオンを適用することが好ましい。さらに好ましくは、カチオンが4級アルキルアンモニウムカチオンであり、且つアニオンがビス(トリフルオロメタンスルホン)イミドに代表されるようなスルホイミドアニオンである場合である。
【0013】
アニオン若しくはカチオンの種類を選択することにより、処理すべき高分子固体電解質中の特定のイオン種、即ち電解質に電荷キャリアーとして含まれる塩のみを、より選択的に速やかに系外へ除去することも可能である。例えばPF−等のフッ化物系アニオンを処理する場合、比較的バルキーなアンモニウム系カチオンを組み合わせると水に対して難溶性の塩を形成し、速やかに系外へ除去することが可能となる。
【0014】
本発明に用いる水を主成分とする溶媒には、メタノール、エタノール等のアルコール系溶媒のほか、トルエン、キシレン等の低極性溶媒が含まれていても構わない。低極性溶媒を含む場合は、分解処理中は、反応系を所定の時間内、ホモジナイザー等により、強く攪拌しつづけることにより、その目的を達することが出来るが、処理時間をより短縮させるため、あるいは処理後の反応溶液から、用意に低分子〜中分子量成分を回収する目的のために、必要に応じて、界面活性剤等の相関移動触媒を添加しても構わない。
【0015】
本発明に用いるイオン性組成物は、本発明の方法により分解処理を行って得られる、処理生成物である樹脂成分を、系外に除去・回収したのち、残った水を主成分とし必要量のイオン性組成物を含む処理溶媒を、必要に応じて、イオン性組成物と、それ以外の成分に分離して精製し、再利用することも可能である。このときイオン性成分の極性が低く、水に対する溶解性が低い場合、その精製は極めて容易になる場合が多い。例えば、比較的長鎖の置換基を備えたイミダゾリウムカチオンに(CFCFSOアニオンを組み合わせた場合、水で分液し、加熱処理を施すだけで、精製処理が可能である。
【0016】
本発明の高分子固体電解質の分解処理方法に於ける樹脂分解処理は、まず、水をその主成分とし、必要量のイオン性組成物を含む処理溶媒に、所定の高分子固体電解質を溶解、膨潤若しくは浸漬した後、加熱処理及び/または加圧処理を所定時間施し、最後に、樹脂分解生成物を、処理溶媒から分離抽出することにより、行われる。
【0017】
分解される高分子固体電解質は、溶媒及びイオン性組成物と種々の割合で混合して用いられるが、高分子固体電解質1重量部に対し、溶媒を0.1〜50重量部、イオン性組成物を0.01〜50重量部の比率であることが好ましい。さらに好ましくは、高分子固体電解質1重量部に対し、溶媒を0.5〜10重量部、イオン性組成物を0.1〜25重量部の比率の場合である。
【0018】
分解処理反応は、高温高圧の条件下で実施されるが、処理条件としては、温度が200〜600℃、圧力が2〜60Mpaの範囲で、温度および圧力を、超臨界又は亜臨界の条件に調製すれば良い。望ましくは、温度が360〜500℃、圧力が20〜50MPa範囲で、温度および圧力を設定すれば良い。反応時間は、1〜60分の範囲で調製できるが、通常は3〜30分で分解処理が終了する。
【0019】
本発明の分解処理方法により、樹脂は、モノマーないしオリゴマーの範囲の分子量に分解することが可能となる。これら分解して得られたモノマーやオリゴマーは、再度樹脂の製造に用いることができる。
【0020】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明は、これによって何ら限定されるものではない。
【0021】
[実施例1]
高分子固体電解質として、メチルメタクリレート90重量部に対しスチレン5重量部、メチレンビスアクリルアミド5重量部、6フッ化リン酸リチウム10重量部を配合しさらに、アゾ系ラジカル開始剤を0.5wt%添加した後、80℃で45分間加熱処理したアクリレート系ゲル状高分子固体電解質を用いた。セパラブルフラスコ(容量300ml)に、粒径0.5−1.0mmに粉砕した上記高分子固体電解質10g、水20g、触媒としてブチルメチルイミダゾリウム・ビス(トリフルオロメタンスルホン)イミド60g、水酸化ナトリウム10gを仕込み、内部を乾燥窒素で置換して封入した。内容物を静かに室温下で24時間攪拌した後、反応器をオイルバスに浸漬して、穏やかに加熱して内温を80℃とし、引き続き穏やかに24時間連続攪拌した。分解反応後の回収液は、1.0μmのフィルターでろ過し、ろ液を反応溶媒可溶分とした。ろ過した後のフィルターに残った反応溶媒不溶分は、エタノールで溶解させたのち、1.0μmのフィルターでろ過し、ろ液をエタノール可溶分とした。フィルターに残ったエタノール不溶残渣は、100℃で12時間乾燥させたのち秤量した。その結果、高分子固体電解質の約50wt%が分解して、反応溶媒可溶分、およびエタノール可溶分となった。
【0022】
[比較例1]実施例1において、触媒として用いたブチルメチルイミダゾリウム・ビス(トリフルオロメタンスルホン)イミドの代わりに当量の水を用い、実施例2と同様な操作を行い、分解反応を行った。その結果、高分子固体電解質の分解率は、約5wt%と非常に低い値であった。
【0023】
【発明の効果】
本発明に拠れば、産業廃棄物や、一般廃棄物中に大量に含まれている高分子固体電解質を、高速、安全且つ大量に分解処理し再利用することが可能となる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for decomposing a solid polymer electrolyte. More specifically, the present invention relates to a method for decomposing a solid polymer electrolyte, which makes it possible to decompose the resin used for the polymer solid electrolyte into monomers or oligomers, and recover and reuse the polymer or the monomer.
[0002]
[Prior art]
In recent years, methods for selectively recovering useful compounds by hydrolyzing thermosetting resins using supercritical or subcritical water have been studied. Decomposes thermosetting resin having ester bond and acid amide bond to tetrahydrofuran (THF) soluble completely at 400 ° C, 37MPa and about 10 minutes without adding acid catalyst or alkali catalyst (For example, see Patent Document 1).
[0003]
As described above, it is widely desired that the thermosetting resin is efficiently decomposed in a short time and recovered, separated, purified, and reused as useful low- to medium-molecular compounds, and it is still realized. However, there is a pressing need for a practical application in various fields.
[0004]
On the other hand, with the expansion of the market for portable devices in recent years, the number of portable devices that are damaged or aged and discarded is also increasing, but small secondary batteries are used in portable devices and are included in this. There is also a demand for recovery and recycling of resins in solid polymer electrolytes.
[0005]
[Patent Document 1]
JP-A-10-24274
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems, and has been developed in a short time, in a short time, and in a large amount, capable of being decomposed in a large amount and reused. It is intended to provide a method for decomposing a molecular solid electrolyte.
[0007]
[Means for Solving the Problems]
That is, the present invention
1. A polymer characterized in that an ionic composition is added to a polymer solid electrolyte at a ratio of 5 to 95 wt% and decomposition treatment is performed in a solvent containing water as a main component under supercritical or subcritical conditions. Solid electrolyte decomposition treatment method,
2. 2. The method according to claim 1, wherein the ionic composition comprises a nitrogen-containing heterocyclic cation or an alkyl quaternary ammonium cation, and an organic acid anion or an inorganic anion.
3. 3. The method for decomposing a polymer solid electrolyte according to claim 1 or 2, wherein the polymer solid electrolyte comprises an acrylic / methacrylic resin and / or a polyaryl resin.
4. The ionic composition according to any one of Items 1 to 3, wherein the ionic composition used in the decomposition treatment method according to any one of Items 1 to 3 is recovered, separated, and reused. Decomposition treatment method of the polymer solid electrolyte according to any one,
Is provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
ADVANTAGE OF THE INVENTION According to this invention, the resin contained in the solid polymer electrolyte containing various inorganic salts, organic salts, a plasticizer, a stabilizer, etc. can be decomposed.
[0009]
The type of the resin contained in the polymer solid electrolyte is not particularly limited, but is preferably a phenolic resin, an epoxy resin, a phenol-modified melamine resin, an acrylic / methacrylic resin, or a polyaryl resin. The type of the plasticizer and the additive salt contained in the polymer solid electrolyte is not particularly limited, but is preferably used for a cyclic carbonate such as propylene carbonate or a lithium salt such as LiPF 6 which is generally used. It is.
[0010]
The ionic composition used in the present invention is preferably a molecular salt composed of independent cations and anions, or an intramolecular salt having a cationic functional group and an anionic functional group in the same molecule. When the ionic radius of each of the cation and the anion is relatively small, when the ionic composition is isolated at normal temperature and normal pressure, the ionic composition is recovered as a solid molecular crystal. When the radius is relatively large, it is recovered as an amorphous solid, a viscous liquid, or a paste-like compound at normal temperature and normal pressure.
As the ionic composition used in the method of the present invention, a compound which is liquid or viscous paste at normal temperature and normal pressure is more preferably used.
[0011]
As the cation, those composed of a nitrogen-containing heterogeneous cation such as an imidazolium-based compound such as butylmethylimidazolium or a pyridinium-based compound, or an alkyl quaternary ammonium cation of an alkyl quaternary ammonium-based compound are preferably used. These compounds may have various substituents for the purpose of lowering the melting point.
[0012]
Examples of the anion include various halogen anions such as Cl and Br −, as well as PF 6 , BF 4 , (CF 3 SO 2 ) 2 N , and (CF 3 CF 2 SO 2 ) 2 N −. And various organic anions such as alkylsulfonic acid and alkylcarboxylic acid. In order to lower the melting point of the ionic composition obtained by combining these cations and anions, it is preferable to use anions having a larger ionic radius. More preferably, the cation is a quaternary alkylammonium cation and the anion is a sulfimide anion represented by bis (trifluoromethanesulfone) imide.
[0013]
By selecting the type of anion or cation, it is also possible to more selectively and quickly remove only a specific ionic species in the solid polymer electrolyte to be treated, that is, only a salt contained as a charge carrier in the electrolyte, out of the system. It is possible. For example, when a fluoride-based anion such as PF 6- is treated, when a relatively bulky ammonium-based cation is combined, a salt that is hardly soluble in water is formed and can be quickly removed from the system.
[0014]
The solvent containing water as a main component used in the present invention may include low-polarity solvents such as toluene and xylene in addition to alcoholic solvents such as methanol and ethanol. When a low-polar solvent is contained, during the decomposition treatment, the reaction system can be achieved for a predetermined period of time by using a homogenizer or the like to continue stirring, but the processing time can be shortened, or If necessary, a phase transfer catalyst such as a surfactant may be added for the purpose of easily recovering low molecular weight to medium molecular weight components from the reaction solution after the treatment.
[0015]
The ionic composition used in the present invention is obtained by subjecting a resin component, which is a treatment product obtained by performing a decomposition treatment according to the method of the present invention, to a process component, after removing and recovering the resin component outside the system, and remaining water as a main component. If necessary, the treatment solvent containing the ionic composition can be separated into an ionic composition and other components, purified, and reused. At this time, if the polarity of the ionic component is low and the solubility in water is low, the purification is often extremely easy. For example, when (CF 3 CF 2 SO 2 ) 2 N - anion is combined with an imidazolium cation having a relatively long-chain substituent, purification can be performed only by separating liquid with water and performing heat treatment. It is.
[0016]
Resin decomposition treatment in the polymer solid electrolyte decomposition treatment method of the present invention, first, water as a main component, dissolved in a processing solvent containing a required amount of ionic composition, a predetermined polymer solid electrolyte, After the swelling or immersion, heat treatment and / or pressure treatment is performed for a predetermined time, and finally, the resin decomposition product is separated and extracted from the treatment solvent.
[0017]
The polymer solid electrolyte to be decomposed is used in a mixture with a solvent and an ionic composition at various ratios. The solvent is used in an amount of 0.1 to 50 parts by weight, and It is preferable that the ratio is 0.01 to 50 parts by weight. More preferably, the ratio of the solvent is 0.5 to 10 parts by weight and the ionic composition is 0.1 to 25 parts by weight with respect to 1 part by weight of the solid polymer electrolyte.
[0018]
The decomposition treatment reaction is carried out under high-temperature and high-pressure conditions. As the treatment conditions, the temperature and the pressure are in the range of 200 to 600 ° C. and the pressure in the range of 2 to 60 Mpa. It may be prepared. Desirably, the temperature and pressure may be set at a temperature of 360 to 500 ° C. and a pressure of 20 to 50 MPa. The reaction time can be adjusted in the range of 1 to 60 minutes, but usually the decomposition treatment is completed in 3 to 30 minutes.
[0019]
According to the decomposition treatment method of the present invention, the resin can be decomposed to a molecular weight in a range of a monomer or an oligomer. These decomposed monomers and oligomers can be used again for the production of resins.
[0020]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0021]
[Example 1]
As a polymer solid electrolyte, 5 parts by weight of styrene, 5 parts by weight of methylenebisacrylamide, and 10 parts by weight of lithium hexafluorophosphate are added to 90 parts by weight of methyl methacrylate, and 0.5 wt% of an azo radical initiator is added. After that, an acrylate-based gel polymer solid electrolyte heat-treated at 80 ° C. for 45 minutes was used. In a separable flask (capacity: 300 ml), 10 g of the polymer solid electrolyte pulverized to a particle size of 0.5 to 1.0 mm, 20 g of water, 60 g of butylmethylimidazolium bis (trifluoromethanesulfone) imide as a catalyst, and sodium hydroxide 10 g was charged, and the inside was replaced with dry nitrogen and sealed. After the contents were gently stirred at room temperature for 24 hours, the reactor was immersed in an oil bath, gently heated to an internal temperature of 80 ° C., and gently continuously stirred for 24 hours. The recovered solution after the decomposition reaction was filtered through a 1.0 μm filter, and the filtrate was used as a soluble component in the reaction solvent. The reaction solvent-insoluble matter remaining in the filter after filtration was dissolved in ethanol and then filtered through a 1.0 μm filter, and the filtrate was converted to ethanol-soluble matter. The ethanol-insoluble residue remaining on the filter was dried at 100 ° C. for 12 hours and then weighed. As a result, about 50% by weight of the solid polymer electrolyte was decomposed into a reaction solvent-soluble component and an ethanol-soluble component.
[0022]
[Comparative Example 1] A decomposition reaction was carried out in the same manner as in Example 1, except that an equivalent amount of water was used instead of butylmethylimidazolium bis (trifluoromethanesulfone) imide used as a catalyst. . As a result, the decomposition rate of the solid polymer electrolyte was a very low value of about 5 wt%.
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to decompose and recycle a large amount of solid polymer electrolyte contained in industrial waste and general waste in high speed, safely, and in large quantities.

Claims (4)

高分子固体電解質に、イオン性組成物を5〜95wt%の割合で添加し、水を主成分とする溶媒中で、超臨界もしくは亜臨界条件下で分解処理を行うことを特徴とする高分子固体電解質の分解処理方法。A polymer characterized in that an ionic composition is added to a polymer solid electrolyte at a ratio of 5 to 95 wt% and a decomposition treatment is performed in a solvent containing water as a main component under supercritical or subcritical conditions. A method for decomposing a solid electrolyte. イオン性組成物が、含窒素複素環式カチオンもしくはアルキル4級アンモニウムカチオンと、有機酸アニオンもしくは無機アニオンとからなるものである、請求項1記載の高分子電解質の分解処理方法。The method for decomposing a polymer electrolyte according to claim 1, wherein the ionic composition comprises a nitrogen-containing heterocyclic cation or an alkyl quaternary ammonium cation, and an organic acid anion or an inorganic anion. 高分子固体電解質が、アクリル・メタクリル樹脂及び/またはポリアリール樹脂を含んでなるものである請求項1または2記載の高分子固体電解質の分解処理方法。3. The method for decomposing a polymer solid electrolyte according to claim 1, wherein the polymer solid electrolyte comprises an acrylic / methacrylic resin and / or a polyaryl resin. イオン性組成物が、請求項1〜3のいずれかに記載の分解処理方法に用いたイオン性組成物を、回収、分離し、再利用したものである請求項1〜3のいずれかに記載の高分子固体電解質の分解処理方法。The ionic composition used in the decomposition treatment method according to any one of claims 1 to 3, is recovered, separated, and reused. A method for decomposing a polymer solid electrolyte.
JP2003089067A 2003-03-27 2003-03-27 Method for decomposing solid polymer electrolyte Pending JP2004292699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089067A JP2004292699A (en) 2003-03-27 2003-03-27 Method for decomposing solid polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089067A JP2004292699A (en) 2003-03-27 2003-03-27 Method for decomposing solid polymer electrolyte

Publications (1)

Publication Number Publication Date
JP2004292699A true JP2004292699A (en) 2004-10-21

Family

ID=33403037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089067A Pending JP2004292699A (en) 2003-03-27 2003-03-27 Method for decomposing solid polymer electrolyte

Country Status (1)

Country Link
JP (1) JP2004292699A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123839A (en) * 2017-06-22 2017-09-01 宁波赛克雷特新能源科技有限公司 Method for extracting and separating electrolyte components and active materials from battery
WO2021119295A1 (en) * 2019-12-10 2021-06-17 The Regents Of The University Of California Recycling all solid-state battery technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123839A (en) * 2017-06-22 2017-09-01 宁波赛克雷特新能源科技有限公司 Method for extracting and separating electrolyte components and active materials from battery
CN107123839B (en) * 2017-06-22 2019-10-11 宁波赛克雷特新能源科技有限公司 Method for extracting and separating electrolyte components and active materials from battery
WO2021119295A1 (en) * 2019-12-10 2021-06-17 The Regents Of The University Of California Recycling all solid-state battery technology

Similar Documents

Publication Publication Date Title
EP3381923B1 (en) Novel method for preparing lithium bis(fluorosulfonyl)imide
CN108028428B (en) Non-aqueous fluoride salts, solutions and uses thereof
US20080191170A1 (en) Use of Ionic Liquids
EP0971854A1 (en) Novel materials useful as electrolytic solutes
JPH0521137B2 (en)
US20060020147A1 (en) Method of purifying quaternary alkylammonium salt and quaternary alkylammonium salt
WO2009105881A1 (en) Ionic liquids comprising ligands containing positively charged heterocyclic ring useful as catalyst and for metal extractions
CN107275701A (en) A kind of method that lithium carbonate is reclaimed from lithium ion battery
JP2004292699A (en) Method for decomposing solid polymer electrolyte
KR101663481B1 (en) Method for puryfing collected nmp solution and manufacturing pvdf-nmp solution using it
WO2004080974A1 (en) A purification method of ionic liquids to obtain their high purity
JP3257774B2 (en) Method for treating organic electrolyte containing lithium hexafluorophosphate
JPH0788427B2 (en) Method for recovering polyarylensulfide
JPS5953216B2 (en) Synthesis method of anhydrous lithium borofluoride
CN101284211A (en) Glyoxaline ion liquid reclaiming agent regeneration and cyclic utilization method
JP2005298375A (en) Method for purifying salt molten at normal temperature
CN114725557A (en) Recycling method of lithium iron phosphate waste
ES2737101T3 (en) Method for purifying acrylamide alkyl sulfonic acid
JPH09195071A (en) Method for releasing metallic foil from metallic foil-coated waste material of secondary battery
JP5575783B2 (en) Method for removing triphenylmethane protecting group
CN102451669A (en) Method for recovering and reutilizing waste bentonite in oil refinery
CN112354492B (en) Organogel composition and preparation method thereof
WO2022034635A1 (en) Selenious acid-adsorbing material
JP2020050922A (en) Sodium dispersion, method for producing the same, synthesis method using the same, and method for producing sodium solvent
KR100972427B1 (en) Method of Removing the Triphenylmethane Protection Group