JP2004292655A - Insect-proof foamable styrenic resin particle, method for producing the same, insect-proof foamed particle and insect-proof foam-molded product - Google Patents

Insect-proof foamable styrenic resin particle, method for producing the same, insect-proof foamed particle and insect-proof foam-molded product Download PDF

Info

Publication number
JP2004292655A
JP2004292655A JP2003087544A JP2003087544A JP2004292655A JP 2004292655 A JP2004292655 A JP 2004292655A JP 2003087544 A JP2003087544 A JP 2003087544A JP 2003087544 A JP2003087544 A JP 2003087544A JP 2004292655 A JP2004292655 A JP 2004292655A
Authority
JP
Japan
Prior art keywords
insect
resin particles
insecticide
particles
nicotinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087544A
Other languages
Japanese (ja)
Other versions
JP4125167B2 (en
Inventor
Masatoshi Yamashita
昌利 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2003087544A priority Critical patent/JP4125167B2/en
Publication of JP2004292655A publication Critical patent/JP2004292655A/en
Application granted granted Critical
Publication of JP4125167B2 publication Critical patent/JP4125167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insect-proof foamable styrenic resin particle containing a nicotinyl-based insecticide in an amount effective for insect proof and remaining in a foam-molded product obtained by carrying out foam-molding in a mold; to provide a method for producing the resin particle; to provide the insect-proof foamed particle produced by using the particle; and to provide the insect-proof foam-molded product. <P>SOLUTION: The insect-proof foamable styrenic resin particle is obtained by allowing a particle of a foamable styrenic resin particle to contain the nicotinyl-based insecticide so that the nicotinyl-based insecticide in the amount effective for the insect proof may remain in the foam-molded product produced by the foam-molding of the foamable styrenic resin particles in the mold. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、シロアリ、キクイムシ等の害虫の被害を受けない断熱建材、床下断熱材等に用いられるスチレン系樹脂発泡成形体製造用の防虫性発泡性スチレン系樹脂粒子とその製造方法、防虫性発泡粒子及び防虫性発泡成形体に関する。
【0002】
【従来の技術】
発泡性スチレン系樹脂粒子を予備発泡して得た予備発泡粒子を型内発泡成形して得られる発泡成形体は、任意の形状に成形することができ、また優れた断熱性能を有するために各種の建材用断熱材として広く使用されている。これらの断熱材は、室内冷暖房の省エネルギー化の面から必要不可欠な建築材料である。一方、暖房の普及とともにシロアリの生息域は北上しており、殆ど全国で、住宅をはじめとする建築物のシロアリによる被害が発生している。このシロアリによる被害は、発泡スチレン系樹脂製断熱材においても例外ではない。発泡性スチレン系樹脂粒子を型内で発泡成形せしめて製造される天井、壁、床等の断熱材として用いられる建材用スチレン系樹脂発泡成形体が木材等と隣接して使用される場合、特にイエシロアリ、ヤマトシロアリ等が出会った物を噛むという加害習性により、いわゆる蟻道ができて断熱性能を低下させるという問題があった。また、最近では、優れた断熱性能をもつ発泡スチレン系樹脂断熱材自体がシロアリに冬場の活動環境を提供しているという指摘もある。
【0003】
この断熱材の害虫被害を防ぐための技術として、スチレン系樹脂粒子中に該樹脂粒子の軟化点より低い沸点を有する易揮発性発泡剤を含有する発泡性スチレン系樹脂粒子に有機リン系化合物等の防蟻剤が被覆又は含浸されてなる防蟻性発泡性スチレン系樹脂粒子が提案されている(例えば、特許文献1,2参照。)。
しかし、クロルピリホス、ホキシムに代表される有機リン系の薬剤は、経皮毒性を有するなど人体に対する安全性、成形加工時の熱に対する安定性、さらに蒸気圧が低く揮散しやすいため経時的な効力持続性に劣るなど、建材用途の加工には問題を有していた。特に、クロルピリホスは、厚生労働省の「快適で健康的な住宅に関する検討会議・シックハウス問題検討会」において室内濃度指針値が公表されている13種類のVOC(揮発性有機化合物)の1つであり、建材用途においてその使用が難しくなっている。
【0004】
従来の有機リン系化合物等からなる防蟻成分に代えて、より効果的で安全性かつ安定性に優れた建材加工用防蟻成分として、一般名アセタミプリド、イミダクロプリドなどのクロロピリジルメチル基を有するニコチニル系殺虫剤を含有する防蟻性発泡熱可塑性樹脂の成形組成物が提案されている(例えば、特許文献3参照。)。
この特許文献3に記載の技術において、上記防蟻成分を発泡ポリスチレン樹脂等に加工する方法としては、(a)発泡性スチレン系樹脂粒子を予備発泡させた発泡粒子を空気を吹き込み流動させ、アセタミプリド水溶液及び接着剤成分の混合物を希釈した液を流動している発泡粒子に噴霧し、その後乾燥する流動塗装法、(b)未発泡の発泡性スチレン系樹脂粒子にアセタミプリドのエタノール溶液を加え、均一に樹脂粒子表面を被覆するように容器内でかき混ぜ、防蟻成分で処理した発泡性ポリスチレン系樹脂粒子を得るビーズコーティング法が開示されている。
【0005】
【特許文献1】
特開昭63−159451号公報
【特許文献2】
特開平11−279321号公報
【特許文献3】
特開平10−259270号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献3において防蟻成分として用いるアセタミプリドなどのニコチニル系殺虫剤は水に溶解するために、これを塗装又はコーティングした発泡粒子または発泡性樹脂粒子を用いて型内発泡成形法によって発泡成形体を製造する際、加熱用の蒸気、該蒸気が凝縮した水、及び成形型内冷却用の冷却水が発泡粒子及び発泡成形体に触れ、表面の殺虫剤を溶かし去ることによって、表面のニコチニル系殺虫剤の大部分が流亡してしまい、十分な防虫性能が得られなくなる問題がある。
【0007】
本発明は上記事情に鑑みてなされ、防虫成分であるニコチニル系殺虫剤を発泡性スチレン系樹脂粒子の粒子内に含有せしめ、型内発泡成形して得られる発泡成形体中に防虫有効量のニコチニル系殺虫剤が残存する防虫性発泡性スチレン系樹脂粒子とその製造方法、該粒子を用いて製造された防虫性発泡粒子及び防虫性発泡成形体の提供を目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明は、発泡性スチレン系樹脂粒子の粒子内に、該発泡性スチレン系樹脂粒子を型内発泡成形して製造した発泡成形体に防虫有効量のニコチニル系殺虫剤が残存するように、ニコチニル系殺虫剤を含有せしめたことを特徴とする防虫性発泡性スチレン系樹脂粒子を提供する。
本発明の防虫性発泡性スチレン系樹脂粒子において、上記ニコチニル系殺虫剤としては、イミダクロプリド、ニテンピラム、アセタミプリド、クロチアニジン、チアクロプリド、チアメトキサム、ジノテフランからなる群から選択される1種又は2種以上であることが好ましい。
また本発明は、(A)アルコールと、(B)該アルコールと任意の割合で混ざり合い、ポリスチレン系樹脂を溶解する有機溶媒との混合溶媒に、ニコチニル系殺虫剤を溶解した殺虫剤溶液を調整し、該殺虫剤溶液と発泡性スチレン系樹脂粒子とを接触させ、該発泡性スチレン系樹脂粒子の粒子内に、ニコチニル系殺虫剤を含有せしめ、次いで該粒子表面の混合溶媒を乾燥させて、粒子内にニコチニル系殺虫剤を含む防虫性発泡性スチレン系樹脂粒子を得ることを特徴とする防虫性発泡性スチレン系樹脂粒子の製造方法を提供する。
本発明の方法において、上記ニコチニル系殺虫剤としては、イミダクロプリド、ニテンピラム、アセタミプリド、クロチアニジン、チアクロプリド、チアメトキサム、ジノテフランからなる群から選択される1種又は2種以上であることが好ましい。
また、上記(B)の有機溶媒は、アセトン、メチルエチルケトン、ジエチルケトン、酢酸エチル、塩化メチレン、クロロホルム、ジメチルホルムアミドからなる群から選択される1種又は2種以上であることが好ましい。
さらに、上記(A)のアルコールは、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコールからなる群から選択される1種又は2種以上であることが好ましい。
また、上記混合溶媒における(B)の混合比率は10〜60質量%の範囲であることが好ましい。
さらに本発明は、上記防虫性発泡性スチレン系樹脂粒子を加熱発泡させてなる防虫性発泡粒子を提供する。
また本発明は、上記防虫性発泡粒子を、目的成形体形状に合致するキャビティを有する成形型のキャビティ内に充填し、型内成形して形成された防虫性発泡成形体を提供する。
【0009】
【発明の実施の形態】
本発明の防虫性発泡性スチレン系樹脂粒子(以下、防虫性発泡性樹脂粒子と記す。)は、発泡性スチレン系樹脂粒子(以下、発泡性樹脂粒子と記す。)の粒子内に、該発泡性樹脂粒子を型内発泡成形して製造した発泡成形体に防虫有効量のニコチニル系殺虫剤が残存するように、ニコチニル系殺虫剤を含有せしめたことを特徴としている。
【0010】
本発明に用いられるスチレン系樹脂としては、スチレン単量体のみから得られるポリスチレンホモポリマー、スチレン単量体とスチレンと共重合可能な他のモノマーあるいはその誘導体から得られるランダム、ブロックあるいはグラフト共重合体、臭素化ポリスチレン、ゴム強化ポリスチレンなどの変成ポリスチレンなどが挙げられる。スチレンと共重合可能なモノマーとしては、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレンなどのスチレン誘導体、ビニルトルエン、ビニルキシレン、ジビニルベンゼンなどのビニル化合物、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、ブタジエン、アクリロニトリルなどの不飽和化合物あるいはその誘導体、無水マレイン酸、無水イタコン酸などが挙げられ、これらを単独で又は2種以上混合して使用することができる。なお、本発明に用いられるスチレン系樹脂としては、新規に製造したスチレン系樹脂の他、家電製品の梱包材、魚箱等の発泡成形体を回収し、リモネン再生法などによって再生化したリサイクル用スチレン系樹脂を少なくとも原料の一部に用いることもできる。
【0011】
本発明に用いられる発泡性樹脂粒子としては、従来周知の懸濁重合法、シード重合法或いは押出法によって製造される発泡性樹脂粒子を用いることができる。上記押出法としては、例えば押出機内でスチレン系樹脂と必要に応じて加えられる添加剤等を加熱溶融、混練した樹脂に発泡剤を圧入し、押出機の吐出口に取り付けられたダイから発泡剤添加溶融樹脂を押し出し、冷却用液体と接触させると同時にカッターで粒子状に切断して製造される発泡性樹脂粒子等を用いることができる。本発明において好適に用いられる発泡性樹脂粒子としては、例えば特開2002−284917号公報に開示されているように、重量平均分子量Mwが30万〜60万であり、かつメルトフロー測定時、オリフィスの内径をBmm、樹脂ストランドの外形をAmmとしたときの膨張割合SR(A/B)が1.5〜3.0であるスチレン系樹脂粒子に発泡剤を含有させてなる発泡性樹脂粒子を挙げることができる。また、本発明に用いられる発泡性樹脂粒子としては、市販されている各種グレードの発泡性樹脂粒子の中から適宜選択することもできる。発泡性樹脂粒子の市販品として好ましいものを例示すれば、積水化成品工業社製の発泡性スチレン系樹脂粒子SIL(商標)、同社製FMC(商標)などである。
【0012】
本発明に用いられる発泡剤としては、塩化メチル、塩化メチレン、塩化エチル等の塩素化炭化水素、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン等の脂肪族炭化水素、1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、1,1−ジクロロ−2,2,2−トリフルオロエタン(HCFC−123)、クロロジフルオロメタン(HCFC−22)、1−クロロ−1,2,2,2−テトラフルオロエタン(HCFC−124)等のクロロフルオロカーボン、1,1−ジフルオロエタン(HFC−152a)、1,1,1−トリフルオロエタン(HFC−143a)、1,1,1,2−テトラフルオロエタン(HFC−134a)、ジフルオロメタン(HFC−32)等のフルオロカーボン、二酸化炭素、水、及び窒素などの物理発泡剤が挙げられ、これらの中の1種又は2種以上を併用して使用することができる。
【0013】
本発明に用いられるニコチニル系殺虫剤(ネオニコチノイド系殺虫剤などとも称される。)としては、ニコチン様アセチルコリン受容体拮抗剤(NACRO)として周知の化合物及び類似の殺虫性能を示すそれらの誘導体が挙げられる。本発明において好適に用いられるニコチニル系殺虫剤としては、一般名:イミダクロプリド{化学名:1−(6−クロロ−3−ピリジルメチル)−N−ニトロイミダゾリジン−2−イリデンアミン}、一般名:ニテンピラム{化学名:(E)−N−(6−クロロ−3−ピリジルメチル)−N−エチル−N′−メチル−2−ニトロビニリデンジアミン}、一般名:アセタミプリド{化学名:(E)−N′−[(6−クロロ−3−ピリジル)メチル]−N−シアノ−N−メチルアセタミジン}、一般名:クロチアニジン{化学名:N−[(2−クロロ−5−チアゾリル)メチル]−N′−メチル−N″−ニトロ−グアニジン}、一般名:チアクロプリド{化学名:3−(6−クロロ−3−ピリジルメチル)−1,3−チアゾリジン−2−イリデンシアナミド}、一般名:チアメトキサム{化学名:3−[(2−クロロ−5−チアゾリル)メチル]テトラヒドロ−5−メチル−N−ニトロ−4H−1,3,5−オキサジアジン−4−イミン}、一般名:ジノテフラン{化学名:N−メチル−N′−ニトロ−N″−[(テトラヒドロ−3−フラニル)メチル]−グアニジンを挙げることができ、これらの内の1種又は2種以上を使用し得る。
【0014】
上記ニコチニル系殺虫剤の添加量は、使用するニコチニル系殺虫剤の種類、発泡成形体の密度などに応じて適宜変更可能であり、通常は発泡性樹脂粒子の0.001質量%以上0.5質量%以下の範囲とされる。ニコチニル系殺虫剤の添加量が0.001質量%未満であると、上記ニコチニル系殺虫剤を粒子内に含有する本発明の防虫性発泡性スチレン系樹脂粒子(以下、防虫性発泡性樹脂粒子と記す。)を原料として得られた本発明の防虫性発泡成形体の防虫性が十分に得られず、シロアリ等の害虫の食害を受ける可能性がある。一方、ニコチニル系殺虫剤の添加量が0.5質量%を超えると、製品コストが高くなるので好ましくない。
【0015】
この発泡性樹脂粒子には、必要に応じて上記ニコチニル系殺虫剤及び発泡剤の他に、一般の発泡性樹脂粒子の製造に用いられている各種の添加剤を必要に応じて添加してもよい。そのような添加物としては、例えば気泡調整剤(発泡核材)、難燃剤、充填剤、滑剤、着色剤などが挙げられる。特に、得られる発泡成形体を建材用断熱材として使用する場合は、発泡成形体に均一に難燃性を付与するために、発泡性樹脂粒子中に難燃剤を含有させておくことが望ましい。難燃剤としては、一般に難燃性スチレン系樹脂発泡体の製造に用いられているものを使用することができ、具体的にはヘキサブロモシクロドデカン、テトラブロモシクロオクタン、トリス(2,3−ジブロモプロピル)イソシアヌレートなどの臭素系難燃剤の使用が好ましい。難燃剤は、発泡性樹脂粒子に対して、通常0.5〜2.0質量%の範囲で添加される。
【0016】
本発明の防虫性発泡性樹脂粒子は、発泡性樹脂粒子の粒子内にニコチニル系殺虫剤を含有せしめたものなので、防虫性発泡性樹脂粒子を用いて防虫性発泡成形体を製造する際に、水蒸気や水が接触しても粒子から流亡するニコチニル系殺虫剤が少なくなり、大部分のニコチニル系殺虫剤を防虫性発泡成形体中に残すことができ、防虫性に優れた防虫性発泡成形体を得ることができる。
また本発明によれば、防虫性発泡性樹脂粒子から流亡するニコチニル系殺虫剤が少なくなり、ニコチニル系殺虫剤の使用量が少量で済むので、十分な防虫性を有する防虫性発泡成形体を安価に提供することができる。
さらに本発明の防虫性発泡性樹脂粒子は、粒子内にニコチニル系殺虫剤を含むものなので、全体にわたり均一にニコチニル系殺虫剤を含み、防虫持続性、耐水性が良好な防虫性発泡成形体を得ることができる。
【0017】
本発明に係る防虫性発泡性樹脂粒子の製造方法は、(A)アルコールと、(B)該アルコールと任意の割合で混ざり合い、ポリスチレン系樹脂を溶解する有機溶媒との混合溶媒に、ニコチニル系殺虫剤を溶解した殺虫剤溶液を調整し、該殺虫剤溶液と発泡性スチレン系樹脂粒子とを接触させ、該発泡性スチレン系樹脂粒子の粒子内に、ニコチニル系殺虫剤を含有せしめ、次いで該粒子表面の混合溶媒を乾燥させて、型内発泡成形して製造した発泡成形体中に防虫有効量のニコチニル系殺虫剤を含む防虫性発泡性樹脂粒子を得ることを特徴としている。
【0018】
上記(A)のアルコールとしては、ニコチニル系殺虫剤を溶解可能なアルコール類の中から選択して使用でき、特にメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコールからなる群から選択される1種又は2種以上であることが好ましい。
【0019】
また、上記(B)の有機溶媒としては、アセトン、メチルエチルケトン、ジエチルケトンなどのケトン類、酢酸エチルなどのエステル類、塩化メチレン、クロロホルムなどのハロゲン化炭化水素類、ジメチルホルムアミドなどのホルムアミド類などの極性有機溶媒が挙げられ、アセトン、メチルエチルケトン、ジエチルケトン、酢酸エチル、塩化メチレン、クロロホルム、ジメチルホルムアミドからなる群から選択される1種又は2種以上であることが好ましい。
【0020】
上記混合溶媒における(B)の混合比率は、10〜60質量%の範囲が好ましく、20〜55質量%の範囲がより好ましい。(B)の混合比率が上記範囲未満であると、(B)の有機溶媒による発泡性樹脂粒子内へのニコチニル系殺虫剤の引き込み効果が不十分となり、ニコチニル系殺虫剤が粒子内に入り込まなくなり、ニコチニル系殺虫剤が水蒸気や水によって発泡性樹脂粒子から流亡し易くなる。一方、(B)の混合比率が上記範囲を超えると、混合溶媒がポリスチレン樹脂を溶解し易くなるので、混合溶媒と接触した発泡性樹脂粒子表面がベタついて粒子同士が合着し易くなり、塊状に固まり易くなる。
【0021】
上記混合溶媒にニコチニル系殺虫剤を溶解した殺虫剤溶液を調整した後、この殺虫剤溶液と発泡性樹脂粒子とを接触させ、発泡性樹脂粒子の粒子内にニコチニル系殺虫剤を浸透させる。殺虫剤溶液と発泡性樹脂粒子とを接触させる方法としては、ミキサー内に発泡性樹脂粒子と殺虫剤溶液とを投入し撹拌する方法、流動コーティング法、スプレーコーティング法などが用いられる。この工程において、発泡性樹脂粒子同士の合着を防止する目的で、水酸化アルミニウム粉末、タルク、シリカなどの無機粉末を少量添加してもよい。発泡性樹脂粒子の表面に付着した殺虫剤溶液は、ポリスチレン樹脂溶解性を有する(B)有機溶媒の作用により、粒子表面が改質され、ニコチニル系殺虫剤の浸透が可能となる。殺虫剤溶液と発泡性樹脂粒子とを接触させる時間は1時間〜2日間程度とするのが好ましい。
【0022】
次いで、必要に応じて遠心分離などの固液分離手段を用いて発泡性樹脂粒子と殺虫剤溶液とを分離した後、発泡性樹脂粒子を通風乾燥し、粒子表面の混合溶媒を除去して乾燥させ、粒子内にニコチニル系殺虫剤を含む防虫性発泡性樹脂粒子が得られる。
【0023】
本発明の方法は、ニコチニル系殺虫剤を溶解する(A)アルコールと、ポリスチレン樹脂溶解性を有する(B)有機溶媒との混合溶媒にニコチニル系殺虫剤を溶解させ、この殺虫剤溶液と発泡性樹脂粒子とを接触させることで、(B)有機溶媒の作用により発泡性樹脂粒子の表面を改質し、該粒子内にニコチニル系殺虫剤が浸透可能となり、粒子内にニコチニル系殺虫剤を含む防虫性発泡性樹脂粒子を簡単に製造することができる。
【0024】
さらに本発明は、上記防虫性発泡性樹脂粒子を加熱発泡させてなる防虫性発泡粒子、及びこの防虫性発泡粒子を型内発泡成形して得られる防虫性発泡成形体を提供する。本発明の防虫性発泡粒子及び防虫性発泡成形体は、上述した防虫性発泡性樹脂粒子を原料とし、従来周知の発泡樹脂成形技術を用いて容易に製造し得る。すなわち、防虫性発泡粒子は、上記防虫性発泡性樹脂粒子を膨張自由空間内で蒸気加熱し、所望の嵩密度まで発泡させて得ることができる。なお、発泡粒子を製造する際の嵩密度は特に限定されないが、嵩密度は0.012〜0.07g/cm(発泡倍率:約14〜約83倍)の範囲が好ましい。0.012g/cm未満では成形体の単位体積当りの殺虫剤含有量が不足し、防虫効果が不充分となるおそれがある。また、0.07g/cmを超えると成形時の冷却時間が長くなり生産性が低下する。
また、防虫性発泡性樹脂粒子としては、嵩密度0.033g/cmに発泡させたときの発泡粒子表面の気泡膜厚みが1〜9μmになるものを用いることが好ましい。該気泡膜厚みが1μm未満だと、含有させた殺虫剤等の影響により成形時に表面の気泡膜破れが発生し、成形体の融着が充分でなくなる。また、9μmを超えると気泡膜破れは発生しないが、粒子表面の気泡膜の耐熱性がありすぎてやはり成形体の融着が充分でなくなる。また、発泡粒子表面の気泡膜厚みは、同じ嵩密度の発泡粒子であれば気泡径の小さいものほど表面の気泡膜厚みは薄くなり、気泡径の大きいものほど表面の気泡膜厚みも厚くなる。
また防虫性発泡成形体は、目的成形体形状に合致するキャビティを有する成形型のキャビティ内に上記防虫性発泡粒子を充填し、型内で発泡粒子を蒸気加熱し、発泡粒子同士を融着させた後、冷却して離型することによって製造される。
本発明の防虫性発泡成形体は、ニコチニル系殺虫剤が発泡成形体の全体に存在しているので、シロアリ、ヒラタキクイムシ、ナガシンクイ、シバンムシなどの建材害虫の穿孔等の被害を長期間、確実に防ぐことができる。
【0025】
【実施例】
[実施例1]
まず、アセトンとエチルアルコールを質量比でアセトン/エチルアルコール=30/70の割合で混合した混合液120gに、アセタミプリド粉末を30gの割合で溶解した溶液を準備した。次に、難燃グレードの発泡性樹脂粒子10kgに、準備したアセタミプリド溶液100gを添加混合して、発泡性樹脂粒子にアセタミプリド溶液を均一に被覆した。なお、アセトン、エチルアルコールは試薬特級品を使用し、発泡性樹脂粒子は積水化成品工業社製のSIL(商標)を使用した。
アセタミプリド溶液の被覆には、内容積約30Lのタンブラーミキサー(徳寿工作所社製 寿ミックスウエルW−20)を使用し、アセタミプリド溶液による発泡性樹脂粒子同士の合着を防止する目的で、水酸化アルミニウム粉末(粒径約10μm)0.8質量%を添加して、毎分30回転で5分間混合した後、アセタミプリド溶液を添加して更に15分混合し、アセタミプリド溶液が均一に被覆された防虫性発泡性樹脂粒子(以下の表1,2を含む実施例、比較例に関する記載において、発泡性樹脂粒子と略記する。)を得た。
この発泡性樹脂粒子をポリエチレン製の袋に入れて密封し23℃で24時間放置して、被覆した溶液を発泡性樹脂粒子に吸収させた後、通風式乾燥機にて余分な有機溶剤を揮散、乾燥させた。次に、得られた発泡性樹脂粒子を内容積40Lの小型バッチ式予備発泡機に入れ、常圧下で水蒸気により加熱し、嵩密度0.033g/cmの防虫性発泡粒子(以下の実施例、比較例に関する記載において、発泡粒子と略記する。)を得た。発泡粒子表面の気泡膜厚み(以下、気泡膜厚みと略記する)は、5.6μmであった。得られた発泡粒子を23℃で24時間熟成させた後、キャビティ寸法300mm×400mm×50mmを有する発泡成形機(積水工機製作所社製 ACE−3型)を使用して、ゲージ圧0.08MPaで約30秒加熱して発泡粒子同士を融着させ、水冷により冷却してキャビティから取出し、300mm×400mm×50mmの板状の密度0.033g/cmの防虫性発泡成形体(以下の表1,2を含む実施例、比較例に関する記載において、発泡成形体と略記する。)を得た。
【0026】
[実施例2]
アセトン、エチルアルコールの混合液の割合を質量比でアセトン/エチルアルコール=50/50に変えた以外は、実施例1と同様にして、密度0.033g/cm、気泡膜厚み5.6μmの発泡粒子を得て、300mm×400mm×50mmの密度0.033g/cmの板状発泡成形体を得た。
【0027】
[実施例3]
アセトンを試薬特級メチルエチルケトンに変えた以外は、実施例1と同様にして、嵩密度0.033g/cm、気泡膜厚み5.6μmの発泡粒子を得て、300mm×400mm×50mmの密度0.033g/cmの板状発泡成形体を得た。
【0028】
[実施例4]
添加するアセタミプリド溶液の量を100gから5gに変えて、水酸化アルミニウム粉末を添加しなかった以外は、実施例1と同様にして、嵩密度0.033g/cm、気泡膜厚み5.6μmの発泡粒子を得て、300mm×400mm×50mmの密度0.033g/cmの板状発泡成形体を得た。
【0029】
[実施例5]
添加するアセタミプリド溶液の量を100gから250gに変えて、水酸化アルミニウム粉末の添加量を80gから200gに変えた以外は、実施例1と同様にして、嵩密度0.033g/cm、気泡膜厚み5.6μmの発泡粒子を得て、300mm×400mm×50mmの密度0.033g/cmの板状発泡成形体を得た。
【0030】
[実施例6]
使用する難燃グレードの発泡性樹脂粒子を積水化成品工業社製のFMC(商標)に変えた以外は、実施例1と同様にして、嵩密度0.033g/cm、気泡膜厚み1.3μmの発泡粒子を得て、300mm×400mm×50mmの密度0.033g/cmの板状発泡成形体を得た。
【0031】
[実施例7]
小型バッチ式予備発泡機へ投入する発泡性スチレン樹脂粒子の量を調整して、発泡粒子を嵩密度0.017g/cmに変更した以外は、実施例1と同様にして、気泡膜厚み3.6μmの発泡粒子を得て、300mm×400mm×50mmの密度0.017g/cmの板状発泡成形体を得た。
【0032】
[比較例1]
アセタミプリドを溶解する溶媒をアセトン、エチルアルコールの混合液からエチルアルコールのみに変更した以外は、実施例1と同様にして、嵩密度0.033g/cm、気泡膜厚み5.6μmの発泡粒子を得て、300mm×400mm×50mmの密度0.033g/cmの板状発泡成形体を得た。
【0033】
[比較例2]
アセタミプリド溶液と水酸化アルミニウムを添加しない以外は、実施例1と同様にして、嵩密度0.033g/cm、気泡膜厚み5.6μmの発泡粒子を得て、300mm×400mm×50mmの密度0.033g/cmの板状発泡成形体を得た。
【0034】
[比較例3]
アセタミプリドを溶解する溶媒をアセトン、エチルアルコールの混合液からアセトンのみに変更した以外は、実施例1と同様にして、アセタミプリド溶液を発泡性樹脂粒子に被覆した。この樹脂粒子をポリエチレン製の袋に入れ密封して23℃で24時間放置すると、樹脂粒子の全量がアセトンにより合着してしまい、発泡成形することができなかった。
【0035】
上記実施例1〜7、比較例1〜3において作製した発泡性樹脂粒子及び発泡成形体を用い、以下に示す各種試験を行い、それらの結果を表1,2に示した。
【0036】
<防蟻性評価試験方法>
(社)日本木材保存協会(JWPA)規格第11号(1)室内試験方法に定められる防蟻効力試験方法に記載される総合試験の方法を参考にして以下のように評価した。
すなわち、小孔をあけて通気性を確保した蓋付き容器の底に水分を含ませた脱脂綿を敷きつめ、その上に厚み約5mmの石膏板をのせて石膏板を通して水分が供給されるようにして、その石膏板の上に直径8cm、高さ6cmアクリル樹脂製円筒を置き、その円筒内に発泡成形体より切出した検体と試供虫をいれて、21日間飼育し食害と供試虫の生死を目視で観察した。また、21日後に検体の重量減少率を測定した。
・検体 :40×40×20mm
・試供虫 :イエシロアリ(Coptotermes formosanus SHIRAKI)職蟻50頭、兵蟻5頭(計55頭)
・試験条件 :28℃×21日間
【0037】
(防蟻性の評価)
上記試験方法に従い21日間試験後の検体について、以下の通り評価した。
・目視評価
○:食害なし
△:検体表面の一部に食痕あり
×:検体内部まで食害あり
・質量減少率
質量減少率は、0.0001g迄秤量できる電子天秤を使用して、以下の式により求めた。
質量減少率(%)=(W0−W1)/W0 ×100
(式中、W0は試験前試料質量、W1は試験後試料質量を表す。)
・死虫率
目視により死虫数を数えて、以下の式により求めた。
死虫率(%)=死虫数/55×100
【0038】
(総合評価基準)
○:目視評価△以上、検体質量減少率2%未満、21日後死虫率100%
△:目視評価△以上、検体質量減少率3%未満、21日後死虫率100%未満
×:目視評価×、検体質量減少率3%以上、21日後死虫率100%未満
【0039】
<薬剤含有量の分析方法>
1Lビーカーに試料1.0gを秤取し、30mLのクロロホルムを添加して試料を完全に溶解した。これに、メタノール970mLを加え、ポリスチレン分を沈殿させた。この溶液の上澄み液200mLを採り、ディスクフィルターで濾過した後、ロータリーエバポレーターを用いて濃縮乾固した。
濃縮残渣を10mLのアセトニトリルに溶解して20mLにメスアップ後、HPLCに注入して定量した。
試料が発泡性樹脂粒子の場合は、そのまま1.0g秤量し、発泡成形体の場合は300×400×25mmの成形体の内部より、カッターナイフを用いて1.0g分を切り出した。
【0040】
(装置条件)
・装置:高速液体クロマトグラフ(=HPLC)、島津製作所社製、LC−10Avp
・カラム:TOSOH ODC−80Ts QA(4.6mm×150mm)
・移動相:水/アセトニトリル=80/20
・流速:1.0mL/分
・注入量:20μL
・検出器:紫外分光光度型検出器 UV=245nm
【0041】
更に、実施例、比較例の一部について、下記の方法にて水洗による薬剤の流亡度合を確認した。
【0042】
<流亡度合の確認方法>
薬剤浸透済みの発泡性樹脂粒子100gを1Lビーカーに採り、イオン交換水800mlを加えて、マグネチックスターラーを用いて60分間撹拌して発泡性樹脂粒子を十分に水洗した後、ガーゼにて水を切り、ドライヤーの冷風にて十分乾燥させた。乾燥後の発泡性樹脂粒子について、樹脂粒子中のアセタミプリド含有量を前述した分析方法に従って定量した。
【0043】
<融着度測定方法>
幅300mm×長さ400mm×厚み50mmの発泡成形体を長さ方向に2分割するように折って破断させた時に、その破断面に存在する全ての粒子数をA、その中で粒子自身が破断されている粒子の数をBとして、以下の式により求めた。なお端数は四捨五入して5%単位とした。
融着度(%)= B/A×100
【0044】
<融着性評価基準>
上記により算出した融着度を基に以下の基準で評価した。
○:融着度80%以上
△:融着度50%以上80%未満
×:融着度50%未満
【0045】
<発泡成形体の難燃性試験方法>
JIS A 9511:1995「発泡プラスチック保温材」測定方法A記載の方法で測定した。
すなわち、試験片は、試料から厚さ10mm長さ200mm幅25mmを5個切り出し、規定の着火限界指示線及び燃焼限界指示線を付ける。試験片を火源用ろうそくで着火限界指示線まで燃焼させた後、炎を後退させ、その瞬間から炎が消えるまでの時間(秒)を測定し、5個の消炎時間の平均値が3秒以内のものを難燃性あり(評価:○)とした。火源用ろうそくは、定常燃焼時、芯の長さ約10mmの時炎の長さ50mm以上太さ約7mm以上となるものを用いた。
【0046】
<発泡粒子表面の気泡膜厚み>
嵩密度0.02g/cmに予備発泡した発泡粒子から任意に選択した10個の発泡粒子を、剃刀刃を用いて、それぞれ発泡粒子の中心を通る平面で切断し、その切断面の外周部分を走査型電子顕微鏡(日立製作所社製 S−3000N)を用いて1500倍に拡大撮影した画像を作成した。次に、この画像を基に、発泡粒子表面の気泡膜厚みを、1個の発泡粒子について任意の3カ所、合計30カ所について測定し、その平均値を気泡膜厚みとした。なお、嵩密度は、発泡粒子をメスシリンダー内に自然落下させ、その重量を測定し次式により算出する。
嵩密度(g/cm)=試料重量(g)/メスシリンダー中の試料容積(cm
【0047】
【表1】

Figure 2004292655
【0048】
【表2】
Figure 2004292655
【0049】
表1の結果から、本発明に係る実施例1〜7で作製した発泡性樹脂粒子は、型内成形して発泡成形体を製造する際にアセタミプリドの流亡が少なく、発泡性樹脂粒子中のアセタミプリドの70%以上が発泡成形体中に残存している。一方、アセトンを使用せず、エチルアルコールのみの溶媒にアセタミプリドを溶解した液を発泡性樹脂粒子に混合した比較例1では、アセタミプリドの流亡が著しく、発泡成形体にはアセタミプリドが殆ど残らなかった。また、実施例1〜3の発泡性樹脂粒子を水洗し、アセタミプリドの残存度合を測定した結果、発泡性樹脂粒子に含まれるアセタミプリドの大部分が粒子の水洗後にも残存していた。一方、比較例1の発泡性樹脂粒子は、水洗後にアセタミプリドが殆ど残らなかった。
この試験結果から、本発明に係る実施例1〜7では、アセトンとエチルアルコールの混合溶媒にアセタミプリドを溶解した液を発泡性樹脂粒子に接触させたことによって、アセタミプリドが粒子内に浸透して保持され、その結果、粒子表面のみにアセタミプリドが付着している比較例1と比べて、発泡成形体製造時の蒸気や水の接触によるアセタミプリドの流亡が少なく、得られる発泡成形体中に大部分のアセタミプリドが残存することが実証された。
【0050】
表2の結果から、本発明に係る実施例1〜7で作製した発泡成形体は、発泡成形体全体にわたりほぼ均一に殺虫剤(アセタミプリド)が含まれており、優れた防蟻性が得られることが実証された。
また、実施例1〜7で作製した発泡成形体は、実用上十分な融着性、難燃性を有していた。
【0051】
【発明の効果】
本発明の防虫性発泡性樹脂粒子は、粒子内にニコチニル系殺虫剤を含むものなので、この防虫性発泡性樹脂粒子を用いて防虫性発泡成形体を製造する際に、水蒸気や水が接触しても粒子からのニコチニル系殺虫剤の流亡が少なくなり、大部分のニコチニル系殺虫剤が防虫性発泡成形体中に残存し、優れた防虫性を有する発泡成形体を得ることができる。
また、本発明によれば、防虫性発泡性樹脂粒子から流亡するニコチニル系殺虫剤が少なくなり、ニコチニル系殺虫剤の使用量が少量で済むので、十分な防虫性を有する防虫性発泡成形体を安価に提供することができる。
さらに、本発明の防虫性発泡性樹脂粒子は、粒子内にニコチニル系殺虫剤を含むものなので、全体にわたり均一にニコチニル系殺虫剤を含み、防虫持続性、耐水性が良好な防虫性発泡成形体を得ることができる。
また本発明の方法は、ニコチニル系殺虫剤を溶解する(A)アルコールと、ポリスチレン樹脂溶解性を有する(B)有機溶媒との混合溶媒にニコチニル系殺虫剤を溶解させ、この殺虫剤溶液と発泡性樹脂粒子とを接触させることで、(B)有機溶媒の作用により発泡性樹脂粒子の表面を改質し、該粒子内にニコチニル系殺虫剤が浸透可能となり、粒子内にニコチニル系殺虫剤を含む防虫性発泡性樹脂粒子を簡単に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insect-resistant foamable styrene-based resin particle for producing a styrene-based resin foam molded article used for a heat-insulating building material and an under-floor heat-insulating material that are not damaged by pests such as termites and bark beetles, a method for producing the same, and an insect-resistant foam. The present invention relates to particles and an insect repellent foam.
[0002]
[Prior art]
The foamed molded article obtained by in-mold foaming of the pre-expanded particles obtained by pre-expanding the expandable styrene-based resin particles can be molded into an arbitrary shape. Widely used as thermal insulation for building materials. These heat insulating materials are indispensable building materials from the viewpoint of energy saving of indoor cooling and heating. On the other hand, with the spread of heating, the habitat of termites is moving north, and almost all of the country has been damaged by house and other buildings. This damage by termites is no exception in the case of foamed styrene resin insulation. When a styrene resin foam molded article for building materials used as a heat insulating material for ceilings, walls, floors, etc. manufactured by subjecting expandable styrene resin particles to foam molding in a mold is used adjacent to wood or the like, particularly There is a problem that a so-called ant path is formed and the heat insulation performance is reduced due to the harmful habit of biting an object that a termite, a termite or the like has encountered. Recently, it has been pointed out that the foamed styrene resin insulation material itself having excellent heat insulation performance provides termites with an environment for winter activities.
[0003]
As a technique for preventing pest damage to the heat insulating material, as a foamable styrene-based resin particle containing a volatile volatile blowing agent having a boiling point lower than the softening point of the styrene-based resin particle, an organophosphorus compound or the like is used. Termite-controlling expandable styrene-based resin particles coated or impregnated with a termite-controlling agent (see, for example, Patent Documents 1 and 2).
However, organophosphorus drugs such as chlorpyrifos and phoxime have percutaneous toxicity, are safe for the human body, are stable against heat during molding, and have low vapor pressure and are easy to volatilize. There were problems in processing for building materials, for example, inferior properties. In particular, chlorpyrifos is one of 13 types of VOCs (volatile organic compounds) for which indoor concentration guidelines have been published at the Ministry of Health, Labor and Welfare's "Consultation Committee on Comfortable and Healthy Housing / Sick House Problem Study Group". Its use has become difficult in building material applications.
[0004]
Nicotinyl having a chloropyridylmethyl group such as acetamiprid or imidacloprid as a more effective, safer and more stable termite component for building material processing in place of the termite component consisting of conventional organic phosphorus compounds, etc. A molding composition of a termite-resistant foamed thermoplastic resin containing a systemic insecticide has been proposed (for example, see Patent Document 3).
In the technique described in Patent Document 3, as the method for processing the termite component into a foamed polystyrene resin or the like, (a) foamed particles obtained by prefoaming foamable styrene-based resin particles are blown with air to flow, and acetamiprid is used. A fluid coating method in which a liquid obtained by diluting a mixture of an aqueous solution and an adhesive component is sprayed on flowing foamed particles, and then dried. (B) An ethanol solution of acetamiprid is added to unfoamed foamable styrene resin particles, and the mixture is uniformly mixed. A bead coating method is disclosed in which a foamable polystyrene resin particle treated with a termite component is stirred by stirring in a container so as to cover the surface of the resin particle.
[0005]
[Patent Document 1]
JP-A-63-159451
[Patent Document 2]
JP-A-11-279321
[Patent Document 3]
JP-A-10-259270
[0006]
[Problems to be solved by the invention]
However, since a nicotinyl insecticide such as acetamiprid used as an anti-termite component in Patent Document 3 dissolves in water, it is subjected to foam molding by in-mold foam molding using foamed or foamable resin particles coated or coated with this. When producing the body, the steam for heating, the water condensed by the steam, and the cooling water for cooling the inside of the mold touch the foam particles and the foam molded body, and dissolve away the insecticide on the surface, thereby producing nicotinyl on the surface. Most of the pesticides run away, and there is a problem that sufficient insect repellency cannot be obtained.
[0007]
The present invention has been made in view of the above circumstances, the nicotinyl insecticide which is an insect repellent component is contained in the particles of the expandable styrene resin particles, and an insect repellent effective amount of nicotinyl is contained in the foam molded article obtained by in-mold foam molding. It is an object of the present invention to provide an insect-resistant foamable styrenic resin particle in which a pesticide remains, a method for producing the same, and an insect-resistant foamed particle and an insect-resistant foam molded article produced using the particle.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an insect-controlling effective amount of a nicotinyl-based insecticide in a foamed molded product produced by subjecting the foamable styrene-based resin particles to in-mold foaming within the foamable styrene-based resin particles. The present invention provides an insect repellent foamable styrene resin particle containing a nicotinyl insecticide so as to remain.
In the insect-controlling foamable styrenic resin particles of the present invention, the nicotinyl-based insecticide is one or more selected from the group consisting of imidacloprid, nitenpyram, acetamiprid, clothianidin, thiacloprid, thiamethoxam, and dinotefuran Is preferred.
The present invention also provides an insecticide solution prepared by dissolving a nicotinyl-based insecticide in a mixed solvent of (A) an alcohol and (B) an organic solvent that dissolves the polystyrene-based resin by mixing the alcohol at an arbitrary ratio. Then, the insecticide solution and the expandable styrene resin particles are brought into contact with each other, the nicotinyl insecticide is contained in the particles of the expandable styrene resin particles, and then the mixed solvent on the surface of the particles is dried. Provided is a method for producing insect-resistant foamable styrene-based resin particles, characterized by obtaining insect-resistant foamable styrene-based resin particles containing nicotinyl-based insecticide in the particles.
In the method of the present invention, the nicotinyl insecticide is preferably one or more selected from the group consisting of imidacloprid, nitenpyram, acetamiprid, clothianidin, thiacloprid, thiamethoxam, and dinotefuran.
The organic solvent (B) is preferably one or more selected from the group consisting of acetone, methyl ethyl ketone, diethyl ketone, ethyl acetate, methylene chloride, chloroform, and dimethylformamide.
Further, the alcohol (A) is preferably one or more selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, and isopropyl alcohol.
The mixing ratio of (B) in the mixed solvent is preferably in the range of 10 to 60% by mass.
Further, the present invention provides insect-resistant foamed particles obtained by heating and foaming the insect-resistant foamable styrene-based resin particles.
Further, the present invention provides an insect-resistant foam molded article formed by filling the above-mentioned insect-resistant foam particles into a cavity of a molding die having a cavity conforming to the shape of a target molded article, and forming the molded article in the mold.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The insect-resistant foamable styrene-based resin particles (hereinafter referred to as insect-resistant foamable resin particles) of the present invention are obtained by expanding the foamed styrene-based resin particles (hereinafter referred to as foamable resin particles) within the particles. The present invention is characterized in that a nicotinyl-based insecticide is contained so that an insect-controlling effective amount of the nicotinyl-based insecticide remains in a foamed molded article produced by foam-molding a conductive resin particle in a mold.
[0010]
The styrene resin used in the present invention includes a polystyrene homopolymer obtained from only a styrene monomer, and a random, block or graft copolymer obtained from another monomer copolymerizable with styrene and styrene or a derivative thereof. Coalesced, modified polystyrene such as brominated polystyrene and rubber reinforced polystyrene. Examples of monomers copolymerizable with styrene include styrene derivatives such as methyl styrene, dimethyl styrene, ethyl styrene, diethyl styrene, and isopropyl styrene, vinyl compounds such as vinyl toluene, vinyl xylene, and divinyl benzene, acrylic acid, methacrylic acid, and acrylic acid. Examples include unsaturated compounds such as methyl, methyl methacrylate, butadiene, and acrylonitrile or derivatives thereof, maleic anhydride, and itaconic anhydride, and these can be used alone or in combination of two or more. The styrene-based resin used in the present invention includes, in addition to newly manufactured styrene-based resin, packaging materials for home appliances, foamed molded articles such as fish boxes, and the like, and recycled for recycling by limonene recycling method or the like. A styrene-based resin can be used as at least a part of the raw material.
[0011]
As the foamable resin particles used in the present invention, foamable resin particles produced by a conventionally known suspension polymerization method, seed polymerization method or extrusion method can be used. As the extrusion method, for example, a styrene-based resin and an additive added as needed in an extruder are heated and melted, and the foaming agent is pressed into the kneaded resin, and the foaming agent is discharged from a die attached to a discharge port of the extruder. Expandable resin particles and the like produced by extruding the added molten resin, bringing the molten resin into contact with the cooling liquid, and simultaneously cutting the molten resin into particles with a cutter can be used. As the expandable resin particles suitably used in the present invention, for example, as disclosed in JP-A-2002-284917, the weight average molecular weight Mw is 300,000 to 600,000, and the orifice is measured at the time of melt flow measurement. Expandable resin particles obtained by adding a foaming agent to a styrene resin particle having an expansion ratio SR (A / B) of 1.5 to 3.0 when the inner diameter of the resin strand is B mm and the outer shape of the resin strand is A mm. Can be mentioned. The expandable resin particles used in the present invention can be appropriately selected from commercially available expandable resin particles of various grades. Preferred examples of commercially available expandable resin particles include expandable styrene resin particles SIL (trademark) manufactured by Sekisui Chemical Co., Ltd., and FMC (trademark) manufactured by the company.
[0012]
Examples of the blowing agent used in the present invention include chlorinated hydrocarbons such as methyl chloride, methylene chloride, and ethyl chloride; aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, and neopentane; -Dichloro-1-fluoroethane (HCFC-141b), 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), chlorodifluoromethane (HCFC-22), 1-chloro-1,2 Chlorofluorocarbons such as 1,2,2-tetrafluoroethane (HCFC-124), 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,1 Fluorocarbons such as 2-tetrafluoroethane (HFC-134a) and difluoromethane (HFC-32), diacids Carbon, water, and include physical blowing agents such as nitrogen, can be used in combination one or more of these.
[0013]
Examples of the nicotinyl insecticide (also referred to as neonicotinoid insecticide) used in the present invention include a compound known as a nicotine-like acetylcholine receptor antagonist (NACRO) and derivatives thereof having similar insecticidal performance. Is mentioned. As the nicotinyl insecticide preferably used in the present invention, a general name: imidacloprid {chemical name: 1- (6-chloro-3-pyridylmethyl) -N-nitroimidazolidin-2-ylideneamine}, general name: nitenpyram Name: (E) -N- (6-chloro-3-pyridylmethyl) -N-ethyl-N'-methyl-2-nitrovinylidenediamine {General name: Acetamiprid} Chemical name: (E) -N'- [(6-Chloro-3-pyridyl) methyl] -N 2 -Cyano-N 1 -Chemical name: N-[(2-chloro-5-thiazolyl) methyl] -N'-methyl-N "-nitro-guanidine {generic name: thiacloprid} : 3- (6-chloro-3-pyridylmethyl) -1,3-thiazolidine-2-ylidenecyanamide {generic name: thiamethoxam} chemical name: 3-[(2-chloro-5-thiazolyl) methyl] tetrahydro -5-methyl-N-nitro-4H-1,3,5-oxadiazine-4-imine}, generic name: dinotefuran {chemical name: N-methyl-N'-nitro-N "-[(tetrahydro-3- Furanyl) methyl] -guanidine, one or more of which may be used.
[0014]
The amount of the nicotinyl insecticide to be added can be appropriately changed according to the type of the nicotinyl insecticide to be used, the density of the foamed molded article, and the like. Usually, 0.001% by mass to 0.5% of the foamable resin particles. % By mass or less. When the addition amount of the nicotinyl insecticide is less than 0.001% by mass, the insect repellent foamable styrene resin particles of the present invention containing the above nicotinyl insecticide in the particles (hereinafter referred to as insect repellent foamable resin particles). ) As a raw material, the insect-resistant foamed molded article of the present invention may not have sufficient insect repellency and may be harmed by vermin such as termites. On the other hand, if the addition amount of the nicotinyl insecticide exceeds 0.5% by mass, the product cost increases, which is not preferable.
[0015]
If necessary, in addition to the nicotinyl insecticide and the foaming agent, various additives used in the production of general foamable resin particles may be added to the foamable resin particles. Good. Examples of such additives include a cell regulator (foam nucleating material), a flame retardant, a filler, a lubricant, and a colorant. In particular, when the obtained foamed molded article is used as a heat insulating material for building materials, it is desirable to add a flame retardant to the foamed resin particles in order to uniformly impart flame retardancy to the foamed molded article. As the flame retardant, those generally used for producing a flame-retardant styrenic resin foam can be used. Specifically, hexabromocyclododecane, tetrabromocyclooctane, tris (2,3-dibromo The use of brominated flame retardants such as propyl) isocyanurate is preferred. The flame retardant is usually added in the range of 0.5 to 2.0% by mass based on the expandable resin particles.
[0016]
Since the insect-resistant foamable resin particles of the present invention contain nicotinyl-based insecticide in the particles of the foamable resin particles, when producing an insect-resistant foamed molded article using the insect-resistant foamable resin particles, Even if water vapor or water comes in contact, the amount of nicotinyl insecticide that runs off from the particles is reduced, and most of the nicotinyl insecticide can be left in the insect repellent foam, and the insect repellent foam has excellent insect repellency. Can be obtained.
Further, according to the present invention, the amount of nicotinyl-based insecticide that runs off from the insect-resistant foamable resin particles is reduced, and the amount of nicotinyl-based insecticide used is small. Can be provided.
Furthermore, since the insect-controlling foamable resin particles of the present invention contain nicotinyl-based insecticides in the particles, the insect-controlling foamed molded article having a uniform nicotinyl-based insecticide throughout, and having excellent insect repellency and water resistance is provided. Obtainable.
[0017]
The method for producing insect repellent foamable resin particles according to the present invention comprises: (A) an alcohol; and (B) a mixed solvent of an organic solvent which is mixed with the alcohol at an arbitrary ratio and dissolves a polystyrene resin. An insecticide solution in which the insecticide is dissolved is prepared, the insecticide solution is brought into contact with the expandable styrene resin particles, and the nicotinyl insecticide is contained in the expandable styrene resin particles. The method is characterized in that the solvent mixture on the surface of the particles is dried to obtain an insect repellent foamable resin particle containing an insect repellent effective amount of a nicotinyl insecticide in a foam molded article produced by in-mold foam molding.
[0018]
As the alcohol of the above (A), a nicotinyl insecticide can be used by selecting from alcohols that can be dissolved, and in particular, one or more selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, and isopropyl alcohol It is preferable to use two or more types.
[0019]
Examples of the organic solvent (B) include ketones such as acetone, methyl ethyl ketone and diethyl ketone, esters such as ethyl acetate, halogenated hydrocarbons such as methylene chloride and chloroform, and formamides such as dimethyl formamide. Examples thereof include a polar organic solvent, and it is preferable to use one or more selected from the group consisting of acetone, methyl ethyl ketone, diethyl ketone, ethyl acetate, methylene chloride, chloroform, and dimethylformamide.
[0020]
The mixing ratio of (B) in the mixed solvent is preferably in the range of 10 to 60% by mass, and more preferably in the range of 20 to 55% by mass. When the mixing ratio of (B) is less than the above range, the effect of drawing the nicotinyl insecticide into the expandable resin particles by the organic solvent of (B) becomes insufficient, and the nicotinyl insecticide does not enter the particles. In addition, the nicotinyl insecticide easily flows off from the expandable resin particles by steam or water. On the other hand, when the mixing ratio of (B) exceeds the above range, the mixed solvent easily dissolves the polystyrene resin, so that the surface of the expandable resin particles in contact with the mixed solvent becomes sticky, and the particles easily adhere to each other, and It is easy to solidify.
[0021]
After preparing an insecticide solution in which a nicotinyl insecticide is dissolved in the mixed solvent, the insecticide solution is brought into contact with the foamable resin particles, and the nicotinyl insecticide is penetrated into the foamable resin particles. As a method of bringing the pesticide solution into contact with the foamable resin particles, a method in which the foamable resin particles and the pesticide solution are charged into a mixer and stirred, a fluid coating method, a spray coating method, and the like are used. In this step, a small amount of an inorganic powder such as aluminum hydroxide powder, talc, or silica may be added for the purpose of preventing coalescence of the expandable resin particles. The insecticide solution attached to the surface of the foamable resin particles is modified on the surface of the particles by the action of the organic solvent (B) having solubility in polystyrene resin, and the nicotinyl-based insecticide can be penetrated. The time for contacting the insecticide solution with the foamable resin particles is preferably about 1 hour to 2 days.
[0022]
Then, if necessary, after separating the foamable resin particles and the insecticide solution using a solid-liquid separation means such as centrifugation, the foamable resin particles are air-dried, and the mixed solvent on the particle surface is removed and dried. As a result, insect repellent foamable resin particles containing a nicotinyl insecticide in the particles are obtained.
[0023]
The method of the present invention comprises dissolving a nicotinyl insecticide in a mixed solvent of (A) an alcohol that dissolves a nicotinyl insecticide and (B) an organic solvent having polystyrene resin solubility. By contacting with the resin particles, (B) the surface of the expandable resin particles is modified by the action of the organic solvent, the nicotinyl insecticide can be penetrated into the particles, and the particles contain the nicotinyl insecticide. Insect repellent resin particles can be easily produced.
[0024]
Further, the present invention provides an insect repellent foamed particle obtained by heating and foaming the above insect repellent foamable resin particle, and an insect repellent foam molded article obtained by subjecting the insect repellent foamed particle to foam molding in a mold. The insect repellent foamed particles and the insect repellent foamed molded article of the present invention can be easily produced by using the above-mentioned insect repellent foamable resin particles as a raw material and a conventionally known foamed resin molding technique. That is, the insect-resistant foamed particles can be obtained by steam-heating the above-mentioned insect-resistant foamable resin particles in a free expansion space to expand the particles to a desired bulk density. The bulk density at the time of producing the expanded particles is not particularly limited, but the bulk density is 0.012 to 0.07 g / cm. 3 (Expansion ratio: about 14 to about 83 times) is preferable. 0.012g / cm 3 If it is less than 3, the content of the insecticide per unit volume of the molded product is insufficient, and the insect repellent effect may be insufficient. 0.07 g / cm 3 Exceeding the cooling time during molding is prolonged, and the productivity is reduced.
The insect-resistant foamable resin particles have a bulk density of 0.033 g / cm. 3 It is preferable to use a foamed particle having a thickness of 1 to 9 μm on the surface of the foamed particles when foamed. When the thickness of the bubble film is less than 1 μm, the bubble film on the surface is broken at the time of molding due to the effect of the contained insecticide and the like, and the molded body is not sufficiently fused. On the other hand, when the thickness exceeds 9 μm, no breakage of the cell membrane occurs, but the heat resistance of the cell membrane on the particle surface is too high, so that the fusion of the molded product becomes insufficient. Further, as for the thickness of the bubble film on the surface of the foamed particles, if the foamed particles have the same bulk density, the smaller the bubble diameter, the thinner the bubble film on the surface, and the larger the bubble diameter, the thicker the bubble film on the surface.
Further, the insect-resistant foamed molded article is filled with the insect-resistant foamed particles in a cavity of a molding die having a cavity matching the shape of the target molded article, and the foamed particles are steam-heated in the mold to fuse the foamed particles together. After that, it is manufactured by cooling and releasing the mold.
Insect-resistant foamed molded article of the present invention, since the nicotinyl-based insecticide is present in the entire foamed molded article, it is possible to reliably prevent damage to building material pests such as termites, leaf bark beetles, Nagashini and shibanmushi for a long period of time. Can be prevented.
[0025]
【Example】
[Example 1]
First, a solution was prepared by dissolving acetamiprid powder at a rate of 30 g in 120 g of a mixed liquid in which acetone and ethyl alcohol were mixed at a weight ratio of acetone / ethyl alcohol = 30/70. Next, 100 g of the prepared acetamiprid solution was added to and mixed with 10 kg of the flame-retardant grade expandable resin particles to uniformly coat the expandable resin particles with the acetamiprid solution. In addition, acetone and ethyl alcohol used the reagent special grade, and the foamable resin particle used SIL (trademark) made by Sekisui Plastics Co., Ltd.
To coat the acetamiprid solution, use a tumbler mixer (Kotobuki mix well W-20 manufactured by Tokuju Kogyo Co., Ltd.) with an inner volume of about 30 L. 0.8 mass% of aluminum powder (particle diameter: about 10 μm) was added, and the mixture was mixed at 30 rpm for 5 minutes, and then the acetamiprid solution was added and mixed for another 15 minutes, whereby the acetamiprid solution was uniformly coated. Expandable resin particles (abbreviated as expandable resin particles in Examples and Comparative Examples including Tables 1 and 2 below) were obtained.
The foamable resin particles are placed in a polyethylene bag, sealed and left at 23 ° C. for 24 hours to absorb the coated solution into the foamable resin particles, and then the excess organic solvent is volatilized by a ventilation dryer. And dried. Next, the obtained expandable resin particles were placed in a small batch type prefoaming machine having an internal volume of 40 L, and heated with steam under normal pressure to obtain a bulk density of 0.033 g / cm. 3 Insect repellent foamed particles (abbreviated as foamed particles in the following examples and comparative examples) were obtained. The thickness of the cell membrane on the surface of the expanded particles (hereinafter, abbreviated as cell membrane thickness) was 5.6 μm. After aging the obtained foamed particles at 23 ° C. for 24 hours, using a foam molding machine (ACE-3 type manufactured by Sekisui Koki Seisakusho Co., Ltd.) having a cavity size of 300 mm × 400 mm × 50 mm, a gauge pressure of 0.08 MPa. For about 30 seconds to fuse the foamed particles to each other, cool by water cooling, take out from the cavity, and obtain a plate-shaped density of 300 mm × 400 mm × 50 mm 0.033 g / cm. 3 (In the description of Examples and Comparative Examples including Tables 1 and 2 below, abbreviated as a foamed molded article).
[0026]
[Example 2]
A density of 0.033 g / cm was obtained in the same manner as in Example 1 except that the ratio of the mixture of acetone and ethyl alcohol was changed to acetone / ethyl alcohol = 50/50 by mass ratio. 3 To obtain foamed particles having a cell membrane thickness of 5.6 μm and a density of 300 mm × 400 mm × 50 mm of 0.033 g / cm. 3 Was obtained.
[0027]
[Example 3]
A bulk density of 0.033 g / cm was obtained in the same manner as in Example 1 except that acetone was changed to reagent grade methyl ethyl ketone. 3 To obtain foamed particles having a cell membrane thickness of 5.6 μm and a density of 300 mm × 400 mm × 50 mm of 0.033 g / cm. 3 Was obtained.
[0028]
[Example 4]
The bulk density was 0.033 g / cm in the same manner as in Example 1 except that the amount of the acetamiprid solution to be added was changed from 100 g to 5 g, and the aluminum hydroxide powder was not added. 3 To obtain foamed particles having a cell membrane thickness of 5.6 μm and a density of 300 mm × 400 mm × 50 mm of 0.033 g / cm. 3 Was obtained.
[0029]
[Example 5]
The bulk density was 0.033 g / cm3 in the same manner as in Example 1 except that the amount of the acetamiprid solution to be added was changed from 100 g to 250 g, and the amount of the aluminum hydroxide powder was changed from 80 g to 200 g. 3 To obtain foamed particles having a cell membrane thickness of 5.6 μm and a density of 300 mm × 400 mm × 50 mm of 0.033 g / cm. 3 Was obtained.
[0030]
[Example 6]
The bulk density was 0.033 g / cm in the same manner as in Example 1 except that the flame-retardant grade expandable resin particles used were changed to FMC (trademark) manufactured by Sekisui Chemical Co., Ltd. 3 To obtain foamed particles having a cell membrane thickness of 1.3 μm and a density of 0.033 g / cm of 300 mm × 400 mm × 50 mm. 3 Was obtained.
[0031]
[Example 7]
By adjusting the amount of the expandable styrene resin particles to be charged into the small batch type pre-expansion machine, the expanded particles have a bulk density of 0.017 g / cm. 3 Except having changed to, a foamed particle having a cell membrane thickness of 3.6 μm was obtained in the same manner as in Example 1, and a density of 300 mm × 400 mm × 50 mm 0.017 g / cm 3 Was obtained.
[0032]
[Comparative Example 1]
The bulk density was 0.033 g / cm in the same manner as in Example 1 except that the solvent for dissolving acetamiprid was changed from a mixture of acetone and ethyl alcohol to only ethyl alcohol. 3 To obtain foamed particles having a cell membrane thickness of 5.6 μm and a density of 300 mm × 400 mm × 50 mm of 0.033 g / cm. 3 Was obtained.
[0033]
[Comparative Example 2]
A bulk density of 0.033 g / cm was obtained in the same manner as in Example 1 except that the acetamiprid solution and aluminum hydroxide were not added. 3 To obtain foamed particles having a cell membrane thickness of 5.6 μm and a density of 300 mm × 400 mm × 50 mm of 0.033 g / cm. 3 Was obtained.
[0034]
[Comparative Example 3]
The acetamiprid solution was coated on the expandable resin particles in the same manner as in Example 1, except that the solvent for dissolving acetamiprid was changed from a mixture of acetone and ethyl alcohol to only acetone. When the resin particles were sealed in a polyethylene bag and left at 23 ° C. for 24 hours, the entire amount of the resin particles was coalesced with acetone, and foaming could not be performed.
[0035]
Using the expandable resin particles and the foamed molded articles produced in Examples 1 to 7 and Comparative Examples 1 to 3, various tests described below were performed, and the results are shown in Tables 1 and 2.
[0036]
<Testing method for termite resistance>
The evaluation was made as follows with reference to the comprehensive test method described in the termite control efficacy test method specified in the Japan Wood Preservation Association (JWPA) Standard No. 11 (1) Laboratory Test Method.
That is, laying absorbent cotton containing water on the bottom of a container with a lid that secures air permeability by making a small hole, placing a gypsum plate with a thickness of about 5 mm on top of it, and supplying water through the gypsum plate An acrylic resin cylinder having a diameter of 8 cm and a height of 6 cm is placed on the gypsum board, and a specimen cut out from the foamed molded article and a test insect are placed in the cylinder and bred for 21 days to prevent food damage and the life and death of the test insect. Observed visually. Also, 21 days later, the weight loss rate of the sample was measured.
・ Specimen: 40 × 40 × 20mm
-Trial insects: 50 termites (Coptotermes formosanus SHIRAKI) 50 termites and 5 soldiers (total 55)
・ Test conditions: 28 ° C x 21 days
[0037]
(Evaluation of termite resistance)
According to the test method described above, the samples after the 21-day test were evaluated as follows.
・ Visual evaluation
○: No damage
Δ: Part of the sample surface has a scar
×: Damage to the inside of the sample
・ Mass loss rate
The mass reduction rate was determined by the following equation using an electronic balance capable of weighing up to 0.0001 g.
Mass reduction rate (%) = (W0−W1) / W0 × 100
(In the formula, W0 represents the mass of the sample before the test, and W1 represents the mass of the sample after the test.)
・ Death rate
The number of dead insects was counted visually and determined by the following equation.
Insect rate (%) = number of dead insects / 55 × 100
[0038]
(Comprehensive evaluation criteria)
:: visual evaluation △ or more, specimen mass reduction rate of less than 2%, mortality rate after 21 days 100%
Δ: Visual evaluation Δ or higher, specimen mass reduction rate less than 3%, mortality rate less than 100% after 21 days
×: visual evaluation ×, specimen mass reduction rate of 3% or more, mortality rate of less than 100% after 21 days
[0039]
<Drug content analysis method>
1.0 g of the sample was weighed into a 1 L beaker, and 30 mL of chloroform was added to completely dissolve the sample. To this, 970 mL of methanol was added to precipitate a polystyrene component. 200 mL of the supernatant of this solution was collected, filtered through a disk filter, and then concentrated to dryness using a rotary evaporator.
The concentrated residue was dissolved in 10 mL of acetonitrile, made up to 20 mL, injected into HPLC, and quantified.
When the sample was expandable resin particles, 1.0 g was weighed as it was, and when the sample was a foamed molded product, a 1.0 g portion was cut out from the inside of a molded product of 300 × 400 × 25 mm using a cutter knife.
[0040]
(Equipment conditions)
-Apparatus: High performance liquid chromatograph (= HPLC), manufactured by Shimadzu Corporation, LC-10Avp
-Column: TOSOH ODC-80Ts QA (4.6 mm x 150 mm)
Mobile phase: water / acetonitrile = 80/20
・ Flow rate: 1.0 mL / min
・ Injection volume: 20 μL
・ Detector: UV spectrophotometer UV = 245nm
[0041]
Further, for some of the examples and comparative examples, the run-off degree of the drug due to washing with water was confirmed by the following method.
[0042]
<How to check the degree of runoff>
100 g of the foamed resin particles having been impregnated with the drug are placed in a 1 L beaker, 800 ml of ion-exchanged water is added, and the mixture is stirred for 60 minutes using a magnetic stirrer to sufficiently wash the foamable resin particles with water. It was cut and dried sufficiently with cool air of a dryer. The content of acetamiprid in the resin particles after the drying of the expandable resin particles was quantified according to the above-described analysis method.
[0043]
<Measurement method of fusion degree>
When a foamed molded article of 300 mm in width x 400 mm in length x 50 mm in thickness is broken by dividing it into two in the length direction and broken, the number of all particles present in the fractured surface is A, and the particles themselves are broken. Assuming that the number of particles used is B, it was determined by the following equation. In addition, the fraction was rounded off to a unit of 5%.
Degree of fusion (%) = B / A × 100
[0044]
<Fusibility evaluation criteria>
The following criteria were evaluated based on the fusion degree calculated above.
:: fusion degree 80% or more
Δ: Degree of fusion 50% or more and less than 80%
X: Degree of fusion less than 50%
[0045]
<Test method for flame retardancy of foamed molded article>
It was measured by the method described in JIS A 9511: 1995 "Method of measuring foamed plastic heat insulating material" A.
That is, the test piece is cut out from the sample into five pieces each having a thickness of 10 mm, a length of 200 mm, and a width of 25 mm, and is provided with prescribed ignition limit and combustion limit instruction lines. After the test piece was burned to the ignition limit indicator line with a candle for fire source, the flame was retreated and the time (sec) from the moment when the flame disappeared was measured. The average value of the extinction time of the five pieces was 3 seconds. Those within the category were rated as flame retardant (evaluation: ○). The candle for the fire source used had a flame length of 50 mm or more and a thickness of about 7 mm or more when the core length was about 10 mm during steady combustion.
[0046]
<Thickness of foam film on the surface of expanded particles>
Bulk density 0.02g / cm 3 10 foam particles arbitrarily selected from the pre-foamed foam particles are cut along a plane passing through the center of the foam particles using a razor blade, and the outer peripheral portion of the cut surface is scanned with a scanning electron microscope (Hitachi, Ltd.) (S-3000N, manufactured by the Company), and an image photographed at a magnification of 1500 times was created. Next, based on this image, the thickness of the foam film on the surface of the foamed particles was measured at an arbitrary three places of one foamed particle, that is, at a total of 30 places, and the average value was defined as the foam film thickness. The bulk density is calculated by the following formula by measuring the weight of the foamed particles by allowing them to fall naturally into a measuring cylinder.
Bulk density (g / cm 3 ) = Sample weight (g) / sample volume in graduated cylinder (cm 3 )
[0047]
[Table 1]
Figure 2004292655
[0048]
[Table 2]
Figure 2004292655
[0049]
From the results shown in Table 1, the expandable resin particles produced in Examples 1 to 7 according to the present invention have less run-out of acetamiprid when the in-mold molding is performed to produce a foam molded article, and the acetamiprid in the expandable resin particles is small. 70% or more remains in the foamed molded article. On the other hand, in Comparative Example 1 in which acetamiprid was dissolved in a solvent containing only ethyl alcohol without using acetone, the foamed resin particles were mixed with the foamed resin particles. In this case, acetamiprid flowed out significantly, and almost no acetamiprid remained in the foamed molded article. Further, the expandable resin particles of Examples 1 to 3 were washed with water, and the degree of residual acetamiprid was measured. As a result, most of the acetamiprid contained in the expandable resin particles remained after the particles were washed with water. On the other hand, in the expandable resin particles of Comparative Example 1, acetamiprid hardly remained after washing with water.
From the test results, in Examples 1 to 7 according to the present invention, acetamiprid dissolved in a mixed solvent of acetone and ethyl alcohol was brought into contact with the foamable resin particles, so that acetamiprid penetrated into the particles and retained. As a result, as compared with Comparative Example 1 in which acetamiprid is adhered only to the particle surface, runoff of acetamiprid due to contact with steam or water during production of the foamed molded article is small, and most of the obtained foamed molded article is obtained. It was demonstrated that acetamiprid remained.
[0050]
From the results in Table 2, the foamed molded articles produced in Examples 1 to 7 according to the present invention contain an insecticide (acetamipride) almost uniformly throughout the foamed molded article, and excellent termite resistance is obtained. This has been proven.
In addition, the foamed molded articles prepared in Examples 1 to 7 had practically sufficient fusing properties and flame retardancy.
[0051]
【The invention's effect】
Since the insect repellent foamable resin particles of the present invention contain a nicotinyl-based insecticide in the particles, when producing the insect repellent molded article using the insect repellent foamable resin particles, water vapor and water come into contact with each other. However, runoff of the nicotinyl insecticide from the particles is reduced, and most of the nicotinyl insecticide remains in the insect-resistant foamed molded article, so that a foamed molded article having excellent insect-proofing properties can be obtained.
Further, according to the present invention, the amount of nicotinyl-based insecticide that runs off from the insect-resistant foamable resin particles is reduced, and the amount of nicotinyl-based insecticide used is small, so that the insect-resistant foamed molded article having sufficient insect-proof property can be obtained. It can be provided at low cost.
Furthermore, since the insect-resistant foamable resin particles of the present invention contain a nicotinyl-based insecticide in the particles, the insect-resistant foamed molded article containing the nicotinyl-based insecticide uniformly throughout, and having excellent insect repellency and water resistance, is excellent. Can be obtained.
Further, the method of the present invention comprises dissolving a nicotinyl insecticide in a mixed solvent of (A) an alcohol that dissolves a nicotinyl insecticide and (B) an organic solvent having polystyrene resin solubility, (B) The surface of the expandable resin particles is modified by the action of the organic solvent by bringing the particles into contact with the conductive resin particles, and the nicotinyl-based insecticide can penetrate into the particles. Insect repellent foamable resin particles can be easily produced.

Claims (9)

発泡性スチレン系樹脂粒子の粒子内に、該発泡性スチレン系樹脂粒子を型内発泡成形して製造した発泡成形体に防虫有効量のニコチニル系殺虫剤が残存するように、ニコチニル系殺虫剤を含有せしめたことを特徴とする防虫性発泡性スチレン系樹脂粒子。In the particles of the expandable styrene-based resin particles, a nicotinyl-based insecticide is used so that an insect-controlling effective amount of the nicotinyl-based insecticide remains in the foamed molded article produced by in-mold foaming of the expandable styrene-based resin particles. Insect repellent foamable styrenic resin particles, characterized by being contained. 上記ニコチニル系殺虫剤が、イミダクロプリド、ニテンピラム、アセタミプリド、クロチアニジン、チアクロプリド、チアメトキサム、ジノテフランからなる群から選択される1種又は2種以上である請求項1に記載の防虫性発泡性スチレン系樹脂粒子。The insect repellent styrenic resin particles according to claim 1, wherein the nicotinyl insecticide is one or more members selected from the group consisting of imidacloprid, nitenpyram, acetamiprid, clothianidin, thiacloprid, thiamethoxam, and dinotefuran. (A)アルコールと、(B)該アルコールと任意の割合で混ざり合い、ポリスチレン系樹脂を溶解する有機溶媒との混合溶媒に、ニコチニル系殺虫剤を溶解した殺虫剤溶液を調整し、該殺虫剤溶液と発泡性スチレン系樹脂粒子とを接触させ、該発泡性スチレン系樹脂粒子の粒子内に、ニコチニル系殺虫剤を含有せしめ、次いで該粒子表面の混合溶媒を乾燥させて、粒子内にニコチニル系殺虫剤を含む防虫性発泡性スチレン系樹脂粒子を得ることを特徴とする防虫性発泡性スチレン系樹脂粒子の製造方法。(A) an alcohol and (B) a mixture of the alcohol at an arbitrary ratio and an organic solvent that dissolves a polystyrene-based resin in a mixed solvent of a nicotinyl-based insecticide and a solution of the insecticide. The solution and the expandable styrene resin particles are brought into contact with each other, the nicotinyl insecticide is contained in the particles of the expandable styrene resin particles, and then the mixed solvent on the surface of the particles is dried. A method for producing insect-resistant foamable styrene-based resin particles, comprising obtaining insect-resistant foamable styrene-based resin particles containing an insecticide. 上記ニコチニル系殺虫剤が、イミダクロプリド、ニテンピラム、アセタミプリド、クロチアニジン、チアクロプリド、チアメトキサム、ジノテフランからなる群から選択される1種又は2種以上である請求項3に記載の防虫性発泡性スチレン系樹脂粒子の製造方法。The insect-controlling foamable styrene-based resin particles according to claim 3, wherein the nicotinyl insecticide is one or more members selected from the group consisting of imidacloprid, nitenpyram, acetamiprid, clothianidin, thiacloprid, thiamethoxam, and dinotefuran. Production method. 上記(B)の有機溶媒が、アセトン、メチルエチルケトン、ジエチルケトン、酢酸エチル、塩化メチレン、クロロホルム、ジメチルホルムアミドからなる群から選択される1種又は2種以上である請求項3又は4に記載の防虫性発泡性スチレン系樹脂粒子の製造方法。The insect repellent according to claim 3 or 4, wherein the organic solvent (B) is one or more selected from the group consisting of acetone, methyl ethyl ketone, diethyl ketone, ethyl acetate, methylene chloride, chloroform, and dimethylformamide. Method for producing porous expandable styrene resin particles. 上記(A)のアルコールが、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコールからなる群から選択される1種又は2種以上である請求項3〜5のいずれかに記載の防虫性発泡性スチレン系樹脂粒子の製造方法。The insect-resistant foamable styrene according to any one of claims 3 to 5, wherein the alcohol (A) is one or more selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, and isopropyl alcohol. Method for producing resin particles. 上記混合溶媒における(B)の混合比率が10〜60質量%の範囲である請求項3〜6のいずれかに記載の防虫性発泡性スチレン系樹脂粒子の製造方法。The method for producing insect-resistant foamable styrene resin particles according to any one of claims 3 to 6, wherein the mixing ratio of (B) in the mixed solvent is in the range of 10 to 60% by mass. 請求項1又は2に記載の防虫性発泡性スチレン系樹脂粒子を加熱発泡させてなる防虫性発泡粒子。Insect-resistant foamed particles obtained by heating and foaming the insect-resistant foamable styrenic resin particles according to claim 1 or 2. 請求項8に記載の発泡粒子を、目的成形体形状に合致するキャビティを有する成形型のキャビティ内に充填し、型内成形して形成された防虫性発泡成形体。An insect-proof foamed molded article formed by filling the foamed particles according to claim 8 into a cavity of a mold having a cavity conforming to the shape of a target molded article, and molding the molded article in the mold.
JP2003087544A 2003-03-27 2003-03-27 Insect-proof foaming styrene resin particles and method for producing the same, insect-proofing foam particles, and insect-proof foamed articles Expired - Fee Related JP4125167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087544A JP4125167B2 (en) 2003-03-27 2003-03-27 Insect-proof foaming styrene resin particles and method for producing the same, insect-proofing foam particles, and insect-proof foamed articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087544A JP4125167B2 (en) 2003-03-27 2003-03-27 Insect-proof foaming styrene resin particles and method for producing the same, insect-proofing foam particles, and insect-proof foamed articles

Publications (2)

Publication Number Publication Date
JP2004292655A true JP2004292655A (en) 2004-10-21
JP4125167B2 JP4125167B2 (en) 2008-07-30

Family

ID=33401910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087544A Expired - Fee Related JP4125167B2 (en) 2003-03-27 2003-03-27 Insect-proof foaming styrene resin particles and method for producing the same, insect-proofing foam particles, and insect-proof foamed articles

Country Status (1)

Country Link
JP (1) JP4125167B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096843A (en) * 2007-10-15 2009-05-07 Dainaga Kk Termite repelling foamed polystyrol product and method for producing the same
JP2010254939A (en) * 2009-03-30 2010-11-11 Sekisui Plastics Co Ltd Expandable polystyrene resin particle for heat insulating material to be used under floor of house, and heat insulating material under floor of house
JP2011094025A (en) * 2009-10-29 2011-05-12 Kaneka Corp Aliphatic polyester-based resin foamed particle containing volatile active ingredient
JP2014524945A (en) * 2011-06-21 2014-09-25 ランクセス・ドイチュランド・ゲーエムベーハー Mixture of foam-containing polymer, insecticide, and wax

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096843A (en) * 2007-10-15 2009-05-07 Dainaga Kk Termite repelling foamed polystyrol product and method for producing the same
JP2010254939A (en) * 2009-03-30 2010-11-11 Sekisui Plastics Co Ltd Expandable polystyrene resin particle for heat insulating material to be used under floor of house, and heat insulating material under floor of house
JP2011094025A (en) * 2009-10-29 2011-05-12 Kaneka Corp Aliphatic polyester-based resin foamed particle containing volatile active ingredient
JP2014524945A (en) * 2011-06-21 2014-09-25 ランクセス・ドイチュランド・ゲーエムベーハー Mixture of foam-containing polymer, insecticide, and wax

Also Published As

Publication number Publication date
JP4125167B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4689835B2 (en) Insecticide-containing foam sheet
TW200934842A (en) Process for the production of insecticide-modified bead material composed of expandable polystyrene and insecticide-modified moldings obtainable therefrom
JP4125167B2 (en) Insect-proof foaming styrene resin particles and method for producing the same, insect-proofing foam particles, and insect-proof foamed articles
US6033731A (en) Impregnating polymer beads with insecticide
JP5235066B2 (en) Ant-proof foamed polystyrene product and method for producing the same
US5147481A (en) Insect resistant foam body useful in farm buildings
WO2003029333A1 (en) Termite-resistant foam article
JP6055685B2 (en) Method for producing flame-retardant styrene resin particles, method for producing foamable particles, method for producing foamed particles, and method for producing foamed molded article
JP6055687B2 (en) Flame-retardant styrenic resin particles, expandable particles, expanded particles and expanded molded articles
US5149726A (en) Insect resistant foam body useful in farm buildings
JP5990719B2 (en) Ant-proof polystyrene foam insulation and method for producing the same
JPH11279321A (en) Ant-repellent, expandable styrenic resin particle, preparation thereof, and expanded molding using this
JP5827402B2 (en) Mixture of foam-containing polymer, insecticide, and wax
EP3755742B1 (en) Casting item and mixture and method of preparing same
JPS63159451A (en) Expandable polystyrene resin composition and its production
KR20110080169A (en) Method for producing xps moulded pieces provided with insecticide
TW200934841A (en) Insecticide-modified bead material composed of expandable polystyrene and insecticide-modified moldings obtainable therefrom
JPS63152648A (en) Foamed plastic material and production thereof
JPH0867762A (en) Pre-expanded thermoplastic resin particle having low thermal conductivity and molding made thereof
JP2002088185A (en) Termite-repelling thermoplastic resin foam and method for producing the same
JP2003001627A (en) Method for manufacture of additive-containing prefoamed resin particle
JP2000001564A (en) Termite-proof molded resin foam
DE19822945A1 (en) Process for the production of foamed thermoplastic polymers, useful for thermal and acoustic insulation
JPH10259263A (en) Forming composition of foamed polyurethane resin having ant-controlling activity
EP1963189A2 (en) Methods for improving the resistance of fumigant sorption in a produce container and a related produce containers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees