JP2004292296A - Method of manufacturing slag hardened body - Google Patents
Method of manufacturing slag hardened body Download PDFInfo
- Publication number
- JP2004292296A JP2004292296A JP2003090733A JP2003090733A JP2004292296A JP 2004292296 A JP2004292296 A JP 2004292296A JP 2003090733 A JP2003090733 A JP 2003090733A JP 2003090733 A JP2003090733 A JP 2003090733A JP 2004292296 A JP2004292296 A JP 2004292296A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- binder
- blast furnace
- mass
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、コンクリートのような性質をもつスラグ硬化体を製造する方法に関し、とくに結合材として高炉スラグ微粉末と石こうとの混合物を用いることを特徴とする方法についての提案である。
【0002】
【従来技術】
コンクリートのようなスラグ硬化体を製造する方法にはいろいろの提案がある。そのうち、代表的な方法は、鉄鋼スラグを使ってコンクリートそのものを製造する方法である。この方法は、セメントを結合材として、砂利や砂等の骨材と水と、混合、混練して型枠に流し込んで成形し、水和反応により硬化させて硬化体とする方法である。この場合において、結合材は、通常、セメントクリンカーを微粉砕して得られる普通ポルトランドセメントなどが用いられている。
【0003】
ところで、非特許文献1の記載によると、普通ポルトランドセメントというのは、色々な化合物が存在しており、中でも、アルミン酸三カルシウム(以下、単に「C3A」と略記する)と呼ばれる化合物は、水との反応性が非常に激しく、水と混合したとたんに反応するために、練り混ぜが不能になるほどである。一方で、そのC3Aに石こうを加えると、石こうとC3Aとが反応して、複塩を形成し、C3Aの急激な反応にブレーキをかけることができることが判っている。
たとえば、ポルトランドセメントについて規定するJIS R 5210によると、クリンカーは、「クリンカーに適量の石こうを加え、粉砕してつくる。」と規定している。
【0004】
前記結合材としては、その他に、普通ポルトランドセメントに高炉スラグ微粉末を5〜70mass%加えた高炉セメント(JIS R 5112)を用いることもある。
【0005】
非特許文献2には、省資源・省エネルギーに資する技術として、高炉水砕スラグと回収石こうとからなるスラグ石こうセメントを利用する方法が開示されている。上記のスラグ石こうセメントとは、高炉スラグ微粉末:80〜85mass%、排煙脱硫石こう:12〜18mass%、普通ポルトランドセメント:2〜3mass%の割合で配合したものである。
【0006】
特許文献1には、製鋼スラグを骨材とする製鋼スラグ硬化体の製造方法が開示されている。この技術は、製鋼スラグに対し、結合材として高炉スラグ微粉末ならびに潜在水硬性を有する物質を添加することにより、製鋼スラグ硬化体を得る方法である。この方法は、製鋼スラグを省資源・省エネルギー、リサイクル材として利用するという観点から、循環型社会の構築に向けた技術として高く評価されている。
【0007】
【特許文献1】特開2001−114550号公報
【非特許文献1】「わかりやすいセメントとコンクリートの知識」
(鹿島出版会、昭和59年発行、30頁)
【非特許文献2】「生産研究」第33巻6号、第228〜231頁
【0008】
【発明が解決しようとする課題】
しかし、発明者らの研究によると、省資源・省エネルギーに資する上記従来技術を用いてスラグ硬化体を試作したところ、下記のような問題点があることが判明した。まず、非特許文献2に開示のスラグ石こうセメントを用いて、製造されたコンクリート状のスラグ硬化体は、表面劣化が著しく、十分な耐久性を持ったコンクリート状のスラグ硬化体とするのは困難であった。
【0009】
一方、特許文献1の方法に従い製鋼スラグを原料としてスラグ硬化体を製造する技術については、耐久性に問題はないものの、大気温あるいは材料の温度そのものが高いか、練り上り温度が20℃を超える場合には、混練物の流動性が急速に低下し、ときとして成形が困難になることがあることがわかった。
【0010】
本発明の目的は、温度・気温が高い状態の下で硬化体を製造する場合であっても、耐久性に優れると共に成形性(流動性)にも優れるコンクリートのような性質をもつスラグ硬化体の有利な製造方法を提案することにある。
【0011】
【課題を解決するための手段】
発明者らは、従来技術が抱えている上記課題の克服につき鋭意研究した結果、上記目的を達成するためには、結合材として、石こうを含む高炉スラグ微粉末を用いることが有効であるとの知見を得て、本発明を開発した。即ち、本発明は、骨材と水に、主として高炉スラグ微粉末からなる結合材を添加してスラグ硬化体を製造する方法において、前記結合材として、高炉スラグ微粉末に質量比内割りで1〜10mass%の石こうを含むものからなるものを用いることを特徴とする硬化体の製造方法である。
【0012】
本発明において、前記結合材は、外気の温度または混練物の練り上がり温度が20℃を超える時に用いることが好ましく、骨材としては、少なくとも製鋼スラグを用いることが好ましく、さらに、アルカリ金属および/またはアルカリ土類金属の、酸化物、水酸化物、硫酸塩および塩化物から選ばれるいずれか1種または2種以上を前記結合材(高炉スラグ微粉末+石こう)に対する質量比で0.2〜20mass%含むことが、好ましいと言える。
【0013】
【発明の実施の形態】
以下に、本発明の実施の形態を詳しく説明する。本発明の特徴の一つは、結合材として、基本的に高炉スラグ微粉末を用いることにある。その理由は、高炉スラグ微粉末というのは、高炉セメントとは異なり、CaO/SiO2(質量比)で1.2前後とアルカリ性が低く、CaO/SiO2で2前後あるいは2以上である製鋼スラグと混合して用いると、製鋼スラグ中に存在する遊離石灰と結合し硬化組織を作るという性質を有し、このことが製鋼スラグの如きを骨材として用いるときに有効に働くのである。なお、この高炉スラグ微粉末は、JIS A 6206「コンクリート用高炉スラグ微粉末」を用いる。
【0014】
このように本発明では、コンクリートのような性質をもつスラグ硬化体を製造するに当り、結合材として通常のセメントを用いず、上述したように安価な高炉スラグ微粉末を用いることにしたので、セメントを製造するのに必要な、原材料、エネルギーが節約でき、それだけ二酸化炭素の発生も抑制でき、環境に優しいという利点がある。
【0015】
本発明ではこのような高炉スラグ微粉末を結合材として使用するにあたっては、水和反応を制御するために、石こうを添加した状態で用いる。石こうを添加する理由は、混錬物の練り上がり温度が20℃を越える時や気温が20℃以上の時に、石こうを添加していないと、流動性を表わすスランプ値の経時低下が大きく、施工に問題を生じるからである
【0016】
前記高炉スラグ微粉末への石こうの添加量は、内割り量で1〜10mass%とする。この範囲に限定する理由は、石こうの量が1mass%未満では、20℃を越える高温時にスランプ値の経時低下が大であり、一方、10mass%超では、硬化体の耐久性、特に気中養生した材齢91日の圧縮強度が小さいからである。
本発明において、石こうの量を高炉スラグ微粉末の内割り量で表示する理由は、硬化体の特徴を示すのに高炉スラグ微粉末と石こうとの比率が重要で、原料品質の評価、管理に有効だからである。
【0017】
しかも、石こうを内割りで1〜10mass%含む高炉スラグ微粉末系結合材は、大気温や材料の温度が20℃を超えるような高温時においても、成形に十分な時間、十分な流動性を確保することができ、十分な成形性と耐久性とを有するコンクリート状スラグ硬化体を得る上で有効である。
【0018】
なお、かかる高炉スラグ微粉末系結合材は、20℃以下の温度において混練するときは、石こうを添加しなくても、必要な成形性を確保するのに十分である。
即ち、本発明においては、結合材として主に石こう含有高炉スラグ微粉末からなるものを用いたものでは、コンクリート状硬化体を20℃を超えるような温度で製造する場合でも、混練物の流動性の急激な低下はなく、C3Aによる水との急激な反応を招く、普通ポルトランドセメントを結合材とする技術とは明らかに違う方法であると言える。
【0019】
所定量の石こうを含む上記高炉スラグ微粉末系結合材は、全固形分の質量割合(mass%)で、10〜35%程度、好ましくは17〜27%程度添加する。その理由は、10%未満では、十分耐久性を備えた硬化体を得ることが困難であり、一方、35%超では、微粉分が多くなり過ぎ、混錬物の粘性が大きくなり施工が困難でコスト高だからである。
【0020】
本発明において、スラグ硬化体を得るためには、上述した結合材の他、少なくとも骨材、例えば平均粒径5mm以下の製鋼スラグの粉を骨材として用いる他、SiO2含有鉄鋼スラグ(高炉スラグ、溶鉄予備スラグ等)の添加材や水を添加して配合物とする。これらを配合することによって、20℃を超えるような温度域でも、成形性を阻害することなく耐久性に優れたスラグ硬化体を製造することができるが、とくに製造時に生じる、配合物(混練物)の流動性の急激な低下を抑える効果に優れていることが特徴である。
【0021】
本発明では、上記の配合成分に加えてさらに、アルカリ刺激材として、アルカリ金属および/またはアルカリ土類金属の、酸化物、水酸化物、硫酸塩、塩化物、から選ばれる石こう以外の1種または2種以上の化合物を、高炉スラグ微粉末量に対して、質量比外掛け量で0.2〜20mass%添加してもよい。好ましくは、1〜10mass%程度添加してもよい。
これらの化合物は、高炉スラグ微粉末に作用し、高炉スラブ微粉末中の各元素の溶出促進のために添加されるが、その量が、高炉スラグ微粉末量に対して外掛けで0.2mass%以上になると、硬化体の硬化を促進させる作用が向上し、養生に要する時間が短縮できる。しかし、これらの化合物を20mass%を超えて添加してもその効果が飽和するため、上限は20mass%とする。
【0022】
【実施例】
(実施例1)
配合原料として粉砕した製鋼スラグを骨材として用い、結合材として粒径0.1mm以下に微粉砕した、石こうを4.5mass%添加したものと、石こう無添加の高炉スラグ微粉末、少量のフライアッシュおよび消石灰Ca(OH)2を水で混錬し、その混錬物についてのスランプ値の経時変化を、様々な温度で調べた。その結果を図1に示す。また、供試した配合物中の各原料の単位使用量を表1に示す。
【0023】
【表1】
【0024】
高炉スラグ微粉末に石こうを4.5mass%内割りで添加した本発明実施例では、10℃、30℃と、いずれの温度で試験をしても、スランプ値の低下は混練後90分までは数cmであるのに対し、せっこうを添加していない高炉スラグ微粉末を用いた比較例のものでは、10℃、20℃で試験したものはスランプ値の低下は90分で数cmだが、30℃で試験をすると、急激なスランプ値の低下がみられ、60分ではほとんど流動性を失っていた。
【0025】
(実施例2)
配合原料として、骨材とする粉砕製鋼スラグ、通常の砂、砂利等の天然骨材を用い、結合材として、比表面積4000cm2/gの高炉スラグ微粉末を用い、その他にフライアッシュ、消石灰Ca(OH)2とからなるものを用い、さらにその他の添加剤を必要に応じて添加し、これらを水と共に混練し、その混錬物のスランプ値の経時変化を、様々な温度で調べた。また、その配合で圧縮試験用供試体を混練直後に作製し、材齢2日で脱型したのち、20℃相対湿度50%に保った気中養生を行った後、材齢91日で圧縮強度を測定した。それらの結果を、配合物中の各原料の単位使用量とともに表2に示す。
【0026】
【表2】
【0027】
表2に示すとおり、実施例2(No.1〜14)では石こうを、内割量で、2mass%、4.5mass%、9mass%を、高炉スラグ微粉末に内割り添加したものを用いた。また、比較例(No.1〜12)として、高炉スラグ微粉末中に石こうを全く添加していないもの、0.5mass%添加したもの、12mass%、15.5mass%添加したもの、そして、石こうを高炉スラグ微粉末に対して4.5mass%添加しているが、Ca(OH)2等のアルカリ刺激材を添加していないもの、石こうを0.5%添加した高炉スラグ微粉末を用い、Ca(OH)2以外にもNaOH等を用いた配合物についても、同様な試験を行った。その結果を、配合物中の各原料を単位使用量とともに表3に示す。
【0028】
【表3】
【0029】
表2、および表3に示す結果から明らかなように、本発明の実施例では、20℃を超える高温でのスランプ値の低下が少なく、圧縮強度も良好である。一方、比較例では、20℃を超える高温でのスランプ値の低下が大きいか、石こうを多量に添加した場合は、圧縮強度が低く、固化体としての性能低下を示している。なお、アルカリ刺激材が不足すると、硬化が遅くなり、材齢2日で脱型することが不可能になる。
【0030】
【発明の効果】
以上説明したように、本発明によれば、20℃を超えるような高温環境にあっても、成形に十分な時間、十分な成形流動性を確保することができ、それ故に強度の大きい耐久性に優れたコンクリート状のスラグ硬化体を容易に得られることができる。このスラグ硬化体は、路盤材、土木材、人工石、海洋ブロック、その他コンクリート代替品として使用可能である。したがって、本発明は資源の再利用、環境の向上等に寄与するところが大である。
【図面の簡単な説明】
【図1】結合材中への石こう添加の有無によるスランプ値の経時変化の違いを示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a hardened slag having properties like concrete, and particularly to a method characterized by using a mixture of blast furnace slag fine powder and gypsum as a binder.
[0002]
[Prior art]
There are various proposals for a method for producing a hardened slag such as concrete. Among them, a typical method is a method of manufacturing concrete itself using steel slag. In this method, cement is used as a binder, mixed and kneaded with water and an aggregate such as gravel or sand, poured into a mold, molded and cured by a hydration reaction to form a cured product. In this case, as the binder, ordinary Portland cement or the like obtained by finely pulverizing cement clinker is usually used.
[0003]
By the way, according to the description of Non-Patent Document 1, ordinary Portland cement includes various compounds, and among them, a compound called tricalcium aluminate (hereinafter, simply abbreviated to “C3A”) is water. Is very vigorous and reacts as soon as it is mixed with water, so that kneading becomes impossible. On the other hand, it has been found that when gypsum is added to the C3A, the gypsum and the C3A react to form a double salt, which can brake the rapid reaction of the C3A.
For example, according to JIS R 5210 which specifies Portland cement, clinker specifies that "a suitable amount of gypsum is added to clinker and crushed."
[0004]
In addition, as the binder, blast furnace cement (JIS R 5112) obtained by adding 5-70 mass% of blast furnace slag fine powder to ordinary Portland cement may be used.
[0005]
Non-Patent Document 2 discloses a method using slag gypsum cement composed of granulated blast furnace slag and recovered gypsum as a technique contributing to resource saving and energy saving. The slag gypsum cement is a blast furnace slag fine powder: 80 to 85 mass%, flue gas desulfurization gypsum: 12 to 18 mass%, and ordinary Portland cement: 2 to 3 mass%.
[0006]
Patent Document 1 discloses a method for producing a hardened steelmaking slag using steelmaking slag as an aggregate. This technique is a method of obtaining a hardened steelmaking slag by adding a blast furnace slag fine powder and a substance having a potential hydraulic property to a steelmaking slag as a binder. This method is highly evaluated as a technique for building a recycling-based society from the viewpoint of using steelmaking slag as a resource and energy saving and as a recycled material.
[0007]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-114550 [Non-Patent Document 1] "Easy-to-understand Knowledge of Cement and Concrete"
(Kashima Press, published in 1984, 30 pages)
[Non-Patent Document 2] "Production Research," Vol. 33, No. 6, pp. 228-231
[Problems to be solved by the invention]
However, according to the research of the inventors, when a slag hardened body was trial-produced using the above-mentioned conventional technology that contributes to resource saving and energy saving, the following problems were found. First, the hardened concrete slag produced using the slag gypsum cement disclosed in Non-Patent Document 2 has a remarkable surface degradation, and it is difficult to obtain a hardened concrete slag having sufficient durability. Met.
[0009]
On the other hand, with regard to the technology for producing a slag hardened product using steelmaking slag as a raw material according to the method of Patent Document 1, although there is no problem in durability, the ambient temperature or the material temperature itself is high, or the kneading temperature exceeds 20 ° C. In this case, it was found that the fluidity of the kneaded material rapidly decreased, and sometimes molding became difficult.
[0010]
An object of the present invention is to provide a concrete-like slag hardened material having excellent durability and excellent moldability (fluidity) even when the hardened material is manufactured under high temperature and temperature conditions. Is to propose an advantageous production method.
[0011]
[Means for Solving the Problems]
The inventors have conducted intensive studies on overcoming the above-mentioned problems of the prior art, and found that it is effective to use gypsum-containing blast furnace slag fine powder as a binder to achieve the above object. Having obtained the knowledge, the present invention was developed. That is, the present invention provides a method for producing a slag hardened body by adding a binder mainly composed of blast furnace slag fine powder to aggregate and water, wherein the binder is 1 to 1 in terms of mass ratio to blast furnace slag fine powder. A method for producing a cured product, characterized in that a product containing 10 mass% of gypsum is used.
[0012]
In the present invention, the binder is preferably used when the temperature of the outside air or the kneading temperature of the kneaded material is higher than 20 ° C. As the aggregate, it is preferable to use at least steel slag, and further, it is preferable to use alkali metal and / or Alternatively, any one or more of alkaline earth metals selected from oxides, hydroxides, sulfates and chlorides in a mass ratio of from 0.2 to 0.2 to the binder (blast furnace slag fine powder + gypsum). It can be said that it is preferable to contain 20 mass%.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. One of the features of the present invention is that blast furnace slag fine powder is basically used as a binder. The reason is that, unlike blast furnace cement, blast furnace slag fine powder is a steelmaking slag having low alkalinity of about 1.2 in CaO / SiO 2 (mass ratio) and about 2 or more in CaO / SiO 2. When used as a mixture with steel, it has the property of combining with free lime present in steelmaking slag to form a hardened structure, and this works effectively when steelmaking slag or the like is used as an aggregate. As the blast furnace slag fine powder, JIS A 6206 “Blast furnace slag fine powder for concrete” is used.
[0014]
As described above, in the present invention, when producing a hardened slag having properties like concrete, ordinary cement was not used as a binder, and the inexpensive blast furnace slag fine powder was used as described above. Raw materials and energy required for manufacturing cement can be saved, and the generation of carbon dioxide can be suppressed accordingly.
[0015]
In the present invention, when such a blast furnace slag fine powder is used as a binder, it is used in a state in which gypsum is added to control a hydration reaction. The reason for adding gypsum is that when the kneading temperature of the kneaded material exceeds 20 ° C or when the temperature is 20 ° C or more, if the gypsum is not added, the slump value, which indicates fluidity, decreases significantly over time. This causes a problem in
The amount of gypsum to be added to the blast furnace slag fine powder is 1 to 10 mass% in an internal amount. The reason for limiting to this range is that if the amount of gypsum is less than 1 mass%, the time-dependent decrease of the slump value is large at a high temperature exceeding 20 ° C., whereas if it exceeds 10 mass%, the durability of the cured product, especially air curing, This is because the compressive strength at the 91-year-old material age is small.
In the present invention, the reason why the amount of gypsum is indicated by the subdivided amount of the blast furnace slag fine powder is that the ratio of the blast furnace slag fine powder to the gypsum is important to indicate the characteristics of the cured product, and the evaluation and management of the raw material quality is important. Because it is effective.
[0017]
Moreover, the blast furnace slag fine powder-based binder containing 1 to 10 mass% of gypsum has sufficient fluidity for molding for a sufficient time and time even at the time of an ambient temperature or a high temperature where the temperature of the material exceeds 20 ° C. This is effective for obtaining a hardened concrete slag having sufficient formability and durability.
[0018]
When the blast-furnace slag fine powder-based binder is kneaded at a temperature of 20 ° C. or lower, the required formability is sufficient even without adding gypsum.
That is, in the present invention, in the case of using a material mainly composed of gypsum-containing blast furnace slag as a binder, even when a concrete-like hardened body is manufactured at a temperature exceeding 20 ° C., the fluidity of the kneaded material is reduced. It can be said that this is a method clearly different from the technology using ordinary Portland cement as a binder, which causes a rapid reaction of C3A with water.
[0019]
The blast-furnace slag fine powder-based binder containing a predetermined amount of gypsum is added in an amount of about 10 to 35%, preferably about 17 to 27%, in terms of a mass ratio (mass%) of the total solids. The reason is that if it is less than 10%, it is difficult to obtain a hardened body having sufficient durability, while if it exceeds 35%, the fine powder content becomes too large, the viscosity of the kneaded material becomes large, and construction is difficult. This is because the cost is high.
[0020]
In the present invention, in order to obtain a hardened slag, in addition to the above-mentioned binder, at least an aggregate, for example, powder of steelmaking slag having an average particle diameter of 5 mm or less is used as an aggregate, and a steel slag containing SiO 2 (blast furnace slag) is used. , Molten iron preliminary slag, etc.) and water to form a blend. By blending these, a hardened slag having excellent durability can be produced without impairing the moldability even in a temperature range exceeding 20 ° C. ) Is excellent in suppressing the rapid decrease in fluidity.
[0021]
In the present invention, in addition to the above-mentioned components, one type other than gypsum selected from oxides, hydroxides, sulfates and chlorides of alkali metals and / or alkaline earth metals as alkali stimulants Alternatively, two or more compounds may be added in an amount of 0.2 to 20% by mass based on the mass ratio of the blast furnace slag fine powder. Preferably, about 1 to 10 mass% may be added.
These compounds act on the blast-furnace slag fine powder and are added to promote the elution of each element in the blast-furnace slab fine powder. %, The effect of accelerating the curing of the cured product is improved, and the time required for curing can be reduced. However, even if these compounds are added in excess of 20 mass%, the effect is saturated, so the upper limit is set to 20 mass%.
[0022]
【Example】
(Example 1)
Pulverized steel slag as an aggregate, finely pulverized to a particle size of 0.1 mm or less as a binder, 4.5 mass% of gypsum added, blast furnace slag fine powder without gypsum, a small amount of fry Ash and slaked lime Ca (OH) 2 were kneaded with water, and the time-dependent change in the slump value of the kneaded material was examined at various temperatures. The result is shown in FIG. Table 1 shows the unit usage of each raw material in the tested composition.
[0023]
[Table 1]
[0024]
In the examples of the present invention in which gypsum was added to the blast furnace slag fine powder at a rate of 4.5 mass%, the slump value was reduced until 90 minutes after kneading, regardless of the test at 10 ° C or 30 ° C. On the other hand, in the case of the comparative example using blast furnace slag fine powder to which gypsum was not added, the test at 10 ° C. and 20 ° C. showed a decrease in the slump value of several cm in 90 minutes. When the test was conducted at 30 ° C., a sharp decrease in the slump value was observed, and the fluidity was almost lost at 60 minutes.
[0025]
(Example 2)
As raw materials, ground steelmaking slag as an aggregate, natural aggregates such as ordinary sand and gravel are used, and blast furnace slag fine powder having a specific surface area of 4000 cm 2 / g is used as a binder. In addition, fly ash and slaked lime Ca (OH) 2 , and other additives were further added as necessary, and these were kneaded with water, and the time-dependent change in the slump value of the kneaded material was examined at various temperatures. In addition, a test specimen for a compression test was prepared using the composition immediately after kneading, and after demolding at a material age of 2 days, air curing was performed at 20 ° C. and a relative humidity of 50%, and then compressed at a material age of 91 days. The strength was measured. The results are shown in Table 2 together with the unit usage of each raw material in the formulation.
[0026]
[Table 2]
[0027]
As shown in Table 2, in Example 2 (Nos. 1 to 14), gypsum was used in which 2 mass%, 4.5 mass%, and 9 mass% were added to the blast-furnace slag fine powder in an inner split amount. . In addition, as comparative examples (Nos. 1 to 12), those in which no gypsum was added to the blast furnace slag fine powder, those in which 0.5 mass% was added, those in which 12 mass%, 15.5 mass% were added, and gypsum Was added to the blast furnace slag fine powder by 4.5 mass%, but no alkali stimulant such as Ca (OH) 2 was added, and blast furnace slag fine powder to which gypsum was added by 0.5% was used. A similar test was performed on a compound using NaOH or the like in addition to Ca (OH) 2 . The results are shown in Table 3 together with the amounts of each raw material in the formulation and the unit usage.
[0028]
[Table 3]
[0029]
As is clear from the results shown in Tables 2 and 3, in the examples of the present invention, the decrease in the slump value at high temperatures exceeding 20 ° C. is small, and the compressive strength is also good. On the other hand, in the comparative example, when the slump value at a high temperature exceeding 20 ° C. is significantly reduced or when a large amount of gypsum is added, the compressive strength is low and the performance as a solidified body is deteriorated. If the alkali stimulant is insufficient, the curing is delayed, and it becomes impossible to remove the mold in two days of age.
[0030]
【The invention's effect】
As described above, according to the present invention, even in a high temperature environment exceeding 20 ° C., sufficient molding fluidity can be ensured for a sufficient time for molding, and therefore, a high durability And a concrete-like slag hardened body having excellent hardness can be easily obtained. This hardened slag can be used as roadbed material, earth and wood, artificial stone, marine blocks, and other concrete substitutes. Therefore, the present invention greatly contributes to the reuse of resources, improvement of environment, and the like.
[Brief description of the drawings]
FIG. 1 is a graph showing a difference in a slump value over time depending on whether gypsum is added to a binder.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003090733A JP4350967B2 (en) | 2003-03-28 | 2003-03-28 | Method for producing hardened slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003090733A JP4350967B2 (en) | 2003-03-28 | 2003-03-28 | Method for producing hardened slag |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004292296A true JP2004292296A (en) | 2004-10-21 |
JP4350967B2 JP4350967B2 (en) | 2009-10-28 |
Family
ID=33404278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003090733A Expired - Lifetime JP4350967B2 (en) | 2003-03-28 | 2003-03-28 | Method for producing hardened slag |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4350967B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013170105A (en) * | 2012-02-21 | 2013-09-02 | Jfe Steel Corp | Method and apparatus for producing iron and steel slag hydrated solidified body |
JP2014169574A (en) * | 2013-03-04 | 2014-09-18 | Nippon Steel & Sumitomo Metal | Manufacturing method of square block and square block |
JP6991523B1 (en) * | 2020-10-09 | 2022-01-12 | 奥村組土木興業株式会社 | Manufacturing method of solidified body |
-
2003
- 2003-03-28 JP JP2003090733A patent/JP4350967B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013170105A (en) * | 2012-02-21 | 2013-09-02 | Jfe Steel Corp | Method and apparatus for producing iron and steel slag hydrated solidified body |
JP2014169574A (en) * | 2013-03-04 | 2014-09-18 | Nippon Steel & Sumitomo Metal | Manufacturing method of square block and square block |
JP6991523B1 (en) * | 2020-10-09 | 2022-01-12 | 奥村組土木興業株式会社 | Manufacturing method of solidified body |
Also Published As
Publication number | Publication date |
---|---|
JP4350967B2 (en) | 2009-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3654122B2 (en) | Method for producing hardened slag | |
JP5931317B2 (en) | Hydraulic composition and concrete using the hydraulic composition | |
RU2705646C1 (en) | Cement-free binder and use thereof | |
JP6080340B2 (en) | Steel slag hydrated solidified body | |
JP2008184353A (en) | Mortar used for repair and tunnel maintenance and repair method using it | |
KR102158524B1 (en) | Eco-friendly solidifying composition for weak ground | |
TWI701228B (en) | Concrete composition and method for producing the same | |
KR101359187B1 (en) | Concrete composition with reduced shrinkage property and concrete structure prepared by the same | |
KR102209342B1 (en) | Bfinder Composition for Grouting Material and Pile Filler Using the Same | |
KR101359277B1 (en) | Concrete composition having improved initial strength and concrete structure prepared by the same | |
CN111620624A (en) | Self-compacting concrete and preparation method thereof | |
JP2009227574A (en) | Cement composition and method for producing the same | |
JP3958090B2 (en) | Hydrated cured body | |
JP4644965B2 (en) | Method for producing hardened slag | |
KR101937772B1 (en) | Eco-friendly composition for high performance concrete using alkali activator | |
JP2003119068A (en) | Hydration cured body | |
JP2003002726A (en) | Producing method of concrete like solid body using steel making slag | |
JP6985177B2 (en) | Hydraulic composition and concrete | |
JP7287577B2 (en) | Method for producing cured geopolymer and method for producing geopolymer composition | |
JP4350967B2 (en) | Method for producing hardened slag | |
JP6292257B2 (en) | Hydrated solidified product using desulfurized slag | |
JP2016216274A (en) | Artificial stone material | |
JP2007131477A (en) | Fly ash cement composition and concrete mold using it | |
JP5195866B2 (en) | Method for producing hardened slag | |
JP2015124097A (en) | Concrete composition and method for production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090721 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090723 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4350967 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130731 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130731 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130731 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130731 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |