JP2004291851A - Manufacturing method for vehicle body member - Google Patents

Manufacturing method for vehicle body member Download PDF

Info

Publication number
JP2004291851A
JP2004291851A JP2003088193A JP2003088193A JP2004291851A JP 2004291851 A JP2004291851 A JP 2004291851A JP 2003088193 A JP2003088193 A JP 2003088193A JP 2003088193 A JP2003088193 A JP 2003088193A JP 2004291851 A JP2004291851 A JP 2004291851A
Authority
JP
Japan
Prior art keywords
steel sheet
vehicle body
body member
nitriding
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003088193A
Other languages
Japanese (ja)
Other versions
JP3988669B2 (en
Inventor
Katsunori Hanakawa
勝則 花川
Yasuaki Ishida
恭聡 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2003088193A priority Critical patent/JP3988669B2/en
Publication of JP2004291851A publication Critical patent/JP2004291851A/en
Application granted granted Critical
Publication of JP3988669B2 publication Critical patent/JP3988669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain a nitrided steel sheet from being cracked during a stage from a painting process to a drying process, and to ensure the nitrided steel sheet with stable strength after the drying process. <P>SOLUTION: This manufacturing method for a vehicle body member includes: a plastic working process of performing plastic working for the steel sheet; a nitriding process of nitriding at least part of the plastically worked steel sheet; a welding process of welding the nitrided portion of the steel sheet to another plate material to prepare the vehicle body member constituting at least part of a vehicle body; a painting process of painting at least part of the vehicle body member; and a heating process of heating at least a painted portion of the vehicle body member to a temperature of 190 °C max. to dry a painted film on the painted portion. The method comprises a tempering process of tempering the nitrided portion of the steel sheet at temperatures of over 200 to and 250 °C incl. at timings from the welding process to the painting process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車体部材の製造方法に関し、特に窒化処理を施した鋼板を用いて高強度化を図るようにしたものの技術分野に属する。
【0002】
【従来の技術】
近年、自動車の衝突安全性の向上化及び車体軽量化の観点より、車体用板材として高強度鋼板が使用されてきている。この高強度鋼板としては、通常、プレス成形性を良好に維持するために、引張強度が440MPa程度のものが使用されるが、最近では、プレス成形性(延性)を改善した590MPa材も使用されつつある。
【0003】
ところが、上記590MPa材では、プレス成形性は改善されるものの、強度(硬さ)が非常に高いことから、プレス能力を高める必要があるとともに、スプリングバック等の生産上の問題が生じる。また、従来の鋳鉄製では型寿命が短くなるので、工具鋼を使用し、さらには、その表面に耐摩耗性を改善するためにTiC処理等の表面処理をしなければならなくなる。また、更に高強度な鋼板を使用すると、複雑な形状の成形が困難になるとともに、型の高強度化及び表面処理が必須となり、多大な設備投資が必要となる。
【0004】
そこで、例えば特許文献1,2に示されているように、成形性に優れた窒化処理用の軟鋼板(引張強度280MPa程度)をプレス成形した後に、窒化処理することで、プレス成形性と高強度化とを両立するようにすることが考えられる。すなわち、このように軟鋼板を窒化処理すると、鋼板の硬さがビッカース硬さでHv200〜Hv400と高硬度になり、これにより、引張強度を600〜1000MPa相当に高強度化することができる。
【0005】
また、特許文献3には、自動車の車体部材を製造する方法として、鋼板をプレス成形した後、窒化処理し、しかる後に、その鋼板を他の板材と溶接し、次いで、それを塗装して乾燥することが開示されている。
【0006】
【特許文献1】
特開平11−279686号公報
【特許文献2】
特開2002−20853号公報
【特許文献3】
特開2002−18868号公報
【0007】
【発明が解決しようとする課題】
しかし、上記窒化処理鋼板は、硬くなりすぎて延性が比較的低くなるために、割れが生じ易いという問題がある。特に、上記特許文献3のように、窒化処理鋼板を溶接(スポット溶接)すると、その窒化処理鋼板において、ナゲット(溶融接合部)に隣接する部分には、溶接時の熱により約700℃以上の温度となって焼入れされることで高強度化された熱影響部(以下、HAZ部(Heat Affected Zoneの略)という)が形成され、そのHAZ部の外周囲には、300℃以上でかつA変態点以下の温度となって窒素が再固溶することで高強度化された再加熱部が形成されるが、この再加熱部で、非常に割れが生じ易くなる。
【0008】
一方、自動車の車体部材は、上記特許文献3のように、溶接後に塗装されて、その塗装の塗膜を乾燥させるために、通常、140℃〜190℃程度(シーラ乾燥を含めると100℃〜190℃程度)に加熱される。この加熱を利用すれば、窒化処理鋼板が焼戻しされることで、特に上記再加熱部と、HAZ部及び再加熱部以外の部分とにおいて、FeNの析出により軟化して延性が増し、再加熱部での割れを抑制することができるようになる。
【0009】
しかし、上記のように塗装乾燥熱を利用して窒化処理鋼板を焼戻す方法では、車体部材が塗装及び乾燥されるまでの間は、再加熱部が割れ易い状態にあるため、塗装工程ないし乾燥工程への搬送途中で割れが生じる可能性がある。しかも、車体部材の塗装及び乾燥は、通常、車体として組み立てられた状態で行われるため、車体部材が車体のどの位置に配置されるものであるかによって加熱温度が異なり、このため、その配置位置によって強度がばらついてしまう。すなわち、窒化処理鋼板の硬さは、加熱温度が100℃〜200℃の範囲では、加熱温度が高くなるに連れて低下するので、加熱温度が異なると、窒化処理鋼板の硬さがばらついて、安定した強度を確保することが困難になる。この結果、車体部材が、例えば衝突部材(フレーム部材)のような変形モードをコントロールするものである場合には、目的の変形モードを達成することが困難になる。
【0010】
そこで、溶接工程後でかつ塗装工程前に、窒化処理鋼板に対して、100℃〜190℃のうちの一定温度で焼戻しを行うようにすることが考えられる。こうすれば、塗装工程ないし乾燥工程前における再加熱部での割れを抑制することができるとともに、窒化処理鋼板の硬さ、つまり強度を安定させることができるようになる。
【0011】
しかしながら、上記窒化処理鋼板の焼戻しを、塗装乾燥時よりも低い温度で行った場合には、塗装乾燥時に強度が変化してしまう。また、たとえ塗装乾燥時よりも高い温度で焼戻しを行うようにしたとしても、或る程度の温度ばらつきが生じ、上記したように、窒化処理鋼板の加熱温度が100℃〜200℃の範囲では、温度変化に対する硬さの変化量が比較的大きいので、上記温度ばらつきによって強度が変化してしまう。
【0012】
本発明は斯かる諸点に鑑みてなされたものであり、その目的とするところは、上記のように窒化処理鋼板を用いて車体部材を製造する場合に、塗装工程ないし乾燥工程前に窒化処理鋼板が割れるのを抑制するとともに、乾燥工程後における窒化処理鋼板の強度品質を安定させようとすることにある。
【0013】
【課題を解決するための手段】
上記の目的を達成するために、この発明では、溶接工程後でかつ塗装工程前に、窒化処理鋼板の窒化処理部分を、200℃を越え250℃以下の温度で焼戻すようにした。
【0014】
具体的には、請求項1の発明では、鋼板を塑性加工する塑性加工工程と、上記塑性加工を施した鋼板の少なくとも一部を窒化処理する窒化処理工程と、上記鋼板の窒化処理部分と他の板材とを溶接して、車体の少なくとも一部を構成する車体部材を作製する溶接工程と、上記車体部材の少なくとも一部を塗装する塗装工程と、上記車体部材の少なくとも塗装部分を、190℃以下の温度に加熱することにより、該塗装部分の塗膜を乾燥させる乾燥工程とを含む車体部材の製造方法を対象とする。
【0015】
そして、上記溶接工程後でかつ塗装工程前に、上記鋼板の窒化処理部分を、200℃を越え250℃以下の温度で焼戻す焼戻し工程を備えるようにする。
【0016】
このことにより、塗装工程ないし乾燥工程前に窒化処理鋼板が割れるのを抑制することができるとともに、乾燥工程後における窒化処理鋼板の強度品質を安定させることができる。すなわち、窒化処理鋼板の硬さは、加熱温度が200℃を越え250℃以下の範囲では、加熱温度が高くなるに連れて上昇するが、その温度変化に対する硬さの変化量はかなり小さくて硬さ自体も十分に小さいので、この温度範囲内で焼戻しを行えば、窒化処理部分が十分に軟化されて延性が増し、再加熱部での割れを抑制することができるとともに、この温度範囲内で焼戻し温度が或る程度ばらついたとしても、窒化処理部分の硬さのばらつき量は比較的小さくなる。さらに、この焼戻し後に、塗装及び乾燥を行って窒化処理鋼板が加熱されても、この乾燥温度は、焼戻し温度よりも低いので、窒化処理部分の硬さに何ら影響を及ぼさず、焼戻し工程時の硬さが維持される。この結果、乾燥工程後において、安定した強度が得られることになる。
【0017】
請求項2の発明では、請求項1の発明において、焼戻し工程において、鋼板の窒化処理部分の一部のみを焼戻すようにする。
【0018】
また、請求項3の発明では、請求項2の発明において、溶接工程は、鋼板の窒化処理部分と他の板材とをスポット溶接して車体部材を作製する工程であり、焼戻し工程において、上記鋼板の窒化処理部分における上記スポット溶接部ないしその周囲のみを焼戻すようにする。
【0019】
これらの発明により、特に割れが生じ易い再加熱部の焼戻しを確実に行うようにすることができるとともに、再加熱部を設定温度に精度良く加熱することができ、より一層安定した強度が得られるようになる。
【0020】
請求項4の発明では、請求項1〜3のいずれか1つの発明において、車体部材は、自動車用車体フレーム部材であるものとする。
【0021】
すなわち、フレーム部材では、変形モードをコントロールする必要があるので、強度がばらつくと、目的の変形モードを達成することが困難になる。しかし、この発明では、安定した強度が得られので、目的の変形モードを確実に達成することができ、請求項1〜3の発明の作用効果を有効に発揮させることができる。
【0022】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0023】
図1は、本発明の実施形態に係る車体部材の製造方法を示す工程図であり、最初のステップS1では、鋼板(この実施形態では、引張強度が280MPaの軟鋼板)をプレスにより塑性加工する(塑性加工工程)。
【0024】
次のステップS2では、上記塑性加工を施した鋼板の一部(強度を必要とする所定部分)を窒化処理する(窒化処理工程)。この窒化処理は、処理時間が比較的短い軟窒化(例えばガス軟窒化や塩浴窒化等)が好ましいが、この軟窒化に限定はされない。また、上記塑性加工を施した鋼板全体を窒化処理するようにしてもよい。
【0025】
次のステップS3では、上記窒化処理鋼板の窒化処理部分と他の板材(例えば軟鋼板(別の窒化処理鋼板であってもよい))とをスポット溶接して、自動車の車体の一部を構成する車体部材(例えば自動車用車体フレーム部材等のサブアセンブリ)を作製する(溶接工程)。尚、この段階で、車体部材が車体全体を構成するようにしてもよい。また、スポット溶接に限らず、レーザ溶接等を行ってもよい。
【0026】
図2に示すように、上記スポット溶接により、窒化処理鋼板1において、溶融接合部であるナゲット2に隣接する部分には、溶接時の熱により約700℃以上の温度となって焼入れされることで高強度化されたHAZ部3が形成され、そのHAZ部3の外周囲には、300℃以上でかつA変態点以下の温度となって窒素が再固溶することで高強度化された再加熱部4が形成される。尚、図2中、7は、窒化処理鋼板1と溶接した上記他の板材(図2では、軟鋼板)である。
【0027】
次のステップS4では、上記窒化処理鋼板の窒化処理部分を、200℃を越え250℃以下の温度で焼戻す(焼戻し工程)。この焼戻しは、窒化処理鋼板全体を炉内で加熱することで、窒化処理部分全体に対して行ってもよいが、窒化処理部分の一部のみ、具体的には、上記窒化処理鋼板の窒化処理部分における上記スポット溶接部ないしその周囲(少なくとも上記再加熱部が含まれる部分)のみに対して行うことが好ましい。こうすると、特に割れが生じ易い再加熱部の焼戻しを確実に行うようにすることができるとともに、再加熱部を設定温度に精度良く加熱することができる。このように窒化処理部分の一部のみを焼戻す場合には、例えば高周波加熱等により行えばよい。
【0028】
次のステップS5では、上記車体部材全体を塗装する(塗装工程)。この塗装は、本実施形態では、上記ステップS1〜S4の工程を経た複数の車体部材(サブアセンブリ)を組み立てて車体を完成させた後に該車体全体で行う。すなわち、車体全体を電着液に浸漬させて電着塗装を行う。
【0029】
次のステップS6では、上記車体全体を190℃以下の温度に加熱することにより、上記電着塗装の塗膜を乾燥させる(乾燥工程)。
【0030】
上記乾燥工程の後、図1では工程を省略しているが、車体に車体シーラを塗布して、その車体シーラを乾燥させ、続いて、中塗塗装を行って、その中塗塗装の塗膜を乾燥させ、次いで、上塗塗装を行って、その上塗塗装の塗膜を乾燥させる。上記電着塗装、車体シーラ、中塗塗装及び上塗塗装の各乾燥時に、車体は、100℃以上190℃以下(車体シーラの乾燥を除くと、140℃以上190度以下)に加熱されることになる。
【0031】
尚、上記塗装及び乾燥は、必ずしも車体全体で行う必要はなく、サブアセンブリ状態にある車体部材で行ってもよい。その際、その車体部材全体を塗装し乾燥させてもよく、車体部材の一部を塗装し、少なくともその塗装部分(本発明の作用効果を発揮させるためには、窒化処理鋼板の窒化処理部分(特にスポット溶接部ないしその周囲)を含むことが望ましい)を乾燥させるようにしてもよい。
【0032】
ここで、上記窒化処理鋼板の加熱温度と硬さ(つまり強度)との関係を、図3に示す。この窒化処理鋼板は、極低炭素鋼板でTiが0.07%含有されたものを塩浴窒化処理(タフライド:580℃×1.5hで油冷)したものである。
【0033】
同図から判るように、窒化処理鋼板は、加熱(300℃以下)されると、基地中に固溶していた窒素が窒化鉄(FeN)として析出し、これにより軟化する。具体的には、100℃よりも小さい温度では、殆ど軟化しないが、100℃以上になると、200℃付近まで比較的大きな勾配で硬さが低下し、200℃を越えると、250℃までは硬さが若干上昇するが、250℃を越えると、300℃まで、再び大きな勾配(100℃を越え200℃付近までの勾配と略同じ勾配)で低下する。尚、複数回加熱(300℃以下)されたときには、最大加熱時の硬さになる。つまり、今回の加熱温度が前回よりも高いときには、今回の加熱温度に相当する硬さになり、今回の加熱温度が前回よりも低いときには、前回の加熱温度に相当する硬さを維持する。
【0034】
一方、300℃を越えると、上記析出した窒素が再固溶し、これにより、加熱温度が高くなるに連れて硬さが上昇する。上記再加熱部は、このように窒素が再固溶した状態にあると考えられる。そして、この状態から上記300℃以下に加熱されると、窒素が窒化鉄として析出して、その加熱温度に応じた硬さとなる。
【0035】
仮に、上記焼戻し工程をなくした場合、上記溶接工程後に、塗装工程及び乾燥工程(車体シーラの乾燥等を含む)を行うことにより、窒化処理鋼板が、100℃以上190℃以下に加熱されるので、この乾燥工程で上記焼戻し工程と同様の焼戻しが行われ、窒化処理鋼板の硬さを低下させることができる。ここで、図4は、上記溶接工程後において焼戻し工程をなくした場合の塗装乾燥前後における、ナゲット端からの距離x(図2参照)と窒化処理鋼板内部の硬さとの関係を示す。このことより、再加熱部と、HAZ部及び再加熱部以外の部分とにおいて、塗装乾燥後に硬さが低下していることが判る。
【0036】
ところが、上記焼戻し工程をなくした場合、塗装工程ないし乾燥工程への搬送途中で窒化処理鋼板が割れる可能性があるとともに、上記乾燥工程においては、車体部材が車体のどの位置に配置されるものであるかによって加熱温度が異なり、その加熱温度が100℃〜190℃の範囲では、上記した窒化処理鋼板の加熱温度と硬さとの関係より、特に再加熱部の硬さ(つまり強度)が非常に大きくばらついてしまう(図4の塗装乾燥後の硬さ参照)。このような強度のばらつきがあると、車体部材がフレーム部材(フロントフレームやセンターピラー等)のように変形モードをコントロールするものである場合には、目的の変形モードを達成することが困難になる。
【0037】
また、上記焼戻し工程における焼戻し温度を、上記乾燥工程における加熱温度と同じ100℃〜190℃のうちの一定温度で焼戻しを行うようにすることが考えられる。しかし、このようにしても、塗装工程ないし乾燥工程前における再加熱部での割れを抑制することはできるものの、窒化処理鋼板の焼戻しを、塗装乾燥時よりも低い温度で行った場合には、乾燥工程で強度が変化してしまう。
【0038】
実際に、窒化処理後の硬さがHv330である窒化処理鋼板に対して100℃で焼戻しを行った結果、硬さはHv325となり、これが、140℃の塗装乾燥後にはHv300と低下した。また、上記窒化処理鋼板に対して140℃で焼戻しを行った結果、硬さはHv300となり、これが、140℃の塗装乾燥後にはHv295となってそれ程変化しなかったが、180℃の塗装乾燥後にはHv265と低下した。さらに、上記窒化処理鋼板に対して140℃で焼戻しを行った結果、硬さはHv265となり、これが、180℃の塗装乾燥後にはHv263となって殆ど変化しなかった。
【0039】
そして、たとえ塗装乾燥時よりも高い温度で焼戻しを行うようにしたとしても、或る程度の温度ばらつきが生じ、上記したように、窒化処理鋼板の加熱温度が100℃〜200℃の範囲では、温度変化に対する硬さの変化量が比較的大きいので、その温度ばらつきによって強度が変化してしまう。
【0040】
これに対し、本実施形態では、溶接工程後でかつ塗装工程前に、窒化処理鋼板の窒化処理部分を、200℃を越え250℃以下の温度で焼戻すので、塗装工程ないし乾燥工程前に窒化処理鋼板が割れるのを抑制することができるとともに、乾燥工程後における窒化処理鋼板の強度品質を安定させることができる。すなわち、乾燥工程時よりも高い温度で焼戻すとともに、この温度範囲では、温度変化に対する硬さ変化量が比較的小さくて安定しているので、焼戻し温度が或る程度ばらついたとしても、窒化処理鋼板の窒化処理部分における硬さのばらつき量は比較的小さくなる。よって、この焼戻し工程後の乾燥工程では、窒化処理部分の硬さに何ら影響を及ぼさず、焼戻し工程時の硬さが維持され、この結果、安定した強度が得られることになる。
【0041】
実際に、上記した、窒化処理後の硬さがHv330である窒化処理鋼板に対して、210℃で焼戻しを行った結果、硬さはHv264となり、これが、140℃の塗装乾燥後にはHv263となって殆ど変化せず、180℃の塗装乾燥後においても、Hv262となって殆ど変化しなかった。また、上記窒化処理鋼板に対して250℃で焼戻しを行った結果、硬さはHv275となり、これが、180℃の塗装乾燥後にはHv277となって殆ど変化しなかった。
【0042】
したがって、上記実施形態では、溶接工程後でかつ塗装工程前に、鋼板の窒化処理部分を、200℃を越え250℃以下の温度で焼戻すようにしたので、塗装工程ないし乾燥工程前に窒化処理鋼板が割れるのを抑制することができるとともに、乾燥工程後における窒化処理鋼板の強度品質を安定させることができる。
【0043】
【発明の効果】
以上説明したように、本発明によると、鋼板を塑性加工する塑性加工工程、上記鋼板の少なくとも一部を窒化処理する窒化処理工程、上記鋼板の窒化処理部分と他の板材とを溶接して、車体の少なくとも一部を構成する車体部材を作製する溶接工程、上記車体部材の少なくとも一部を塗装する塗装工程、及び上記車体部材の少なくとも塗装部分を、190℃以下の温度に加熱することにより、該塗装部分の塗膜を乾燥させる乾燥工程を順に行うことで車体部材を製造する方法として、上記溶接工程後でかつ塗装工程前に、上記鋼板の窒化処理部分を、200℃を越え250℃以下の温度で焼戻す焼戻し工程を備えたことにより、塗装工程ないし乾燥工程前に窒化処理鋼板が割れるのを抑制することができるとともに、乾燥工程後における窒化処理鋼板の強度品質の安定化を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る車体部材の製造方法を示す工程図である。
【図2】窒化処理鋼板のスポット溶接部を示す断面図である。
【図3】窒化処理鋼板の加熱温度と硬さとの関係を示すグラフである。
【図4】溶接工程後において焼戻し工程をなくした場合の塗装乾燥前後における、ナゲット端からの距離xと窒化処理鋼板内部の硬さとの関係を示すグラフである。
【符号の説明】
1 窒化処理鋼板
2 ナゲット
3 熱影響部(HAZ部)
4 再加熱部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a vehicle body member, and particularly to a technical field in which a steel plate subjected to a nitriding treatment is used to increase strength.
[0002]
[Prior art]
2. Description of the Related Art In recent years, high-strength steel sheets have been used as plate materials for vehicle bodies from the viewpoint of improving collision safety of automobiles and reducing vehicle weight. As this high-strength steel sheet, a steel sheet having a tensile strength of about 440 MPa is usually used in order to maintain good press formability, but recently, a 590 MPa material having improved press formability (ductility) is also used. It is getting.
[0003]
However, in the case of the 590 MPa material, although the press formability is improved, the strength (hardness) is extremely high, so that it is necessary to increase the pressing ability, and there are production problems such as springback. Further, since the mold life is shortened with the conventional cast iron, tool steel must be used, and further, its surface must be subjected to surface treatment such as TiC treatment to improve wear resistance. In addition, when a steel sheet having higher strength is used, it is difficult to form a complicated shape, and it is necessary to increase the strength of the mold and surface treatment, which requires a large capital investment.
[0004]
Therefore, as shown in Patent Literatures 1 and 2, for example, a mild steel sheet for nitriding treatment (extensive tensile strength of about 280 MPa) excellent in formability is press-formed and then subjected to nitriding treatment to obtain high press-formability and high press formability. It is conceivable to achieve both strength and strength. That is, when the mild steel sheet is subjected to the nitriding treatment in this manner, the hardness of the steel sheet becomes a high hardness of Hv200 to Hv400 in Vickers hardness, thereby making it possible to increase the tensile strength to about 600 to 1000 MPa.
[0005]
Patent Document 3 discloses a method of manufacturing a body member of an automobile, in which a steel sheet is press-formed, nitrided, and then the steel sheet is welded to another sheet material, and then painted and dried. Is disclosed.
[0006]
[Patent Document 1]
JP-A-11-279686 [Patent Document 2]
JP 2002-20853 A [Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-18868
[Problems to be solved by the invention]
However, the above-mentioned nitrided steel sheet has a problem that cracks easily occur because the steel sheet becomes too hard and has relatively low ductility. In particular, as described in Patent Document 3, when a nitrided steel sheet is welded (spot welding), a portion of the nitrided steel sheet adjacent to a nugget (fused joint) is heated to about 700 ° C. or more by heat during welding. A heat-affected zone (hereinafter referred to as HAZ (Heat Affected Zone)), which has been strengthened by quenching at the temperature, is formed, and the outer periphery of the HAZ is 300 ° C. or higher and A When the temperature reaches one transformation point or lower, and the nitrogen is re-dissolved to form a solid solution, a re-heated portion having high strength is formed. However, the re-heated portion is very liable to crack.
[0008]
On the other hand, a body member of an automobile is coated after welding as in Patent Document 3 described above, and is usually about 140 ° C. to 190 ° C. (100 ° C. to 100 ° C. including sealer drying) in order to dry a coating film of the coating. (About 190 ° C.). If this heating is used, the nitriding-treated steel sheet is tempered, and in particular, in the above-mentioned reheated portion and the HAZ portion and portions other than the reheated portion, FeN is softened by precipitation and ductility is increased. Cracks can be suppressed.
[0009]
However, in the method of tempering a nitrided steel sheet using the heat of painting and drying as described above, the reheating portion is easily broken until the body member is painted and dried. Cracks may occur during transportation to the process. Moreover, since the coating and drying of the vehicle body member are usually performed in a state where the vehicle body is assembled, the heating temperature differs depending on the position on the vehicle body where the vehicle body member is placed. The strength varies. That is, the hardness of the nitrided steel sheet decreases as the heating temperature increases when the heating temperature is in the range of 100 ° C. to 200 ° C. Therefore, when the heating temperature is different, the hardness of the nitrided steel sheet varies, It becomes difficult to secure stable strength. As a result, when the vehicle body member controls a deformation mode such as a collision member (frame member), it becomes difficult to achieve a desired deformation mode.
[0010]
Therefore, after the welding step and before the coating step, tempering may be performed on the nitrided steel sheet at a constant temperature of 100C to 190C. In this way, cracks in the reheating section before the coating step or the drying step can be suppressed, and the hardness of the nitrided steel sheet, that is, the strength, can be stabilized.
[0011]
However, if the tempering of the nitriding steel sheet is performed at a lower temperature than during the coating drying, the strength changes during the coating drying. Also, even if tempering is performed at a higher temperature than during coating and drying, a certain degree of temperature variation occurs, and as described above, when the heating temperature of the nitrided steel sheet is in the range of 100 ° C to 200 ° C, Since the amount of change in hardness with respect to a temperature change is relatively large, the strength changes due to the temperature variation.
[0012]
The present invention has been made in view of the above points, and an object of the present invention is to manufacture a car body member using a nitriding steel sheet as described above, and to perform a nitriding steel sheet before a painting step or a drying step. In addition to suppressing cracking of the steel sheet, it is intended to stabilize the strength quality of the nitrided steel sheet after the drying step.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, after the welding step and before the painting step, the nitriding portion of the nitriding steel sheet is tempered at a temperature of more than 200 ° C and 250 ° C or less.
[0014]
Specifically, in the invention of claim 1, a plastic working step of plastic working a steel sheet, a nitriding treatment step of nitriding at least a part of the steel sheet subjected to the plastic working, and a nitriding treatment part of the steel sheet and the like. Welding a plate member to form a body member constituting at least a part of the vehicle body; a painting step of painting at least a part of the body member; And a drying step of drying the coating film of the painted portion by heating to the following temperature.
[0015]
After the welding step and before the coating step, a tempering step of tempering the nitrided portion of the steel sheet at a temperature of more than 200 ° C. and 250 ° C. or less is provided.
[0016]
This can prevent the nitriding steel sheet from cracking before the coating step or the drying step, and can stabilize the strength quality of the nitriding steel sheet after the drying step. That is, the hardness of the nitrided steel sheet increases as the heating temperature increases in a range where the heating temperature is higher than 200 ° C. and equal to or lower than 250 ° C. Since the tempering is performed within this temperature range, the nitriding portion is sufficiently softened and ductility increases, and cracking in the reheating portion can be suppressed. Even if the tempering temperature fluctuates to some extent, the variation in hardness of the nitrided portion becomes relatively small. Further, even after the tempering, even if the nitriding steel sheet is heated by painting and drying, the drying temperature is lower than the tempering temperature, so that it does not affect the hardness of the nitriding portion at all, and the Hardness is maintained. As a result, a stable strength can be obtained after the drying step.
[0017]
According to a second aspect of the present invention, in the first aspect of the invention, in the tempering step, only a part of the nitriding portion of the steel sheet is tempered.
[0018]
According to a third aspect of the present invention, in the second aspect of the invention, the welding step is a step of spot-welding the nitrided portion of the steel sheet to another sheet material to produce a vehicle body member. Only the above-mentioned spot weld or its surroundings in the nitrided portion of the above are tempered.
[0019]
According to these inventions, it is possible to reliably perform the tempering of the reheated portion, in which cracks are particularly likely to occur, and it is possible to accurately heat the reheated portion to the set temperature, and to obtain more stable strength. Become like
[0020]
According to a fourth aspect of the present invention, in any one of the first to third aspects, the vehicle body member is a vehicle body frame member.
[0021]
That is, since the deformation mode needs to be controlled in the frame member, it is difficult to achieve a desired deformation mode if the strength varies. However, according to the present invention, since a stable strength is obtained, the intended deformation mode can be reliably achieved, and the effects of the inventions of claims 1 to 3 can be effectively exhibited.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a process diagram showing a method of manufacturing a vehicle body member according to an embodiment of the present invention. In the first step S1, a steel plate (in this embodiment, a mild steel plate having a tensile strength of 280 MPa) is plastically worked by pressing. (Plastic working process).
[0024]
In the next step S2, a part (a predetermined part requiring strength) of the steel sheet subjected to the plastic working is subjected to a nitriding treatment (nitriding step). This nitriding treatment is preferably nitrocarburizing (for example, gas nitrocarburizing, salt bath nitriding, etc.) with a relatively short treatment time, but is not limited to this nitrocarburizing. Further, the entire steel sheet subjected to the plastic working may be subjected to nitriding treatment.
[0025]
In the next step S3, a part of the body of the automobile is formed by spot welding the nitriding part of the nitriding steel sheet and another sheet material (for example, a mild steel sheet (may be another nitriding steel sheet)). (For example, a sub-assembly such as an automobile body frame member) to be manufactured (welding process). Note that, at this stage, the vehicle body member may constitute the entire vehicle body. Further, not limited to spot welding, laser welding or the like may be performed.
[0026]
As shown in FIG. 2, in the nitrided steel sheet 1, the portion adjacent to the nugget 2, which is the fusion joint, is heated to about 700 ° C. or more by the heat at the time of welding, and is quenched by the spot welding. The HAZ portion 3 having increased strength is formed at the temperature of 300 ° C. or more and the A 1 transformation point or less at the outer periphery of the HAZ portion 3, and nitrogen is re-dissolved to increase the strength. The reheating unit 4 is formed. In FIG. 2, reference numeral 7 denotes another sheet material (the mild steel sheet in FIG. 2) welded to the nitrided steel sheet 1.
[0027]
In the next step S4, the nitriding portion of the nitriding steel sheet is tempered at a temperature exceeding 200 ° C. and 250 ° C. or less (tempering step). This tempering may be performed on the entire nitriding portion by heating the entire nitriding steel plate in a furnace, but only a part of the nitriding portion, specifically, the nitriding process of the nitriding steel plate is performed. It is preferable to perform the process only on the spot welded portion or the periphery thereof (at least the portion including the reheated portion). In this way, it is possible to reliably perform tempering of the reheating portion, which is particularly susceptible to cracking, and to accurately heat the reheating portion to the set temperature. In the case where only a part of the nitriding portion is tempered in this way, for example, high-frequency heating or the like may be performed.
[0028]
In the next step S5, the entire body member is painted (painting step). In the present embodiment, this painting is performed on the entire vehicle body after assembling a plurality of vehicle body members (sub-assemblies) that have undergone the steps S1 to S4 to complete the vehicle body. That is, electrodeposition coating is performed by immersing the entire vehicle body in the electrodeposition liquid.
[0029]
In the next step S6, the electrodeposited coating film is dried by heating the entire vehicle body to a temperature of 190 ° C. or lower (drying step).
[0030]
Although the step is omitted in FIG. 1 after the drying step, a vehicle body sealer is applied to the vehicle body, the vehicle body sealer is dried, and then the intermediate coating is performed, and the coating film of the intermediate coating is dried. Then, a top coat is applied, and the coated film of the top coat is dried. At the time of drying each of the electrodeposition coating, the vehicle body sealer, the intermediate coating, and the topcoating, the vehicle body is heated to 100 ° C or more and 190 ° C or less (excluding drying of the body sealer, which is 140 ° C or more and 190 ° C or less). .
[0031]
The painting and drying need not necessarily be performed on the entire vehicle body, but may be performed on a vehicle body member in a subassembly state. At that time, the entire body member may be painted and dried, and a part of the body member may be painted and at least the painted portion (in order to exert the effect of the present invention, the nitrided portion of the nitrided steel sheet ( In particular, it is desirable to include a spot weld or its surroundings).
[0032]
Here, the relationship between the heating temperature and the hardness (that is, the strength) of the nitriding steel sheet is shown in FIG. This nitriding steel sheet is an ultra-low carbon steel sheet containing 0.07% of Ti and subjected to salt bath nitriding treatment (tuffering: oil cooling at 580 ° C. × 1.5 h).
[0033]
As can be seen from the figure, when the nitrided steel sheet is heated (at 300 ° C. or less), nitrogen dissolved in the matrix precipitates as iron nitride (FeN) and thereby softens. Specifically, at temperatures lower than 100 ° C., it hardly softens. However, when the temperature exceeds 100 ° C., the hardness decreases with a relatively large gradient to around 200 ° C., and when it exceeds 200 ° C., the hardness decreases to 250 ° C. However, when the temperature exceeds 250 ° C., the temperature decreases again to 300 ° C. with a large gradient (a gradient substantially equal to the gradient from 100 ° C. to around 200 ° C.). When heated a plurality of times (300 ° C. or lower), the hardness becomes the maximum heating. That is, when the current heating temperature is higher than the previous heating temperature, the hardness is equivalent to the current heating temperature, and when the current heating temperature is lower than the previous heating temperature, the hardness corresponding to the previous heating temperature is maintained.
[0034]
On the other hand, when the temperature exceeds 300 ° C., the precipitated nitrogen forms a solid solution again, whereby the hardness increases as the heating temperature increases. It is considered that the reheating unit is in a state in which nitrogen has been re-dissolved. Then, when heated to 300 ° C. or lower from this state, nitrogen precipitates as iron nitride and has a hardness corresponding to the heating temperature.
[0035]
If the tempering step is omitted, the coating step and the drying step (including the drying of the body sealer) are performed after the welding step, so that the nitrided steel sheet is heated to 100 ° C or more and 190 ° C or less. In this drying step, the same tempering as in the above tempering step is performed, and the hardness of the nitrided steel sheet can be reduced. Here, FIG. 4 shows the relationship between the distance x (see FIG. 2) from the nugget end and the hardness inside the nitrided steel sheet before and after coating and drying when the tempering step is eliminated after the welding step. From this, it can be seen that the hardness of the reheated portion and the portions other than the HAZ portion and the reheated portion are reduced after the coating is dried.
[0036]
However, if the tempering step is eliminated, the nitriding steel sheet may be broken during the transportation to the coating step or the drying step, and in the drying step, the body member is located at any position of the vehicle body. The heating temperature is different depending on whether it is present, and when the heating temperature is in the range of 100 ° C. to 190 ° C., the hardness (that is, the strength) of the reheated part is extremely high, in particular, due to the relationship between the heating temperature and the hardness of the above-described nitrided steel sheet. It will vary greatly (see hardness after drying in FIG. 4). Such a variation in strength makes it difficult to achieve a desired deformation mode when the body member controls a deformation mode like a frame member (a front frame, a center pillar, or the like). .
[0037]
Further, it is conceivable that the tempering temperature in the tempering step is set at a constant temperature of 100 ° C. to 190 ° C. which is the same as the heating temperature in the drying step. However, even in this case, although it is possible to suppress cracking in the reheating unit before the coating step or the drying step, when tempering the nitrided steel sheet is performed at a temperature lower than that at the time of coating and drying, The strength changes during the drying process.
[0038]
Actually, as a result of performing tempering at 100 ° C. on a nitrided steel sheet having a hardness of Hv 330 after nitriding, the hardness became Hv 325, which decreased to Hv 300 after coating and drying at 140 ° C. Further, as a result of tempering the nitrided steel sheet at 140 ° C., the hardness became Hv300, which was Hv295 after the coating and drying at 140 ° C., but did not change much, but after the coating and drying at 180 ° C. Decreased to Hv265. Further, as a result of tempering the nitrided steel sheet at 140 ° C., the hardness became Hv265, and after the coating and drying at 180 ° C., it became Hv263, and hardly changed.
[0039]
And, even if tempering is performed at a higher temperature than during coating and drying, a certain degree of temperature variation occurs, and as described above, when the heating temperature of the nitrided steel sheet is in the range of 100 ° C to 200 ° C, Since the amount of change in hardness with respect to temperature change is relatively large, the strength changes due to the temperature variation.
[0040]
On the other hand, in the present embodiment, after the welding step and before the painting step, the nitrided portion of the nitrided steel sheet is tempered at a temperature of more than 200 ° C. and 250 ° C. or less. Cracking of the treated steel sheet can be suppressed, and the strength quality of the nitrided steel sheet after the drying step can be stabilized. That is, the tempering is performed at a higher temperature than during the drying step, and in this temperature range, the hardness change amount with respect to the temperature change is relatively small and stable, so even if the tempering temperature varies to some extent, the nitriding treatment is performed. The variation in hardness in the nitrided portion of the steel sheet is relatively small. Therefore, in the drying process after the tempering process, the hardness of the tempering process is not affected at all and the hardness of the tempering process is maintained, and as a result, a stable strength is obtained.
[0041]
Actually, as a result of performing tempering at 210 ° C. on the above-described nitrided steel sheet whose hardness after nitriding treatment is Hv 330, the hardness becomes Hv 264, which becomes Hv 263 after coating and drying at 140 ° C. Hv262 even after coating and drying at 180 ° C., and hardly changed. Further, as a result of tempering the nitrided steel sheet at 250 ° C., the hardness became Hv 275, which after coating and drying at 180 ° C., became Hv 277, and hardly changed.
[0042]
Therefore, in the above embodiment, after the welding step and before the coating step, the nitriding portion of the steel sheet is tempered at a temperature of more than 200 ° C. and 250 ° C. or less. Cracking of the steel sheet can be suppressed, and the strength quality of the nitrided steel sheet after the drying step can be stabilized.
[0043]
【The invention's effect】
As described above, according to the present invention, a plastic working step of plastic working a steel sheet, a nitriding treatment step of nitriding at least a part of the steel sheet, welding the nitriding portion of the steel sheet and another sheet material, A welding step of producing a body member constituting at least a part of the vehicle body, a coating step of painting at least a part of the vehicle body member, and at least a painted portion of the body member, by heating to a temperature of 190 ° C. or less, As a method of manufacturing a vehicle body member by sequentially performing a drying process of drying the coating film of the painted portion, after the welding process and before the painting process, the nitriding portion of the steel sheet is heated to a temperature exceeding 200 ° C and 250 ° C or less. By providing a tempering step of tempering at a temperature of, the cracking of the nitrided steel sheet before the coating step or the drying step can be suppressed, and the nitriding after the drying step can be suppressed. It is possible to stabilize the intensity quality management steel.
[Brief description of the drawings]
FIG. 1 is a process chart showing a method for manufacturing a vehicle body member according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a spot-welded portion of a nitriding steel sheet.
FIG. 3 is a graph showing the relationship between the heating temperature and the hardness of a nitrided steel sheet.
FIG. 4 is a graph showing the relationship between the distance x from the end of the nugget and the hardness inside the nitrided steel sheet before and after coating and drying when the tempering step is eliminated after the welding step.
[Explanation of symbols]
1 Nitrided steel sheet 2 Nugget 3 Heat affected zone (HAZ zone)
4 Reheating section

Claims (4)

鋼板を塑性加工する塑性加工工程と、
上記塑性加工を施した鋼板の少なくとも一部を窒化処理する窒化処理工程と、上記鋼板の窒化処理部分と他の板材とを溶接して、車体の少なくとも一部を構成する車体部材を作製する溶接工程と、
上記車体部材の少なくとも一部を塗装する塗装工程と、
上記車体部材の少なくとも塗装部分を、190℃以下の温度に加熱することにより、該塗装部分の塗膜を乾燥させる乾燥工程とを含む車体部材の製造方法であって、
上記溶接工程後でかつ塗装工程前に、上記鋼板の窒化処理部分を、200℃を越え250℃以下の温度で焼戻す焼戻し工程を備えたことを特徴とする車体部材の製造方法。
A plastic working process for plastic working a steel plate;
A nitriding step of nitriding at least a part of the steel plate subjected to the plastic working, and welding the nitriding part of the steel sheet and another sheet material to produce a body member constituting at least a part of the vehicle body Process and
A coating step of coating at least a part of the vehicle body member,
A method of manufacturing a vehicle body member, comprising: drying at least a painted portion of the vehicle body member to a temperature of 190 ° C. or less, and drying a coating film of the painted portion.
A method for manufacturing a vehicle body member, comprising: a tempering step of tempering a nitrided portion of the steel sheet at a temperature higher than 200 ° C. and equal to or lower than 250 ° C. after the welding step and before the painting step.
請求項1記載の車体部材の製造方法において、
焼戻し工程において、鋼板の窒化処理部分の一部のみを焼戻すことを特徴とする車体部材の製造方法。
The method for manufacturing a vehicle body member according to claim 1,
A method for manufacturing a vehicle body member, characterized in that in the tempering step, only a part of the nitriding portion of the steel sheet is tempered.
請求項2記載の車体部材の製造方法において、
溶接工程は、鋼板の窒化処理部分と他の板材とをスポット溶接して車体部材を作製する工程であり、
焼戻し工程において、上記鋼板の窒化処理部分における上記スポット溶接部ないしその周囲のみを焼戻すことを特徴とする車体部材の製造方法。
The method for manufacturing a vehicle body member according to claim 2,
The welding process is a process of producing a body member by spot welding a nitriding portion of a steel plate and another plate material,
A method for manufacturing a vehicle body member, characterized in that in the tempering step, only the spot welded portion or its periphery in the nitriding portion of the steel sheet is tempered.
請求項1〜3のいずれか1つに記載の車体部材の製造方法において、
車体部材は、自動車用車体フレーム部材であることを特徴とする車体部材の製造方法。
The method for manufacturing a vehicle body member according to any one of claims 1 to 3,
A method for manufacturing a vehicle body member, wherein the vehicle body member is a vehicle body frame member.
JP2003088193A 2003-03-27 2003-03-27 Manufacturing method of body member Expired - Fee Related JP3988669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088193A JP3988669B2 (en) 2003-03-27 2003-03-27 Manufacturing method of body member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088193A JP3988669B2 (en) 2003-03-27 2003-03-27 Manufacturing method of body member

Publications (2)

Publication Number Publication Date
JP2004291851A true JP2004291851A (en) 2004-10-21
JP3988669B2 JP3988669B2 (en) 2007-10-10

Family

ID=33402388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088193A Expired - Fee Related JP3988669B2 (en) 2003-03-27 2003-03-27 Manufacturing method of body member

Country Status (1)

Country Link
JP (1) JP3988669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750519B2 (en) 2007-10-31 2010-07-06 Panasonic Corporation Hydrodynamic bearing device, motor and information recording and reproducing apparatus in which same is used, and method for manufacturing shaft used in hydrodynamic bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750519B2 (en) 2007-10-31 2010-07-06 Panasonic Corporation Hydrodynamic bearing device, motor and information recording and reproducing apparatus in which same is used, and method for manufacturing shaft used in hydrodynamic bearing device

Also Published As

Publication number Publication date
JP3988669B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
US10961603B2 (en) Structural component including a tempered transition zone
JP4316842B2 (en) Method for manufacturing tailored blank press molded products
US7618503B2 (en) Method for improving the performance of seam-welded joints using post-weld heat treatment
JP2007069674A (en) Torsion beam type suspension and its manufacturing method
JP2001123227A (en) Manufacturing method of stock tube rigid in deflection and weak in torsion as cross beam for pivot beam rear axle of passenger car
CN111332367B (en) Pressure-hardening welded steel alloy component
US7451630B2 (en) Heat treatment strategically strengthened door beam
JP7399851B2 (en) vehicle body side structure frame
EP2126145A1 (en) Method for improving the performance of seam-welded joints using post-weld heat treatment
CN105792979A (en) Structural component including a tempered transition zone
EP3851236B1 (en) Flash butt welding member and flash butt welding method for providing wheel rim weld part with excellent formability
JP2019500215A (en) Manufacturing method of steel components for vehicles
CN114555453B (en) Formed sheet metal part for vehicle frame and corresponding production method
JP2006021216A (en) Method for manufacturing tailored blank press formed parts
JP3988669B2 (en) Manufacturing method of body member
KR100245031B1 (en) Car stabilizer bar manufacturing method using non heat treated steel
KR20180079439A (en) Method of manufacturing an austenitic steel component and use of said component
KR20120132836A (en) Hot stamping molding product and method of manufacturing the same
US20230045352A1 (en) Pre-coated steel sheet comprising an additional coating for increasing the mechanical strength of the weld metal zone of a welded steel part prepared from said pre-coated sheet.
JP7052116B1 (en) Molding method
US20070012384A1 (en) Process for producing tempered steel motor vehicle parts
CN117344108A (en) Steel member manufacturing method, steel member, vehicle body part, and vehicle
CN104128742B (en) Method for generating hardened steel component
JPH0971821A (en) Heat treatment of welded joint of maraging steel
JP2002294381A (en) Aluminum alloy welded joint for forming

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees