JP2004291839A - Oil application method and device for railway vehicle - Google Patents

Oil application method and device for railway vehicle Download PDF

Info

Publication number
JP2004291839A
JP2004291839A JP2003087875A JP2003087875A JP2004291839A JP 2004291839 A JP2004291839 A JP 2004291839A JP 2003087875 A JP2003087875 A JP 2003087875A JP 2003087875 A JP2003087875 A JP 2003087875A JP 2004291839 A JP2004291839 A JP 2004291839A
Authority
JP
Japan
Prior art keywords
vehicle
oil
rail
gyro sensor
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087875A
Other languages
Japanese (ja)
Other versions
JP4299030B2 (en
Inventor
Yoshihiro Sasaki
芳弘 佐崎
Yasushi Nakamura
保志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki Sharyo Co Ltd
Original Assignee
Kinki Sharyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki Sharyo Co Ltd filed Critical Kinki Sharyo Co Ltd
Priority to JP2003087875A priority Critical patent/JP4299030B2/en
Publication of JP2004291839A publication Critical patent/JP2004291839A/en
Application granted granted Critical
Publication of JP4299030B2 publication Critical patent/JP4299030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Machines For Laying And Maintaining Railways (AREA)
  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure highly accurate painting for a long time under exact and stable detection of curves without causing problems with friction and contamination nor need for correction. <P>SOLUTION: A non-contact gyroscope sensor 3 is attached onto a vehicle 1 to apply oil to a specific area of an external rail 5 from an injection device 2 of a vehicle 1 while the vehicle 1 is running on a curved section of the rail 5, so that a yaw rate generated at the vehicle 1 is given to the gyroscope sensor 3 to detect it with no contact. The curved section of the rail 5 is determined from the yaw rate detected by the gyroscope sensor 3 and, corresponding to the determination, oil is applied from the injection device 2 to the rail 5, thus accomplishing the above purpose. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は鉄道車両の塗油方法と装置に関し、詳しくは、車両が曲線を走行しているとき軌条の特定の部分、主として曲線の外側軌条の頭部における車輪のフランジが圧接する内側隅肩部に油を噴射して塗油する塗油方法と装置に関するものである。
【0002】
【従来の技術】
このような軌条への塗油に用いる油の噴射具はオイルを必要に応じて噴射できるようにしたいわゆる噴射弁、つまり電磁弁で制御する噴射具が一般的になっており、車両が曲線を走行しているとき油を噴射させるように自動制御することが行われている。
【0003】
車両が曲線を通過していることを検出する装置fとして、従来、例えば図6〜図8に示す第1の例、図9、図10に示す第2の例がある。第1の例は、図6、図7に示すように揺れ枕tと台車aとの間の軌条の曲がりによる相互の回転変位に、リンク機構bによって応動する検出棒cを設け、検出棒cの原点位置からの変位を例えば図6に示す揺れ枕t側の1組のリミットスイッチd、eによって検出し、この検出結果から軌条の曲線を検知している。これにより前後どちらに進行する場合でも軌条の左右の曲がりに対応できるようにしている。
【0004】
図9、図10に示す第2の例の装置fは、台車aの側に設けた反射板gの揺れ枕tに対する回転角度の変化を、揺れ枕tの側の一対の光電スイッチh、iによって検出するようにしている。
【0005】
一方、図11に示すようなボルスタレス台車jでの装置fは、台車jの上下左右揺動も影響するので、前記第1の例、第2の例の方式では検出できない。そこで、図に示すように台車aと車両jとに、例えば反射板gとその上下の傾きを検出する光電スイッチiなどを設け、これの検出結果によって台車aの揺動分を補正する必要がある。
【0006】
【発明が解決しようとする課題】
しかし、上記従来の第1の例は機械部品と摩擦部分とが多く摩耗して正確に検出できなくなる。従って、これに対応するメンテナンスのために点検、整備に多くの手間と時間が掛かり、維持管理コストがかさむ。第2の例は摩擦部分がなく摩耗のための維持管理は不要であるが、粉塵などによるセンサーの汚れによって誤作動するのでさらなる対策が必要である。図11に示すボルスタレス台車aの例では、台車a揺動分補正が困難である。
【0007】
これらとは別に、圧電素子を用いた角速度センサを用いて車両の走行方向の曲がりを検出して塗油を行うことも行われてはいる。しかし、圧電素子は検出したい角速度方向に設置した固定板間に移動体を配し、この移動体と各固定板との間に圧電素子を挟み込み、車両が向きを変えるときの移動体の慣性力を圧電素子に働かせて角速度を検出するものであるため、移動体に働く車両ないしは台車の上下動がノイズを生むので、摩擦や汚れの問題はないものの、誤検出しやすいので、実用するには高度な補正技術が必要である。
【0008】
本発明の目的は、摩擦や汚れの問題がなく補正の必要もなく、正確で安定した曲線検出のもとに長期に精度よく塗油することができる鉄道車両の塗油方法と装置を提供することにある。
【0009】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の鉄道車両の塗油方法は、車両が軌条の曲線部分を走行しているとき、外側軌条の特定部分に車両の噴射具から塗油するのに、車両に非接触型のジャイロセンサを付帯させることにより、車両に生じるヨーレートをジャイロセンサに及ぼしてこれを非接触に検出させ、ジャイロセンサが検出したヨーレートから軌条の曲線を判定し、この判定に対応して噴射具から軌条に塗油することを主たる特徴とするものである。
【0010】
このような構成では、非接触型のジャイロセンサは車両に付帯されることで、車両が軌条の曲線部分を走行するときのヨーレートを非接触に受け、取り付け位置や向きなどの影響や接触構造に基づくノイズなしに、車両のヨーレートを正確に検出するので、この非接触型のジャイロセンサによる検出結果に基づき軌条の曲線を精度よく判定して噴射具から軌条への塗油をタイミングのずれなく的確に行うことができる。しかも、機械的な擦れ部分がないので耐久性がよく、点検も配管、配線、パイロットランプなどを目視する程度の簡単な点検で十分である。
【0011】
塗油を、軌条の曲線と車両の速度と雰囲気温度とに応じて行う、さらなる構成では、速度の違いによる塗油タイミングのずれ、塗油量の過不足、雰囲気温度の違いによる塗油量の過不足を回避し、タイミングずれや過不足のない最適な塗油が常に保証できる。
【0012】
上記のような方法を達成する鉄道車両の塗油装置としては、貯油タンクから給油手段によって供給される油を軌条の特定部分に噴射して塗油する噴射具と、この噴射具を通じた油の噴射を制御する制御手段と、車両のヨーレートを受けてこれを非接触に検出する非接触型のジャイロセンサと、を車両に備え、制御手段はジャイロセンサが検出したヨーレートから曲線を判定するとともに、この判定に応じて前記油の噴射を行わせることを主たる特徴とするもので足り、非接触型のジャイロセンサによる車両のヨーレートの検出に基づく的確な塗油が自動的に安定して行える。
【0013】
この鉄道車両の塗油装置においても、タイミングずれや過不足のない最適な塗油が常に保証できるために、車両の速度を検出する速度センサと、雰囲気温度を検出する温度センサを備え、制御手段は曲線と速度と雰囲気温度とに応じて前記油の噴射を行わせるのが好適である。
【0014】
貯油タンク、給油手段、センサ、制御手段を車両の床下機器として集約装備した、さらなる構成では、非接触型のジャイロセンサは設置位置や設置姿勢に制限がなく、設置位置が軌条近くを好適とする噴射具を除く他の必要機器とともに車両の床下機器として集約装備しても、非接触型のジャイロセンサによる車両のヨーレートの検出に基づき的確な塗油を自動的に安定して行う機能を損なわないので、必要機器がコンパクトにまとまり、相互の配管や配線が簡略化し、車両への付帯作業が簡略化し短時間で行え、コストが低減する。特に、予め1つの装置に組み上げておくと塗油装置そのものの組立、および車両への付帯のどの作業もさらに簡略化し、コストがさらに低減する。また、点検、補修も容易かつ短時間に行える。
【0015】
本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面の記載によって明らかになる。本発明の各特徴は、それ単独で、あるいは可能な限りにおいて種々な組合せで複合して採用することができる。
【0016】
【実施例】
本発明の図1〜図4に示す実施例の鉄道車両の塗油装置は、図1に示すように車両1が軌条5の曲線部分を走行しているとき、外側軌条5の特定部分、つまり頭部の隅角部分に車両1に装備した噴射具2から塗油するのに、車両1に非接触型のジャイロセンサ3を付帯させることにより、車両1に生じるヨーレートをジャイロセンサ3に及ぼしてこれを非接触に検出させ、ジャイロセンサ3が検出したヨーレートから軌条5の曲線を判定し、この判定に対応して噴射具2から軌条に塗油する方法を採用している。
【0017】
このようなジャイロセンサ3は、例えば光ファイバやリングレーザを利用した光学式ジャイロで代表されるが、これに限られることはないし、ガスなどの流体を利用する機械稼働部分がほとんどない流体式ジャイロを含んでも、車両1に付帯されることで、車両1が軌条5の曲線部を走行するときのヨーレートを非接触に受け、取り付け位置や向きなどの影響や接触構造に基づくノイズなしに、車両1のヨーレートを正確に検出することができる。従って、この非接触型のジャイロセンサ3による検出結果に基づき軌条5の曲線を精度よく判定して噴射具2から軌条5への塗油をタイミングのずれなく的確に行うことができる。しかも、機械的な擦れ部分がないので耐久性がよく、点検も配管、配線、パイロットランプなどを目視する程度の簡単な点検で十分であり、補修するにも複雑にはならない。
【0018】
このような方法を達成するのに、本実施例の鉄道車両の塗油装置は、図1に示すように貯油タンク11に、速度に応じて高圧電磁弁22を入切することで、貯油タンク11にかかる背圧を最適圧に調整された油13を軌条5の特定部分に噴射して塗油する噴射具2と、この噴射具2の電磁弁21を開閉するためのエアの供給を制御する電磁弁制御手段14と、車両1のヨーレートを受けてこれを非接触に検出する非接触型のジャイロセンサ3と、を車両1に備えている。特に、制御手段14はジャイロセンサ3が検出したヨーレートから曲線を判定するとともに、この判定に応じて前記油13の噴射を行わせる。これにより、非接触型のジャイロセンサ3による車両1のヨーレートの検出に基づく的確な塗油が自動的に安定して行える。
【0019】
好適には、車両1の速度を検出する速度センサ15と、雰囲気温度を検出する温度センサ16を備え、制御手段14が曲線と速度と雰囲気温度とに応じて前記油13の噴射を行わせるようにする。これにより、速度の違いによる塗油タイミングのずれ塗油量の過不足、雰囲気温度の違いによる油粘度の変化、塗油量の過不足を回避し、タイミングずれや過不足のない最適な塗油を常に保証することができる。
【0020】
これら貯油タンク11、給油手段12、各種のセンサ3、15、16、制御手段14を車両1の床下機器17として集約装備している。非接触型のジャイロセンサ3は設置位置や設置姿勢に制限がなく、設置位置が軌条5近くを好適とする噴射具2を除く他の必要機器とともに車両1の床下機器17として集約装備しても、非接触型のジャイロセンサ3による車両1のヨーレートの検出に基づき的確な塗油を自動的に安定して行う機能を損なわないので、必要機器がコンパクトにまとまり、相互の配管や配線が簡略化し、車両1への付帯作業が容易かつ短時間で行え、コストが低減する。特に、予め1つの装置、図1に一点鎖線を施して示すようにユニットに組み上げておくと塗油装置そのものの組立、および車両1への付帯、のどの作業もさらに簡略化し、コストがさらに低減する。また、点検、補修も容易かつ短時間に行える。ユニットは例えば前記各種の機器を1つの基板、あるいは1つの枠体、あるいは1つのキャビネットに集約装備することで行える。キャビネットであると防塵、防水、外力排除などの保護がしやすい。
【0021】
ここで、噴射具2は左側の軌条5用と右側の軌条5用とがあり、いずれも左右電磁弁21に制御された、供給されるエアにより開閉されるものとし、給油手段12は貯油タンク11内の油13を加圧空気によって常に供給しておき、電磁弁21を開けば油13が即時に噴射でき、給油路途中の増圧用の電磁弁22によって車両1の速度に応じた増圧を行い車両の速度に応じた噴射速度で塗油できるようにしてある。給油手段12は空気タンク24に貯められた圧縮空気を減圧弁25によって塗油基準圧に減圧したものを貯油タンク11に供給するようにしている。これにより、他の用途に用いられる既存の空気タンク24を共用して塗油基準圧を持った圧縮空気を得、特別な圧縮空気源を必要としないで自動塗油が行える。
【0022】
図2に示すように制御手段14は例えばプログラマブルコントローラであり、入力部にジャイロセンサ3としてのヨーレート検出用の角速度検知器、速度センサ15としての速度発電機、温度センサ16、車両1が走行する軌条5の湾曲方向が右か左かを+−の違いで検出する加速度センサ26のほか、塗油の速度バージョンを入力する速度しきい値設定スイッチ27、チェック用スイッチ28、異常時に動作をリセットする異常リセットスイッチ29が接続されている。制御手段14の出力部には左右の電磁弁21を個別に開閉するためのリレー31、32、増圧用の電磁弁22を調圧制御するドライバ33、タイムカウンタ34、異常ランプ35が接続されている。
【0023】
ジャイロセンサ3は電源装置36からの5VDCの供給を受けて動作し、その出力が信号変換器38により所定のテーブルや関数に従い曲線情報に変換される。この曲線情報はA/D変換器39にてデジタル値に変換した後リンクユニット41を介して制御手段14に入力する。速度センサ15からの出力はアンプユニット42を介してパルス信号化して制御手段14に入力する。温度センサ16からの出力はA/D変換器43を経て制御手段14に入力する。加速度センサ26からの出力は増幅器、進行方向軸別信号回路、左右判定回路46を経て最終的な左右判定信号を制御手段14に入力する。電源装置36からの24VDCは制御手段14、信号変換器、A/D変換器39、43等の電子機器に供給し、電源装置36からの100VDCはリレー31、32、33などのハード機器に供給している。ここに、電源装置36は100VDCをそのまま供給する給電ラインと、24VDCおよび5VDCに落として供給する給電ラインとを持っている。しかし、24VDCをパワーサプライを経て5VDCに落してジャイロセンサ3に供給するようにもできる。これにより配線が長くなる可能性を無くすことができる。タイムカウンタ34の表示窓34aは点検蓋57の前面に露出して外部表示できるようにしている。
【0024】
特に、ジャイロセンサ3、制御手段14、温度センサ16、リレー31、32、タイムカウンタ34、信号変換器38などに加え、温度調節器51を図3、図4に示すように基板52上に設置し、図2に示すような軌条塗油制御装置本体53を構成している。基板52の取り付け面には図示しないがゴムなどの防振材が張り合わされ、設置機器や配線への防振を図っている。
【0025】
図5に塗油動作の具体的な制御例を示している。これにつき説明すると、まずステップ♯1にて塗油を行う噴射曲線、塗油開始後の噴射停止速度、増圧用電磁弁出力速度、車両1が持っている車輪径、噴射過多防止温度、塗油を緩和する曲線条件、緩和曲線での噴射時間など塗油を行うのに必要な基礎データを初期設定する。ステップ♯2ではジャイロセンサ3からの入力、速度センサ15からの入力、温度センサ16からの入力、各種スイッチ27〜29からの入力を受け付け、対応する処理を行う。ステップ♯3では各種入力から曲線の判定、車両速度の判定、車両進行方向の左右判定、塗油方向の左右判定、温度の判定を行うとともに、これらの判定結果に従い、噴射制御、増圧制御、緩和曲線対応の制御、緩和曲線噴射時間の制御を行う。最後のステップ♯4で前記制御に応じた出力にて塗油を実行し、塗油開始からのタイムカウンタ出力や異常があるときの異常信号の出力を行う。
【0026】
ここで、擦れ部を持った機械式の従来例と、本実施例とを簡単に比較すると、下記表1に示すような相違がある。
【0027】
【表1】

Figure 2004291839
【0028】
【発明の効果】
本発明の鉄道車両の塗油方法、装置によれば、非接触型のジャイロセンサは車両に付帯されることで、車両が軌条の曲線部を走行するときのヨーレートを非接触に受け、取り付け位置や向きなどの影響や接触構造に基づくノイズなしに、車両のヨーレートを正確に検出するので、この非接触型のジャイロセンサによる検出結果に基づき軌条の曲線を精度よく判定して噴射具から軌条への塗油をタイミングのずれなく的確に行うことができる。しかも、機械的な擦れ部分がないので耐久性がよく、点検も配管、配線、パイロットランプなどを目視する程度の簡単な点検で十分である。特に装置では、非接触型のジャイロセンサによる車両のヨーレートの検出に基づく的確な塗油が自動的に安定して行える。
【0029】
塗油を、軌条の曲線と車両の速度と雰囲気温度とに応じて行う、さらなる構成によれば、速度の違いによる塗油タイミングのずれ塗油量の過不足、雰囲気温度の違いによる塗油量の過不足を回避し、タイミングずれや過不足のない最適な塗油が常に保証できる。
【0030】
貯油タンク、給油手段、センサ、制御手段を車両の床下機器として集約装備した、さらなる構成によれば、非接触型のジャイロセンサは設置位置や設置姿勢に制限がなく、設置位置が軌条近くを好適とする噴射具を除く他の必要機器とともに車両の床下機器として集約装備しても、非接触型のジャイロセンサによる車両のヨーレートの検出に基づき的確な塗油を自動的に安定して行う機能を損なわないので、必要機器がコンパクトにまとまり、相互の配管や配線が簡略化し、車両への付帯作業が簡略化し短時間で行え、コストが低減する。特に、予め1つの装置に組み上げておくと塗油装置そのものの組立、および車両への付帯のどの作業もさらに簡略化し、コストがさらに低減する。また、点検、補修も容易かつ短時間に行える。
【図面の簡単な説明】
【図1】本発明の実施例に係る鉄道車両の塗油方法および装置の1つの例を示す制御回路図およびつなぎ図である。
【図2】図1の回路図における制御装置本体の回路図である。
【図3】図2の制御装置本体の正面図である。
【図4】図2の制御装置本体の主な収納機器の配置図である。
【図5】図1の制御回路による制御例を示すフローチャートである。
【図6】従来の曲線検出装置の1つの例を示す側面図である。
【図7】図6の装置の正面図である。
【図8】図6の装置の車両への配置図である。
【図9】従来の曲線検出装置の別の例を示す側面図である。
【図10】図9の装置の正面図である。
【図11】ボルスタレス台車での曲線検出例を示す側面図である。
【符号の説明】
1 車両
2 噴射具
3 ジャイロセンサ
5 軌条
11 貯油タンク
12 給油手段
13 油
14 制御手段
15 速度センサ
16 温度センサ
17 床下機器
18 ユニット
21、22 電磁弁[0001]
[Industrial applications]
The present invention relates to a method and an apparatus for lubricating a railway vehicle, and more particularly to an inner corner shoulder where a wheel flange is pressed against a specific part of a rail when the vehicle is running on a curve, mainly at the outer rail head. TECHNICAL FIELD The present invention relates to a method and an apparatus for applying oil by spraying oil on the oil.
[0002]
[Prior art]
The so-called injection valve, which is capable of injecting oil as needed, is generally used as an injector for oil used for applying oil to the rail, that is, an injector controlled by a solenoid valve. 2. Description of the Related Art Automatic control is performed so that oil is injected when a vehicle is traveling.
[0003]
Conventionally, as a device f for detecting that a vehicle is passing through a curve, for example, there are a first example shown in FIGS. 6 to 8 and a second example shown in FIGS. 9 and 10. In the first example, as shown in FIGS. 6 and 7, a detection rod c is provided, which is responsive to a mutual rotational displacement caused by a bend of a rail between a swing pillow t and a carriage a by a link mechanism b. Is detected by a set of limit switches d and e on the swing pillow t side shown in FIG. 6, for example, and a rail curve is detected from the detection result. This makes it possible to cope with the left and right bends of the rail, regardless of whether it is moving forward or backward.
[0004]
The device f of the second example shown in FIGS. 9 and 10 uses a pair of photoelectric switches h and i on the side of the swing pillow t to determine the change in the rotation angle of the reflector g provided on the side of the carriage a with respect to the swing pillow t. To detect it.
[0005]
On the other hand, the device f in the bolsterless truck j as shown in FIG. 11 cannot be detected by the method of the first example or the second example because the vertical swing of the truck j is also affected. Therefore, as shown in the drawing, it is necessary to provide, for example, a reflection plate g and a photoelectric switch i for detecting the vertical inclination of the reflection plate g on the carriage a and the vehicle j, and to correct the swing of the carriage a based on the detection result. is there.
[0006]
[Problems to be solved by the invention]
However, in the above-mentioned first example of the related art, the mechanical parts and the frictional parts are often worn and cannot be accurately detected. Therefore, much labor and time are required for inspection and maintenance for the corresponding maintenance, and the maintenance cost is increased. In the second example, there is no friction portion and no maintenance for wear is required, but further malfunction is required because the sensor malfunctions due to contamination of the sensor by dust or the like. In the example of the bolsterless truck a shown in FIG. 11, it is difficult to correct the swing of the truck a.
[0007]
Apart from these, oiling is performed by detecting a bending in the traveling direction of the vehicle using an angular velocity sensor using a piezoelectric element. However, for the piezoelectric element, a moving body is arranged between fixed plates installed in the direction of the angular velocity to be detected, and the piezoelectric element is sandwiched between this moving body and each fixed plate, and the inertial force of the moving body when the vehicle changes direction is Is applied to the piezoelectric element to detect the angular velocity, so that the vertical movement of the vehicle or bogie that works on the moving body generates noise, so there is no problem of friction or dirt, but it is easy to make an erroneous detection, so for practical use Advanced correction technology is required.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus for lubricating a railway vehicle, which can accurately lubricate for a long time under accurate and stable curve detection without the problem of friction and dirt and without the need for correction. It is in.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the method for lubricating a railway vehicle according to the present invention is characterized in that when a vehicle is traveling along a curved part of a rail, a specific part of an outer rail is lubricated from a vehicle injector. Then, by attaching a non-contact type gyro sensor to the vehicle, a yaw rate generated in the vehicle is applied to the gyro sensor to detect it in a non-contact manner, and a track curve is determined from the yaw rate detected by the gyro sensor. The main feature is to apply oil to the rail from the injector in response to the above.
[0010]
In such a configuration, the non-contact type gyro sensor is attached to the vehicle, so that the non-contact type gyro sensor receives the yaw rate when the vehicle travels on the curved part of the rail in a non-contact manner, and is affected by the mounting position and the direction and the contact structure. Since the yaw rate of the vehicle is accurately detected without any noise based on this, the curve of the rail is accurately determined based on the detection result of this non-contact gyro sensor, and the lubrication from the injector to the rail is accurately performed with no timing shift. Can be done. In addition, since there is no mechanical rubbing part, the durability is good, and a simple inspection such as visual inspection of piping, wiring, pilot lamps and the like is sufficient.
[0011]
In a further configuration, the oiling is performed according to the rail curve, the speed of the vehicle, and the ambient temperature. It is possible to avoid excess and deficiency, and to always guarantee the optimal lubrication without timing deviation and excess and deficiency.
[0012]
An oiling device for a railway vehicle that achieves the above-described method includes an injector that injects oil supplied from an oil storage tank by an oil supply unit to a specific portion of a rail to apply oil, and an oil that is applied through the injector. A control means for controlling the injection, and a non-contact gyro sensor which receives the yaw rate of the vehicle and detects it in a non-contact manner, is provided on the vehicle, and the control means determines a curve from the yaw rate detected by the gyro sensor, The main feature is that the oil is injected according to this determination, and accurate oiling based on detection of the yaw rate of the vehicle by a non-contact gyro sensor can be performed automatically and stably.
[0013]
The oiling device for a railway vehicle also includes a speed sensor for detecting the speed of the vehicle, and a temperature sensor for detecting the ambient temperature, so that the optimum oiling without any timing deviation or excess or deficiency can always be guaranteed. Preferably, the oil is injected according to the curve, speed, and ambient temperature.
[0014]
In a further configuration in which the oil storage tank, refueling means, sensors, and control means are collectively installed as under-floor equipment of the vehicle, the non-contact gyro sensor has no restriction on the installation position and installation posture, and the installation position is preferably near the rail. Even if it is collectively installed as under-floor equipment of the vehicle together with other necessary equipment except the injector, the function to automatically and stably perform accurate lubrication based on the detection of the yaw rate of the vehicle with a non-contact gyro sensor is not impaired Therefore, the necessary equipment is compacted, the mutual piping and wiring are simplified, the work of attaching to the vehicle is simplified, the work can be performed in a short time, and the cost is reduced. In particular, if they are assembled into one device in advance, any work of assembling the oiling device itself and attaching to the vehicle is further simplified, and the cost is further reduced. Inspection and repair can be performed easily and in a short time.
[0015]
Further objects and features of the present invention will become apparent from the following detailed description and drawings. The features of the present invention can be employed alone or in combination in various combinations as far as possible.
[0016]
【Example】
1 to 4 of the present invention, when the vehicle 1 is traveling along a curved portion of the rail 5, as shown in FIG. 1, a specific portion of the outer rail 5, that is, By applying a non-contact gyro sensor 3 to the vehicle 1 to apply oil to the corners of the head from the injector 2 mounted on the vehicle 1, the yaw rate generated in the vehicle 1 is applied to the gyro sensor 3. This is detected in a non-contact manner, the curve of the rail 5 is determined from the yaw rate detected by the gyro sensor 3, and a method of applying oil to the rail from the injector 2 in response to this determination is adopted.
[0017]
Such a gyro sensor 3 is represented, for example, by an optical gyro using an optical fiber or a ring laser, but is not limited to this, and a fluid gyro having almost no mechanically operating part using a fluid such as gas. Even when the vehicle 1 is attached to the vehicle 1, the vehicle 1 receives the yaw rate when the vehicle 1 travels along the curved portion of the rail 5 in a non-contact manner, without affecting the installation position and the direction and the noise based on the contact structure. One yaw rate can be accurately detected. Therefore, it is possible to accurately determine the curve of the rail 5 based on the detection result of the non-contact gyro sensor 3 and to accurately apply the oil from the injector 2 to the rail 5 without deviation in timing. In addition, since there is no mechanical rubbing part, the durability is good, and the inspection is simple enough to visually check the piping, wiring, pilot lamp, and the like, and repair is not complicated.
[0018]
In order to achieve such a method, the oiling device for a railway vehicle according to the present embodiment is configured such that the high-pressure solenoid valve 22 is turned on and off in the oil storage tank 11 according to the speed as shown in FIG. The injector 2 for spraying oil 13 in which the back pressure applied to the pressure 11 is adjusted to an optimum pressure to a specific portion of the rail 5 to apply oil, and the supply of air for opening and closing the electromagnetic valve 21 of the injector 2 are controlled. The vehicle 1 is provided with a solenoid valve control means 14 for controlling the vehicle 1 and a non-contact gyro sensor 3 for detecting the yaw rate of the vehicle 1 in a non-contact manner. In particular, the control means 14 determines a curve from the yaw rate detected by the gyro sensor 3 and causes the oil 13 to be injected according to this determination. Accordingly, accurate lubrication based on the detection of the yaw rate of the vehicle 1 by the non-contact gyro sensor 3 can be performed automatically and stably.
[0019]
Preferably, a speed sensor 15 for detecting the speed of the vehicle 1 and a temperature sensor 16 for detecting the ambient temperature are provided, and the control means 14 injects the oil 13 according to the curve, the speed and the ambient temperature. To This prevents oil timing misalignment due to differences in speed, excess or deficiency in oil amount, changes in oil viscosity due to differences in ambient temperature, and excess or deficiency in oil amount. Can always be guaranteed.
[0020]
These oil storage tank 11, refueling means 12, various sensors 3, 15 and 16, and control means 14 are collectively provided as underfloor equipment 17 of vehicle 1. The non-contact gyro sensor 3 is not limited in installation position and installation posture, and may be collectively installed as the under-floor equipment 17 of the vehicle 1 together with other necessary equipment except the injector 2 whose installation position is suitable near the rail 5. Since the function of automatically and stably applying proper lubrication based on the detection of the yaw rate of the vehicle 1 by the non-contact gyro sensor 3 is not impaired, the necessary equipment is compacted, and the mutual piping and wiring are simplified. In addition, the operation of attaching the vehicle 1 can be performed easily and in a short time, and the cost can be reduced. In particular, assembling the oiling device itself and attaching it to the vehicle 1 can be further simplified by assembling it into a single unit as shown in FIG. I do. Inspection and repair can be performed easily and in a short time. The unit can be realized by, for example, collectively mounting the various devices on one board, one frame, or one cabinet. A cabinet is easy to protect from dust, water, and external forces.
[0021]
Here, the injector 2 has a left rail 5 and a right rail 5, both of which are opened and closed by supplied air controlled by the left and right solenoid valves 21. The oil 13 in the tank 11 is always supplied by pressurized air, and the oil 13 can be injected immediately by opening the solenoid valve 21, and the pressure is increased according to the speed of the vehicle 1 by the solenoid valve 22 for increasing pressure in the middle of the oil supply path. To apply oil at an injection speed corresponding to the speed of the vehicle. The oil supply means 12 supplies the compressed air stored in the air tank 24 to the oil storage tank 11 by reducing the compressed air to the oil application reference pressure by the pressure reducing valve 25. As a result, compressed air having the oil application reference pressure is obtained by sharing the existing air tank 24 used for other applications, and automatic oiling can be performed without requiring a special compressed air source.
[0022]
As shown in FIG. 2, the control means 14 is, for example, a programmable controller, and has an input section in which an angular velocity detector for detecting a yaw rate as the gyro sensor 3, a speed generator as the speed sensor 15, a temperature sensor 16, and the vehicle 1 run. In addition to the acceleration sensor 26 that detects whether the bending direction of the rail 5 is right or left with a difference of +/-, a speed threshold setting switch 27 for inputting the speed version of the lubrication, a check switch 28, and resetting the operation in the event of an abnormality Abnormal reset switch 29 is connected. Relays 31 and 32 for individually opening and closing the left and right solenoid valves 21, a driver 33 for controlling the pressure of the solenoid valve 22 for increasing pressure, a time counter 34, and an abnormal lamp 35 are connected to the output part of the control means 14. I have.
[0023]
The gyro sensor 3 operates by receiving a supply of 5 VDC from the power supply device 36, and its output is converted into curve information by a signal converter 38 according to a predetermined table or function. The curve information is converted into a digital value by the A / D converter 39 and then input to the control means 14 via the link unit 41. The output from the speed sensor 15 is converted into a pulse signal via the amplifier unit 42 and input to the control unit 14. The output from the temperature sensor 16 is input to the control means 14 via the A / D converter 43. The output from the acceleration sensor 26 passes through an amplifier, a signal circuit for each traveling direction axis, and a left / right determination circuit 46 to input a final left / right determination signal to the control means 14. 24 VDC from the power supply 36 is supplied to electronic devices such as the control unit 14, signal converters and A / D converters 39 and 43, and 100 VDC from the power supply 36 is supplied to hardware such as relays 31, 32 and 33. are doing. Here, the power supply device 36 has a power supply line that supplies 100 VDC as it is, and a power supply line that supplies 24 VDC and 5 VDC. However, 24 VDC may be dropped to 5 VDC via a power supply and supplied to the gyro sensor 3. This can eliminate the possibility that the wiring becomes long. The display window 34a of the time counter 34 is exposed on the front surface of the inspection lid 57 so that it can be displayed externally.
[0024]
In particular, in addition to the gyro sensor 3, the control means 14, the temperature sensor 16, the relays 31 and 32, the time counter 34, the signal converter 38, etc., a temperature controller 51 is installed on the substrate 52 as shown in FIGS. Then, a rail oiling control device main body 53 as shown in FIG. 2 is configured. Although not shown, an anti-vibration material such as rubber is stuck to the mounting surface of the substrate 52 so as to prevent vibrations to installed devices and wiring.
[0025]
FIG. 5 shows a specific control example of the oiling operation. First, an injection curve for performing oiling in step # 1, an injection stop speed after the start of oiling, an output speed of a solenoid valve for increasing pressure, a wheel diameter of the vehicle 1, a temperature for preventing excessive injection, an oiling Initialize the basic data required for oiling, such as the curve condition for relaxing the oil pressure and the injection time on the relaxation curve. In step # 2, an input from the gyro sensor 3, an input from the speed sensor 15, an input from the temperature sensor 16, and an input from various switches 27 to 29 are received, and corresponding processing is performed. In step # 3, curve determination, vehicle speed determination, left / right determination in the vehicle traveling direction, left / right determination in the lubrication direction, and temperature determination are performed from various inputs, and injection control, pressure increase control, The control corresponding to the transition curve and the transition curve injection time are performed. In the last step # 4, oiling is executed with an output according to the above control, and a time counter output from the start of oiling and an abnormal signal output when there is an abnormality are performed.
[0026]
Here, when the conventional example of the mechanical type having the rubbing portion is simply compared with the present embodiment, there are differences as shown in Table 1 below.
[0027]
[Table 1]
Figure 2004291839
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the lubrication method and apparatus of the railway vehicle of this invention, the non-contact gyro sensor is attached to the vehicle, receives the yaw rate when the vehicle travels along the curved part of the rail in a non-contact manner, and Since the yaw rate of the vehicle is accurately detected without the influence of the direction and direction and the noise due to the contact structure, the curve of the rail is accurately determined based on the detection result of this non-contact gyro sensor, and from the injector to the rail. Can be accurately applied without deviation in timing. In addition, since there is no mechanical rubbing part, the durability is good, and a simple inspection such as visual inspection of piping, wiring, pilot lamps and the like is sufficient. Particularly, in the device, accurate lubrication based on detection of the yaw rate of the vehicle by the non-contact gyro sensor can be automatically and stably performed.
[0029]
According to a further configuration, the lubrication is performed according to the rail curve, the vehicle speed, and the ambient temperature, and the lubrication timing is shifted due to a difference in speed. Insufficient or insufficient amount of oil can be avoided, and optimal lubrication without timing deviation and excess / insufficiency can always be guaranteed.
[0030]
According to a further configuration in which the oil storage tank, the refueling means, the sensor, and the control means are collectively installed as under-floor equipment of the vehicle, the non-contact gyro sensor has no restriction on the installation position and the installation posture, and the installation position is preferably near the rail. A function to automatically and stably apply accurate lubrication based on the detection of the vehicle's yaw rate by a non-contact gyro sensor even if it is collectively installed as a vehicle underfloor device together with other necessary equipment except the injector Since it does not impair, the necessary equipment can be compacted, the mutual piping and wiring can be simplified, the work of attaching to the vehicle can be simplified, the work can be performed in a short time, and the cost can be reduced. In particular, if they are assembled into one device in advance, any work of assembling the oiling device itself and attaching to the vehicle is further simplified, and the cost is further reduced. Inspection and repair can be performed easily and in a short time.
[Brief description of the drawings]
FIG. 1 is a control circuit diagram and a connection diagram showing one example of a method and apparatus for lubricating a railway vehicle according to an embodiment of the present invention.
FIG. 2 is a circuit diagram of a control device main body in the circuit diagram of FIG.
FIG. 3 is a front view of a control device main body of FIG. 2;
FIG. 4 is a layout view of main storage devices of the control device main body of FIG. 2;
FIG. 5 is a flowchart illustrating an example of control by the control circuit of FIG. 1;
FIG. 6 is a side view showing one example of a conventional curve detection device.
FIG. 7 is a front view of the apparatus of FIG. 6;
8 is a layout view of the device of FIG. 6 in a vehicle.
FIG. 9 is a side view showing another example of the conventional curve detection device.
FIG. 10 is a front view of the device of FIG. 9;
FIG. 11 is a side view showing an example of curve detection in a bolsterless cart.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Injector 3 Gyro sensor 5 Rail 11 Oil storage tank 12 Oil supply means 13 Oil 14 Control means 15 Speed sensor 16 Temperature sensor 17 Underfloor equipment 18 Units 21 and 22 Solenoid valves

Claims (5)

車両が軌条の曲線部分を走行しているときに外側軌条の特定部分に車両の噴射具から塗油する鉄道車両の塗油方法において、
車両に非接触型のジャイロセンサを付帯させることにより、車両に生じるヨーレートをジャイロセンサに及ぼしてこれを非接触に検出させ、ジャイロセンサが検出したヨーレートから軌条の曲線を判定し、この判定に対応して噴射具から軌条に塗油することを特徴とする鉄道車両の塗油方法。
A method for lubricating a railway vehicle, wherein a specific portion of the outer rail is lubricated from a vehicle injector when the vehicle is traveling on a curved part of the rail,
By attaching the non-contact type gyro sensor to the vehicle, the yaw rate generated in the vehicle is applied to the gyro sensor to detect it in a non-contact manner, and the rail curve is determined from the yaw rate detected by the gyro sensor, and this determination is supported. A method for lubricating a railroad vehicle, comprising applying oil to a rail from an injector.
塗油は、軌条の曲線と車両の速度と雰囲気温度とに応じて行う請求項1に記載の鉄道車両の塗油方法。The oiling method for a railway vehicle according to claim 1, wherein the oiling is performed in accordance with the curve of the rail, the speed of the vehicle, and the ambient temperature. 貯油タンクから給油手段によって供給される油を軌条の特定部分に噴射して塗油する噴射具と、この噴射具を通じた油の噴射を制御する制御手段と、車両のヨーレートを受けてこれを非接触に検出する非接触型のジャイロセンサと、を車両に備え、制御手段はジャイロセンサが検出したヨーレートから曲線を判定するとともに、この判定に応じて前記油の噴射を行わせることを特徴とする鉄道車両の塗油装置。An injector for injecting oil supplied from an oil storage tank by an oil supply means to a specific portion of the rail to apply oil, control means for controlling injection of oil through the injector, A non-contact gyro sensor for detecting contact, provided on the vehicle, wherein the control means determines a curve from the yaw rate detected by the gyro sensor, and causes the oil to be injected according to the determination. Oiling equipment for railway vehicles. 車両の速度を検出する速度センサと、雰囲気温度を検出する温度センサを備え、制御手段は曲線と速度と雰囲気温度とに応じて前記油の噴射を行わせる請求項3に記載の鉄道車両の塗油装置。The railway vehicle according to claim 3, further comprising a speed sensor for detecting a speed of the vehicle, and a temperature sensor for detecting an ambient temperature, wherein the control unit causes the oil to be injected according to a curve, a speed, and an ambient temperature. Oil equipment. 貯油タンク、給油手段、センサ、制御手段を車両の床下機器として集約装備した請求項3、4のいずれか1項に記載の鉄道車両の塗油装置。The oiling device for a railway vehicle according to any one of claims 3 and 4, wherein the oil storage tank, the oil supply means, the sensor, and the control means are collectively installed as under-floor equipment of the vehicle.
JP2003087875A 2003-03-27 2003-03-27 Railway vehicle oiling method and apparatus Expired - Lifetime JP4299030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087875A JP4299030B2 (en) 2003-03-27 2003-03-27 Railway vehicle oiling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087875A JP4299030B2 (en) 2003-03-27 2003-03-27 Railway vehicle oiling method and apparatus

Publications (2)

Publication Number Publication Date
JP2004291839A true JP2004291839A (en) 2004-10-21
JP4299030B2 JP4299030B2 (en) 2009-07-22

Family

ID=33402156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087875A Expired - Lifetime JP4299030B2 (en) 2003-03-27 2003-03-27 Railway vehicle oiling method and apparatus

Country Status (1)

Country Link
JP (1) JP4299030B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228507A (en) * 2009-03-26 2010-10-14 Kinki Sharyo Co Ltd Liquid lubricant applying method of railroad vehicle
KR20200137245A (en) * 2019-05-29 2020-12-09 주식회사 네이블커뮤니케이션즈 Rail temperature management automation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228507A (en) * 2009-03-26 2010-10-14 Kinki Sharyo Co Ltd Liquid lubricant applying method of railroad vehicle
KR20200137245A (en) * 2019-05-29 2020-12-09 주식회사 네이블커뮤니케이션즈 Rail temperature management automation system
KR102202877B1 (en) * 2019-05-29 2021-01-14 주식회사 네이블커뮤니케이션즈 Rail temperature management automation system

Also Published As

Publication number Publication date
JP4299030B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
US6008731A (en) Detector for sensing motion and direction of a railway vehicle
US20050264251A1 (en) Method and device for operating a machine, such as a multiaxial industrial robot
US7164975B2 (en) Geometric track and track/vehicle analyzers and methods for controlling railroad systems
RU2494902C2 (en) Device to control faults of railway car running gear elements
US20110276203A1 (en) Method for Determining a Characteristic of a Track Condition Parameter
PL2152561T3 (en) Device and method for error monitoring for undercarriage components of rail vehicles
US20070203621A1 (en) Rail track evaluation system
WO2005014459A3 (en) Guiding devices of elevator
US20210088058A1 (en) Construction machine
JP4941813B2 (en) Failure detection method and apparatus for a railcar damper, and damper
KR20160126137A (en) Sensor system for estimating a radius of curvature for active steering control of railway vehicles
JP2004291839A (en) Oil application method and device for railway vehicle
EP2691328B1 (en) Optics based sensor device
DE602006002113D1 (en) Safety system for level crossing
MX2021000060A (en) Vehicle speed management systems and methods.
CN209356925U (en) Pipe tobacco library cloth running control system
JP2009519445A (en) Monitoring device or monitoring method for driving device
US20090157266A1 (en) Commercial Vehicle with Control means and Method for Controlling Commercial Vehicle
JP2017178552A (en) Elevator device
KR101915500B1 (en) Dragging Detector
JP2006188158A (en) Friction easing device and friction easing method
KR101545963B1 (en) Relative displacement detecting device for estimating a radius of curvature for active steering control of railway vehicles
JP2007121113A (en) Diagnostic device and diagnostic method of motor-operated valve
JP2008509870A (en) Method for testing the position adjustment of a sensor of a human transport device and its sensor configuration
KR102554441B1 (en) Apparatus and method for Endurance test of railway vehicle steering sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4299030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term