JP2004291623A - Multi-layered foamed sheet of propylene type resin - Google Patents

Multi-layered foamed sheet of propylene type resin Download PDF

Info

Publication number
JP2004291623A
JP2004291623A JP2003424581A JP2003424581A JP2004291623A JP 2004291623 A JP2004291623 A JP 2004291623A JP 2003424581 A JP2003424581 A JP 2003424581A JP 2003424581 A JP2003424581 A JP 2003424581A JP 2004291623 A JP2004291623 A JP 2004291623A
Authority
JP
Japan
Prior art keywords
resin
propylene
multilayer
based resin
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003424581A
Other languages
Japanese (ja)
Other versions
JP4379110B2 (en
Inventor
Akinobu Sakamoto
昭宣 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003424581A priority Critical patent/JP4379110B2/en
Publication of JP2004291623A publication Critical patent/JP2004291623A/en
Application granted granted Critical
Publication of JP4379110B2 publication Critical patent/JP4379110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide production of a multi-layered foamed sheet of a propylene type resin having a small degree of an undesirable scale like appearance. <P>SOLUTION: The multi-layered foamed sheet of a propylene type resin is produced by co-extrusion using a multi-manifold type multi-layered T die. The multi-layered foamed sheet of a propylene type resin comprises thermoplastic resin layers on the both surfaces of the foamed layer of a propylene type resin, and the multi-layered T die is one in which a distance L1 from the junction of resin flow pathways to the die outlet is 10-50 mm, a height t1 of the resin flow pathway at the position of immediately down from the junction of the resin flow pathways is 3-8 mm and a length of lipland L2 is 0-5 mm. The propylene type resin forming the foamed layer of a propylene type resin contains a propylene resin comprising a crystalline propylene polymer part (A) having a limiting viscosity of [η]=7-9 dl/g and its ratio in the total resin in the foamed layer of the propylene type resin falls within WA wt% in the [relation A] shown by 0.5WA≤a≤/(EXP([η]A<SP>c</SP>)+b) wherein a=250000, b=100 and c=1.15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はプロピレン系樹脂製多層発泡シートの製造方法およびプロピレン系樹脂製多層発泡シートに関する。 The present invention relates to a method for producing a propylene-based resin multilayer foam sheet and a propylene-based resin multilayer foam sheet.

プロピレン系樹脂製発泡シートはその機械物性、軽量性、耐熱性、耐油性等を活かして、包装、通函、仕切り板、食品容器、文具、建材、自動車内装材等に使用されている。プロピレン系樹脂製発泡シートを各種用途に用いる場合には、用途に応じたフィルムを発泡層の面に貼合したり、発泡層に非発泡層を積層したりして多層発泡シートとして用いることが多い。
多層発泡シートの製造方法としては、各層に対応する樹脂原料を複数の押出機を用いて可塑化溶融させ、各押出機から供給される溶融樹脂をダイ内で積層一体化させてダイ外へ押し出す共押出法が一般的である。特許文献1には、共押出法においてポリオレフィン系樹脂層(A)と発泡性ポリオレフィン系樹脂層(B)の流動性を一致させて共押出Tダイ発泡を行うことによって、各層の幅方向の厚み分布むらが改良されることが開示されている。
BACKGROUND ART Foam sheets made of propylene-based resin are used for packaging, mail boxes, partition boards, food containers, stationery, building materials, automobile interior materials, etc., utilizing their mechanical properties, light weight, heat resistance, oil resistance, and the like. When a propylene-based resin foam sheet is used for various purposes, it may be used as a multilayer foam sheet by laminating a film according to the purpose on the surface of the foam layer, or laminating a non-foam layer on the foam layer. Many.
As a method of manufacturing a multilayer foam sheet, the resin raw materials corresponding to each layer are plasticized and melted using a plurality of extruders, and the molten resin supplied from each extruder is laminated and integrated in a die and extruded out of the die. The coextrusion method is common. Patent Literature 1 discloses that coextrusion T-die foaming is performed in a coextrusion method by matching the fluidity of a polyolefin-based resin layer (A) and a foamable polyolefin-based resin layer (B) so that the thickness of each layer in the width direction is obtained. It is disclosed that distribution unevenness is improved.

特開平7−16971号公報JP-A-7-16971

このような厚み分布むらは元来、各層の溶融樹脂をダイ内で層状に合流させた後、薄くなりつつ横に広がってゆく流路を通してTダイ出口形状となした多層溶融樹脂をTダイ外へ押出し発泡させるというフィードブロック方式によるTダイ共押出法において、発生しがちな不良である。本発明者らはマルチマニホールド方式の多層Tダイを用いた共押出法により多層発泡シートを製造する方法につき検討してきたところ、通常のマルチマニホールド方式多層Tダイ共押出法においては、特許文献1に記載されたような厚み分布むらという大きなスケールの不良よりも、直径数cm程度のうろこ状の模様が現れるという外観不良が問題となることが分かってきた。本発明は、マルチマニホールド方式の多層Tダイを用いてプロピレン系樹脂製多層発泡シートを共押出しにより製造する場合に、うろこ状の外観不良の少ないプロピレン系樹脂製多層発泡シートを製造する方法を提供するものである。 Originally, the thickness distribution unevenness was such that the molten resin of each layer was merged into a layer in the die, and then the multilayer molten resin formed into a T-die outlet shape through a thinning and widening channel was transferred to the outside of the T-die. This is a defect that tends to occur in a T-die co-extrusion method using a feed block method of extruding and foaming. The present inventors have studied a method of manufacturing a multilayer foamed sheet by a co-extrusion method using a multi-manifold type multilayer T-die. In a general multi-manifold type multilayer T-die co-extrusion method, see Patent Document 1. It has been found that the problem of the appearance defect that a scale-like pattern with a diameter of about several centimeters appears rather than the large scale defect such as the uneven thickness distribution as described. The present invention provides a method for producing a propylene-based resin multilayer foam sheet with less scale-like appearance defects when producing a propylene-based resin multilayer foam sheet by co-extrusion using a multi-manifold type multilayer T die. Is what you do.

すなわち本発明は、マルチマニホールド方式の多層Tダイを用いてプロピレン系樹脂製多層発泡シートを共押出しにより製造する方法において、該プロピレン系樹脂製多層発泡シートがプロピレン系樹脂発泡層の両面に熱可塑性樹脂層を有し、該多層Tダイが、樹脂流路合流部からダイ出口までの距離L1が10〜50mm、樹脂流路合流部直後の樹脂流路高さt1が3〜8mm、リップランドの長さL2が0〜5mmの多層Tダイであって、プロピレン系樹脂発泡層を構成するプロピレン系樹脂が、極限粘度[η]A=7〜9dl/gの結晶性プロピレン重合体部分(A)を有するプロピレン樹脂を含有し、プロピレン系樹脂発泡層を構成する全樹脂中における前記結晶性プロピレン重合体部分(A)の割合が[式A]のWAwt%に示す範囲であるプロピレン系樹脂製多層発泡シートの製造方法である。
0.5≦WA≦a/(EXP([η]A )+b) [式A]
(ただし、a=250000、b=100、c=1.15)
また本発明は、前記プロピレン系樹脂製多層発泡シートの製造方法によって製造されるプロピレン系樹脂製多層発泡シートである。
That is, the present invention relates to a method for producing a propylene-based resin multilayer foam sheet by co-extrusion using a multi-manifold type multilayer T die, wherein the propylene-based resin multilayer foam sheet has a thermoplastic resin on both sides of a propylene-based resin foam layer. The multilayer T-die has a resin layer, the distance L1 from the resin flow path junction to the die exit is 10 to 50 mm, the resin flow path height t1 immediately after the resin flow path junction is 3 to 8 mm, A crystalline propylene polymer portion (A) which is a multilayer T-die having a length L2 of 0 to 5 mm and in which a propylene-based resin constituting a propylene-based resin foam layer has an intrinsic viscosity [η] A = 7 to 9 dl / g. containing propylene resin having a ratio of the crystalline propylene polymer portion in the total resin constituting the propylene-based resin foam layer (a) is shown in W a wt% of [formula a] It is a propylene-based resin multilayer foamed sheet manufacturing method of a circumference.
0.5 ≦ W A ≦ a / (EXP ([η] A C ) + b) [Formula A]
(However, a = 250,000, b = 100, c = 1.15)
The present invention is also a propylene-based resin multilayer foam sheet manufactured by the method for producing a propylene-based resin multilayer foam sheet.

本発明のプロピレン系樹脂製多層発泡シートの製造方法は、うろこ状外観不良が少なく、外観美麗なプロピレン系樹脂製多層発泡シートを製造することができる。また、本発明のプロピレン系樹脂製多層発泡シートは、うろこ状外観不良が少なく、外観美麗なプロピレン系樹脂製多層発泡シートである。
ADVANTAGE OF THE INVENTION The manufacturing method of the multilayer foam sheet made of a propylene-based resin of this invention can manufacture the multilayer foamed sheet made of a propylene-based resin which has few scaly appearance defects and a beautiful appearance. Further, the propylene-based resin multilayer foam sheet of the present invention is a propylene-based resin multilayer foam sheet having a small scale-like appearance defect and a beautiful appearance.

本発明はマルチマニホールド方式の多層Tダイを用いてプロピレン系樹脂製多層発泡シートを共押出しにより製造する方法である。本発明における多層Tダイは、樹脂流路合流部からダイ出口までの距離L1が10〜50mm、樹脂流路合流部直後の樹脂流路高さt1が3〜8mm、リップランドの長さL2が0〜5mmのマルチマニホールド方式の多層Tダイである。 The present invention is a method for producing a propylene-based resin multilayer foam sheet by co-extrusion using a multi-manifold type multilayer T die. In the multilayer T die according to the present invention, the distance L1 from the resin flow path junction to the die outlet is 10 to 50 mm, the resin flow path height t1 immediately after the resin flow path junction is 3 to 8 mm, and the lip land length L2 is This is a multi-manifold type multilayer T die of 0 to 5 mm.

マルチマニホールド方式の多層Tダイとは、各層を構成する樹脂をTダイに導入して広幅化した後に層状に合流させて、ダイ出口より押出す形式のTダイである。本発明における多層Tダイは、樹脂流路合流部からダイ出口までの距離L1が10〜50mmであり、好ましくは10〜40mmである。樹脂流路合流部からダイ出口までの距離L1が長すぎると、うろこ状の外観不良が発生する傾向がある。 The multi-manifold type multilayer T-die is a T-die of a type in which a resin constituting each layer is introduced into the T-die, the width of the resin is increased, the layers are merged, and extruded from a die outlet. In the multilayer T-die according to the present invention, the distance L1 from the resin flow path junction to the die outlet is 10 to 50 mm, preferably 10 to 40 mm. If the distance L1 from the resin flow path junction to the die exit is too long, scale-like appearance defects tend to occur.

通常樹脂流路合流部直後の樹脂流路高さt1は、ダイ出口のリップ隙間t2と比べて非常に大きい。そのため距離L1が短すぎると、樹脂流路合流部からダイ出口まで樹脂を急圧縮することになり、樹脂の滞留や劣化による発泡シートの外観不良の発生が懸念される。 Normally, the height t1 of the resin flow path immediately after the junction of the resin flow paths is much larger than the lip gap t2 at the exit of the die. Therefore, if the distance L1 is too short, the resin is rapidly compressed from the junction of the resin flow path to the die outlet, and there is a concern that poor appearance of the foamed sheet due to stagnation or deterioration of the resin may occur.

多層Tダイ中の樹脂合流部直後の樹脂流路高さt1とは、該多層Tダイから樹脂を押出して発泡シートを成形する場合の、押出し方向と発泡シート幅方向とに垂直な方向の高さである。樹脂合流部直後の樹脂流路高さt1は3〜8mmであり、好ましくは5〜7mmである。高さt1が低すぎると、うろこ状の外観不良が発生しやすくなり、高さt1が高すぎるとリップ部の圧力が低下してダイ内で気泡が成長するため、破泡やガス抜けといった外観不良が発生する傾向がある。 The resin flow path height t1 immediately after the resin merging portion in the multilayer T die is a height in a direction perpendicular to the extrusion direction and the foam sheet width direction when the resin is extruded from the multilayer T die to form a foam sheet. That's it. The resin flow path height t1 immediately after the resin merging portion is 3 to 8 mm, and preferably 5 to 7 mm. If the height t1 is too low, scale-like appearance defects are liable to occur, and if the height t1 is too high, the pressure in the lip portion is reduced and bubbles grow in the die, so that the appearance such as foam breakage or outgassing occurs. There is a tendency for defects to occur.

本発明において、多層Tダイ中のリップランドの長さL2は0〜5mmであり、好ましくは0〜3mmである。リップランドの長さL2が長すぎると、うろこ状の外観不良が発生しやすい。 In the present invention, the length L2 of the lip land in the multilayer T die is 0 to 5 mm, preferably 0 to 3 mm. If the length L2 of the lip land is too long, scale-like appearance defects are likely to occur.

多層Tダイにおけるリップ隙間t2は、得ようとする多層発泡シートの全体厚みに応じて適宜設定すればよく、通常0.1〜2mm程度である。例えば発泡倍率が4倍程度であり、厚みが4mm程度の多層発泡シートを製造する場合には、リップ隙間t2は0.6〜0.9mmに設定することが好ましい。 The lip gap t2 in the multilayer T-die may be appropriately set according to the overall thickness of the multilayer foam sheet to be obtained, and is usually about 0.1 to 2 mm. For example, when manufacturing a multilayer foam sheet having an expansion ratio of about 4 and a thickness of about 4 mm, the lip gap t2 is preferably set to 0.6 to 0.9 mm.

隣り合う樹脂流路の合流角度θは40〜80°であることが好ましく、50〜70°であることがより好ましい。合流角度θが大きすぎると、外観不良が発生しやすくなる傾向がある。一方合流角度θが小さすぎると、合流部の樹脂流路の剛性が不十分となるため樹脂圧によって合流前の各樹脂流路隙間が不均一となり、多層発泡シートの各層の幅方向厚み分布が大きくなる傾向がある。 The joining angle θ between the adjacent resin flow paths is preferably 40 to 80 °, and more preferably 50 to 70 °. If the confluence angle θ is too large, poor appearance tends to occur. On the other hand, if the merging angle θ is too small, the rigidity of the resin flow path at the merging portion becomes insufficient, so that the resin pressure before the merging becomes uneven due to the resin pressure, and the thickness distribution in the width direction of each layer of the multilayer foamed sheet is reduced. Tends to be larger.

本発明におけるプロピレン系樹脂製多層発泡シートは、プロピレン系樹脂発泡層を有する。プロピレン系樹脂発泡層を構成するプロピレン系樹脂は、極限粘度[η]A=7〜9dl/gの結晶性プロピレン重合体部分(A)を有するプロピレン樹脂を含有し、プロピレン系樹脂発泡層を構成する全樹脂中における前記結晶性プロピレン重合体部分(A)の割合が[式A]のWAwt%に示す範囲である。
0.5≦WA≦a/(EXP([η]A )+b) [式A]
(ただし、a=250000、b=100、c=1.15)
The propylene-based resin multilayer foam sheet of the present invention has a propylene-based resin foam layer. The propylene-based resin constituting the propylene-based resin foam layer contains a propylene resin having a crystalline propylene polymer portion (A) having an intrinsic viscosity [η] A = 7 to 9 dl / g, and constitutes the propylene-based resin foam layer. The ratio of the crystalline propylene polymer portion (A) in the total resin to be formed is in the range indicated by W A wt% in [Formula A].
0.5 ≦ W A ≦ a / (EXP ([η] A C ) + b) [Formula A]
(However, a = 250,000, b = 100, c = 1.15)

結晶性プロピレン重合体部分(A)の極限粘度[η]Aは、7〜9dl/gであり、好ましくは7.2〜8.6dl/gであり、より好ましくは7.4〜8.2dl/gである。極限粘度[η]Aは、ウベローデ型粘度計を用いて135℃テトラリン中で測定を行うことができる。結晶性プロピレン重合体部分(A)の極限粘度[η]Aが高すぎても低すぎても、うろこ状の外観不良が発生しやすくなる。 The intrinsic viscosity [η] A of the crystalline propylene polymer portion (A) is 7 to 9 dl / g, preferably 7.2 to 8.6 dl / g, and more preferably 7.4 to 8.2 dl. / G. The intrinsic viscosity [η] A can be measured in tetralin at 135 ° C. using an Ubbelohde viscometer. If the intrinsic viscosity [η] A of the crystalline propylene polymer portion (A) is too high or too low, a scale-like appearance defect is likely to occur.

プロピレン系樹脂発泡層は、該プロピレン系樹脂発泡層を構成する全樹脂中における前記結晶性プロピレン重合体部分(A)の割合が下記[式A]のWAwt%に示す範囲である樹脂から構成される。
0.5≦WA≦a/(EXP([η]A )+b) [式A]
(ただし、a=250000、b=100、c=1.15)
結晶性プロピレン重合体部分(A)の割合が前記の範囲である樹脂を発泡層用として用いることにより、うろこ状の外観不良の少ないプロピレン系樹脂製多層発泡シートを製造することができる。発泡層用全樹脂中における結晶性プロピレン重合体部分(A)の割合が少なすぎる場合は、発泡倍率の高い発泡シートを製造することが困難となる傾向がある。
The propylene-based resin foamed layer is a resin in which the proportion of the crystalline propylene polymer portion (A) in the entire resin constituting the propylene-based resin foamed layer is in the range indicated by W A wt% in the following [Formula A]. Be composed.
0.5 ≦ W A ≦ a / (EXP ([η] A C ) + b) [Formula A]
(However, a = 250,000, b = 100, c = 1.15)
By using a resin in which the proportion of the crystalline propylene polymer portion (A) is in the above range for the foamed layer, it is possible to produce a scale-shaped propylene-based resin-made multilayer foamed sheet having few appearance defects. If the proportion of the crystalline propylene polymer portion (A) in the total resin for the foam layer is too small, it tends to be difficult to produce a foam sheet having a high expansion ratio.

極限粘度[η]A=7〜9dl/gの結晶性プロピレン重合体部分(A)を有するプロピレン樹脂としては、下記に示すプロピレン重合体(T)を用いることが好ましい。すなわち、極限粘度が7〜9dl/g以上の結晶性プロピレン重合体部分(A)を製造する工程および極限粘度が3dl/g未満の結晶性プロピレン重合体部分(B)を製造する工程を含む重合方法により得られ、極限粘度が3dl/g未満であり、結晶性プロピレン重合体部分(A)の割合が0.5重量%以上35重量%未満であるプロピレン重合体(T)である。 As the propylene resin having a crystalline propylene polymer portion (A) having an intrinsic viscosity [η] A = 7 to 9 dl / g, the following propylene polymer (T) is preferably used. That is, polymerization including a step of producing a crystalline propylene polymer portion (A) having an intrinsic viscosity of 7 to 9 dl / g or more and a step of producing a crystalline propylene polymer portion (B) having an intrinsic viscosity of less than 3 dl / g. It is a propylene polymer (T) obtained by the method, having an intrinsic viscosity of less than 3 dl / g and a proportion of the crystalline propylene polymer portion (A) of 0.5% by weight or more and less than 35% by weight.

前記のプロピレン重合体(T)は結晶性プロピレン重合体部分(A)を製造する工程および結晶性プロピレン重合体部分(B)を製造する工程を含む重合方法により得られる重合体である。例えば第一段階で結晶性プロピレン重合体部分(A)を重合した後、引き続いて第二段階で(A)を重合したのと同一の重合槽で結晶性プロピレン重合体部分(B)を重合する回分式重合法や、2槽以上の重合槽を直列に配置し、第一段階として(A)を重合した後生成物を次の重合槽へ移送し、その重合槽で第二段階として(B)を重合する連続式重合法等の方法で得られる重合体である。なお、連続式重合法の場合は、第一段階および第二段階それぞれの重合槽は1槽でも2槽以上でもよい。 The propylene polymer (T) is a polymer obtained by a polymerization method including a step of producing a crystalline propylene polymer portion (A) and a step of producing a crystalline propylene polymer portion (B). For example, after the crystalline propylene polymer portion (A) is polymerized in the first stage, the crystalline propylene polymer portion (B) is subsequently polymerized in the same polymerization tank as used for polymerizing (A) in the second stage. In a batch polymerization method, two or more polymerization tanks are arranged in series, and after the (A) is polymerized as the first step, the product is transferred to the next polymerization tank, and the product is transferred to the next polymerization tank (B). ) Is a polymer obtained by a method such as a continuous polymerization method for polymerizing In the case of a continuous polymerization method, the number of polymerization tanks in each of the first and second stages may be one or two or more.

(A)および(B)は、それぞれポリプロピレン結晶構造を有する結晶性プロピレン重合体部分であり、プロピレンの単独重合体、またはプロピレンと、結晶性を失わない程度の量のエチレンおよび/またはα−オレフィン等のコモノマーとの共重合体が好ましい。α−オレフィンとしては、例えば、1−ブテン、4−メチル−1−ペンテン、1−オクテン、1−ヘキセン等が挙げられる。結晶性を失わない程度の量とはコモノマーの種類により異なるが、例えばエチレンの場合、共重合体中のエチレン由来の構成単位の量は通常10重量%以下、1−ブテン等の他のα−オレフィンの場合、共重合体中のα−オレフィン由来の構成単位の量は通常30重量%以下である。(A)と(B)とは同一組成であってもよく、異なる組成であってもよい。また(A)と(B)とはブロック的に結合しているものがあってもよい。また(A)と(B)がブロック的に結合したものとそれ以外の(A)および(B)とが共存していてもよい。 (A) and (B) are each a crystalline propylene polymer portion having a polypropylene crystal structure, and a homopolymer of propylene or propylene and an amount of ethylene and / or α-olefin that does not lose crystallinity. Copolymers with comonomers such as are preferred. Examples of the α-olefin include 1-butene, 4-methyl-1-pentene, 1-octene, 1-hexene and the like. The amount that does not lose crystallinity differs depending on the type of comonomer. For example, in the case of ethylene, the amount of ethylene-derived structural units in the copolymer is usually 10% by weight or less, and other α- In the case of an olefin, the amount of the α-olefin-derived constituent unit in the copolymer is usually 30% by weight or less. (A) and (B) may have the same composition or different compositions. (A) and (B) may be combined in a block manner. Further, (A) and (B) may be combined in a block manner, and other (A) and (B) may coexist.

結晶性プロピレン重合体部分(B)は、上記以外に結晶性プロピレン重合体中に非晶性のエチレン・α−オレフィン共重合体が分散している重合体部分であってもよい。 In addition to the above, the crystalline propylene polymer portion (B) may be a polymer portion in which an amorphous ethylene / α-olefin copolymer is dispersed in a crystalline propylene polymer.

上記プロピレン重合体(T)は、例えばTi原子、Mg原子、ハロゲン原子を含有する固体触媒を使用して製造することができ、具体的には特開平11−228629号公報に記載の方法が挙げられる。 The propylene polymer (T) can be produced using, for example, a solid catalyst containing a Ti atom, a Mg atom, and a halogen atom, and specifically, a method described in JP-A-11-228629 is exemplified. Can be

発泡層用樹脂には、本発明の効果を阻害しない程度に低密度ポリエチレンや高密度ポリエチレンなどのエチレン系樹脂等、他のオレフィン系樹脂をブレンドして使用してもよい。本発明における結晶性プロピレン重合体部分(A)の割合は、発泡層を構成する全樹脂中における割合である。 The resin for the foamed layer may be blended with another olefin-based resin such as an ethylene-based resin such as low-density polyethylene or high-density polyethylene so as not to impair the effects of the present invention. The ratio of the crystalline propylene polymer portion (A) in the present invention is a ratio in all the resins constituting the foamed layer.

流動性と加工性の観点から、発泡層を構成する全樹脂のMFRは5g/10分以上30g/10分以下であることが好ましい。MFRが高すぎると、発泡に必要な溶融張力を保持できず、低すぎると加工性への影響、具体的にはせん断による発熱、樹脂温上昇の影響が大きい。より好ましくは8g/10分以上25g/10分以下であり、さらに好ましくは10g/10分以上20g/10分以下である。なお発泡層が複数の樹脂から構成される場合、前記樹脂のMFRは発泡層を構成する樹脂の混合物のMFRである。 From the viewpoint of fluidity and processability, the MFR of all the resins constituting the foamed layer is preferably 5 g / 10 min or more and 30 g / 10 min or less. If the MFR is too high, the melt tension required for foaming cannot be maintained, and if the MFR is too low, the effect on processability, specifically, the heat generated by shearing and the rise in resin temperature are large. It is more preferably from 8 g / 10 min to 25 g / 10 min, and even more preferably from 10 g / 10 min to 20 g / 10 min. When the foamed layer is composed of a plurality of resins, the MFR of the resin is the MFR of a mixture of the resins constituting the foamed layer.

本発明で発泡層の形成に用いられる発泡剤は特に限定されるものではなく、公知の物理発泡剤や化学発泡剤を単独、または複数を組み合わせて用いることができる。物理発泡剤としては、炭酸ガス、窒素ガス、空気、プロパン、ブタン、ペンタン、ヘキサン、ジクロルエタン、ジクロロジフルオロメタン、ジクロロモノフルオロメタン、トリクロロモノフルオロメタンなどを用いることができ、窒素ガス、炭酸ガス、空気等の安全で環境にやさしい無機ガスを用いることが好ましい。安全性およびプロピレン系樹脂への溶解性の観点から、炭酸ガスを用いることがより好ましい。炭酸ガスを用いる場合は、7.4MPa以上かつ31℃以上の超臨界状態でプロピレン系樹脂へ注入することが、樹脂への拡散、溶解性の観点から好ましい。 The foaming agent used for forming the foamed layer in the present invention is not particularly limited, and known physical foaming agents and chemical foaming agents can be used alone or in combination. As the physical foaming agent, carbon dioxide gas, nitrogen gas, air, propane, butane, pentane, hexane, dichloroethane, dichlorodifluoromethane, dichloromonofluoromethane, trichloromonofluoromethane, and the like can be used.Nitrogen gas, carbon dioxide gas, It is preferable to use a safe and environmentally friendly inorganic gas such as air. From the viewpoint of safety and solubility in the propylene-based resin, it is more preferable to use carbon dioxide gas. When carbon dioxide gas is used, it is preferable to inject into the propylene-based resin in a supercritical state of 7.4 MPa or more and 31 ° C. or more from the viewpoint of diffusion into the resin and solubility.

化学発泡剤としては、クエン酸、クエン酸ナトリウム、ステアリン酸などの有機酸、重曹、アゾジカルボンアミド、トリレンジイソシアネート、4,4’ジフェニルメタンジイソシアネートなどのイソシアネート化合物、アゾビスブチロニトリル、バリウム・アゾジカルボキシレート、ジアゾアミノベンゼン、トリヒドラジノトリアジンなどのアゾ、ジアゾ化合物、ベンゼン・スルホニル・ヒドラジド、P,P’−オキシビス(ベンゼンスルホニル・ヒドラジド)、トルエン・スルホニル・ヒドラジドなどのヒドラジン誘導体、N,N’−ジニトロソ・ペンタメチレン・テトラミン、N,N’−ジメチル−N,N’−ジニトロソ・テレフタルアミドなどのニトロソ化合物、P−トルエン・スルホニル・セミカルバジド、4,4’オキシビスベンゼンスルホニルセミカルバジドなどのセミカルバジド化合物、アジ化合物、トリアゾール化合物などを使用することができる。特に、重曹、クエン酸、アゾジカルボンアミドのいずれかを用いることが好ましい。 Chemical blowing agents include organic acids such as citric acid, sodium citrate, and stearic acid, isocyanate compounds such as baking soda, azodicarbonamide, tolylene diisocyanate, and 4,4'-diphenylmethane diisocyanate, azobisbutyronitrile, and barium azo. Azo such as dicarboxylate, diazoaminobenzene and trihydrazinotriazine, diazo compounds, hydrazine derivatives such as benzene sulfonyl hydrazide, P, P'-oxybis (benzenesulfonyl hydrazide), toluene sulfonyl hydrazide, N, Nitroso compounds such as N'-dinitroso pentamethylene tetramine, N, N'-dimethyl-N, N'-dinitroso terephthalamide, P-toluenesulfonyl semicarbazide, 4,4'oxybisbe Semicarbazide compounds such as Zen semicarbazide, azide compounds, etc. can be used triazole compound. In particular, it is preferable to use any of baking soda, citric acid, and azodicarbonamide.

化学発泡剤を使用する場合には、分解温度や分解速度を調整するために発泡助剤を併用してもよい。例えば、アゾジカルボンアミド単体では分解温度が約200℃と高いため、低温で加工する場合には発泡助剤として酸化亜鉛、ステアリン酸亜鉛、尿素などを少量添加して使用することができる。 When a chemical foaming agent is used, a foaming aid may be used in combination to adjust the decomposition temperature and decomposition rate. For example, since azodicarbonamide alone has a high decomposition temperature of about 200 ° C., when processing at a low temperature, a small amount of zinc oxide, zinc stearate, urea, or the like can be used as a foaming aid.

物理発泡剤を用いる場合には、気泡核剤を併用してもよい。気泡核剤としては、タルク、シリカ、珪藻土、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、ケイ酸カルシウム、ゼオライト、マイカ、クレー、ワラストナイト、ハイドロタルサイト、酸化マグネシウム、酸化亜鉛、ステアリン酸亜鉛、ステアリン酸カルシウム、PMMA等のポリマービーズ、合成アルミノシリケートや上記の化学発泡剤等を使用することができる。 When using a physical foaming agent, a cell nucleating agent may be used in combination. Foam nucleating agents include talc, silica, diatomaceous earth, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, calcium silicate, zeolite, mica, clay, wollastonite, hydrotalcite Polymer beads such as magnesium oxide, zinc oxide, zinc stearate, calcium stearate, PMMA, synthetic aluminosilicate and the above-mentioned chemical foaming agents can be used.

本発明におけるプロピレン系樹脂製多層発泡シートは、プロピレン系樹脂発泡層の両面に熱可塑性樹脂層を有する。プロピレン系樹脂発泡層の片面に積層される熱可塑性樹脂層は1層でもよく、2層以上が積層されていていもよい。また発泡層の両側に位置する熱可塑性樹脂層は、同じ組成であってもよく、異なる樹脂から構成されていてもよい。 The multilayer foamed sheet made of propylene-based resin in the present invention has a thermoplastic resin layer on both sides of the foamed propylene-based resin layer. The thermoplastic resin layer laminated on one side of the propylene-based resin foam layer may be one layer or two or more layers. The thermoplastic resin layers located on both sides of the foamed layer may have the same composition or may be composed of different resins.

熱可塑性樹脂層を構成する熱可塑性樹脂としては、公知の樹脂を用いることができ、例えば低密度ポリエチレンや高密度ポリエチレン等のエチレン系樹脂や、プロピレン系樹脂等のオレフィン系樹脂等が挙げられる。また発泡層を構成する樹脂とは同じ樹脂であってもよい。熱可塑性樹脂層を構成する樹脂は1種類であってもよく、2種類以上の樹脂を併用してもよい。熱可塑性樹脂層を構成する樹脂の50重量%以上がプロピレン系樹脂であることが好ましい。 As the thermoplastic resin constituting the thermoplastic resin layer, known resins can be used, and examples thereof include an ethylene-based resin such as low-density polyethylene and high-density polyethylene, and an olefin-based resin such as propylene-based resin. The resin constituting the foam layer may be the same resin. One kind of resin constituting the thermoplastic resin layer may be used, or two or more kinds of resins may be used in combination. Preferably, 50% by weight or more of the resin constituting the thermoplastic resin layer is a propylene-based resin.

本発明のプロピレン系樹脂製多層発泡シートは、発泡層および前記熱可塑性樹脂層以外の層を有していてもよい。プロピレン系樹脂製多層発泡シートの両最外層を構成する樹脂は、MFR0.1〜10g/10分のプロピレン系樹脂であることが剛性や耐衝撃性の点から好ましい。本発明のプロピレン系樹脂製多層発泡シートが3層の場合、最外層は前記熱可塑性樹脂層である。 The propylene-based resin multilayer foam sheet of the present invention may have a layer other than the foam layer and the thermoplastic resin layer. The resin constituting both outermost layers of the multilayer foamed sheet made of a propylene-based resin is preferably a propylene-based resin having an MFR of 0.1 to 10 g / 10 min from the viewpoint of rigidity and impact resistance. When the propylene-based resin multilayer foam sheet of the present invention has three layers, the outermost layer is the thermoplastic resin layer.

プロピレン系樹脂製多層発泡シートを構成する各層には、必要に応じて各種の低分子型あるいは高分子型の添加剤を配合してもよい。例えば、帯電防止剤、難燃剤、充填剤、酸化防止剤、銅害防止剤、耐候剤、紫外線吸収剤、滑剤、顔料、発泡剤、接着性改良剤等が用いられる。とりわけ最外層に用途に応じた添加剤を配合することにより、用途に応じた機能を付与することができる。 Various low molecular weight or high molecular weight additives may be blended into each layer constituting the propylene-based resin multilayer foam sheet, if necessary. For example, an antistatic agent, a flame retardant, a filler, an antioxidant, a copper damage inhibitor, a weathering agent, an ultraviolet absorber, a lubricant, a pigment, a foaming agent, an adhesion improver, and the like are used. In particular, by adding an additive according to the application to the outermost layer, a function according to the application can be imparted.

本発明のプロピレン系樹脂製多層発泡シートの製造方法は、前記したようなマルチマニホールド方式の多層Tダイを用いて、プロピレン系樹脂製多層発泡シートを構成する樹脂として前述したような樹脂を用いる以外は、公知の多層発泡シートの製造方法を採用することができる。例えば、各層を構成する樹脂と発泡剤等とを押出機中で溶融混練を行ない、押出機中の溶融樹脂組成物を樹脂流路を通って押出機に接続したマルチマニホールド方式の多層Tダイ内へ送る。該多層Tダイ内で広幅化した各層を構成する溶融樹脂組成物は、樹脂流路合流部で層状に合流し、ダイ出口から大気中に共押出される。押出された平板状の溶融シートを、ダイ直後に設置した冷却温調された多数のロールに接触させる、あるいは冷却温調された2枚のプレート状の平板の間を接触させながら通過させる等の公知の冷却成形方法で冷却成形した後、ニップロールを設けた引取機で引き取り、切断機で所定寸法に切断してプロピレン系樹脂製多層発泡シートを製造する方法である。 The method for producing a propylene-based resin-made multilayer foam sheet of the present invention uses a multi-manifold-type multilayer T-die as described above, except that the above-mentioned resin is used as a resin constituting the propylene-based resin-made multilayer foam sheet. Can employ a known method for producing a multilayer foam sheet. For example, in a multi-manifold type multilayer T-die in which a resin constituting each layer and a foaming agent are melt-kneaded in an extruder, and the molten resin composition in the extruder is connected to the extruder through a resin flow path. Send to The molten resin composition constituting each layer widened in the multilayer T-die joins in a layered manner at a resin flow passage merging portion, and is co-extruded from the die outlet into the atmosphere. The extruded plate-shaped molten sheet is brought into contact with a number of cooling-temperature-controlled rolls placed immediately after the die, or is passed while making contact between two cooling-temperature-controlled plate-like flat plates. This is a method for producing a propylene-based resin multilayer foam sheet by cooling and forming by a known cooling and forming method, and then taking up with a take-off machine provided with a nip roll and cutting to a predetermined size with a cutting machine.

押出機としては、単軸や多軸の押出機を用いることができ、複数の押出機を組み合わせたタンデム押出機も使用可能である。発泡層を構成する樹脂および発泡剤の混練に用いる押出機としては、2軸押出機が好ましく、スクリュー1回転あたりの押出量が多くて所定の押出量を低回転で得ることができ、スクリュー回転によるせん断発熱の少ない構造の押出機を用いることがより好ましい。スクリュー本体に冷却媒体を循環させ、温調してもよい。 As the extruder, a single-screw or multi-screw extruder can be used, and a tandem extruder combining a plurality of extruders can also be used. As the extruder used for kneading the resin and the foaming agent constituting the foamed layer, a twin-screw extruder is preferable. The extruder has a large amount of extrusion per one rotation of the screw and can obtain a predetermined amount of extrusion at a low rotation. It is more preferable to use an extruder having a structure that generates less heat generated by shearing. A cooling medium may be circulated through the screw body to control the temperature.

押出機と多層Tダイとの間にギアポンプを設けてもよく、原料供給用に定量フィーダーを設けてもよい。ギアポンプ入口圧力を一定に制御するため、ギアポンプ入口圧力値をスクリューまたはギアポンプの回転数や原料供給量へフィードバックする制御システムも押出発泡状態の安定化に有効である。
押出機と多層Tダイをつなぐアダプタには、スタティックミキサーなどを挿入して樹脂温度均一化をはかることも発泡シート内部の発泡状態の均一化に有効である。
物理発泡剤を用いる場合、発泡層用押出機は樹脂混練途中で物理発泡剤を圧入できる構造である。物理発泡剤は樹脂を十分に溶融可塑化した後に圧入する。物理発泡剤圧入以降は樹脂と発泡剤を十分に混合して均一化させ、発泡に適した樹脂温度に制御する。
A gear pump may be provided between the extruder and the multilayer T-die, and a fixed-quantity feeder may be provided for supplying raw materials. In order to control the gear pump inlet pressure to be constant, a control system that feeds back the gear pump inlet pressure value to the rotation speed of the screw or gear pump and the raw material supply amount is also effective for stabilizing the extruded foaming state.
Inserting a static mixer or the like into the adapter connecting the extruder and the multilayer T-die to make the resin temperature uniform is also effective in making the foaming state inside the foam sheet uniform.
When a physical foaming agent is used, the foam layer extruder has a structure in which the physical foaming agent can be pressed in during resin kneading. The physical blowing agent is press-fitted after the resin is sufficiently melt-plasticized. After the injection of the physical foaming agent, the resin and the foaming agent are sufficiently mixed and homogenized, and the resin temperature is controlled to be suitable for foaming.

本発明における多層Tダイ共押出法はマルチマニホールド方式の多層Tダイを用いる方法であるが、製造するプロピレン系樹脂製多層発泡シートが例えば5層以上である場合には、ダイの重量やコストが嵩むため、予めフィードブロックで積層した層状溶融シートを、本発明で用いるマルチマニホールド方式の多層Tダイ内でさらに他の層と積層して多層化してもよい。 The multilayer T-die co-extrusion method in the present invention is a method using a multi-manifold type multilayer T-die. However, when the number of the propylene-based resin multilayer foam sheets to be produced is, for example, five or more, the weight and cost of the die are reduced. To increase the volume, the layered molten sheet previously laminated with the feed block may be further laminated with another layer in the multi-manifold type multilayer T die used in the present invention to form a multilayer.

本発明のプロピレン系樹脂製多層発泡シートの発泡倍率や厚みは特に限定されるものではないが、通常、シート全体の発泡倍率は1.3〜7倍、シート全体の厚みは1〜7mmである。
各最外層の厚みがシート全体厚みに占める割合は0.05〜1%であることが好ましい。このような場合、例えばシート全体の厚みが4mmであるとき、最外層はそれぞれ2〜40μmと非常に薄肉となる。最外層は用途に応じた機能を付与するため、帯電防止剤や顔料などを添加することが多い。最外層を薄くすることにより、添加剤の添加を少量とすることができるため、低コストで高機能のプロピレン系樹脂製多層発泡シートを得ることができる。
最外層が薄く、うろこ状の外観不良の少ないプロピレン系樹脂製多層発泡シートは、本発明の製造方法によって製造することで初めて得られるものである。
The expansion ratio and thickness of the propylene-based resin multilayer foam sheet of the present invention are not particularly limited, but usually, the expansion ratio of the entire sheet is 1.3 to 7 times, and the thickness of the entire sheet is 1 to 7 mm. .
The ratio of the thickness of each outermost layer to the total thickness of the sheet is preferably 0.05 to 1%. In such a case, for example, when the thickness of the entire sheet is 4 mm, the outermost layers are very thin, 2 to 40 μm each. The outermost layer often adds an antistatic agent, a pigment, or the like in order to provide a function according to the application. By making the outermost layer thinner, the amount of additives can be reduced to a small amount, so that a low-cost, high-performance multilayer foamed sheet made of a propylene-based resin can be obtained.
A propylene-based resin multilayer foam sheet having a thin outermost layer and a small scale-like appearance defect can be obtained for the first time by producing it by the production method of the present invention.

本発明の多層発泡シートには、通常、プロピレン系樹脂製発泡シートの表面に施される、コロナ処理、オゾン処理や帯電防止剤塗布などの表面処理を必要に応じて行うこともできる。 The multilayer foamed sheet of the present invention may be optionally subjected to surface treatment such as corona treatment, ozone treatment, or application of an antistatic agent, which is usually performed on the surface of the propylene-based resin foamed sheet.

本発明で得られる多層発泡シートの片面もしくは両面に、用途に応じてシートやフィルム等の表皮材を積層貼合してもよい。積層用のシートやフィルム等の表皮材としては用途に応じて公知のものを使用することができ、例えば、アルミニウムや鉄等の金属、熱可塑性樹脂、紙、合成紙等から構成される薄板が挙げられる。熱可塑性樹脂もしくは麻等の植物素材やガラス等の無機材料からなる不織布や織布を積層してもよい。また、用いる薄板表面にエンボスや印刷などの加飾が施されていてもよい。発泡体を表皮材として積層貼合してもよい。 A skin material such as a sheet or a film may be laminated and bonded to one or both surfaces of the multilayer foam sheet obtained in the present invention, depending on the application. As the skin material such as a sheet or film for lamination, a known material can be used depending on the use. For example, a metal sheet such as aluminum or iron, a thermoplastic resin, paper, a thin sheet made of synthetic paper, or the like can be used. No. A nonwoven fabric or woven fabric made of a thermoplastic material, a plant material such as hemp, or an inorganic material such as glass may be laminated. Further, decoration such as embossing or printing may be applied to the surface of the thin plate used. The foam may be laminated and bonded as a skin material.

例えばプロピレン系樹脂製多層発泡シートを食品包装用に使用する場合には、10〜100μm厚みのプロピレン系樹脂製フィルムやガスバリア樹脂製フィルムを積層して用いることが好ましい。ガスバリア樹脂としては、エチレン・ビニルアルコール共重合体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリアミドなどを使用することができる。なお、これらガスバリア樹脂は単独または混合して使用してもよいし、ガスバリア樹脂からなるフィルムを2種類以上積層して使用してもよい。 For example, when a propylene-based multilayer foam sheet is used for food packaging, it is preferable to laminate a propylene-based resin film or a gas barrier resin film having a thickness of 10 to 100 μm. As the gas barrier resin, an ethylene / vinyl alcohol copolymer, polyvinylidene chloride, polyvinyl alcohol, polyamide, or the like can be used. In addition, these gas barrier resins may be used alone or as a mixture, or two or more kinds of films made of the gas barrier resin may be laminated and used.

プロピレン系樹脂製多層発泡シートを自動車内装材用に用いる場合には、不織布、織布、カーペット等を積層することが好ましい。他に包装用途、例えば、箱の仕切り板として使用する場合には、内容物保護のために緩衝シートを積層してもよい。 When the propylene-based resin multilayer foam sheet is used for an automobile interior material, it is preferable to laminate a nonwoven fabric, a woven fabric, a carpet, or the like. In addition, when used for packaging purposes, for example, as a partition plate for a box, a buffer sheet may be laminated to protect the contents.

プロピレン系樹脂製多層発泡シートへの表皮材の積層方法は特に限定されることはなく、例えば、接着剤を発泡シート表面に塗布して積層する方法、接着樹脂製フィルムがラミネートされた表皮材を用い、該接着樹脂製フィルム面を加熱溶融させて発泡シートと積層する方法、ヒーターや熱風などを用いて表皮材と発泡シートとの積層面を溶融させて積層する方法、溶融樹脂を表皮材と発泡シートとの間に押出しラミネートして積層する方法等が挙げられる。 The method of laminating the skin material to the propylene-based resin multilayer foam sheet is not particularly limited. For example, a method in which an adhesive is applied to the foam sheet surface and laminated, a skin material in which an adhesive resin film is laminated is used. Use, a method of heating and melting the film surface of the adhesive resin and laminating the foamed sheet, a method of melting and laminating the laminated surface of the skin material and the foamed sheet using a heater or hot air, etc., the molten resin and the skin material A method of extruding and laminating with a foamed sheet and laminating may be mentioned.

本発明のプロピレン系樹脂製多層発泡シートあるいは表皮材積層多層発泡シートに真空成形等の熱成形を施すことも可能である。熱成形としては、真空成形や熱罫線加工等、公知の方法により熱成形することができる。本発明の多層発泡シートは厚み分布が小さく気泡微細であるため、熱成形性に優れている。 The propylene-based resin multilayer foam sheet or skin material laminated multilayer foam sheet of the present invention can be subjected to thermoforming such as vacuum forming. As the thermoforming, thermoforming can be performed by a known method such as vacuum forming or hot crease processing. Since the multilayer foam sheet of the present invention has a small thickness distribution and fine cells, it is excellent in thermoformability.

本発明のプロピレン系樹脂製多層発泡シートは、包装、通函、仕切り板、食品容器、文具、建材、自動車内装材等に使用することができる。 The multilayer foamed sheet made of propylene-based resin of the present invention can be used for packaging, box passing, partition boards, food containers, stationery, building materials, automobile interior materials and the like.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの例に何ら限定されるものではない。実施例および比較例で用いた評価方法について以下に示す。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. The evaluation methods used in Examples and Comparative Examples are described below.

(1)重合体の極限粘度
ウベローデ型粘度計を用いて135℃テトラリン中で測定を行った。なお、結晶性プロピレン重合体部分(B)の極限粘度は結晶性プロピレン重合体部分(A)および全体のプロピレン重合体(T)の極限粘度より加成性が成り立つとして、特開平11−228629に記載の計算式より求めた。
(1) Intrinsic Viscosity of Polymer The polymer was measured at 135 ° C. in tetralin using an Ubbelohde viscometer. Note that the intrinsic viscosity of the crystalline propylene polymer portion (B) is determined to be additive from the intrinsic viscosity of the crystalline propylene polymer portion (A) and the entire propylene polymer (T), and is disclosed in JP-A-11-228629. It was determined from the described formula.

(2)MFR
JIS K7210に従い、温度230℃、荷重2.16kgfで測定した。単位はg/10分。
(2) MFR
According to JIS K7210, measurement was performed at a temperature of 230 ° C. and a load of 2.16 kgf. The unit is g / 10 minutes.

(3)発泡倍率
JIS K7112に従い、水中置換法によって多層発泡シート全体の密度ρfを求め、多層発泡シートを構成する樹脂の密度ρ0(0.9g/cm)との比、すなわち、ρ0/ρfによって多層発泡シート全体の発泡倍率を計算した。
(3) In accordance with JIS K7112, the density ρf of the entire multilayer foam sheet is determined by an underwater substitution method, and the ratio to the density ρ0 (0.9 g / cm 3 ) of the resin constituting the multilayer foam sheet, that is, ρ0 / ρf Thus, the expansion ratio of the entire multilayer foam sheet was calculated.

(4)表面抵抗率
多層発泡シートの幅方向に、100mm×100mmのサイズで5箇所サンプリングし、各サンプルの表面抵抗率を表面抵抗測定器(東亜電波工業株式会社製SME−8310)を用いて50%相対湿度、23℃室温において測定した。サンプル表裏、幅方向5箇所の対数平均値を代表値として求めた。
(4) Surface resistivity In the width direction of the multilayer foamed sheet, sampling was performed at five locations with a size of 100 mm x 100 mm, and the surface resistivity of each sample was measured using a surface resistance measuring instrument (SME-8310 manufactured by Toa Denpa Kogyo Co., Ltd.). Measured at 50% relative humidity and 23 ° C. room temperature. The logarithmic average value at five locations in the width direction of the sample front and back was determined as a representative value.

[参考例1](プロピレン系樹脂PP1の製造)
[1](固体触媒成分の合成)
攪拌機付きの200リットルSUS製反応容器を窒素で置換した後、ヘキサン80リットル、テトラブトキシチタン6.55モル、フタル酸ジイソブチル2.8モル、およびテトラエトキシシラン98.9モルを投入し均一溶液とした。次に濃度2.1モル/リットルのブチルマグネシウムクロリドのジイソブチルエーテル溶液51リットルを、反応容器内の温度を5℃に保ちながら5時間かけて徐々に滴下した。滴下終了後室温でさらに1時間攪拌した後室温で固液分離体ルエン70リットルでの洗浄を3回繰り返した。
次いで、スラリー濃度が0.6Kg/リットルになるようにトルエンを加えた後、n−ブチルエーテル8.9モルと四塩化チタン274モルの混合液を加え、さらにフタル酸クロライドを20.8モル加えて110℃で3時間反応を行った。反応終了後、95℃でトルエンでの洗浄を2回行った。
次いで、スラリー濃度を0.6Kg/リットルに調整した後、フタル酸ジイソブチル3.13モル、n−ブチルエーテル8.9モルおよび四塩化チタン137モルを加え、105℃で1時間反応を行った。反応終了後同温度で固液分離した後、95℃でトルエン90リットルでの洗浄を2回行った。
次いで、スラリー濃度を0.6Kg/リットルに調整した後、n−ブチルエーテル8.9モルおよび四塩化チタン137モルを加え、95℃で1時間反応を行った。反応終了後、同温度で固液分離し同温度でトルエン90リットルでの洗浄を3回行った。
次いで、スラリー濃度を0.6Kg/リットルに調整した後、n−ブチルエーテル8.9モルおよび四塩化チタン137モルを加え、95℃で1時間反応を行った。反応終了後、同温度で固液分離し同温度でトルエン90リットルでの洗浄を3回行った後、さらにヘキサン90リットルでの洗浄を3回した後減圧乾燥して固体触媒成分11.0Kgを得た。
固体触媒成分はチタン原子1.9重量%、マグネシウム原子20重量%、フタル酸エステル8.6重量%、エトキシ基0.05重量%、ブトキシ基0.21重量%を含有し、微粉のない良好な粒子性状を有していた。
[Reference Example 1] (Production of propylene-based resin PP1)
[1] (Synthesis of solid catalyst component)
After replacing a 200-liter SUS reaction vessel equipped with a stirrer with nitrogen, 80 liters of hexane, 6.55 mol of tetrabutoxytitanium, 2.8 mol of diisobutyl phthalate, and 98.9 mol of tetraethoxysilane were charged, and a homogeneous solution was added. did. Next, 51 l of a solution of butylmagnesium chloride in diisobutyl ether having a concentration of 2.1 mol / l was gradually added dropwise over 5 hours while maintaining the temperature in the reaction vessel at 5 ° C. After completion of the dropwise addition, the mixture was further stirred at room temperature for 1 hour, and then washed with 70 liters of solid-liquid separator Ruen at room temperature three times.
Next, toluene was added so that the slurry concentration became 0.6 kg / liter, then a mixed solution of 8.9 mol of n-butyl ether and 274 mol of titanium tetrachloride was added, and 20.8 mol of phthalic acid chloride was further added. The reaction was performed at 110 ° C. for 3 hours. After completion of the reaction, washing with toluene was performed twice at 95 ° C.
Next, after adjusting the slurry concentration to 0.6 kg / liter, 3.13 mol of diisobutyl phthalate, 8.9 mol of n-butyl ether and 137 mol of titanium tetrachloride were added, and the mixture was reacted at 105 ° C. for 1 hour. After the completion of the reaction, the mixture was subjected to solid-liquid separation at the same temperature, followed by washing twice at 95 ° C. with 90 l of toluene.
Next, after adjusting the slurry concentration to 0.6 kg / liter, 8.9 mol of n-butyl ether and 137 mol of titanium tetrachloride were added, and the mixture was reacted at 95 ° C. for 1 hour. After completion of the reaction, solid-liquid separation was performed at the same temperature, and washing with 90 liters of toluene was performed three times at the same temperature.
Next, after adjusting the slurry concentration to 0.6 kg / liter, 8.9 mol of n-butyl ether and 137 mol of titanium tetrachloride were added, and the mixture was reacted at 95 ° C. for 1 hour. After completion of the reaction, solid-liquid separation was carried out at the same temperature, washing was carried out three times with 90 liters of toluene at the same temperature, washing was further carried out three times with 90 liters of hexane, followed by drying under reduced pressure to obtain 11.0 kg of solid catalyst component. Obtained.
The solid catalyst component contains 1.9% by weight of titanium atom, 20% by weight of magnesium atom, 8.6% by weight of phthalic acid ester, 0.05% by weight of ethoxy group, and 0.21% by weight of butoxy group. Particle properties.

[2](固体触媒成分の予備活性化)
内容積3リットルのSUS製、攪拌機付きオートクレーブに十分に脱水、脱気処理したn−ヘキサン1.5リットル、トリエチルアルミニウム37.5ミリモル、t−ブチル−n−プロピルジメトキシシラン3.75ミリモル、上記[1]で得られた固体触媒成分15gを添加し、槽内温度を5〜15℃に保ちながらプロピレン15gを30分かけて連続的に供給して予備活性化を行った。
[2] (Pre-activation of solid catalyst component)
1.5 L of n-hexane, 37.5 mmol of triethylaluminum, 3.75 mmol of t-butyl-n-propyldimethoxysilane, which was sufficiently dehydrated and degassed in a SUS autoclave having an internal volume of 3 liters and equipped with a stirrer, 15 g of the solid catalyst component obtained in [1] was added, and 15 g of propylene was continuously supplied over 30 minutes while preserving the temperature in the vessel at 5 to 15 ° C. to perform preactivation.

[3](結晶性プロピレン重合体部分(A)の重合)
SUS製の内容積300リットルの重合槽において、重合温度60℃、重合圧力27kg/cmGを保持するように液状プロピレンを57kg/hで供給しながら、トリエチルアルミニウム1.3ミリモル/h、t−ブチル−n−プロピルジメトキシシラン0.13ミリモル/hおよび予備活性化された固体触媒成分0.51g/hを連続的に供給し、水素の実質的非存在下でプロピレン重合を行い、2.0kg/hの重合体が得られた。この時の重合体生成量は触媒1g当たり3920gであり、その一部をサンプリングして分析した結果、極限粘度[η]Aは7.7dl/gであった。得られた重合体はそのまま第二槽目に連続的に移送した。
[3] (Polymerization of crystalline propylene polymer portion (A))
In a SUS polymerization tank having an internal volume of 300 liters, while supplying liquid propylene at 57 kg / h so as to maintain a polymerization temperature of 60 ° C. and a polymerization pressure of 27 kg / cm 2 G, 1.3 mmol / h of triethylaluminum, t 1.13 mmol / h of -butyl-n-propyldimethoxysilane and 0.51 g / h of the preactivated solid catalyst component are continuously fed to carry out propylene polymerization in the substantial absence of hydrogen. 0 kg / h of polymer was obtained. At this time, the produced amount of the polymer was 3920 g per 1 g of the catalyst, and as a result of sampling and analyzing a part thereof, the intrinsic viscosity [η] A was 7.7 dl / g. The obtained polymer was continuously transferred to the second tank as it was.

[4](結晶性プロピレン重合体部分(B)の重合)
内容積1mの攪拌機付き流動床反応器において、重合温度80℃、重合圧力18Kg/cmG、気相部の水素濃度8vol%を保持するようにプロピレンおよび水素を供給しながら、第一槽目より移送された触媒含有重合体およびトリエチルアルミニウム60ミリモル/h、t−ブチル−n−プロピルジメトキシシラン6ミリモル/hを供給しながらプロピレン重合を連続的に継続することにより18.2kg/hの重合体(T)が得られた。この重合体(T)の極限粘度は1.9dl/gであった。
以上の結果から(B)の重合時の重合体生成量は触媒1gあたり31760gであり、第一槽目と第二槽目の重合重量比は11:89であり、(B)の極限粘度は1.2dl/gと求められた。
[4] (Polymerization of crystalline propylene polymer part (B))
In a fluidized bed reactor with a stirrer having an internal volume of 1 m 3 , while supplying propylene and hydrogen so as to maintain a polymerization temperature of 80 ° C., a polymerization pressure of 18 kg / cm 2 G, and a hydrogen concentration of 8 vol% in the gas phase, the first tank was used. By continuously continuing propylene polymerization while supplying the catalyst-containing polymer transferred from the eye and 60 mmol / h of triethylaluminum and 6 mmol / h of t-butyl-n-propyldimethoxysilane, 18.2 kg / h was obtained. A polymer (T) was obtained. The intrinsic viscosity of the polymer (T) was 1.9 dl / g.
From the above results, the amount of polymer produced during the polymerization of (B) was 31760 g per 1 g of the catalyst, the polymerization weight ratio of the first tank and the second tank was 11:89, and the intrinsic viscosity of (B) was It was determined to be 1.2 dl / g.

[5](重合体(T)のペレット化)
[4]で得られた重合体(T)粉末100重量部に対して、ステアリン酸カルシウム0.1重量部、商品名イルガノックス1010(チバガイギー社製)0.05重量部、商品名スミライザーBHT(住友化学工業社製)0.2重量部を加えて混合し、230℃で溶融混練し、MFRが12g/10分のペレット(プロピレン系樹脂PP1)を得た。
[5] (Pelletization of polymer (T))
With respect to 100 parts by weight of the polymer (T) powder obtained in [4], 0.1 parts by weight of calcium stearate, 0.05 parts by weight of Irganox 1010 (manufactured by Ciba Geigy), and Sumilizer BHT (Sumitomo) 0.2 parts by weight (manufactured by Chemical Industry Co., Ltd.) were added, mixed and melt-kneaded at 230 ° C. to obtain pellets (propylene-based resin PP1) having an MFR of 12 g / 10 min.

[実施例1](押出発泡試験)
下記に示す方法にて熱可塑性樹脂層/発泡層/熱可塑性樹脂層の2種3層のプロピレン系樹脂製多層発泡シートを作製した。本実施例1では、熱可塑性樹脂層が最外層に相当する。
発泡層用押出機として先端にギアポンプを設けた104mmφ同方向回転2軸押出機(L/D=32、Lはスクリュー有効長さ、Dはスクリュー径)を、熱可塑性樹脂層用押出機として75mmφ単軸押出機(L/D=32)を使用し、ダイ出口流路幅が1600mmである図1および図2に例示するマルチマニホールド方式の多層Tダイを使用した。なお、多層Tダイ中の樹脂流路合流角度θは60°、樹脂流路合流部からダイ出口までの距離L1は36mm、リップランドの長さL2は3mm、合流部直後の流路隙間t1は6mm、リップ隙間t2が0.6mmであった。
[Example 1] (Extrusion foaming test)
A multilayer foamed sheet made of a propylene-based resin having two and three layers of a thermoplastic resin layer / a foamed layer / a thermoplastic resin layer was prepared by the method described below. In the first embodiment, the thermoplastic resin layer corresponds to the outermost layer.
A 104 mmφ co-rotating twin screw extruder (L / D = 32, L is an effective screw length, D is a screw diameter) equipped with a gear pump at the tip as a foam layer extruder, and a 75 mmφ as a thermoplastic resin layer extruder A single-screw extruder (L / D = 32) was used, and a multi-manifold type multilayer T die illustrated in FIGS. 1 and 2 having a die outlet flow width of 1600 mm was used. The resin flow path merging angle θ in the multilayer T die is 60 °, the distance L1 from the resin flow path merging section to the die outlet is 36 mm, the length of the lip land L2 is 3 mm, and the flow path gap t1 immediately after the merging section is 6 mm, and the lip gap t2 was 0.6 mm.

上記参考例1[5]で得られたプロピレン系樹脂PP1(MFR=12g/10分)を50重量部、プロピレン系樹脂PP2(住友化学工業(株)製、ノーブレンAW191A(MFR=11g/10分))を40重量部、直鎖状低密度ポリエチレンPE1(住友化学工業(株)製、スミカセンE、FV401(MFR=4g/10分))を10重量部混合した混合物に対して、気泡核剤(日本ベーリンガーインゲルハイム(株)製、ハイドロセロールCF40E)を0.5PHRブレンドした発泡層用樹脂を、定量フィーダーを経て発泡層用押出機ホッパーに投入して押出機中で溶融混錬を行い、溶融が進んだ位置(L/D=20)で液化炭酸ガス0.5PHRをダイヤフラム式定量ポンプを用いて高圧で注入した。溶融樹脂と炭酸ガスを十分溶融混練したのち、180℃に冷却・調整し、吐出量160Kg/hでギアポンプを用いて安定してマルチマニホールド方式多層Tダイ内に導入した。
なお、結晶性プロピレン重合体部分(A)の極限粘度[η]Aは7.7dl/g、また、発泡層用全樹脂中の結晶性プロピレン重合体部分(A)の含有量WAは5.50wt%、[式A]の右辺は7.16であり、[式A]を満足していた。また、PP1、PP2およびPE1からなる発泡層用樹脂のMFRは11g/10分であった。
次に、熱可塑性樹脂層用樹脂としてプロピレン系樹脂PP3(住友化学工業(株)製、ノーブレンAS171G(MFR=1g/10分))を80重量部、帯電防止剤(三洋化成工業(株)製、ペレスタット300)を20重量部混合したものを用いた。前記混合物を定量フィーダーを経て最外層用押出機ホッパーに投入して押出機中で溶融混錬を行い、200℃に冷却・調整し、吐出量5Kg/hでマルチマニホールド方式多層Tダイ内に導入した。発泡層を構成する溶融樹脂と熱可塑性樹脂層を構成する溶融樹脂は、樹脂流路合流部で合流して層状に積層された後、ダイ出口から平板状溶融シートとして押出された。該平板状溶融シートを、ダイ直後に設置した約60℃に冷却温調された多数の210φロールにより冷却成形し、ニップロールを備えた引取機で引取ったのち、切断機にて所定寸法に切断した。
得られた多層発泡シートは全体で発泡倍率4.0倍、厚み4.0mmであり、熱可塑性樹脂層の厚みはそれぞれ17μm、片方の熱可塑性樹脂層がシート全体厚みに占める割合は0.43%であった。該多層発泡シートにうろこ状の外観不良は見られず、表面抵抗率は10の11乗Ω/□であった。
50 parts by weight of the propylene-based resin PP1 (MFR = 12 g / 10 min) obtained in Reference Example 1 [5] above, and propylene-based resin PP2 (Noblen AW191A manufactured by Sumitomo Chemical Co., Ltd. (MFR = 11 g / 10 min) )) And 10 parts by weight of linear low-density polyethylene PE1 (Sumitomo Chemical Co., Ltd., Sumikasen E, FV401 (MFR = 4 g / 10 minutes)) were mixed, and a foam nucleating agent was used. (Nippon Boehringer Ingelheim Co., Ltd., Hydrocelol CF40E) 0.5PHR blended resin for foaming layer is fed into a foaming layer extruder hopper via a quantitative feeder and melt-kneaded in the extruder. At a position where melting has advanced (L / D = 20), 0.5 PHR of liquefied carbon dioxide gas was injected at a high pressure using a diaphragm type metering pump. After sufficiently melting and kneading the molten resin and carbon dioxide, the mixture was cooled and adjusted to 180 ° C., and was stably introduced into the multi-manifold type multilayer T-die at a discharge rate of 160 kg / h using a gear pump.
Incidentally, the content W A intrinsic viscosity [eta] A is 7.7 dl / g, also crystalline propylene polymer portion of the total resin foam layer of the crystalline propylene polymer portion (A) (A) 5 .50 wt%, the right side of [Equation A] was 7.16, which satisfied [Equation A]. Further, the MFR of the resin for a foam layer composed of PP1, PP2 and PE1 was 11 g / 10 minutes.
Next, 80 parts by weight of a propylene-based resin PP3 (manufactured by Sumitomo Chemical Co., Ltd., Noblen AS171G (MFR = 1 g / 10 min)) as a resin for the thermoplastic resin layer, and an antistatic agent (manufactured by Sanyo Chemical Industries, Ltd.) , Perestat 300) in a mixture of 20 parts by weight. The mixture is put into an extruder hopper for the outermost layer through a fixed-quantity feeder, melt-kneaded in the extruder, cooled and adjusted to 200 ° C., and introduced into a multi-manifold multilayer T-die at a discharge rate of 5 kg / h. did. The molten resin constituting the foamed layer and the molten resin constituting the thermoplastic resin layer were joined at the resin flow passage merging portion and laminated in layers, and then extruded from the die outlet as a flat molten sheet. The plate-shaped molten sheet is formed by cooling with a large number of 210φ rolls, which are cooled to about 60 ° C. and placed immediately after the die, taken up by a take-up machine equipped with a nip roll, and then cut to a predetermined size by a cutting machine. did.
The resulting multilayer foamed sheet had a total expansion ratio of 4.0 times and a thickness of 4.0 mm, the thickness of each thermoplastic resin layer was 17 μm, and the ratio of one thermoplastic resin layer to the total thickness of the sheet was 0.43. %Met. No scaly appearance defect was observed in the multilayer foam sheet, and the surface resistivity was 10 11 Ω / □.

[参考例2](プロピレン系樹脂PP4の製造)
参考例1と同様に下記の直鎖状プロピレン系樹脂PP4を製造した。
(A)の極限粘度8.5dl/g(9.5wt%)、(B)の極限粘度1.2dl/g(90.5wt%)、(T)の極限粘度1.9dl/g、(T)のMFRは11g/10分。
[Reference Example 2] (Production of propylene-based resin PP4)
In the same manner as in Reference Example 1, the following linear propylene-based resin PP4 was produced.
(A) intrinsic viscosity 8.5 dl / g (9.5 wt%), (B) intrinsic viscosity 1.2 dl / g (90.5 wt%), (T) intrinsic viscosity 1.9 dl / g, (T) ) Has an MFR of 11 g / 10 min.

[比較例1]
プロピレン系樹脂PP1に代わって、プロピレン系樹脂PP4を用いた以外は実施例1と同様に実施した。
結晶性プロピレン重合体部分(A)の極限粘度[η]Aは8.5dl/gであった。発泡層用全樹脂中の結晶性プロピレン重合体部分(A)の含有量WAは4.75wt%と多く、[式A]の右辺は2.04であるため、[式A]を満足していなかった。また、PP4、PP2およびPE1からなる発泡層用全樹脂のMFRは10g/10分であった。
結果、うろこ状の外観不良が目立ち、熱可塑性樹脂層厚みや表面抵抗率の評価は不可能であった。
[Comparative Example 1]
The procedure was performed in the same manner as in Example 1 except that the propylene-based resin PP4 was used instead of the propylene-based resin PP1.
The intrinsic viscosity [η] A of the crystalline propylene polymer portion (A) was 8.5 dl / g. The content W A crystalline propylene polymer portion of the total resin foam layer (A) and the most 4.75 wt%, because the right side of Expression A] is 2.04, and satisfies the formula A] I didn't. Further, the MFR of the whole resin for the foam layer composed of PP4, PP2 and PE1 was 10 g / 10 minutes.
As a result, a scale-like appearance defect was conspicuous, and it was impossible to evaluate the thermoplastic resin layer thickness and the surface resistivity.

[実施例2]
リップ隙間t2を1.0mmとした。また、発泡層用樹脂としてプロピレン系樹脂PP4を12.5重量部、プロピレン系樹脂PP2を77.5重量部、直鎖状低密度ポリエチレンPE1を10重量部の配合物を用いた。液化炭酸ガスの添加量は0.38PHRとし、発泡層の吐出量は300Kg/hとした。
なお、発泡層用樹脂中の結晶性プロピレン重合体部分(A)の極限粘度[η]Aは8.5dl/g、また、含有量WAは1.19wt%、[式A]の右辺は2.04であるため、[式A]を満足していた。また、発泡層用全樹脂のMFRは10g/10分であった。
上記以外は実施例1と同様に実施した結果、得られた多層発泡シートは全体で発泡倍率3.0倍、厚み4.0mmであり、熱可塑性樹脂層の厚みはそれぞれ11μm、片方の熱可塑性樹脂層がシート全体厚みに占める割合は0.28%であった。熱可塑性樹脂層の厚みはそれぞれ17μm、片方の熱可塑性樹脂層がシート全体厚みに占める割合は0.43%であった。また、うろこ状の外観不良は見られず、表面抵抗率も10の11乗Ω/□と良好であった。
[Example 2]
The lip gap t2 was set to 1.0 mm. In addition, a blend of 12.5 parts by weight of the propylene-based resin PP4, 77.5 parts by weight of the propylene-based resin PP2, and 10 parts by weight of the linear low-density polyethylene PE1 was used as the resin for the foamed layer. The added amount of the liquefied carbon dioxide gas was 0.38 PHR, and the discharge amount of the foamed layer was 300 kg / h.
Incidentally, the intrinsic viscosity [eta] A is 8.5dl / g of the crystalline propylene polymer portion in the resin foam layer (A), In addition, the content W A is 1.19Wt%, the right side of Expression A] Since it was 2.04, [Equation A] was satisfied. The MFR of all resins for the foamed layer was 10 g / 10 minutes.
Except as described above, the same procedure as in Example 1 was carried out. As a result, the obtained multilayer foamed sheet had a foaming ratio of 3.0 times and a thickness of 4.0 mm as a whole, the thermoplastic resin layers each having a thickness of 11 μm, and one thermoplastic resin layer. The ratio of the resin layer to the entire sheet thickness was 0.28%. The thickness of each thermoplastic resin layer was 17 μm, and the ratio of one thermoplastic resin layer to the entire thickness of the sheet was 0.43%. No scale-like appearance defect was observed, and the surface resistivity was as good as 10 11 Ω / □.

[比較例2]
発泡層用樹脂としてプロピレン系樹脂PP4を25重量部、プロピレン系樹脂PP2を65重量部、直鎖状低密度ポリエチレンPE1を10重量部の配合物を用いた以外は実施例2と同様に実施した。
なお、結晶性プロピレン重合体部分(A)の極限粘度[η]Aは8.5dl/g、発泡層用全樹脂中の結晶性プロピレン重合体部分(A)の含有量WAは2.38wt%、[式A]の右辺は2.04であるため、[式A]を満足していなかった。また、PP4、PP2およびPE1からなる発泡層用樹脂のMFRは10g/10分であった。
結果、うろこ状の外観不良が目立ち、熱可塑性樹脂層厚みや表面抵抗率の評価は不可能であった。
[Comparative Example 2]
The same procedure as in Example 2 was performed except that a blend of 25 parts by weight of the propylene-based resin PP4, 65 parts by weight of the propylene-based resin PP2, and 10 parts by weight of the linear low-density polyethylene PE1 was used as the resin for the foamed layer. .
The content W A intrinsic viscosity [eta] A is 8.5dl / g, the crystalline propylene polymer portion of the total resin foam layer of the crystalline propylene polymer portion (A) (A) is 2.38wt %, And the right side of [Equation A] was 2.04, so that [Equation A] was not satisfied. The MFR of the foam layer resin composed of PP4, PP2 and PE1 was 10 g / 10 minutes.
As a result, a scale-like appearance defect was conspicuous, and it was impossible to evaluate the thermoplastic resin layer thickness and the surface resistivity.

[比較例3]
合流部からダイ出口までの距離L1を48mm、リップランドの長さL2は15mmとした以外は実施例1と同様に実施したところ、うろこ状の外観不良が目立ち、熱可塑性樹脂層厚みや表面抵抗率の評価は不可能であった。
[Comparative Example 3]
Example 1 was repeated except that the distance L1 from the junction to the die exit was set to 48 mm, and the length L2 of the lip land was set to 15 mm. Rate evaluation was not possible.

本発明におけるマルチマニホールド方式による多層Tダイの流路断面の1例を示す図面である。It is a drawing showing an example of a channel section of a multilayer T die by a multi-manifold method in the present invention. 図1における樹脂流路合流部を拡大した樹脂流路断面の1例を示す図面である。FIG. 2 is a drawing showing one example of a resin flow channel cross section in which a resin flow channel merging portion in FIG. 1 is enlarged.

符号の説明Explanation of reference numerals

1:マルチマニホールド方式の多層Tダイ
2:リップ(上)
3:リップ(下)
4:発泡層用マニホールド
5:発泡層用チョークバー
6:熱可塑性樹脂層用マニホールド(上)
7:熱可塑性樹脂層用チョークバー(上)
8:熱可塑性樹脂層用マニホールド(下)
9:熱可塑性樹脂層用チョークバー(下)
10:樹脂流路合流部
11:樹脂流路
12:樹脂流路
13:樹脂流路
L1:樹脂流路合流部からダイ出口までの距離
L2:リップランドの長さ
t1:樹脂流路高さ
t2:リップ隙間
θ:樹脂流路合流角度
1: Multi-manifold type multilayer T-die 2: Lip (top)
3: Lip (bottom)
4: Manifold for foam layer 5: Choke bar for foam layer 6: Manifold for thermoplastic resin layer (top)
7: Choke bar for thermoplastic resin layer (top)
8: Manifold for thermoplastic resin layer (bottom)
9: Choke bar for thermoplastic resin layer (bottom)
10: Resin flow path junction 11: Resin flow path 12: Resin flow path 13: Resin flow path L1: Distance L2 from resin flow path junction to die exit L2: Length of lip land t1: Resin flow path height t2 : Lip gap θ: Resin channel merging angle

Claims (3)

マルチマニホールド方式の多層Tダイを用いてプロピレン系樹脂製多層発泡シートを共押出しにより製造する方法において、該プロピレン系樹脂製多層発泡シートがプロピレン系樹脂発泡層の両面に熱可塑性樹脂層を有し、該多層Tダイが、樹脂流路合流部からダイ出口までの距離L1が10〜50mm、樹脂流路合流部直後の樹脂流路高さt1が3〜8mm、リップランドの長さL2が0〜5mmの多層Tダイであって、プロピレン系樹脂発泡層を構成するプロピレン系樹脂が、極限粘度[η]A=7〜9dl/gの結晶性プロピレン重合体部分(A)を有するプロピレン樹脂を含有し、プロピレン系樹脂発泡層を構成する全樹脂中における前記結晶性プロピレン重合体部分(A)の割合が[式A]のWAwt%に示す範囲であるプロピレン系樹脂製多層発泡シートの製造方法。
0.5≦WA≦a/(EXP([η]A )+b) [式A]
(ただし、a=250000、b=100、c=1.15)
A method for producing a propylene-based resin multilayer foam sheet by co-extrusion using a multi-manifold multilayer T-die, wherein the propylene-based resin multilayer foam sheet has thermoplastic resin layers on both sides of a propylene-based resin foam layer. The multilayer T die has a distance L1 from the resin flow path junction to the die exit of 10 to 50 mm, a resin flow path height t1 immediately after the resin flow path junction of 3 to 8 mm, and a lip land length L2 of 0. A propylene resin having a crystalline propylene polymer portion (A) having a limiting viscosity [η] A of 7 to 9 dl / g. contained, the proportion of the crystalline propylene polymer portion in the total resin constituting the propylene-based resin foam layer (a) is in the range shown in W a wt% of [formula a] propylene Method for producing a system resin multilayer foamed sheet.
0.5 ≦ W A ≦ a / (EXP ([η] A C ) + b) [Formula A]
(However, a = 250,000, b = 100, c = 1.15)
請求項1に記載のプロピレン系樹脂製多層発泡シートの製造方法において、プロピレン系樹脂製多層発泡シートの両最外層を構成する樹脂がMFR=0.1〜10g/10分のプロピレン樹脂であって、プロピレン系樹脂製多層発泡シートの全厚みに占める各最外層の割合が0.05〜1%であるプロピレン系樹脂製多層発泡シートの製造方法。 The method for producing a propylene-based resin multilayer foam sheet according to claim 1, wherein the resin constituting both outermost layers of the propylene-based resin multilayer foam sheet is a propylene resin having an MFR of 0.1 to 10 g / 10 minutes. A method for producing a propylene-based resin multilayer foam sheet, wherein the ratio of each outermost layer to the total thickness of the propylene-based resin multilayer foam sheet is 0.05 to 1%. 請求項1または2に記載の方法で製造されるプロピレン系樹脂製多層発泡シート。

A multilayer foamed sheet made of a propylene-based resin produced by the method according to claim 1.

JP2003424581A 2003-03-12 2003-12-22 Propylene resin multilayer foam sheet and method for producing the same Expired - Lifetime JP4379110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424581A JP4379110B2 (en) 2003-03-12 2003-12-22 Propylene resin multilayer foam sheet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003066233 2003-03-12
JP2003424581A JP4379110B2 (en) 2003-03-12 2003-12-22 Propylene resin multilayer foam sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004291623A true JP2004291623A (en) 2004-10-21
JP4379110B2 JP4379110B2 (en) 2009-12-09

Family

ID=33421574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424581A Expired - Lifetime JP4379110B2 (en) 2003-03-12 2003-12-22 Propylene resin multilayer foam sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4379110B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253776A (en) * 2009-04-23 2010-11-11 Japan Polypropylene Corp Extrusion molding method of polyolefinic resin laminated foamed sheet
KR101018350B1 (en) * 2010-10-05 2011-03-04 장현봉 Method for manufacturing multi-layer film having foamed layer
JP5466796B1 (en) * 2012-10-31 2014-04-09 積水化学工業株式会社 Manufacturing method and manufacturing apparatus for resin laminate
WO2014069110A1 (en) * 2012-10-31 2014-05-08 積水化学工業株式会社 Method and device for manufacturing resin laminate
KR20160144721A (en) * 2015-06-09 2016-12-19 김철수 Double ribs integrated fixed structure of the formula T- die coating
KR101833275B1 (en) 2017-06-08 2018-04-13 명일폼테크주식회사 foam board manufacturing method
CN115071095A (en) * 2021-03-15 2022-09-20 大连塑研塑料科技开发有限公司 Hot-melting co-extrusion molding method of PVC (polyvinyl chloride) composite cloth

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716971A (en) * 1993-06-30 1995-01-20 Dainippon Ink & Chem Inc Manufacture of laminated sheet
JPH07138323A (en) * 1993-11-15 1995-05-30 Asahi Chem Ind Co Ltd Propylene polymer for foaming
JPH11228629A (en) * 1997-12-11 1999-08-24 Sumitomo Chem Co Ltd Propylenic polymer, its production and foamed molded product obtained therefrom
JP2000043118A (en) * 1998-08-03 2000-02-15 Sumitomo Chem Co Ltd Production of non-crosslinked propylene type resin foamed sheet and non-crosslinked propylene type resin foamed sheet
JP2000043076A (en) * 1998-08-03 2000-02-15 Sumitomo Chem Co Ltd Manufacture of resin foam and resin foam
JP2000143858A (en) * 1998-11-11 2000-05-26 Chisso Corp Extruded foamed article, its formed article and production of extruded foamed article
JP2001009894A (en) * 1999-07-02 2001-01-16 Mitsubishi Heavy Ind Ltd Foamed sheet molding die and foamed sheet molding apparatus
JP2001261869A (en) * 2000-03-15 2001-09-26 Sumitomo Chem Co Ltd Polypropylene-based resin composition for blow holding, and container
JP2002316351A (en) * 2001-02-15 2002-10-29 Sumitomo Chem Co Ltd Method for manufacturing multi-layered expanded sheet
JP2002356565A (en) * 2001-03-29 2002-12-13 Sumitomo Chem Co Ltd Sheet for thermoforming, thermoformed material and laminated material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716971A (en) * 1993-06-30 1995-01-20 Dainippon Ink & Chem Inc Manufacture of laminated sheet
JPH07138323A (en) * 1993-11-15 1995-05-30 Asahi Chem Ind Co Ltd Propylene polymer for foaming
JPH11228629A (en) * 1997-12-11 1999-08-24 Sumitomo Chem Co Ltd Propylenic polymer, its production and foamed molded product obtained therefrom
JP2000043118A (en) * 1998-08-03 2000-02-15 Sumitomo Chem Co Ltd Production of non-crosslinked propylene type resin foamed sheet and non-crosslinked propylene type resin foamed sheet
JP2000043076A (en) * 1998-08-03 2000-02-15 Sumitomo Chem Co Ltd Manufacture of resin foam and resin foam
JP2000143858A (en) * 1998-11-11 2000-05-26 Chisso Corp Extruded foamed article, its formed article and production of extruded foamed article
JP2001009894A (en) * 1999-07-02 2001-01-16 Mitsubishi Heavy Ind Ltd Foamed sheet molding die and foamed sheet molding apparatus
JP2001261869A (en) * 2000-03-15 2001-09-26 Sumitomo Chem Co Ltd Polypropylene-based resin composition for blow holding, and container
JP2002316351A (en) * 2001-02-15 2002-10-29 Sumitomo Chem Co Ltd Method for manufacturing multi-layered expanded sheet
JP2002356565A (en) * 2001-03-29 2002-12-13 Sumitomo Chem Co Ltd Sheet for thermoforming, thermoformed material and laminated material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253776A (en) * 2009-04-23 2010-11-11 Japan Polypropylene Corp Extrusion molding method of polyolefinic resin laminated foamed sheet
KR101018350B1 (en) * 2010-10-05 2011-03-04 장현봉 Method for manufacturing multi-layer film having foamed layer
WO2012046968A2 (en) * 2010-10-05 2012-04-12 Jang Hyun Bong Method of manufacturing a multi-layer film including a foaming layer
WO2012046968A3 (en) * 2010-10-05 2012-06-14 Jang Hyun Bong Method of manufacturing a multi-layer film including a foaming layer
JP5466796B1 (en) * 2012-10-31 2014-04-09 積水化学工業株式会社 Manufacturing method and manufacturing apparatus for resin laminate
WO2014069110A1 (en) * 2012-10-31 2014-05-08 積水化学工業株式会社 Method and device for manufacturing resin laminate
KR20160144721A (en) * 2015-06-09 2016-12-19 김철수 Double ribs integrated fixed structure of the formula T- die coating
KR101694479B1 (en) * 2015-06-09 2017-01-10 김철수 Double ribs integrated fixed structure of the formula T- die coating
KR101833275B1 (en) 2017-06-08 2018-04-13 명일폼테크주식회사 foam board manufacturing method
CN115071095A (en) * 2021-03-15 2022-09-20 大连塑研塑料科技开发有限公司 Hot-melting co-extrusion molding method of PVC (polyvinyl chloride) composite cloth

Also Published As

Publication number Publication date
JP4379110B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
US9156228B2 (en) Method for producing a multi-layer plastic film
US6908668B2 (en) Foamed polyolefin resin sheet
JP2010270228A (en) Method for producing polypropylene-based resin foam and polypropylene-based resin foam
US20200171786A1 (en) Foamed sheet comprising tpe and the products resulting therefrom and the process of making the same
US6878318B2 (en) Methods for producing multi-layer foamed sheets
US20020098339A1 (en) Polyolefin resin foamed sheet and production method thereof
JP3804528B2 (en) Method for producing multilayer foam sheet
JP4379110B2 (en) Propylene resin multilayer foam sheet and method for producing the same
JP2003094504A (en) Method for manufacturing multilayered foamed sheet
JP2008239635A (en) Antistatic resin composition and multilayer sheet made of thermoplastic resin
JP3994730B2 (en) Non-foamed layer resin, multilayer foamed sheet, and method for producing the same
JP2001348454A (en) Thermoplastic resin sheet and container
JP2008274031A (en) Antistatic resin composition and thermoplastic resin multilayered sheet
JP2002166510A (en) Polyolefinic resin foamed sheet
JP2004291626A (en) Propylene-based resin made multi-layered foamed sheet and returnable box
JP2003253065A (en) Propylene resin composition for foaming, foamed sheet and manufacturing process therefor
JP4032990B2 (en) Multi-layer foam sheet manufacturing apparatus and multi-layer foam sheet manufacturing method
JP4543838B2 (en) Propylene resin foam sheet manufacturing method
JP2005186615A (en) Manufacturing device of foamed sheet, and manufacturing method for propylene resin type foamed sheet using it
JP2022145082A (en) Propylene polymer composition and foam
JP2002166460A (en) Method for manufacturing polyolefinic resin foamed sheet
JP2022145083A (en) Propylene polymer composition and foam
JP2005289045A (en) Manufacturing method of thermoplastic resin foamed sheet
JP2001348453A (en) Thermoplastic resin sheet and container
JP2002086646A (en) Foamed laminated sheet of polypropylene resin and molded container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3