JP2004290947A - Method for coating inner surface of hollow cubic object to be coated with liquid or molten material - Google Patents

Method for coating inner surface of hollow cubic object to be coated with liquid or molten material Download PDF

Info

Publication number
JP2004290947A
JP2004290947A JP2003126035A JP2003126035A JP2004290947A JP 2004290947 A JP2004290947 A JP 2004290947A JP 2003126035 A JP2003126035 A JP 2003126035A JP 2003126035 A JP2003126035 A JP 2003126035A JP 2004290947 A JP2004290947 A JP 2004290947A
Authority
JP
Japan
Prior art keywords
liquid
melt
coated
cone
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003126035A
Other languages
Japanese (ja)
Other versions
JP4174760B2 (en
Inventor
Takaharu Shimada
隆治 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson KK
Original Assignee
Nordson KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson KK filed Critical Nordson KK
Priority to JP2003126035A priority Critical patent/JP4174760B2/en
Publication of JP2004290947A publication Critical patent/JP2004290947A/en
Application granted granted Critical
Publication of JP4174760B2 publication Critical patent/JP4174760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for coating with a liquid or a molten body capable of coating the inner surface of a hollow cubic object to be coated such as a hollow conical body and a cylindrical body with the liquid or the molten material so as to form a uniform coating film thickness. <P>SOLUTION: In the method for coating the inner surface of the hollow cubic object to be coated with the liquid or the molten material in which the liquid or the molten material is jetted from a spray nozzle 10 to the hollow cubic object 2 to be coated having an open face 2b at one end so as to jet the liquid or the molten material from the open face 2b side toward the inner surface 2a of the object to be coated to apply coating to the inner surface of the object to be coated, the liquid or the molten material is applied to the inner surface 2a of the hollow cubic object 2 to be coated while the width W of a coating pattern ISP of the liquid or the molten material to be jetted from the spray nozzle 10 is intermittently changed so as to be almost appropriate to the width of the inner surface configuration in the axial line AX direction of the the hollow cubic object 2 to be coated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、中空立体形状被塗物の内面への液体又は溶融体の塗布方法に係り、詳しくは、一端に開放面(開口面)を有する中空のコーン(円錐)状、角錐状、円筒状、直方体状、立方体状等の中空立体形状の被塗物の内面へ液体又は溶融体を好適に均一塗布することのできる中空立体形状被塗物の内面への液体又は溶融体の塗布方法に関する。
【0002】
【従来の技術】
従来から、一端に開放面を有する中空のコーン(円錐)状や円筒状等の中空立体形状の被塗物の内面に液体又は溶融体を塗布する方法として、例えば図8及び図9に示す方法が採用されている。図8及び図9は、被塗物が中空立体形状のアイスクリーム用の円錐形のコーン2の場合であって、該コーン2の内面2aに該コーン2の吸湿対策等を目的として液体又は溶融体としての粘性物質であるアイス用チョコレートコーティング材3(以下、チョコレート3と称する)を塗布する場合の一例を示したものである。なお、アイスクリーム用のコーン2とは、コーンスターチ、カラメル、明バン等の原材料でなりアイスクリームが内部に詰められるコーン状の外箱のことをいう。
【0003】
コーン型のアイスクリームの製造は量産体制が採用されており、図8に示すように、複数個(本例の場合は4個)のスプレイガン1が一定間隔を置いて並置されて図示しない支持台に固定され、その下位置において図示していないコーン2の搬送装置が設けられ、該搬送装置によって複数個のコーン2(本例の場合は4個)が逆コーン状に立てられて開放面を上方にした状態で、かつ、該スプレイガン2と同一間隔で同一方向に複数個(本例の場合は4個)並置された状態で搬送され、各コーン2は各スプレイガン1の真下に対応した位置で停止される。
【0004】
そして、図9(A)に示すように、スプレイガン1によりチョコレート3がコーン2の該開放面(開口面)2bを通してスプレイされ、コーンの内面2aに塗布される。この塗布に当たっては、スプレイガン1として、エアスプレイガン又はエアレススプレイガンによりチョコレート3がコーン2の内面2aに向けてフォロー(中空状)コーンタイプSP又はソリッド(中実状)コーンタイプSPのパターン形状で数秒間で短時間スプレイされる。
【0005】
一方、従来から、後記特許文献1、2に示されるように、液体のスプレイ方法として、エアスプレイノズル又はエアレススプレイノズルを用いて液体及び又は該液体を霧化するための加圧気体をミリセカンド(ms)単位で断続的(間欠的又はパルス的)に繰り返し噴出させることにより、液体供給停止用のニードルをシートに対して必要以上に絞り込む必要をなくして液体中に存在するゲル状物質や異物などの詰まりを防いで、比較的薄い塗膜を得ることができ、また不必要の過剰の塗布を避けることができると共に一定厚みの塗布を行い得る方法が知られている。
【0006】
【特許文献1】特公平3−18506号公報
【特許文献2】特公平3−18507号公報
【0007】
【発明が解決しようとする課題】
しかし、前記の図8、図9に示されるような中空円錐状のコーン2の内面への塗布方法においては、スプレイガン1とコーン2との高さ方向の相対位置(相対距離)は一定であり、また、スプレイガン1からスプレイされるチョコレート3のスプレイパターンSPはパターン幅Wが一定であるのに対して、コーン2の内面は上面の開放面2bから下方の閉じた鋭角頂部2cにかけてコーン2の縦軸線AXに直交する方向の直径、即ち高さ方向の直径が徐々に小さくなる円錐形状の内面である。このため、前記パターン幅が一定なスプレイパターンSPによる塗布では該パターン幅の大きさと内面の高さ方向に沿う部位の直径との差がコーン2の下方に行くにしたがって大きくなり、図9(B)に示すように塗布膜厚(塗膜)の均一性が得られず、特に鋭角頂部2c側の内部に極度に溜まり勝ちになって下方に行くに従い塗膜が厚くなったり円周淵への塗り込み不足等が起き、結果として希望する塗り込み厚みを確保することが難しいという問題があった。
【0008】
一方、中空立体形状の被塗物が円筒体であり、その上部開放面の上方位置に前記と同様のスプレイガンを固定設置して該円筒体の内面に塗布する場合においては、該円筒体の内面は高さ方向に一定の直径を有するものの、該円筒体との高さ方向の相対距離を一定にして固定支持されたスプレイガンからスプレイされる塗布パターン幅は一定であるため円筒体内面の上下方向で塗布膜厚が変化し、従って塗膜均一性に欠けるという問題がある。
【0009】
さらに、前記従来技術である特許文献1、2に開示された液体及び又は圧縮気体の間欠スプレイ方法においては、スプレイノズルが被塗物(塗布部位)に対して一定の高さ位置に配置された場合においては前記のとおり無駄な塗布量を少なくして均一或いは薄膜の塗布膜が得られるが、スプレイノズルが定位置高さに固定され、該スプレイノズルに対して高さ方向に塗布部位が変化する中空状のコーン2や円筒体等の中空立体形状被塗物の内面へ液体又は溶融体を塗布する場合においては被塗物自体の高さ方向の内面形状幅の変化(コーン2の場合)及び又はスプレイ幅の下方向への拡がりによって塗布部位に塗着される塗膜厚が高さ方向に一定にならず、塗膜の均一性に欠けるという問題がある。
【0010】
本発明は上述した問題点に鑑みなされたもので、中空のコーン状体或いは円筒状体等の中空立体形状被塗物の内面に液体又は溶融体を均一の塗膜厚に塗布することができる液体又は溶融体の塗布方法を提供することにある。
【0011】
【課題を解決するための手段】
前述した課題を解決するために、本発明では次のような液体又は溶融体の塗布方法とした。即ち、一端が開放面を有した中空立体形状の被塗物にスプレイノズルから液体又は溶融体を該開放面側から該被塗物内面に向けて噴出し該被塗物の内面に塗布する中空立体形状被塗物の内面への液体又は溶融体の塗布方法であって、該スプレイノズルから噴出される液体又は溶融体の塗布パターン幅を該中空立体形状被塗物の軸線方向の内面形状幅にほぼ見合うように間欠的に変化させながら該中空立体形状被塗物の内面に液体又は溶融体を塗布する方法を採用することにより上記目的を達成したものである。
【0012】
【発明の実施の形態】
以下、本発明を好ましい実施形態に基づき図面を参照しながら説明する。
図1乃至図3は本発明に係わる液体又は溶融体(以下、溶融体なる字句は略して単に液体と称する)のエアスプレイノズルによる塗布方法の実施に用いられる液体塗布装置の一実施形態を示す図であり、図1は液体塗布装置の全体系統図、図2は図1におけるエアスプレイノズルを含むスプレイガンの要部概略縦断面図、図3は図2のエアスプレイノズルの底面図、図4は液体及び圧縮気体(パターンエア)の間欠的(断続的)スプレイ(噴出又は吐出)タイミングと該タイミングに応じて変化される圧縮気体供給圧の大きさの変化即ちパターン幅の変化を表したチャートの一実施形態、図5は被塗物への塗布要領の一実施形態を示す説明図である。
【0013】
以下、スプレイノズルとして圧縮気体で液体を霧化する形式のスプレイノズルを用い、該圧縮気体として圧縮空気(圧縮エア)を用いる場合を説明する。図1乃至図3に示すように、符号5は圧縮空気(圧縮エア)により液体を霧化する所謂エアスプレイノズル10を下部先端に具備した液体のスプレイガンであり、該スプレイガン5にはガン本体内の液体供給路8a(図2参照)に連通された液体3用の供給管19が接続されている。該液体供給管19の他端は塗布される液体3が所要量溜められたプレッシャーポット(エア式加圧タンク)18の内部に吸込み端を開口させて接続されている。また、該プレッシャーポット(エア式加圧タンク)18には内部に一方端を開口しエアレギュレータ(調圧弁)16を介装した圧縮空気供給管17が接続されている。
【0014】
また、スプレイガン5には、本体に内蔵されシート(弁座)7に対して離合して液体の供給停止(ON、OFF)を司るニードル(弁体)6の開閉用ピストン(図示せず)に圧縮空気(操作エア)を供給するための圧縮空気供給管15が接続されており、該圧縮空気供給管15には操作エア用ソレノイドバルブ(電磁弁)SOL(a)が介装されている。該ニードル6は図示しないコイルバネにより常時シート7方向に付勢されており、該操作エア用ソレノイドバルブSOL(a)が励磁されて開かれると、圧縮空気が該圧縮空気供給管15に送られて開閉用ピストンの下面側に作用され、該開閉ピストンが該コイルバネの付勢力に抗して持ち上げられ、ニードル6がシート7から離れて弁が開き、液体供給路8aの液体をスプレイノズル10に供給可能となるように構成されている。
【0015】
そして、スプレイガン5には、ガン本体内部の気体室9(図2参照)に連通させて、液体霧化用と塗布パターン形成用とを兼ねる圧縮エア(以下、単にパターンエアと称する)を供給するためのパターンエア供給管20が接続されている。このパターンエア供給管20の途中には複数のエア分岐管20−1、20−2、20−3、20−4、20−5が互いに並列に接続されて取付けられており、該各々の分岐管にはパターンエアの流れ方向の上流から下流にかけてパターンエアの供給停止を司るソレノイドバルブ(電磁弁)SOL1、SOL2、SOL3、SOL4、SOL5、及び、パターンエアの供給圧を設定可能なレギュレータ(調圧弁)R1、R2、R3、R4、R5がそれぞれ直列状態で取付けられている。
【0016】
スプレイガン5には、要部を図2に示すように本体中央部の縦方向に液体供給経路としての、前記液体供給管19に連通した上部の液体供給路8a、シート7及びガン本体に形成された液体通路8bが設けられている。そしてガン本体の下部先端にはエアスプレイノズル10がリテイニングナット5aによって固定保持されて取付けられており、該ノズル10はスワールノズルとして形成されている。即ち、スワールノズル10は、図3にも示すように中央部に液体通路11が形成され、その下端は液体噴出口11aとして開口している。そして、該液体通路11の周囲には、下方斜め方向に指向される(図2参照)と共に平面的には液体通路11の縦中心線をやや外されて指向され(図3参照)、円周方向に略等間隔で複数個(本実施形態では12個)貫通した気体通路12が形成されている。
【0017】
図2に示すように該各々の気体通路12はガン本体に形成された前記気体室9と連通されており、パターンエア供給管20から供給される圧縮空気であるパターンエアが該気体室9を通過し気体通路12に流入して先端開口の気体噴出口12aから液体噴出口11a方向に該噴出口11aの縦中心線とややオフセットされた状態で外部へ噴出される。
【0018】
前記液体の供給停止を司るニードル6操作用圧縮空気の供給管15に介装された操作エア用ソレノイドバルブSOL(a)はパルスタイマ21と電気的に接続され、さらに該パルスタイマ21はシーケンサ22に接続されている。該シーケンサ22はパターンエア用のソレノイドバルブSOL1、SOL2、SOL3、SOL4、SOL5の各々と電気的に接続されている。
【0019】
次に、このように構成された液体塗布装置による液体の塗布方法を説明する。
この塗布方法においては中空立体形状の被塗物が例えばアイスクリーム用のコーン2であり、塗布物がアイスクリーム用チョコレート材等の液体3である場合を説明する。液体塗布作業開始に先立ってプレッシャーポット18内の液体3の液面に圧縮空気供給管17を通してエアレギュレータ16によって所定圧に調圧されて供給される圧縮空気によって所定圧力が作用され、それにより液体供給管19を通して液体3がスプレイガン5の液体供給路8aに供給されて液体供給路8aは液体3で充満される。そして、パターンエア供給管20の複数の分岐管20−1、20−2、20−3、20−4、20−5にそれぞれ取付けられたエアレギュレータ(調圧弁)R1、R2、R3、R4、R5は、図4に示すようにそれぞれスプレイガン5に供給される気体供給圧を異ならせて設定される。
【0020】
即ち、このエアレギュレータR1、R2、・・・のそれぞれの供給圧の設定は、例えば図5(A)に示すように間欠的(断続的)に吐出されて形成される液体の中空の截頭円錐状(円錐台状)又はドーナツ状の噴出パターンISPの幅(即ち直径)Wが該コーンの下方の鋭角頂部2cから順次上方の開放面2bにかけて(向けて)コーン2の縦軸線AXに沿って変化する内面形状幅、即ち、内面の直径、にほぼ追随して段階的に大きくなるように、気体噴出口12aから噴出されるパターンエアPAの噴出圧が段階的に大きく変化するように設定される。
【0021】
即ち、図1に示した各々の分岐管20−1、20−2、・・・に取付けられたエアレギュレータR1、R2、・・・はその設定圧の大きさの関係が、例えば、R1<R2<R3<R4<R5となるように設定される。即ち設定圧はエアレギュレータR1を最も小さくなるように設定し、エアレギュレータR2、R3、R4、R5の順に大きくなるように設定する。このようにエアスプレイノズル10を取付けたスプレイガン5を用いた液体の塗布ではパターンエアPAの噴出圧の大きさを変化させることによって塗布パターン幅が変化する性質を利用する。
【0022】
前記のようにして塗布作業開始準備が整えられた後、液体塗布時に、コーン2は図5(A)に示すように開放面2bを上にした状態で、高さ位置を固定されたスプレイガン5の真下に図示していない搬送装置によって搬送され停止される。このとき、コーン2はその縦軸線AXとスプレイガン5のスワールノズル10の縦軸線を一致させた状態で配置される。その状態で、図4に示したように液体とパターンエア(気体)とを同調させて間欠的(パルス的)にノズル10から噴出させる。
【0023】
即ち、パルスタイマ21の設定により、圧縮空気供給管15に介装した操作エア用ソレノイドバルブSOL(a)のON動作とOFF動作と、パターンエア供給管20に介装したそれぞれの分岐管20−1、20−2、・・・のそれぞれのソレノイドバルブSOL1、SOL2、・・・のON動作とOFF動作とを同じサイクルで極短時間で繰り返し行わせることにより、液体とパターンエアとを間欠的に噴出させる。より具体的には、パルスタイマ21によって図4に示すようにパターンエア(気体)の噴出時間と停止時間をそれぞれ例えば40ms(ミリセカンド)、30msに設定し、一方、該パターンエアの噴出時間(40ms)内においてニードル6を例えば30msだけ開いて液体を30msだけ吐出するようにすると共に、液体の噴出停止時間は例えば40msとする。
【0024】
この場合に、液体の噴出を気体の噴出開始後所定時間(t)後、例えば5ms後、に噴出開始し、液体3の噴出停止を気体の噴出停止より所定時間(t)前に、例えば5ms前に停止させる。また、分岐管20−1、20−2、・・・に取付けたソレノイドバルブSOL1、SOL2、・・・のON作動の順序はシーケンサ22よってソレノイドバルブSOL1、ソレノイドバルブSOL2、ソレノイドバルブSOL3、ソレノイドバルブSOL4、及び、ソレノイドバルブSOL5の順になるように設定され、従ってパターンエアの供給経路が分岐管20−1、分岐管20−2、分岐管20−3、分岐管20−4、及び、分岐管20−5の順番で切り替えられてレギュレータR1、R2、・・・の作動順序がレギュレータR1、レギュレータR2、レギュレータR3、レギュレータR4、及び、レギュレータR5の順になるように設定される。
【0025】
このように、液体は噴出時間が30ms、噴出停止時間が40msとなり、また、パターンエアは噴出時間が液体の噴出の前後に5msおいた40ms、噴出停止時間が30msとなり、液体とパターンエアの噴出供給は同調してこのサイクルを繰り返すことになる。そして該パターンエアは供給経路を分岐管20−1、20−2、・・・の順に順次切り替えられて前記パターンエアの各噴出サイクルおいて気体供給圧は図4に示すように該分岐管20−1、20−2、・・・に設けたレギュレータR1、R2、・・・の供給設定圧にしたがって順次大きくされ、分岐管20−5(レギュレータR5)による供給が終了するとコーン(図4のNO1コーン)2の塗布作業が終了する。そして、次に送られて来るコーン(図4のNO2コーン)2の塗布作業は分岐管20−1(レギュレータR1)に供給経路が切り替えられ、以下同じサイクルで塗布作業が同様にして行われる。
【0026】
しかして、上記のようにして間欠的にスワールノズル10の液体噴出口11aから下方に噴出される液体3の噴出流は、該液体と同じサイクルで間欠的に複数の気体噴出口12aから噴出されるパターンエアPAによって粒子化されると共に旋回される。即ち、該複数の気体噴出口12aから噴出されるそれぞれのパターンエアPAは、スワールノズル10の液体通路11及び液体噴出口11aの縦中心線をやや外された(オフセットされた)方向に噴出されて拡がるので、その少なくとも一部が前記液体噴出口11aから噴出された液体噴出流に衝突乃至接触して該液体噴出流を霧化(粒子化)すると共に該粒子化された液体粒子を旋回(スワール)させ液体粒子の旋回流FWを形成する[図5(a)参照]。
【0027】
そして、そのように旋回しながら噴出される液体粒子旋回流FWは、その噴出パターンISPの幅Wが、液体及びパターンエアの間欠的噴出(供給)とそれらの噴出に同調した液体を霧化するためのパターンエア噴出圧力の間欠的変化によって、図5(A)に示すように、コーン2の縦軸線AXに沿って変化する内面形状幅、即ち、内径、の変化にほぼ対応して変化するように、噴出開始時から噴出終了時にかけて小さい幅から大きい幅へと変化され、このように塗布パターン幅が変化された中空のほぼ截頭円錐状(円錐台状)又はドーナツ状の液体粒子旋回流FWが複数個(本実施形態では5個)間欠的(パルス的)に瞬時に生成される。そして、生成された各々の液体粒子旋回流FWは順次、コーン2の下部の鋭角先端部2cから上方の開放部2bの内面2aに次々と到達し液体粒子が該内面2a表面に塗布され薄膜の塗膜が形成される。
【0028】
なお、前記のパターンエア噴出圧力を変化させることによってコーン2の縦軸線AX方向に変化する内径にほぼ対応させて噴出パターンISPの幅を順次、変化させるやり方は、該コーン2の内径が縦軸線AX方向に対して変化する割合を考慮して決定することに加えて、液体がノズル10の噴出口11aから噴出されそのパターンがコーン2の塗着部位に届くまでに拡径される割合をも考慮して決定される。即ち、噴出パターンISPが塗着部位に届くまでの距離の変化に応じて変化する液体の噴出角(放射角)をも考慮して決定されるものである。
【0029】
このコーン2の内面2aへの液体粒子の塗布に際しては、内面2aに順次塗布される截頭円錐状(円錐台状)又はドーナツ状の液体粒子旋回流パターンISPの幅が内面2aの縦軸線AX方向に沿って変化する内面2aの内径にほぼ応じた大きさに形成され、また、各々の液体粒子旋回流の液体粒子群が旋回流FWを形成しているので、図5(B)に示すように内面2aに液体をほぼ均一の塗膜厚をもって塗布することができる。そして、各々の液体粒子が該旋回流FWの内部に巻き込まれる状態で内面2aに接触するため、被塗物SBへの衝突によってリバウンド(反発)して飛散し持ち去られる粒子の量が極めて少なくされ、かつ、旋回流FWを形成する気体の内面2aへの衝突による乱流の発生も極力抑えられる。これらにより、粒子の塗着(塗布)効率が極めて向上される。
【0030】
そして、パターンエアPAの噴出が液体の噴出より前後に所定の短時間t、tだけ長く噴出されることにより、吐出開始時、及び、終了時の大きな液滴の発生、所謂、ボタ落ちが有効に解消されると共に液体の噴出(吐出)開始時から終了時まで好適な液体の粒子化によるスプレイ作業が可能となる。
【0031】
ここで、スワールノズル10を用いた場合のパターンエア(霧化エア)噴出圧と塗布パターン幅との関係を確認した実験例を示す。
【0032】
【実験例】
塗布する液体(塗液)として、粘度が8,000〜20,000cps/RT(20℃)[800〜1,500cps/55℃][B型粘度計]のチョコレート材を用い、次ぎの条件でパターンエア(霧化エア)噴出圧と塗布パターン幅との関係を実験により確認した結果、図6に示したグラフを得た。
(1)エアスプレイノズル;液体噴出口11a及び気体噴出口12aの口径が1.5mmφのスワールタイプ
(2)液圧(プレッシャーポット18による供給圧);5.0kg/cm
(3)液温:55℃
(4)液体及びパターンエアの噴出ON時間;30ms(固定条件)
(5)スプレイ距離;80mm(ノズル10先端〜コーン2の開放面2bまでの距離)
【0033】
図6のグラフから明らかなように、パターンエア(霧化エア)PAの圧力を(0.5〜4.0kg/cmの範囲で大きくするとそれに対応して塗布パターン幅Wは8.0〜52mmの範囲で大きくなることが認められた。
【0034】
以上の実施形態では1個のコーン2に液体を塗布する場合について示したが、例えば図8に示すように並置されて送られてくる複数のコーン2に同時に塗布する場合には、図1に示す塗布装置を該コーン2の数に応じた台数を設置することにより行うことができる。
【0035】
以上のとおり、本実施形態では、中空コーン状被塗物2の内面2aへの液体の塗布方法において、スプレイノズルとしてエアスプレイノズル10を取付けたスプレイガン5を固定位置にセットし、該スプレイガン5にパターンエア圧を調整しうるエアレギュレータR1、R2、・・・と電磁弁SOL1、SOL2、・・・を直列に接続させたパターンエア供給回路20−1、20−2、・・・を並列に複数列配列した状態で接続し、該各々のエアレギュレータR1、R2、・・・の設定圧をノズル10から噴出される塗布パターンの幅が該コーン状被塗物2の軸線AX方向に沿って変化する内面形状幅にほぼ見合った塗布円形パターン幅となるように変化させて設定し、該液体の塗布円形パターン幅の変化をパルスタイマ21、シーケンサ22でなるコントローラによって該各々の電磁弁SOL1、SOL2、・・・を順次、間欠的に開閉させてパターンエア噴出圧を間欠的に変化させることにより行わせる構成を採用したものである。
【0036】
これによって、コーン2内面への液体の塗布において略截頭円錐状(円錐台状)又は略ドーナツ型状の塗布パターンの幅を瞬時に変化させて塗布するパルス状塗布が行われることにより、塗膜の均一性とコーン2の内面2a全体への塗り残しがない塗布方法を得ることができる。即ち、数十ミリセカンド(ms)単位の繰り返し断続(間欠)塗布動作をスプレイガン5に与え、該繰り返し塗布動作においてコーン内面形状に沿った幾つかの塗布パターン幅条件をスプレイガン5に与えることにより均一な塗膜(塗布膜厚)を形成させることができる。
【0037】
以上の実施形態においては、パターンエア供給管20に取付けた分岐管20−1、20−2、・・・の数を5本とし、従って該分岐管に取付けられパターンエアPAの供給圧力を変更するエアレギュレータR1、R2、・・・を5個にし、幅の異なる塗布パターンを5個形成する場合を例示したが、これらの数はコーン2の大きさ(高さ、円錐角、開口面等の大きさ等)に応じて内面2a全体へ対して所望の均一塗布厚みが確保できるように例えば2〜10個等とするなど適宜な数に設定することができる。
【0038】
また、パルスタイマ21の断続塗布条件(パルス条件)の設定を変更、即ち、液体の吐出(噴出)、停止時間を適宜変更して液体の噴出量を所望量に変更することにより、コーン内面への塗膜厚みや塗布量を調整することができる。即ち、図4に示した液体の断続的(パルス的)塗布においては、液体噴出時間(液体ON時間)を全て同じ(30ms)にしたが、コーン2の縦軸線AX方向の内径の変化に応じて塗布量(塗布厚み)をより正確に変化させるように、パターンエアPAの変化とともに、液体の各噴出時間を変化させるようにしてもよい。例えば、液体噴出時間をコーン2の下方(頂部)2c側から上方の開放面2b側にかけて徐々に大きくなるように設定する。
【0039】
図7は異なる実施形態を示すものであり、中空立体形状の被塗物が円筒体の場合の塗布方法を説明するものである。この塗布方法においても図1に示した塗布装置を使用することができる。この円筒体25の内面への塗布の場合は、前記実施形態の被塗物のコーン2に塗布する場合のように該円筒体25の内面25aは縦軸線AXに沿う内径の変化は無いものであり、図7に示したように縦軸線AX方向の内面25aの塗布部位の違いに応じてノズル10の噴射角を異ならせて塗布噴出パターンISPの幅を変化させるようにパターンエアPAの噴出圧力を間欠的に変化させる。
【0040】
例えば内面25a最下位の実際の塗布パターンA1の液体の噴出角をθ1としその噴出パターンISP1の幅を最も小さいものとするようにエアレギュレータR1、R2、・・・によってパターンエア噴出圧を設定し、最上位の塗布パターンA3を得る場合には液体の噴出角を最も大きい噴出角θ3としてその噴出パターンISP3の幅を最も大きい幅とし、中間位の塗布パターンA2を得る場合には液体の噴出角をその中間の噴出角θ2としてその噴出パターンISP2の幅を中間の大きさの幅とするようにパターンエアPAの噴出圧力を間欠的に変化させる。
【0041】
なお、図7では説明のため高さ方向三箇所の塗布部位に塗布する場合を例示したが、円筒体25の内面25aに亙って均一膜厚で塗布するには勿論、高さ方向の多数の塗布部位について噴出角θを算出しそれに対応したそれぞれの噴出パターンISPの幅を得るようにそれぞれのパターンエアPAの噴出圧力を多数のエアレギュレータR1、R2、・・・によってそれぞれ設定する。
【0042】
液体を霧化し塗布パターンを形成する圧縮気体(パターン気体)としては、以上の実施形態で示したように通常は圧縮空気が用いられるが、この他に吐出する液体の性質、性状によって使い分けることができ、例えば液体が引火性の場合には、窒素ガスや炭酸ガスを使用することができる。
【0043】
以上の実施形態では、エアスプレイノズルとしてスワールノズル10を用い、その塗布(噴出)パターン形状が中空の截頭円錐状又はドーナツ状のパターンである場合を示したが、エアスプレイノズルとしてスワールノズルタイプを用いない場合には中実の截頭円錐状(中実円錐台状)パターンの場合もある。
【0044】
以上の実施形態では、スプレイノズルとして圧縮気体で液体を霧化する形式の所謂エアスプレイノズルを用いた場合を説明したが、スプレイノズルとして液体又は溶融体自体の圧力で霧化するスプレイノズルを用いる場合は、中空立体形状被塗物の内面への液体又は溶融体の塗布を、該液体又は溶融体の塗布パターン幅の変化を液体又は溶融体の噴出圧力を間欠的に変化させて行わせることにより、実施する。
【0045】
即ち、該スプレイノズルとしてエアレススプレイノズルを用い、該液体又は溶融体の塗布円形パターン幅の変化を、該ノズルを先端に取付けたスプレイガンのニードルとシート間の間隙調整変更手段を該ニードルに接続させて設け、該間隙をタイマーによって該間隙調整変更手段によりコーン状被塗物の軸線方向の内面形状幅にほぼ見合った塗布円形パターン幅に応じて順次間欠的に変化させるように設定変更して液体又は溶融体の噴出圧力を間欠的に変化させることにより、行なわせて、コーン状等の中空立体形状被塗物の内面への液体又は溶融体の塗布を行わせる。
【0046】
より具体的には、図示を省略したが、該間隙調整変更手段を、スプレイガン本体の後部にニードル引き代調整用マイクロアジャストと該マイクロアジャストの後部にミニシリンダと設け、さらに該ミニシリンダに数種の圧縮気体供給停止用の電磁弁を接続して構成し、該マイクロアジャストの位置を該数種の電磁弁により該ミニシリンダの位置を変更させることにより数段階に分けて変更させてニードルとシートとの間の間隙を変える。このことにより液体又は溶融体のノズル前圧力を変更させて噴出パターン(例えば円形ドーナツ状)の幅を変更させる。このような塗布方法によって、スプレイガンと被塗物の位置調整を行なうことなく、瞬時に被塗物に対し噴出パターン幅を変更させてコーン状被塗物内面へ均一塗膜を形成させることができる。
【0047】
以上の実施形態では、被塗物としてコーン2及び円筒体25を取り上げたが、本発明方法は、多角形状体(角錐状体)、直方体状、立方体状等の中空立体形状被塗物の内面への塗布に対しても同様に適用できるものである。
【0048】
【発明の効果】
以上の説明から明らかなように、本発明によれば、中空のコーン状体或いは円筒状体等の中空立体形状被塗物の内面に液体又は溶融体を均一の塗膜厚に塗布することができるという優れた効果を有する。
【図面の簡単な説明】
【図1】本発明に係る液体のエアスプレイノズルによる塗布方法の実施に用いられる液体塗布装置の全体系統図の一実施形態を示す図である。
【図2】図1におけるエアスプレイノズルを含むスプレイガンの要部概略縦断面図である。
【図3】図2のエアスプレイノズルの底面図である。
【図4】本発明に係る液体及び圧縮気体(パターンエア)の間欠的スプレイタイミングと該タイミングに応じて変化される圧縮気体供給圧の大きさの変化即ちパターン幅の変化を表したチャートの一実施形態である。
【図5】(A)は本発明に係るコーン内面(被塗物)への塗布要領の一実施形態を示す説明図、(B)はコーン内面への液体の塗布状態を示す縦断面図である。
【図6】本発明に係るパターンエア(霧化エア)噴出圧と塗布パターン幅との関係を実験により求めたグラフである。
【図7】本発明の異なる実施形態を示すものであり、中空立体形状被塗物が円筒体の場合の塗布方法を説明する概略縦断面図である。
【図8】従来のコーン状被塗物内面に液体を塗布する塗布装置の概略斜視図である。
【図9】(A)は図8のコーン状被塗物の内面に液体を塗布する要領を示す縦断面図、(B)はコーン内面の液体の塗布状態を示す縦断面図である。
【符号の説明】
1 スプレイガン
2 コーン(被塗物)
2a コーン内面(塗布面)
2b 開放面(開口面)
2c 鋭角頂部
AX 縦軸線
3 液体(塗液、チョコレート材)
5 エアスプレイガン
6 ニードル(弁)
7 シート(弁座)
10 エアスプレイノズル(スワールノズル)
11 液体通路
11a 液体噴出口
12 気体通路(パターンエア通路)
12a 気体噴出口(パターンエア噴出口)
PA パターンエア
18 プレッシャーポット
19 液体供給管
20 圧縮気体(パターンエア)供給管
20−1、20−2、・・・ パターンエア分岐管
R1、R2、・・・ エアレギュレータ
SOL1、SOL2、・・・ ソレノイドバルブ(電磁弁)
21 パルスタイマ
22 シーケンサ
FW 液体粒子旋回流
ISP 噴出パターン
W 塗布パターン幅
25 円筒体(被塗物)
25a 円筒体の内面(塗布面)
θ 液体(スプレイ)噴出角
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for applying a liquid or a melt to an inner surface of a hollow three-dimensional object to be coated, and more particularly, to a hollow cone (cone), a pyramid, or a cylinder having an open surface (opening surface) at one end. The present invention relates to a method for applying a liquid or a melt to the inner surface of a hollow three-dimensional object to be coated, which can suitably and uniformly apply a liquid or a melt to the inner surface of a hollow three-dimensional object such as a rectangular parallelepiped or a cube.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method of applying a liquid or a melt to the inner surface of a hollow three-dimensional object to be coated such as a hollow cone (cone) or a cylinder having an open surface at one end, for example, a method shown in FIGS. Has been adopted. FIGS. 8 and 9 show a case in which the object to be coated is a cone 3 for a cone having a hollow three-dimensional shape for ice cream, and the inner surface 2a of the cone 2 is liquid or melted for the purpose of taking measures against moisture absorption of the cone 2. It shows an example in which a chocolate coating material 3 for ice (hereinafter, referred to as chocolate 3) which is a viscous substance as a body is applied. In addition, the cone 2 for ice cream refers to a cone-shaped outer box made of raw materials such as corn starch, caramel, and bright bun and filled with ice cream.
[0003]
A cone-type ice cream is manufactured in a mass production system. As shown in FIG. 8, a plurality (four in this example) of spray guns 1 are juxtaposed at regular intervals and supported by a support (not shown). A conveyer (not shown) for the cone 2 is provided at a position below the base, and a plurality of cones 2 (four in this example) are set up in an inverted cone shape by the conveyer, and the open surface is formed. Are conveyed in a state in which a plurality of (in this case, four) are juxtaposed in the same direction and at the same interval as the spray gun 2, and each cone 2 is directly below each spray gun 1. Stops at the corresponding position.
[0004]
Then, as shown in FIG. 9A, the chocolate 3 is sprayed by the spray gun 1 through the open face (open face) 2b of the cone 2 and applied to the inner face 2a of the cone. In this application, as the spray gun 1, the chocolate 3 has a pattern pattern of a follow (hollow) cone type SP or a solid (solid) cone type SP toward the inner surface 2 a of the cone 2 by an air spray gun or an airless spray gun. It is sprayed for a short time in a few seconds.
[0005]
On the other hand, conventionally, as shown in Patent Documents 1 and 2 described below, as a liquid spraying method, a liquid and / or a pressurized gas for atomizing the liquid by millisecond using an air spray nozzle or an airless spray nozzle. By repeatedly and intermittently (intermittently or pulsatingly) ejecting in (ms) units, there is no need to squeeze the liquid supply stop needle more than necessary to the sheet, and gel-like substances and foreign substances existing in the liquid A method is known in which a relatively thin coating film can be obtained by preventing clogging of the coating film and the like, unnecessary unnecessary coating can be avoided, and coating with a constant thickness can be performed.
[0006]
[Patent Document 1] Japanese Patent Publication No. 3-18506
[Patent Document 2] Japanese Patent Publication No. Hei 3-18507
[0007]
[Problems to be solved by the invention]
However, in the method of coating the inner surface of the hollow cone-shaped cone 2 as shown in FIGS. 8 and 9, the relative position (relative distance) between the spray gun 1 and the cone 2 in the height direction is constant. The spray pattern SP of the chocolate 3 sprayed from the spray gun 1 has a constant pattern width W, whereas the inner surface of the cone 2 extends from the open surface 2b of the upper surface to the lower closed acute angle 2c. 2 is a conical inner surface in which the diameter in the direction orthogonal to the vertical axis AX, that is, the diameter in the height direction, gradually decreases. For this reason, in the application by the spray pattern SP in which the pattern width is constant, the difference between the size of the pattern width and the diameter of the portion along the height direction of the inner surface becomes larger toward the lower part of the cone 2, and FIG. As shown in ()), uniformity of the coating film thickness (coating film) cannot be obtained. Insufficiency of application and the like occur, and as a result, it is difficult to secure a desired application thickness.
[0008]
On the other hand, when the object to be coated having a hollow three-dimensional shape is a cylindrical body, and a spray gun similar to the above is fixedly installed at a position above the upper open surface to apply the inner surface of the cylindrical body, Although the inner surface has a constant diameter in the height direction, the width of the coating pattern sprayed from the spray gun fixed and supported with the relative distance in the height direction constant with the cylindrical body is constant, so that the inner surface of the cylindrical body is There is a problem that the coating film thickness changes in the vertical direction, and thus the coating film lacks uniformity.
[0009]
Furthermore, in the intermittent spraying method of liquid and / or compressed gas disclosed in Patent Documents 1 and 2, which are the above-mentioned prior arts, the spray nozzle is arranged at a fixed height position with respect to the object (application portion). In this case, a uniform or thin coating film can be obtained by reducing the useless coating amount as described above, but the spray nozzle is fixed at a fixed position height, and the coating portion changes in the height direction with respect to the spray nozzle. When a liquid or a melt is applied to the inner surface of a hollow three-dimensional object to be coated such as a hollow cone 2 or a cylindrical body, a change in the inner surface shape width in the height direction of the object itself (in the case of the cone 2) Further, there is a problem that the thickness of the coating film applied to the application site is not constant in the height direction due to the downward spread of the spray width, and the coating film lacks uniformity.
[0010]
The present invention has been made in view of the above-described problems, and can apply a liquid or a melt to a uniform coating thickness on the inner surface of a hollow three-dimensional object to be coated such as a hollow cone or a cylinder. An object of the present invention is to provide a method for applying a liquid or a melt.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention adopts the following liquid or melt application method. In other words, a liquid or a melt is sprayed from a spray nozzle toward the inner surface of the object to be coated from a spray nozzle to an object to be coated having a hollow three-dimensional shape having an open surface at one end, and applied to the inner surface of the object to be coated. A method for applying a liquid or a melt to an inner surface of a three-dimensional object to be coated, wherein the width of an application pattern of the liquid or the melt ejected from the spray nozzle is changed to an inner surface shape width of the hollow three-dimensional object to be coated in an axial direction. The above object has been achieved by employing a method in which a liquid or a melt is applied to the inner surface of the hollow three-dimensionally-shaped object to be coated while intermittently changing so as to substantially match the above.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings.
FIGS. 1 to 3 show an embodiment of a liquid application apparatus used for carrying out a method of applying a liquid or a melt (hereinafter, the term “melt” is simply referred to as a liquid for short) by an air spray nozzle according to the present invention. 1 is an overall system diagram of the liquid application apparatus, FIG. 2 is a schematic vertical sectional view of a main part of a spray gun including the air spray nozzle in FIG. 1, and FIG. 3 is a bottom view of the air spray nozzle in FIG. Reference numeral 4 denotes an intermittent (intermittent) spray (spray or discharge) timing of liquid and compressed gas (pattern air) and a change in the magnitude of the compressed gas supply pressure changed in accordance with the timing, that is, a change in pattern width. FIG. 5 is an explanatory view showing one embodiment of a chart, and FIG.
[0013]
Hereinafter, a case will be described in which a spray nozzle of a type in which a liquid is atomized with a compressed gas is used as the spray nozzle, and compressed air (compressed air) is used as the compressed gas. As shown in FIGS. 1 to 3, reference numeral 5 denotes a liquid spray gun provided with a so-called air spray nozzle 10 at a lower end thereof for atomizing a liquid by compressed air (compressed air). A supply pipe 19 for the liquid 3 is connected to a liquid supply passage 8a (see FIG. 2) in the main body. The other end of the liquid supply pipe 19 is connected to the inside of a pressure pot (pneumatic pressurized tank) 18 in which a required amount of the liquid 3 to be applied is stored by opening a suction end. The pressure pot (pneumatic pressurized tank) 18 is connected to a compressed air supply pipe 17 having one end opened therein and having an air regulator (pressure regulating valve) 16 interposed therebetween.
[0014]
The spray gun 5 has a piston (not shown) for opening and closing a needle (valve element) 6 which is built into the main body, separates from a seat (valve seat) 7 and controls liquid supply stop (ON, OFF). Is connected to a compressed air supply pipe 15 for supplying compressed air (operating air), and a solenoid valve (solenoid valve) SOL (a) for operating air is interposed in the compressed air supply pipe 15. . The needle 6 is always urged in the direction of the seat 7 by a coil spring (not shown). When the operating air solenoid valve SOL (a) is excited and opened, compressed air is sent to the compressed air supply pipe 15. Acting on the lower surface side of the opening / closing piston, the opening / closing piston is lifted against the urging force of the coil spring, the needle 6 separates from the seat 7 and the valve opens to supply the liquid in the liquid supply passage 8a to the spray nozzle 10. It is configured to be possible.
[0015]
The spray gun 5 is connected to a gas chamber 9 (see FIG. 2) inside the gun body to supply compressed air (hereinafter simply referred to as “pattern air”) that serves both for atomizing the liquid and forming the coating pattern. Pattern air supply pipe 20 is connected. In the middle of the pattern air supply pipe 20, a plurality of air branch pipes 20-1, 20-2, 20-3, 20-4, 20-5 are connected in parallel with each other and mounted. The pipes have solenoid valves (solenoid valves) SOL1, SOL2, SOL3, SOL4, SOL5 for stopping the supply of the pattern air from upstream to downstream in the flow direction of the pattern air, and a regulator (controller) capable of setting the supply pressure of the pattern air. The pressure valves R1, R2, R3, R4, and R5 are mounted in series.
[0016]
As shown in FIG. 2, the main parts of the spray gun 5 are formed in the upper liquid supply path 8a communicating with the liquid supply pipe 19, the sheet 7, and the gun main body as a liquid supply path in the vertical direction at the center of the main body. Liquid passage 8b is provided. An air spray nozzle 10 is fixed and held by a retaining nut 5a at the lower end of the gun body, and the nozzle 10 is formed as a swirl nozzle. That is, the swirl nozzle 10 has a liquid passage 11 formed at the center as shown in FIG. 3, and a lower end thereof is opened as a liquid ejection port 11a. Around the liquid passage 11, the liquid is directed obliquely downward (see FIG. 2), and is directed slightly off the vertical center line of the liquid passage 11 (see FIG. 3) in plan view. A plurality (12 in this embodiment) of gas passages 12 penetrating at substantially equal intervals in the direction are formed.
[0017]
As shown in FIG. 2, each of the gas passages 12 is communicated with the gas chamber 9 formed in the gun body, and the pattern air, which is compressed air supplied from the pattern air supply pipe 20, flows through the gas chamber 9. The gas passes through the gas passage 12 and is ejected to the outside from the gas ejection port 12a at the tip opening in a direction slightly offset from the longitudinal center line of the ejection port 11a in the direction of the liquid ejection port 11a.
[0018]
The operation air solenoid valve SOL (a) interposed in the compressed air supply pipe 15 for operation of the needle 6 which controls the supply of the liquid is electrically connected to a pulse timer 21, and the pulse timer 21 is connected to a sequencer 22. It is connected to the. The sequencer 22 is electrically connected to each of the solenoid valves SOL1, SOL2, SOL3, SOL4, and SOL5 for pattern air.
[0019]
Next, a method of applying a liquid by the liquid application apparatus having the above-described configuration will be described.
In this application method, a case will be described in which a hollow three-dimensional object to be coated is, for example, a cone 2 for ice cream, and the coated object is a liquid 3 such as a chocolate material for ice cream. Prior to the start of the liquid application operation, a predetermined pressure is applied to the liquid level of the liquid 3 in the pressure pot 18 by the compressed air supplied through the compressed air supply pipe 17 and adjusted to a predetermined pressure by the air regulator 16, whereby the liquid is The liquid 3 is supplied to the liquid supply path 8 a of the spray gun 5 through the supply pipe 19, and the liquid supply path 8 a is filled with the liquid 3. Then, air regulators (pressure regulating valves) R1, R2, R3, R4, which are attached to the plurality of branch pipes 20-1, 20-2, 20-3, 20-4, 20-5 of the pattern air supply pipe 20, respectively. R5 is set by making the gas supply pressure supplied to the spray gun 5 different as shown in FIG.
[0020]
That is, the supply pressure of each of the air regulators R1, R2,... Is set, for example, as shown in FIG. The width (that is, the diameter) W of the conical (frustoconical) or donut-shaped ejection pattern ISP extends along the longitudinal axis AX of the cone 2 from (toward) the acute top 2c below the cone and sequentially toward the upper open surface 2b. The ejection pressure of the pattern air PA ejected from the gas ejection port 12a is set so as to greatly change in a stepwise manner so as to substantially increase in accordance with the shape width of the inner surface, that is, the diameter of the inner surface. Is done.
[0021]
That is, the air regulators R1, R2,... Attached to the branch pipes 20-1, 20-2,. It is set so that R2 <R3 <R4 <R5. That is, the set pressure is set so that the air regulator R1 becomes the smallest and the air regulators R2, R3, R4, and R5 become larger in this order. In the application of liquid using the spray gun 5 to which the air spray nozzle 10 is attached as described above, the property of changing the application pattern width by changing the magnitude of the ejection pressure of the pattern air PA is used.
[0022]
After the preparation for the start of the coating operation has been completed as described above, during spraying the liquid, the cone 2 is spray gun with the open surface 2b facing upward and the height position fixed as shown in FIG. 5 (A). 5 and is stopped by a transfer device (not shown). At this time, the cone 2 is arranged with its longitudinal axis AX aligned with the longitudinal axis of the swirl nozzle 10 of the spray gun 5. In this state, as shown in FIG. 4, the liquid and the pattern air (gas) are synchronized and ejected from the nozzle 10 intermittently (pulse-like).
[0023]
That is, according to the setting of the pulse timer 21, the ON operation and the OFF operation of the operation air solenoid valve SOL (a) interposed in the compressed air supply pipe 15, and the respective branch pipes 20-interposed in the pattern air supply pipe 20. By intermittently repeating the ON operation and the OFF operation of each of the solenoid valves SOL1, SOL2,. Spout. More specifically, the ejection time and the stop time of the pattern air (gas) are set to, for example, 40 ms (millisecond) and 30 ms by the pulse timer 21 as shown in FIG. Within 40 ms), the needle 6 is opened for, for example, 30 ms to discharge the liquid for 30 ms, and the ejection stop time of the liquid is set to, for example, 40 ms.
[0024]
In this case, the ejection of the liquid is performed for a predetermined time (t) after the start of the ejection of the gas.1), The ejection starts after 5 ms, for example, and the ejection of the liquid 3 is stopped for a predetermined time (t2) Before, for example, 5 ms before. The order of the ON operation of the solenoid valves SOL1, SOL2,... Attached to the branch pipes 20-1, 20-2, ... is determined by the sequencer 22 by the solenoid valve SOL1, the solenoid valve SOL2, the solenoid valve SOL3, and the solenoid valve. SOL4 and the solenoid valve SOL5 are set in this order, so that the supply path of the pattern air is a branch pipe 20-1, a branch pipe 20-2, a branch pipe 20-3, a branch pipe 20-4, and a branch pipe. Are switched in the order of 20-5, and the operation order of the regulators R1, R2,... Is set so as to be in the order of the regulator R1, the regulator R2, the regulator R3, the regulator R4, and the regulator R5.
[0025]
Thus, the ejection time of the liquid is 30 ms, the ejection stop time is 40 ms, and the ejection time of the pattern air is 5 ms before and after the ejection of the liquid, 40 ms, and the ejection stop time is 30 ms, and the ejection of the liquid and the pattern air is 30 ms. The supply will synchronize and repeat this cycle. The supply path of the pattern air is sequentially switched in the order of the branch pipes 20-1, 20-2,..., And the gas supply pressure in each ejection cycle of the pattern air is changed to the branch pipe 20 as shown in FIG. -1, 20-2,... Provided in turn are sequentially increased according to the supply set pressures of the regulators R1, R2,..., And when the supply by the branch pipe 20-5 (the regulator R5) is completed, the cone (FIG. The application work of the (NO1 cone) 2 is completed. Then, in the application operation of the cone (NO2 cone in FIG. 4) 2 to be sent next, the supply path is switched to the branch pipe 20-1 (the regulator R1), and the application operation is performed in the same cycle in the same manner.
[0026]
Thus, the jet flow of the liquid 3 intermittently jetted downward from the liquid jet port 11a of the swirl nozzle 10 as described above is jetted intermittently from the plurality of gas jet ports 12a in the same cycle as the liquid. And is swirled by the pattern air PA. That is, the pattern air PA ejected from the plurality of gas ejection ports 12a is ejected in a direction slightly offset (offset) from the vertical center line of the liquid passage 11 of the swirl nozzle 10 and the liquid ejection port 11a. At least a part of the liquid jets collide with or contact the liquid jets jetted from the liquid jets 11a to atomize (particulate) the liquid jets and swirl the liquidized particles. The swirling flow FW of the liquid particles is formed (see FIG. 5A).
[0027]
Then, the liquid particle swirling flow FW ejected while swirling in this way atomizes the intermittent ejection (supply) of the ejection pattern ISP and the liquid synchronized with the ejection of the liquid and the pattern air. As shown in FIG. 5 (A), the intermittent change of the pattern air ejection pressure changes almost in accordance with the change of the inner surface shape width that changes along the longitudinal axis AX of the cone 2, that is, the inner diameter. Thus, from the start of the ejection to the end of the ejection, the width is changed from a small width to a large width, and thus, the hollow substantially frusto-conical (frusto-conical) or donut-shaped liquid particle swirl in which the coating pattern width is changed. A plurality of (five in this embodiment) flows FW are generated intermittently (pulse-like) instantaneously. Then, each of the generated liquid particle swirling flows FW successively reaches the inner surface 2a of the upper open portion 2b from the acute end 2c at the lower portion of the cone 2 and the liquid particles are applied to the surface of the inner surface 2a to form a thin film. A coating is formed.
[0028]
A method of sequentially changing the width of the ejection pattern ISP substantially corresponding to the inner diameter of the cone 2 changing in the AX direction by changing the pattern air ejection pressure is as follows. In addition to determining in consideration of the rate of change in the AX direction, the rate at which the liquid is ejected from the ejection port 11a of the nozzle 10 and the diameter of the pattern is expanded until the pattern reaches the application site of the cone 2 is also determined. It is decided in consideration of. That is, it is determined in consideration of the ejection angle (radiation angle) of the liquid, which changes according to the change in the distance until the ejection pattern ISP reaches the application site.
[0029]
When the liquid particles are applied to the inner surface 2a of the cone 2, the width of the truncated conical (frustum-conical) or donut-shaped liquid particle swirling flow pattern ISP sequentially applied to the inner surface 2a has a vertical axis AX of the inner surface 2a. Since the liquid particles are formed in a size substantially corresponding to the inner diameter of the inner surface 2a that changes along the direction, and the liquid particle group of each liquid particle swirl flow forms the swirl flow FW, it is shown in FIG. Thus, the liquid can be applied to the inner surface 2a with a substantially uniform coating thickness. Since each of the liquid particles comes into contact with the inner surface 2a while being entrained inside the swirling flow FW, the amount of particles that rebound (rebound) due to collision with the object to be coated SB and are scattered and carried away is extremely reduced. In addition, generation of turbulent flow due to collision of the gas forming the swirling flow FW with the inner surface 2a can be suppressed as much as possible. As a result, the coating (coating) efficiency of the particles is significantly improved.
[0030]
Then, the ejection of the pattern air PA is performed for a predetermined short time t before and after the ejection of the liquid.1, T2By ejecting the liquid only for a long time, the generation of large droplets at the start and end of the ejection, that is, so-called dropping, is effectively eliminated, and a suitable liquid is supplied from the start to the end of the ejection (discharge) of the liquid. Spray work by particle formation becomes possible.
[0031]
Here, an experimental example in which the relationship between the pattern air (atomized air) ejection pressure and the application pattern width when the swirl nozzle 10 is used is shown.
[0032]
[Experimental example]
A chocolate material having a viscosity of 8,000 to 20,000 cps / RT (20 ° C.) [800 to 1,500 cps / 55 ° C.] [B-type viscometer] is used as a liquid (coating liquid) to be applied under the following conditions. The relationship between the ejection pressure of the pattern air (atomized air) and the coating pattern width was confirmed by an experiment, and as a result, the graph shown in FIG. 6 was obtained.
(1) Air spray nozzle; swirl type in which the diameter of the liquid ejection port 11a and the gas ejection port 12a is 1.5 mmφ
(2) Hydraulic pressure (supply pressure by pressure pot 18); 5.0 kg / cm2
(3) Liquid temperature: 55 ° C
(4) ON time of ejection of liquid and pattern air; 30 ms (fixed condition)
(5) Spray distance: 80 mm (distance from tip of nozzle 10 to open surface 2b of cone 2)
[0033]
As is clear from the graph of FIG. 6, the pressure of the pattern air (atomized air) PA is set to (0.5 to 4.0 kg / cm).2It has been recognized that when the width is increased in the range, the coating pattern width W is correspondingly increased in the range of 8.0 to 52 mm.
[0034]
In the above embodiment, the case where the liquid is applied to one cone 2 has been described. However, for example, when the liquid is applied simultaneously to a plurality of cones 2 which are sent side by side as shown in FIG. It can be performed by installing the number of coating devices shown in the figure corresponding to the number of the cones 2.
[0035]
As described above, in the present embodiment, in the method of applying the liquid to the inner surface 2a of the hollow cone-shaped workpiece 2, the spray gun 5 having the air spray nozzle 10 attached thereto as the spray nozzle is set at a fixed position, and the spray gun 5 and pattern air supply circuits 20-1, 20-2, ... in which air regulators R1, R2, ... that can adjust the pattern air pressure and solenoid valves SOL1, SOL2, ... are connected in series. .. Are connected in a state of being arranged in a plurality of rows in parallel, and the set pressure of each of the air regulators R1, R2,. The width of the applied circular pattern is set so as to be approximately equal to the width of the inner surface shape that changes along the width, and the change in the applied circular pattern width of the liquid is determined by the pulse timer 21 and the sequencer 2. The respective solenoid valves SOL1 by comprising the controller, SOL2, a ... sequentially, is obtained by adopting a configuration to perform by intermittently changing the pattern air spout pressure intermittently opened and closed.
[0036]
Accordingly, in the application of the liquid to the inner surface of the cone 2, the pulse-shaped application is performed by instantaneously changing the width of the substantially frustoconical (frustoconical) or substantially donut-shaped application pattern. It is possible to obtain a coating method in which the uniformity of the film and the entire inner surface 2a of the cone 2 are not left uncoated. That is, a repetitive intermittent (intermittent) coating operation in units of several tens of milliseconds (ms) is given to the spray gun 5, and some spray pattern width conditions along the inner shape of the cone are given to the spray gun 5 in the repetitive coating operation. Thereby, a more uniform coating film (coating film thickness) can be formed.
[0037]
In the above embodiment, the number of the branch pipes 20-1, 20-2,... Attached to the pattern air supply pipe 20 is set to five, and accordingly, the supply pressure of the pattern air PA attached to the branch pipe is changed. The number of air regulators R1, R2,... To be formed is five, and five application patterns having different widths are formed. However, these numbers are determined by the size of the cone 2 (height, cone angle, opening surface, etc.). The number can be set to an appropriate number such as, for example, 2 to 10 so that a desired uniform coating thickness can be ensured over the entire inner surface 2a according to the size of the inner surface 2a.
[0038]
Further, the setting of the intermittent application condition (pulse condition) of the pulse timer 21 is changed, that is, the ejection (ejection) of the liquid and the stop time are appropriately changed so that the ejection amount of the liquid is changed to a desired amount. Can be adjusted in thickness and amount of coating. That is, in the intermittent (pulse-like) application of the liquid shown in FIG. 4, the liquid ejection time (the liquid ON time) is all the same (30 ms), but according to the change of the inner diameter of the cone 2 in the vertical axis AX direction. In order to more accurately change the application amount (application thickness), the ejection time of the liquid may be changed together with the change in the pattern air PA. For example, the liquid ejection time is set so as to gradually increase from the lower (top) 2c side of the cone 2 to the upper open surface 2b side.
[0039]
FIG. 7 shows a different embodiment, and explains an application method in a case where the hollow three-dimensional object to be coated is a cylindrical body. The coating apparatus shown in FIG. 1 can also be used in this coating method. In the case of application to the inner surface of the cylindrical body 25, the inner surface 25a of the cylindrical body 25 does not change in inner diameter along the vertical axis AX as in the case of applying to the cone 2 of the object to be coated in the above embodiment. In addition, as shown in FIG. 7, the ejection pressure of the pattern air PA is changed so that the ejection angle of the nozzle 10 is changed according to the difference in the application portion of the inner surface 25a in the vertical axis AX direction to change the width of the application ejection pattern ISP. Is changed intermittently.
[0040]
For example, the pattern air ejection pressure is set by the air regulators R1, R2,... So that the ejection angle of the liquid of the actual application pattern A1 at the bottom of the inner surface 25a is θ1 and the width of the ejection pattern ISP1 is the smallest. When the uppermost coating pattern A3 is obtained, the jetting angle of the liquid is set to the largest jetting angle θ3, and the jetting pattern ISP3 is set to the largest width. When the intermediate coating pattern A2 is obtained, the jetting angle of the liquid is set. And the ejection pressure of the pattern air PA is intermittently changed so that the width of the ejection pattern ISP2 is set to the width of the intermediate size, with the intermediate ejection angle θ2.
[0041]
Although FIG. 7 illustrates the case where the coating is applied to three application portions in the height direction for the sake of explanation, it is needless to say that the coating is applied in a uniform film thickness over the inner surface 25a of the cylindrical body 25. The ejection pressure θ of each pattern air PA is set by a number of air regulators R 1, R 2,... So as to obtain the ejection angle θ for each application portion and obtain the width of each ejection pattern ISP corresponding thereto.
[0042]
As the compressed gas (pattern gas) for atomizing the liquid to form a coating pattern, compressed air is usually used as shown in the above embodiment, but it may be selectively used depending on the properties and properties of the liquid to be discharged. For example, when the liquid is flammable, nitrogen gas or carbon dioxide gas can be used.
[0043]
In the above embodiment, the swirl nozzle 10 is used as the air spray nozzle, and the application (spray) pattern shape is a hollow frustoconical or donut-shaped pattern. However, the swirl nozzle type is used as the air spray nozzle. Is not used, there may be a solid frusto-conical (solid frustoconical) pattern.
[0044]
In the above embodiments, the case where a so-called air spray nozzle of a type in which a liquid is atomized with a compressed gas is used as the spray nozzle, but a spray nozzle that atomizes with the pressure of the liquid or the melt itself is used as the spray nozzle. In this case, the application of the liquid or the melt to the inner surface of the hollow three-dimensional object to be coated is performed by changing the application pattern width of the liquid or the melt by intermittently changing the ejection pressure of the liquid or the melt. It is carried out by
[0045]
That is, an airless spray nozzle is used as the spray nozzle, and a change in the width of the application circular pattern of the liquid or the melt is adjusted by changing the gap adjustment changing means between the needle and the sheet of the spray gun having the nozzle attached to the tip to the needle. The gap is set and changed by the timer by the gap adjustment changing means so that the gap is sequentially and intermittently changed in accordance with the width of the coating circular pattern substantially corresponding to the width of the inner surface shape of the cone-shaped coating object in the axial direction. This is performed by intermittently changing the ejection pressure of the liquid or the melt so that the liquid or the melt is applied to the inner surface of the hollow three-dimensional object to be coated such as a cone.
[0046]
More specifically, although not shown, the gap adjustment changing means is provided with a micro-adjustment for adjusting the needle pull-out at the rear of the spray gun main body and a mini-cylinder at the rear of the micro-adjustment. By connecting a type of electromagnetic valve for stopping the supply of compressed gas, the position of the micro-adjust is changed in several steps by changing the position of the mini-cylinder by the several types of electromagnetic valves, and the needle is changed. Change the gap between the sheets. This changes the pre-nozzle pressure of the liquid or melt to change the width of the jet pattern (eg, circular donut shape). By such a coating method, it is possible to form a uniform coating film on the inner surface of the cone-shaped workpiece by instantly changing the ejection pattern width on the workpiece without adjusting the position of the spray gun and the workpiece. it can.
[0047]
In the above embodiment, the cone 2 and the cylindrical body 25 are taken up as the objects to be coated. The same can be applied to the application to the substrate.
[0048]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to apply a liquid or a melt to a uniform coating thickness on the inner surface of a hollow three-dimensional object to be coated such as a hollow cone or a cylinder. It has an excellent effect of being able to.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an overall system diagram of a liquid coating apparatus used for performing a liquid coating method using an air spray nozzle according to the present invention.
FIG. 2 is a schematic vertical sectional view of a main part of a spray gun including an air spray nozzle in FIG.
FIG. 3 is a bottom view of the air spray nozzle of FIG. 2;
FIG. 4 is a chart showing an intermittent spray timing of a liquid and a compressed gas (pattern air) according to the present invention and a change in a magnitude of a compressed gas supply pressure, that is, a change in a pattern width, which is changed according to the timing. It is an embodiment.
FIG. 5A is an explanatory view showing an embodiment of a procedure for applying a liquid to the inner surface of a cone (object to be coated) according to the present invention, and FIG. 5B is a longitudinal sectional view showing a state of applying a liquid to the inner surface of the cone. is there.
FIG. 6 is a graph showing a relationship between a pattern air (atomized air) ejection pressure and a coating pattern width according to the present invention, which is obtained by an experiment.
FIG. 7 is a schematic longitudinal sectional view illustrating a different embodiment of the present invention and illustrating a coating method when the hollow three-dimensionally-shaped object to be coated is a cylindrical body.
FIG. 8 is a schematic perspective view of a conventional applicator for applying a liquid to the inner surface of a cone-shaped object to be coated.
9 (A) is a longitudinal sectional view showing a procedure for applying a liquid to the inner surface of the cone-shaped coating object in FIG. 8, and FIG. 9 (B) is a longitudinal sectional view showing a state of application of the liquid on the inner surface of the cone.
[Explanation of symbols]
1 spray gun
2 cones (substrate)
2a Cone inner surface (coated surface)
2b Open surface (open surface)
2c Sharp top
AX vertical axis
3 liquid (coating liquid, chocolate material)
5 Air spray gun
6 Needle (valve)
7 Seat (valve seat)
10 Air spray nozzle (swirl nozzle)
11 Liquid passage
11a Liquid spout
12. Gas passage (pattern air passage)
12a Gas outlet (pattern air outlet)
PA pattern air
18 Pressure pot
19 Liquid supply pipe
20 Compressed gas (pattern air) supply pipe
20-1, 20-2, ... Pattern air branch pipe
R1, R2, ... Air regulator
SOL1, SOL2, ... solenoid valve (solenoid valve)
21 pulse timer
22 PLC
FW Liquid particle swirl flow
ISP eruption pattern
W Coating pattern width
25 Cylindrical body (object to be coated)
25a Inner surface of cylinder (coated surface)
θ Spray angle of liquid (spray)

Claims (6)

一端が開放面を有した中空立体形状の被塗物にスプレイノズルから液体又は溶融体を該開放面側から該被塗物内面に向けて噴出し該被塗物の内面に塗布する中空立体形状被塗物の内面への液体又は溶融体の塗布方法であって、該スプレイノズルから噴出される液体又は溶融体の塗布パターン幅を該中空立体形状被塗物の軸線方向の内面形状幅にほぼ見合うように間欠的に変化させながら該中空立体形状被塗物の内面に液体又は溶融体を塗布することを特徴とする中空立体形状被塗物の内面への液体又は溶融体の塗布方法。A hollow three-dimensional shape in which a liquid or a melt is sprayed from a spray nozzle toward an inner surface of the object to be coated from a spray nozzle to an object having a hollow three-dimensional shape having an open surface at one end. A method for applying a liquid or a melt to an inner surface of an object to be coated, wherein an application pattern width of a liquid or a melt ejected from the spray nozzle is substantially equal to an inner surface shape width in an axial direction of the hollow three-dimensional object. A method for applying a liquid or a melt to the inner surface of a hollow three-dimensional object to be coated, wherein the liquid or the melt is applied to the inner surface of the hollow three-dimensional object to be coated while intermittently changing to match. スプレイノズルとして圧縮気体で液体又は溶融体を霧化するスプレイノズルを用い、該液体又は溶融体の塗布パターン幅の変化を該圧縮気体の噴出圧、及び又は、液体又は溶融体の噴出流量を間欠的に変化させて行わせることを特徴とする請求項1に記載の中空立体形状被塗物の内面への液体又は溶融体の塗布方法。As a spray nozzle, a spray nozzle for atomizing a liquid or a melt with a compressed gas is used. The method for applying a liquid or a melt to the inner surface of a hollow three-dimensionally-shaped object to be coated according to claim 1, wherein the method is performed by changing the shape of the object. スプレイノズルとして液体又は溶融体自体の圧力で霧化するスプレイノズルを用い、該液体又は溶融体の塗布パターン幅の変化を液体又は溶融体の噴出圧力を間欠的に変化させて行わせることを特徴とする請求項1に記載の中空立体形状被塗物の内面への液体又は溶融体の塗布方法。A spray nozzle that atomizes with the pressure of the liquid or the melt itself is used as the spray nozzle, and the width of the application pattern of the liquid or the melt is changed by intermittently changing the ejection pressure of the liquid or the melt. The method for applying a liquid or a melt to the inner surface of the hollow three-dimensionally shaped article to be coated according to claim 1. 該立体形状被塗物がコーン状被塗物であり、該スプレイノズルから噴出される液体又は溶融体の塗布パターン幅を該コーン状被塗物の軸線方向に沿って変化する内面形状幅にほぼ応じた円形幅に間欠的に変化させながら該コーン状被塗物の内面に液体又は溶融体を塗布することを特徴とする請求項1乃至3に記載の中空立体形状被塗物の内面への液体又は溶融体の塗布方法。The three-dimensional object is a cone-shaped object, and the width of the application pattern of the liquid or the melt ejected from the spray nozzle is substantially equal to the inner surface width changing along the axial direction of the cone-shaped object. A liquid or a melt is applied to the inner surface of the cone-shaped object to be coated while intermittently changing the circular width to a corresponding circular width. Liquid or melt application method. 該コーン状被塗物の該開放面を上位にし該コーン状被塗物の軸線方向を縦方向に向けると共に該開放面の上部にスプレイノズルを配置し、該液体又は溶融体を該ノズルから下方へ向けて該コーン状被塗物の該開放面を通して内面に向けて噴出させるようにし、該コーンの下方の鋭角頂部から順次上方の開放面に向けて円形パターン幅が大きくなるように円形塗布パターン幅を間欠的に変化させて塗布することを特徴とする請求項4に記載の中空立体形状被塗物の内面への液体又は溶融体の塗布方法。The open surface of the cone-shaped object is placed on the upper side, the axial direction of the cone-shaped object is oriented in the vertical direction, and a spray nozzle is arranged above the open surface, and the liquid or the melt is moved downward from the nozzle. Toward the inner surface through the open surface of the cone-shaped object to be coated, and a circular coating pattern such that the circular pattern width is gradually increased from the lower acute angle top of the cone toward the upper open surface. The method for applying a liquid or a melt to the inner surface of a hollow three-dimensionally-shaped object to be coated according to claim 4, wherein the coating is performed while changing the width intermittently. 該コーン状被塗物がアイスクリーム用コーンであり、該液体又は溶融体がチョコレート材又はキャラメル材であることを特徴とする請求項5に記載の中空立体形状被塗物の内面への液体又は溶融体の塗布方法。The liquid or melt applied to the inner surface of the hollow three-dimensionally coated object according to claim 5, wherein the cone-shaped object is an ice cream cone, and the liquid or the melt is a chocolate material or a caramel material. How to apply the melt.
JP2003126035A 2003-03-25 2003-03-25 Method for applying liquid or melt to inner surface of hollow three-dimensional object to be coated Expired - Lifetime JP4174760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126035A JP4174760B2 (en) 2003-03-25 2003-03-25 Method for applying liquid or melt to inner surface of hollow three-dimensional object to be coated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126035A JP4174760B2 (en) 2003-03-25 2003-03-25 Method for applying liquid or melt to inner surface of hollow three-dimensional object to be coated

Publications (2)

Publication Number Publication Date
JP2004290947A true JP2004290947A (en) 2004-10-21
JP4174760B2 JP4174760B2 (en) 2008-11-05

Family

ID=33410261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126035A Expired - Lifetime JP4174760B2 (en) 2003-03-25 2003-03-25 Method for applying liquid or melt to inner surface of hollow three-dimensional object to be coated

Country Status (1)

Country Link
JP (1) JP4174760B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094575A1 (en) * 2005-03-08 2006-09-14 Nestec S.A. Method and apparatus for decorating confectioneries
JP2008544836A (en) * 2005-05-12 2008-12-11 スプレイング システムズ カンパニー Injection system for gradual injection of non-rectangular objects
CN109730108A (en) * 2019-03-15 2019-05-10 苏州永德胜模具科技有限公司 A kind of waffle shell lining spray-coating device
JP2019130449A (en) * 2018-01-30 2019-08-08 ノードソン コーポレーションNordson Corporation Coating applicator and application method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094575A1 (en) * 2005-03-08 2006-09-14 Nestec S.A. Method and apparatus for decorating confectioneries
JP2008544836A (en) * 2005-05-12 2008-12-11 スプレイング システムズ カンパニー Injection system for gradual injection of non-rectangular objects
JP2019130449A (en) * 2018-01-30 2019-08-08 ノードソン コーポレーションNordson Corporation Coating applicator and application method
JP7273458B2 (en) 2018-01-30 2023-05-15 ノードソン コーポレーション Coating device and coating method
CN109730108A (en) * 2019-03-15 2019-05-10 苏州永德胜模具科技有限公司 A kind of waffle shell lining spray-coating device
CN109730108B (en) * 2019-03-15 2024-02-13 苏州永德胜模具科技有限公司 Wafer shell inlayer spraying device

Also Published As

Publication number Publication date
JP4174760B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
US4911956A (en) Apparatus for spraying droplets of hot melt adhesive
CA1329065C (en) Method and apparatus for dispensing droplets of molten thermoplastic adhesive
EP1885910B1 (en) Spraying system for progressive spraying on non-rectangular objects
EP0127303B1 (en) Production of a directed spray by atomising molten metal
US8113445B2 (en) Spray gun having air cap with unique spray shaping features
CA2700566C (en) Ultrasonic atomizing nozzle with variable fan-spray feature
JP2004089976A (en) Method for spraying liquid
JP2992760B2 (en) Method for deflecting and distributing liquid or melt flowing out of a nozzle hole by gas jet from surrounding area
JPS59266B2 (en) Atomized particle atomization device
CZ20003724A3 (en) Spray nozzle assembly
US6170760B1 (en) Compact spray valve
JP4174760B2 (en) Method for applying liquid or melt to inner surface of hollow three-dimensional object to be coated
EP0359943A2 (en) Apparatus for spraying hot melt adhesives
JPS61161175A (en) Spraying method of two fluids
JP6779443B2 (en) How to make a fuel cell
TWI792883B (en) Fluid control structure of dispensing apparatus
EP0239395A2 (en) Ultrasonic atomizing apparatus
JPH09136053A (en) Method for coating hot melt adhesive and nozzle apparatus of apparatus for coating hot melt adhesive
WO2002096570A1 (en) Adhesive applicator apparatus
JPH0330853A (en) Spray apparatus
JPH06142571A (en) Method and apparatus for cleaning nozzle
JP2020022970A (en) Method of jetting fluid and method of forming fluid film
JPH06190329A (en) Method for spraying
JPH07299389A (en) Control of deflection of fluid or granule stream upon distribution
JPH08281156A (en) Manufacture of coated film formed plate body and sprayer of solution for forming coated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4174760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term