JP2004290779A - Sludge treatment method - Google Patents

Sludge treatment method Download PDF

Info

Publication number
JP2004290779A
JP2004290779A JP2003085004A JP2003085004A JP2004290779A JP 2004290779 A JP2004290779 A JP 2004290779A JP 2003085004 A JP2003085004 A JP 2003085004A JP 2003085004 A JP2003085004 A JP 2003085004A JP 2004290779 A JP2004290779 A JP 2004290779A
Authority
JP
Japan
Prior art keywords
sludge
tank
solubilized
heat exchange
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003085004A
Other languages
Japanese (ja)
Other versions
JP4199032B2 (en
Inventor
Yasuyuki Okuno
泰幸 奥野
Yoshio Nakayama
善雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP2003085004A priority Critical patent/JP4199032B2/en
Publication of JP2004290779A publication Critical patent/JP2004290779A/en
Application granted granted Critical
Publication of JP4199032B2 publication Critical patent/JP4199032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge treatment method capable of suppressing the quantity of heat input for heating sludge by effectively utilizing the heat of a sludge solubilizing system to reduce a running cost. <P>SOLUTION: In the sludge treatment method for treating organic sewage using microbial action in a biological treatment tank and solubilizing excess sludge produced by biological treatment to return the solubilized sludge to the biological treatment tank, the solubilized sludge B heated by solubilization treatment is stored in the rear stage of a sludge solubilizing tank 6 and a heat exchange tank 3 for taking out heat from the solubilized sludge B is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、汚泥の処理方法に関し、特に、汚泥可溶化システムの熱を有効に利用することにより、汚泥を加温するための投入熱量を抑え、ランニングコストを低減することができる汚泥の処理方法に関するものである。
【0002】
【従来の技術】
現在、下水処理場における余剰汚泥発生量の増加が深刻な問題となっている。この問題を解決するため、有機性汚水を生物処理槽で生物学的に処理するとともに、生物処理により発生した余剰汚泥を酸と加熱により可溶化し、この可溶化した汚泥を生物処理槽に返送するようにした汚泥の処理方法が開発されている。
【0003】
【発明が解決しようとする課題】
ところで、この汚泥の処理方法では、原汚泥を約60〜80℃まで加温する必要があるが、上記従来の汚泥の処理方法では、原汚泥の加温を全て電気ヒータ等に依存していたため、可溶化システム全体のランニングコストの大半が原汚泥の加温のための費用で占められ、処理費用が高いという問題があった。
【0004】
本発明は、上記従来の汚泥の処理方法が有する問題点に鑑み、汚泥可溶化システムの熱を有効に利用することにより、汚泥を加温するための投入熱量を抑え、ランニングコストを低減することができる汚泥の処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明の汚泥の処理方法は、有機性汚水を生物処理槽で微生物の作用により処理するとともに、生物処理により発生した余剰汚泥を可溶化し、この可溶化した汚泥を生物処理槽に返送するようにした汚泥の処理方法において、汚泥可溶化槽の後段に、可溶化処理で加熱された可溶化汚泥を貯留し、該可溶化汚泥から熱を取り出す熱交換槽を設けることを特徴とする。
【0006】
この汚泥の処理方法は、汚泥可溶化槽の後段に、可溶化処理で加熱された可溶化汚泥を貯留し、該可溶化汚泥から熱を取り出す熱交換槽を設けることから、原汚泥を加熱するために必要な熱エネルギーを大幅に削減し、酸加熱法による汚泥可溶化システムのランニングコストを大きく低減するとともに、可溶化汚泥を同時に冷却し、酸性の高温流体による後段の沈殿槽等の腐食を抑制することができる。
【0007】
また、熱交換槽に、汚泥濃縮槽からの原汚泥を熱媒体として導入する熱交換器を配設し、該熱交換器により加温された原汚泥を汚泥可溶化槽に導入することができる。
【0008】
これにより、汚泥濃縮槽からの原汚泥を予熱して、原汚泥を加熱するために必要な熱エネルギーを大幅に削減し、酸加熱法による汚泥可溶化システムのランニングコストを大きく低減するとともに、可溶化汚泥を同時に冷却し、酸性の高温流体による後段の沈殿槽等の腐食を抑制することができる。
【0009】
また、熱交換槽に、可溶化汚泥を攪拌する攪拌機を設置することができる。
【0010】
これにより、熱交換槽内部及び熱交換器表面への可溶化汚泥の付着や堆積を防止するとともに、槽内温度を均一化して熱交換率を向上させることができる。
【0011】
【発明の実施の形態】
以下、本発明の汚泥の処理方法の実施の形態を図面に基づいて説明する。
【0012】
図1に、本発明の汚泥の処理方法の1実施例を示す。
この汚泥の処理方法は、有機性汚水を生物処理槽(図示省略)で微生物の作用により処理するとともに、生物処理により発生した余剰汚泥を可溶化し、この可溶化した汚泥を生物処理槽に返送するもので、汚泥可溶化槽6の後段に、可溶化処理で加熱された可溶化汚泥Bを貯留し、該可溶化汚泥Bから熱を取り出す熱交換槽3を設けることを特徴とする。
熱交換槽3には、汚泥濃縮槽1からの原汚泥Aを熱媒体として導入する熱交換器4が配設されており、該熱交換器4により加温された原汚泥Aは、後段のヒータ5によりさらに加温した後、汚泥可溶化槽6に導入される。
また、熱交換槽3には、可溶化汚泥Bを攪拌する攪拌機8が設置されており、これにより、熱交換槽3内部及び熱交換器4表面への可溶化汚泥Bの付着や堆積を防止するとともに、槽内温度を均一化して熱交換率を向上させるようにしている。
【0013】
酸加熱法による汚泥の可溶化方法及び汚泥中のリンの除去方法においては、汚泥可溶化槽6では原汚泥を約80℃まで、また、特にリンの除去を必要とせず汚泥の可溶化のみを行う場合でも約60℃まで加温する必要があり、従来は電気ヒータ等により原汚泥を加温している。
そこで、原汚泥Aが汚泥可溶化槽6に流入する前段に熱交換器4を内蔵した熱交換槽3を設け、汚泥可溶化槽6より流出してくる高温の可溶化汚泥Bと原汚泥Aの熱交換を行うことで、熱を無駄に系外に排出することなく原汚泥Aの加温に利用することができる。
【0014】
ここで、汚泥可溶化槽6の後段に設置する熱交換槽3には投げ込み式の熱交換器4を用い、熱交換器4内部に原汚泥Aをポンプ2により流入させ、熱交換器4を設置した熱交換槽3内に汚泥可溶化槽6より流出した可溶化汚泥Bを満たす。汚泥可溶化槽6より流出した直後の可溶化汚泥Bの温度は約60〜80℃であり、さらに酸が添加されておりpH2以下であるため腐食性が強い。
そこで、熱交換槽3内部は高温の酸性流体に対する耐食性の高いフッ素樹脂やFRP等で防食化工を施したり、チタン等耐食性の強い素材を使用する。また、熱交換器4にもチタン等の耐食性に優れた材質のものを使用する。
【0015】
酸加熱法による汚泥可溶化システムでは、腐食を防ぐため、汚泥可溶化槽6の後段に設置される沈殿槽等の材質としてステンレスを使用し、さらに防食塗装等を施す必要がある。
この場合、45℃以下の低温時にはpH2以下の酸性流体に対してもその耐食性は強いが、流体温度が約55℃以上の高温となるとその耐食性能は急激に低下する。
また、高温の酸性流体に対する耐食性の強いフッ素樹脂、FRP等は複雑な構造のものに施工するのには適さない場合があり、さらに高価であることから、沈殿槽等の腐食防止のため、汚泥可溶化槽6から流出した可溶化汚泥Bを45℃以下にまで冷却することが望ましい。
そこで、本発明のように熱交換槽3を用いることにより、原汚泥Aの温度を上昇させるだけでなく、同時に可溶化汚泥Bを冷却することができ、これにより、酸性の高温流体による沈殿槽等の腐食を抑制することができる。
【0016】
また、熱交換槽3内に攪拌機8を設置することにより、可溶化汚泥B中に含まれる固形物が熱交換槽3や熱交換器4の表面に堆積することを防止し、熱移動の妨げとなることなく熱交換を行うことができる。
また、攪拌機8による物質拡散により、熱移動が促進され、熱交換効率が向上する。さらに、攪拌機8により熱交換槽3を完全混合槽とし、固形物の堆積を防ぐことができるので、堆積した固形物が後段の配管9に詰まることもない。
【0017】
(実施例)
重力濃縮槽1等で一定期間濃縮された原汚泥Aは、送泥ポンプ2により熱交換槽3内部に設置されたパイプ型の熱交換器4内を通過する際に、熱交換槽3内に満たされた約60℃〜80℃の可溶化汚泥Bと熱交換することにより30〜50℃に加温される。
熱交換器4を通過した原汚泥Aは、ヒータ5により約60〜80℃まで加温され汚泥可溶化槽6に流入する。
【0018】
汚泥可溶化槽6では硫酸、塩酸、硝酸等の酸類Cを原汚泥に添加することで原汚泥のpHを2以下とし、槽内温度を約60〜80℃に保持して、1〜4時間酸加熱処理する。
酸加熱処理された可溶化汚泥Bは、汚泥可溶化槽6より越流し、配管7を通過して熱交換槽3に自由流下する。なお、可溶化汚泥Bの温度低下を防ぐため、配管7は保温材により断熱する。
【0019】
熱交換槽3に流入した可溶化汚泥Bは、熱交換槽3内に設置された攪拌機8によって攪拌され、可溶化汚泥B中の固形物が熱交換槽3や熱交換器4の表面に付着・堆積することが防止され、熱交換器4内を流れる原汚泥Aと熱交換される。また、攪拌機8による物質拡散効果により、熱交換器4表面に接する可溶化汚泥Bは、常に更新され熱交換効率は向上する。
なお、腐食防止のため、熱交換槽3内面はフッ素樹脂やFRP等で防食加工を施すか、又はチタン等耐食性の強い素材を使用する。また、熱交換槽3の外面は、断熱材で覆うなどして外部への放熱を低減するのが望ましい。
【0020】
攪拌機8を構成する攪拌軸81及び攪拌羽82についても、熱交換槽3内面と同様に腐食防止のためフッ素樹脂やFRP等で防食加工を施すか、又はチタン等耐食性の強い素材を使用する。
また、汚泥可溶化槽6からの可溶化汚泥の越流が連続的に行われない運転方法の場合は、熱交換槽3に設置した攪拌機8も可溶化汚泥の越流に合わせて断続的に運転してもよい。
【0021】
汚泥可溶化槽6から熱交換槽3に流入した直後の可溶化汚泥Bの温度は約60〜80℃であるが、熱交換槽3の後段には沈殿槽等が設置されている。
この沈殿槽等の腐食を考慮する場合には、熱交換槽3から自由流下する可溶化汚泥Bの温度が約45℃以下にまで低下するように、熱交換槽3の容積を決定する。
また、熱交換槽3を攪拌機8により攪拌することにより、可溶化汚泥B中の固形物が熱交換槽3の内壁や熱交換器4の表面に付着したり堆積することはほとんどないが、配管9内を自由流下により閉塞させることなく通過させるために、100A以上の配管を使用することが望ましい。
【0022】
熱交換槽3から流出した可溶化汚泥Bは、固液分離を目的とした沈殿槽に流入させてリン除去を行うか、又はリン除去を行わない場合は、水処理系のポンプ槽や曝気槽等に返送する。
その際、沈殿槽やポンプ槽等のpHの低下を防ぐため、アルカリ剤を添加して中和処理するのが望ましい。
また、曝気槽等で容量の十分大きいものに返送する場合についてはそのまま返送することもでき、さらに、濃縮機を用いて可溶化汚泥を濃縮することにより、曝気槽等への返送量を減らし、分離水を汚泥可溶化槽に戻すことも可能である。
【0023】
以上、本発明の実施例を説明したが、本発明の汚泥の処理方法は、この実施例の記載に限定されるものではなく、その趣旨を逸脱しない範囲において適宜に変更することが可能である。
【0024】
【発明の効果】
本発明の汚泥の処理方法によれば、汚泥可溶化槽の後段に、可溶化処理で加熱された可溶化汚泥を貯留し、該可溶化汚泥から熱を取り出す熱交換槽を設けることから、原汚泥を加熱するために必要な熱エネルギーを大幅に削減し、酸加熱法による汚泥可溶化システムのランニングコストを大きく低減するとともに、可溶化汚泥を同時に冷却し、酸性の高温流体による後段の沈殿槽等の腐食を抑制することができる。
【0025】
また、熱交換槽に、汚泥濃縮槽からの原汚泥を熱媒体として導入する熱交換器を配設し、該熱交換器により加温された原汚泥を汚泥可溶化槽に導入することにより、汚泥濃縮槽からの原汚泥を予熱して、原汚泥を加熱するために必要な熱エネルギーを大幅に削減し、酸加熱法による汚泥可溶化システムのランニングコストを大きく低減するとともに、可溶化汚泥を同時に冷却し、酸性の高温流体による後段の沈殿槽等の腐食を抑制することができる。
【0026】
また、熱交換槽に、可溶化汚泥を攪拌する攪拌機を設置することにより、熱交換槽内部及び熱交換器表面への可溶化汚泥の付着や堆積を防止するとともに、槽内温度を均一化して熱交換率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の汚泥の処理方法の1実施例を示すフロー図である。
【符号の説明】
1 濃縮槽
2 ポンプ
3 熱交換槽
4 熱交換器
5 ヒータ
6 汚泥可溶化槽
7 配管
8 攪拌機
81 攪拌軸
82 攪拌羽
9 配管
A 原汚泥
B 可溶化汚泥
C 酸類
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating sludge, and more particularly, to a method for treating sludge which can reduce the amount of heat input for heating sludge and reduce running costs by effectively utilizing the heat of a sludge solubilization system. It is about.
[0002]
[Prior art]
At present, the increase of surplus sludge generation in sewage treatment plants has become a serious problem. To solve this problem, organic wastewater is biologically treated in a biological treatment tank, and excess sludge generated by biological treatment is solubilized by acid and heating, and the solubilized sludge is returned to the biological treatment tank. Sludge treatment methods have been developed.
[0003]
[Problems to be solved by the invention]
By the way, in this sludge treatment method, it is necessary to heat the raw sludge to about 60 to 80 ° C. However, in the above-described conventional sludge treatment method, the heating of the raw sludge all depends on an electric heater or the like. However, most of the running cost of the entire solubilization system is occupied by the cost for heating the raw sludge, and there is a problem that the processing cost is high.
[0004]
The present invention has been made in view of the above-mentioned problems of the conventional sludge treatment method, and by effectively utilizing the heat of the sludge solubilization system, reduces the amount of heat input for heating the sludge, thereby reducing running costs. It is an object of the present invention to provide a method for treating sludge that can be performed.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the sludge treatment method of the present invention treats organic wastewater by the action of microorganisms in a biological treatment tank, solubilizes excess sludge generated by biological treatment, and removes the solubilized sludge. In the method for treating sludge that is returned to the biological treatment tank, a heat exchange tank that stores the solubilized sludge heated in the solubilization treatment and extracts heat from the solubilized sludge is provided at a subsequent stage of the sludge solubilization tank. It is characterized by the following.
[0006]
This method for treating sludge heats raw sludge by providing a heat exchange tank for storing the solubilized sludge heated in the solubilization treatment and extracting heat from the solubilized sludge at the latter stage of the sludge solubilization tank. The thermal energy required for this purpose is greatly reduced, the running cost of the sludge solubilization system by the acid heating method is greatly reduced, and the solubilized sludge is simultaneously cooled to prevent corrosion of the subsequent settling tank etc. due to acidic high-temperature fluid. Can be suppressed.
[0007]
Further, a heat exchanger for introducing the raw sludge from the sludge thickening tank as a heat medium is disposed in the heat exchange tank, and the raw sludge heated by the heat exchanger can be introduced into the sludge solubilization tank. .
[0008]
As a result, the raw sludge from the sludge thickening tank is preheated, the thermal energy required to heat the raw sludge is greatly reduced, the running cost of the sludge solubilization system by the acid heating method is greatly reduced, and The solubilized sludge can be cooled at the same time, and the corrosion of the subsequent settling tank and the like by the acidic high-temperature fluid can be suppressed.
[0009]
Further, a stirrer for stirring the solubilized sludge can be installed in the heat exchange tank.
[0010]
Thereby, while adhering and accumulating solubilized sludge to the inside of the heat exchange tank and the surface of the heat exchanger can be prevented, the temperature in the tank can be made uniform and the heat exchange rate can be improved.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a sludge treatment method of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 shows an embodiment of the sludge treatment method of the present invention.
This sludge treatment method treats organic wastewater in a biological treatment tank (not shown) by the action of microorganisms, solubilizes excess sludge generated by biological treatment, and returns the solubilized sludge to the biological treatment tank. A heat exchange tank 3 for storing the solubilized sludge B heated in the solubilization treatment and extracting heat from the solubilized sludge B is provided downstream of the sludge solubilization tank 6.
The heat exchange tank 3 is provided with a heat exchanger 4 for introducing the raw sludge A from the sludge concentration tank 1 as a heat medium, and the raw sludge A heated by the heat exchanger 4 is disposed in a subsequent stage. After being further heated by the heater 5, it is introduced into the sludge solubilization tank 6.
Further, the heat exchange tank 3 is provided with a stirrer 8 for stirring the solubilized sludge B, thereby preventing the solubilized sludge B from adhering or accumulating on the inside of the heat exchange tank 3 and the surface of the heat exchanger 4. In addition, the temperature inside the tank is made uniform to improve the heat exchange rate.
[0013]
In the method of solubilizing sludge by the acid heating method and the method of removing phosphorus from sludge, the sludge solubilization tank 6 cools raw sludge up to about 80 ° C., and only solubilizes sludge without the need for phosphorus removal. In this case, it is necessary to heat the sludge to about 60 ° C. Conventionally, the raw sludge is heated by an electric heater or the like.
Therefore, before the raw sludge A flows into the sludge solubilization tank 6, a heat exchange tank 3 having a built-in heat exchanger 4 is provided, and the high-temperature solubilized sludge B and raw sludge A flowing out of the sludge solubilization tank 6 are provided. By performing the heat exchange, the heat can be used for heating the raw sludge A without wastefully discharging the heat to the outside of the system.
[0014]
Here, a throw-in type heat exchanger 4 is used for the heat exchange tank 3 installed after the sludge solubilization tank 6, and the raw sludge A flows into the heat exchanger 4 by the pump 2, and the heat exchanger 4 is The installed heat exchange tank 3 is filled with the solubilized sludge B flowing out of the sludge solubilization tank 6. The temperature of the solubilized sludge B immediately after flowing out of the sludge solubilization tank 6 is about 60 to 80 ° C., and since acid is added and the pH is 2 or less, corrosiveness is strong.
Therefore, the inside of the heat exchange tank 3 is subjected to anticorrosion treatment using a fluororesin or FRP having high corrosion resistance to a high-temperature acidic fluid, or a material having high corrosion resistance such as titanium is used. The heat exchanger 4 is also made of a material having excellent corrosion resistance, such as titanium.
[0015]
In the sludge solubilization system based on the acid heating method, in order to prevent corrosion, it is necessary to use stainless steel as a material for a sedimentation tank and the like installed at the subsequent stage of the sludge solubilization tank 6 and to apply anticorrosion coating and the like.
In this case, at a low temperature of 45 ° C. or less, the corrosion resistance is strong even with an acidic fluid having a pH of 2 or less, but when the fluid temperature becomes a high temperature of about 55 ° C. or more, the corrosion resistance rapidly decreases.
In addition, fluorine resin, FRP, etc., which have high corrosion resistance to high-temperature acidic fluids, may not be suitable for construction of complicated structures, and are more expensive. It is desirable to cool the solubilized sludge B flowing out of the solubilization tank 6 to 45 ° C. or lower.
Therefore, by using the heat exchange tank 3 as in the present invention, it is possible not only to raise the temperature of the raw sludge A, but also to cool the solubilized sludge B at the same time. Etc. can be suppressed.
[0016]
Further, by installing the stirrer 8 in the heat exchange tank 3, solid substances contained in the solubilized sludge B are prevented from depositing on the surfaces of the heat exchange tank 3 and the heat exchanger 4, and heat transfer is prevented. The heat exchange can be performed without causing the heat exchange.
In addition, heat transfer is promoted by the substance diffusion by the stirrer 8, and the heat exchange efficiency is improved. Furthermore, since the heat exchange tank 3 is completely mixed by the stirrer 8 to prevent the accumulation of solid matter, the accumulated solid matter does not clog the pipe 9 in the subsequent stage.
[0017]
(Example)
The raw sludge A concentrated for a certain period of time in the gravity concentration tank 1 or the like passes through the pipe type heat exchanger 4 installed in the heat exchange tank 3 by the mud pump 2 and enters the heat exchange tank 3. The mixture is heated to 30 to 50 ° C. by heat exchange with the filled solubilized sludge B at about 60 to 80 ° C.
The raw sludge A that has passed through the heat exchanger 4 is heated to about 60 to 80 ° C. by the heater 5 and flows into the sludge solubilization tank 6.
[0018]
In the sludge solubilization tank 6, the pH of the raw sludge is adjusted to 2 or less by adding acids C such as sulfuric acid, hydrochloric acid, and nitric acid to the raw sludge, and the temperature in the tank is maintained at about 60 to 80 ° C for 1 to 4 hours. Heat treatment with acid.
The acid-treated solubilized sludge B overflows the sludge solubilization tank 6, passes through the pipe 7, and freely flows down to the heat exchange tank 3. In order to prevent the temperature of the solubilized sludge B from lowering, the pipe 7 is insulated by a heat insulating material.
[0019]
The solubilized sludge B flowing into the heat exchange tank 3 is stirred by a stirrer 8 installed in the heat exchange tank 3, and solids in the solubilized sludge B adhere to the surfaces of the heat exchange tank 3 and the heat exchanger 4. -Accumulation is prevented, and heat exchange is performed with the raw sludge A flowing in the heat exchanger 4. Also, due to the substance diffusion effect of the stirrer 8, the solubilized sludge B in contact with the surface of the heat exchanger 4 is constantly renewed, and the heat exchange efficiency is improved.
In order to prevent corrosion, the inner surface of the heat exchange tank 3 is subjected to anticorrosion processing using a fluororesin or FRP, or a material having high corrosion resistance such as titanium is used. Further, it is desirable to reduce the heat radiation to the outside by covering the outer surface of the heat exchange tank 3 with a heat insulating material or the like.
[0020]
As for the stirring shaft 81 and the stirring blades 82 constituting the stirrer 8, similarly to the inner surface of the heat exchange tank 3, anticorrosion processing is performed with a fluorine resin or FRP for corrosion prevention, or a material having high corrosion resistance such as titanium is used.
In the case of an operation method in which the overflow of the solubilized sludge from the sludge solubilization tank 6 is not performed continuously, the stirrer 8 installed in the heat exchange tank 3 also intermittently adjusts to the overflow of the solubilized sludge. You may drive.
[0021]
The temperature of the solubilized sludge B immediately after flowing into the heat exchange tank 3 from the sludge solubilization tank 6 is about 60 to 80 ° C., but a sedimentation tank or the like is installed at a subsequent stage of the heat exchange tank 3.
When the corrosion of the sedimentation tank and the like is taken into consideration, the volume of the heat exchange tank 3 is determined so that the temperature of the solubilized sludge B flowing freely from the heat exchange tank 3 is reduced to about 45 ° C. or less.
Further, by stirring the heat exchange tank 3 with the stirrer 8, solid matter in the solubilized sludge B hardly adheres or accumulates on the inner wall of the heat exchange tank 3 or the surface of the heat exchanger 4. It is desirable to use a pipe of 100 A or more in order to pass through the inside of the tube 9 without free flow.
[0022]
The solubilized sludge B flowing out of the heat exchange tank 3 flows into a sedimentation tank for solid-liquid separation to remove phosphorus, or when not removing phosphorus, a water treatment pump tank or aeration tank. Etc.
At that time, in order to prevent the pH of the sedimentation tank or the pump tank from lowering, it is desirable to add an alkali agent to carry out the neutralization treatment.
Also, in the case of returning to a sufficiently large capacity in an aeration tank or the like, it can be returned as it is, and further, by concentrating the solubilized sludge using a concentrator, the amount returned to the aeration tank or the like is reduced, It is also possible to return the separated water to the sludge solubilization tank.
[0023]
As mentioned above, although the Example of this invention was described, the sludge processing method of this invention is not limited to description of this Example, It can change suitably in the range which does not deviate from the meaning. .
[0024]
【The invention's effect】
According to the sludge treatment method of the present invention, a heat exchange tank for storing the solubilized sludge heated in the solubilization treatment and extracting heat from the solubilized sludge is provided at the subsequent stage of the sludge solubilization tank. The thermal energy required to heat the sludge is greatly reduced, the running cost of the sludge solubilization system by the acid heating method is greatly reduced, and the solubilized sludge is cooled at the same time, and the subsequent settling tank using an acidic high-temperature fluid. Etc. can be suppressed.
[0025]
Further, by disposing a heat exchanger for introducing the raw sludge from the sludge concentration tank as a heat medium in the heat exchange tank, and introducing the raw sludge heated by the heat exchanger to the sludge solubilization tank, Preheat the raw sludge from the sludge thickening tank, greatly reduce the thermal energy required to heat the raw sludge, greatly reduce the running cost of the sludge solubilization system by the acid heating method, and reduce the solubilized sludge. Simultaneously, it is possible to suppress the corrosion of the sedimentation tank and the like in the subsequent stage due to the acidic high temperature fluid.
[0026]
In addition, by installing a stirrer that stirs the solubilized sludge in the heat exchange tank, it prevents adhesion and accumulation of the solubilized sludge to the inside of the heat exchange tank and the surface of the heat exchanger, and makes the temperature in the tank uniform. The heat exchange rate can be improved.
[Brief description of the drawings]
FIG. 1 is a flowchart showing one embodiment of a method for treating sludge of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Concentration tank 2 Pump 3 Heat exchange tank 4 Heat exchanger 5 Heater 6 Sludge solubilization tank 7 Pipe 8 Stirrer 81 Stirrer shaft 82 Stirrer blade 9 Pipe A Raw sludge B Solubilized sludge C Acids

Claims (3)

有機性汚水を生物処理槽で微生物の作用により処理するとともに、生物処理により発生した余剰汚泥を可溶化し、この可溶化した汚泥を生物処理槽に返送するようにした汚泥の処理方法において、汚泥可溶化槽の後段に、可溶化処理で加熱された可溶化汚泥を貯留し、該可溶化汚泥から熱を取り出す熱交換槽を設けることを特徴とする汚泥の処理方法。A method for treating organic sludge in a biological treatment tank by the action of microorganisms, solubilizing excess sludge generated by biological treatment, and returning the solubilized sludge to the biological treatment tank. A method for treating sludge, characterized in that a heat exchange tank for storing the solubilized sludge heated in the solubilization treatment and extracting heat from the solubilized sludge is provided at a subsequent stage of the solubilization tank. 熱交換槽に、汚泥濃縮槽からの原汚泥を熱媒体として導入する熱交換器を配設し、該熱交換器により加温された原汚泥を汚泥可溶化槽に導入することを特徴とする請求項1記載の汚泥の処理方法。In the heat exchange tank, a heat exchanger for introducing the raw sludge from the sludge thickening tank as a heat medium is provided, and the raw sludge heated by the heat exchanger is introduced to the sludge solubilization tank. The method for treating sludge according to claim 1. 熱交換槽に、可溶化汚泥を攪拌する攪拌機を設置することを特徴とする請求項1又は2記載の汚泥の処理方法。3. The method for treating sludge according to claim 1, wherein a stirrer for stirring the solubilized sludge is installed in the heat exchange tank.
JP2003085004A 2003-03-26 2003-03-26 Sludge treatment equipment Expired - Fee Related JP4199032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085004A JP4199032B2 (en) 2003-03-26 2003-03-26 Sludge treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085004A JP4199032B2 (en) 2003-03-26 2003-03-26 Sludge treatment equipment

Publications (2)

Publication Number Publication Date
JP2004290779A true JP2004290779A (en) 2004-10-21
JP4199032B2 JP4199032B2 (en) 2008-12-17

Family

ID=33400031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085004A Expired - Fee Related JP4199032B2 (en) 2003-03-26 2003-03-26 Sludge treatment equipment

Country Status (1)

Country Link
JP (1) JP4199032B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098249A (en) * 2009-11-03 2011-05-19 Techno Plan:Kk Sludge solubilizing apparatus and method therefor
JP2012217969A (en) * 2011-04-13 2012-11-12 Nekken Sangyo Kk Cleaning device for surplus sludge transfer pipe
KR101395684B1 (en) * 2012-09-25 2014-05-15 문성호 Heating apparatus for muck
WO2021131086A1 (en) * 2019-12-24 2021-07-01 株式会社フジタ Organic matter-processing apparatus, biogas generation system, and sewage-heating device
CN114026047A (en) * 2020-06-04 2022-02-08 纽威科技有限公司 Integrated treatment facility is hydrolysised to mud slurrying
TWI845631B (en) 2019-12-24 2024-06-21 日商藤田股份有限公司 Organic matter treatment equipment, biogas generation system and sewage heating equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098249A (en) * 2009-11-03 2011-05-19 Techno Plan:Kk Sludge solubilizing apparatus and method therefor
JP2012217969A (en) * 2011-04-13 2012-11-12 Nekken Sangyo Kk Cleaning device for surplus sludge transfer pipe
KR101395684B1 (en) * 2012-09-25 2014-05-15 문성호 Heating apparatus for muck
WO2021131086A1 (en) * 2019-12-24 2021-07-01 株式会社フジタ Organic matter-processing apparatus, biogas generation system, and sewage-heating device
JP2021100750A (en) * 2019-12-24 2021-07-08 株式会社フジタ Organic matter treatment apparatus, biogas generation system and sewage heating device
JP7429117B2 (en) 2019-12-24 2024-02-07 株式会社フジタ Organic matter treatment equipment, biogas generation system, and wastewater heating equipment
TWI845631B (en) 2019-12-24 2024-06-21 日商藤田股份有限公司 Organic matter treatment equipment, biogas generation system and sewage heating equipment
CN114026047A (en) * 2020-06-04 2022-02-08 纽威科技有限公司 Integrated treatment facility is hydrolysised to mud slurrying
CN114026047B (en) * 2020-06-04 2023-08-15 纽威科技有限公司 Sludge slurrying and hydrolysis integrated treatment equipment

Also Published As

Publication number Publication date
JP4199032B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
KR101591031B1 (en) An apparatus and a method for continuous thermal hydrolysis of biological material
JP5157279B2 (en) Oily water reuse system
CN105254096A (en) Preprocessing method and device for gasification ammonia-cyanide-phenol-contained circulating water
CN109650648A (en) A kind of processing system and method for cold rolling wastewater
JP2007260604A (en) Method for producing organic acid, organic acid production device and waste water treatment equipment
JP2004290779A (en) Sludge treatment method
JP2000210694A (en) Treating device for organic waste water
Kristensen et al. Combined pre-precipitation, biological sludge hydrolysis and nitrogen reduction-a pilot demonstration of integrated nutrient removal
JP6938420B2 (en) Anaerobic digestion method and anaerobic digester for organic sludge
JP2010207700A (en) Methane fermentation apparatus and methane fermentation method
JP6651555B2 (en) Heat exchanger
CN1703376A (en) Method and reactor for decalcifying and simultaneously removing harmful substances
JP2006314968A (en) Frozen and concentrated wastewater treatment apparatus for recovering recirculated water
JP2004167307A (en) Method and apparatus for removing/recovering phosphorus from organic sewage
JP2004016844A (en) Drainage treatment method
JP6230830B2 (en) Waste water treatment apparatus and waste water treatment method
JP4645568B2 (en) Microbial acclimatization apparatus, wastewater treatment apparatus, microorganism acclimatization method and wastewater treatment method
CN207276409U (en) Waste water treatment system
JP2007283254A (en) Volume reduction method for sludge and volume reduction agent for sludge
CN205151821U (en) Freezing sewage treatment plant of low temperature
JP2004298739A (en) Method for removing phosphorus from sewage water
JP4519149B2 (en) Operation method of medium temperature methane fermentation treatment apparatus and medium temperature methane fermentation treatment apparatus
CN219709168U (en) Multifunctional stirring device for waste liquid treatment equipment
CN214528615U (en) Wastewater treatment system with heat recovery function
CN214004347U (en) Sewage treatment device for realizing sewage low-temperature flash evaporation by utilizing waste heat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees