JP2004290111A - Container for culturing cell and method for producing the same - Google Patents

Container for culturing cell and method for producing the same Download PDF

Info

Publication number
JP2004290111A
JP2004290111A JP2003088504A JP2003088504A JP2004290111A JP 2004290111 A JP2004290111 A JP 2004290111A JP 2003088504 A JP2003088504 A JP 2003088504A JP 2003088504 A JP2003088504 A JP 2003088504A JP 2004290111 A JP2004290111 A JP 2004290111A
Authority
JP
Japan
Prior art keywords
container
cells
cell culture
polymer
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003088504A
Other languages
Japanese (ja)
Inventor
Hayao Tanaka
速雄 田中
Shinsuke Iwase
進介 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003088504A priority Critical patent/JP2004290111A/en
Publication of JP2004290111A publication Critical patent/JP2004290111A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a container for culturing cells by which the effects of an added bioactive material, imparted to the cells are heightened, or a cell-producing material is efficiently collected by reducing the adsorption of the bioactive material added when culturing the cells, and the bioactive material produced by the cells, on the wall surface of the container. <P>SOLUTION: The container for culturing the cells has a hydrophilic layer having ≤10° contact angle against water on the inner surface of the container contacting with a culture solution, and a culture bed suitable for culturing the cells at a part contacting with the cells on the inner surface of the container. Preferably, the hydrophilic layer is composed of at least one material selected from a polyhydroxyalkyl methacrylate, a polymer or a copolymer containing a polyoxy-2-4C alkylene group-containing methacrylate, a polyvinylpyrrolidone, a complex of a phospholipid and a polymer, and a polymer or copolymer containing 2-methacryloyloxyethylphosphorylcholine. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は生化学実験・臨床検査・薬剤の開発研究において使用する細胞培養容器に関する。
【0002】
【従来の技術】
接着系細胞の培養に使用される容器類は形状としてはシャーレ、フラスコ及びマルチウェルプレートで、材質はポリスチレン等のプラスチック表面に酸素プラズマもしくは放射線の照射により極性基を導入し、細胞の接着−伸展に適した表面に改質したものが一般的に用いられている。
しかし、その様に細胞培養に適した表面は蛋白質に対しても強い吸着性を示し、その様な蛋白質の吸着が培養する細胞の種類及び実験の目的によっては大きな問題となる場合がある。
例えば、サイトカインが細胞に与える影響を評価しようとする場合、培養系に添加したサイトカインが容器壁面に非特異吸着してしまえば、加えたサイトカインの濃度と細胞に与える影響の大きさとの相関を議論する事は出来ない。
更に、高価な試薬を容器への非特異吸着による損失分を考慮して常に過剰量加える必要があり非経済的でもある。
また、細胞から産生される生理活性物質を回収する場合についても同様で、産生された生理活性物質が容器壁面に非特異吸着してしまえば、正確な産生量を測定する事が出来ず、回収率も低下する。
【0003】
通常培養に用いる培地には血清等が添加されており比較的蛋白質濃度が高い状態であるため、共存している蛋白の中で吸着しやすいアルブミン等が最初に吸着し、容器表面を覆ってしまい、それがマスキングの役割を示すのでその後添加する生理活性物質は吸着しないという意見もある。
しかし、一旦吸着してしまった蛋白質は変性し、変性した蛋白質は二次的な吸着を誘引するので実質的にはマスキングの効果は低く、共雑する蛋白質の濃度、水溶液のpH、温度等によってその効果にばらつきが発生するので好ましくない。
吸着して欲しくない蛋白質の量が微量であるほど吸着の影響は大きく、本発明者の検討では蛋白質の濃度が数μg/mL付近で存在する蛋白質の最大30%以上が吸着により失われてしまう。
前述のような吸着の影響は、特に評価結果の精度と再現性が要求される薬効評価等のセルベースアッセイには結果に重大な影響を与える可能性が考えられる。
【0004】
【発明が解決しようとする課題】
本発明の目的は、細胞培養の際添加する生理活性物質、及び細胞が産生する生理活性物質の容器壁面への吸着を低減し、添加した生理活性物質が細胞に与える効果を高める若しくは細胞産生物質を効率良く回収する事が出来る細胞培養容器を提供する事である。
【0005】
【課題を解決するための手段】
即ち本発明は、
(1)容器の培養液が接触する内面に水との接触角が10度以下の親水性の層を有し、該容器の内面の細胞が接触する部分に細胞培養に適した培養床を有する事を特徴とする細胞培養容器、
(2)親水性の層がポリヒドロキシアルキルメタクリレート、ポリオキシC−Cアルキレン基含有メタクリレート重合体又はこれを含む共重合体、ポリビニルピロリドン、リン脂質・高分子複合体、及び2−メタクリロイルオキシエチルホスホリルコリン重合体又はこれを含む共重合体、から選ばれる少なくとも1つの材料からなる(1)記載の細胞培養容器、
(3)(1)又は(2)記載の細胞培養容器の製造方法であって、容器内面に超親水性材料を塗布し乾燥する工程、細胞培養に適した表面を有するプラスチックフィルムを該容器形状に合わせて成形する工程、及び該容器と該プラスチックフィルムを組み合わせる工程からなる細胞培養容器の製造方法、
である。
【0006】
【発明の実施の形態】
本発明で用いる容器の形状は、目的とする細胞培養に適した形状であれば特に限定するものではないが、一般的には従来使用されているシャーレ、フラスコ、マルチウェルプレート等の形状が好ましい。
容器の材料としては細胞の観察を行なう点においては透明なものが好ましく、ガラス、プラスチックが挙げられ、特に成形性の点で塩化ビニル、アクリル、ポリスチレン、ポリエステル系のプラスチックが好適である。
【0007】
次に本発明の重要な特徴の一つである容器内面に親水性材料の層を付与する工程について述べる。
添加した蛋白質及び細胞が産生した蛋白質の吸着によるロスを低減化するという本発明の目的において、容器内面に水との接触角10度以下の親水性材料の層を構築するという新規な方法を取り入れている
従来溶液中の蛋白質は、その物質中の疎水性部位と容器表面の疎水性部位との間に発生する疎水性相互作用により吸着する為、容器基材表面を超親水性に改質する事でその吸着を防止出来る事は本発明者も既に見出しており、国際公開第00/39582号においてその技術を開示している。
親水性の指標として水との接触角が10度以下であれば従来の容器と比較して蛋白質の吸着を有為に低減化する事が出来、その接触角は低い方が吸着制御効果が高くなり本発明の目的としては好ましい。
【0008】
親水性材料の層を構築する方法は、特に限定するものではなくプラズマを用いた表面共有結合法、グラフト重合法等の既知の手法により親水性を有する極性基を表面に導入するか、若しくは特開2001−502959号公報に開示されている様な非イオン性界面活性剤を表面に結合する方法を用いても良い。
【0009】
その他技術的に最も容易な方法としては親水性材料を溶解した溶液を用いたコーティング法が挙げられる。
親水性材料を塗布し乾燥する際に重要な点は、コーティング層の厚みである。
コーティング層で基材表面が完全に覆われている状態が好ましいが、その厚みが増すと吸着防止性能は低下してゆく。その理由は、親水性材料の層が厚くなれば自由水を含みその自由水と一緒に蛋白質分子が表面に残留するためであると考えられる。
よって、コーティングの際にはコーティング溶液の溶質つまり親水性材料の濃度及びその溶媒、加えて乾燥条件を充分に検討し、コーティング層が出来るだけ薄い状態で容器表面を満遍なく覆っている状態を構築する事でより高い吸着防止性能を得る事が出来る。
【0010】
本発明に使用する親水性材料としては、ポリヒドロキシアルキルメタクリレート、ポリオキシC−Cアルキレン基含有メタクリレート重合体又はこれを含む共重合体、ポリビニルピロリドン、リン脂質・高分子複合体から選ばれる少なくとも1つであることが好ましく、更に好ましくは2−メタクリロイルオキシエチルホスホリルコリン重合体又はこれを含む共重合体を用いる。
2−メタクリロイルオキシエチルホスホリルコリンを含む化合物の共重合体としては特に限定するものでは無いが、2−メタクリロイルオキシエチルホスホリルコリン・ブチルメタクリレート共重合体(「ハイドロゲルの血液適合性に及ぼす親水性基構造の影響」生体材料Vol.9、No.6 石原一彦、中林宣男他参照)を好適に使用する事が出来る。
2−メタクリロイルオキシエチルホスホリルコリン重合体又は共重合体においては、共重合体中の2−メタクリロイルオキシエチルホスホリルコリンの含有率が高いほど優れた吸着制御効果が期待できるが、2−メタクリロイルオキシエチルホスホリルコリンの含有率が高ければ共重合体は水溶性となる為、目的に応じて共重合比率を調節する必要がある。
【0011】
次に本発明におけるもう一つの重要な特徴である容器内面の細胞が接触する部分に有する培養床について述べる。
前述の親水性材料の層は蛋白質の吸着を防止する点においては優れているが、同時に細胞の接着も妨げる為、接着系の細胞はその表面では接着−伸展する事が出来ず培養容器として用いる事が出来ない。
そこで、蛋白質の吸着を防止し尚且つ細胞を接着させるという矛盾をどの様に解決するかという点に対し鋭意検討の結果、内面の細胞を培養する部分に細胞培養に適した培養床を設けるという方法を考案した。
更に、容器内面に前述の方法で親水性の層を構築した後に、細胞培養に適した表面を有するプラスチックフィルムを組み合わせるという製造方法により製造が容易で尚且つ細胞培養に適した表面加工の自由度が大きいという点も本発明の特徴である。
【0012】
細胞培養に適した培養床として使用する材料は表面の加工性、成形性、透明性の点からプラスチックフィルムが好ましく、プラスチックフィルムの材料としては培養に使用する薬品に対する耐性を有すること、組織や細胞を培養する時に毒性を示さないことなどの要件を備えていれば特に制限はない。
このようなプラスチックとしては、ポリエステル、ポリエチレン、ポリプロピレン、TPX樹脂などがあげられる。また、培養する細胞の種類に応じて該フィルム表面に、プラズマ処理、コロナ処理、γ線処理等の処理を施しても良い。
プラスチックフィルムの厚さは特に限定するものではないが0.05〜1.0mmの範囲のものが取り扱い性に優れる。
【0013】
プラスチックフィルムを容器と組み合わせる為に成形する際、その形状は容器内面に組み込む事が可能な形状であるという事が必須条件となるが、その条件さえ満たされていれば目的に応じた任意の形状とする事が出来る。
成形の方法についても特に限定は無く、射出成形若しくはプラスチックフィルムのシートを任意の形状に切り抜く等の方法が挙げられる。
以上説明の如く作製した容器底面に培養床を設置する事で本発明の細胞培養容器が完成する。
【0014】
【実施例】
以下、実施例によって本発明を更に具体的に説明する。
(実施例)
ポリスチレン製24穴マルチウェルプレート(住友ベークライト製 SUMILON MS−8024R)に2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート共重合体の0.5wt/vol%エタノール溶液を分注し、5分間静置した後に真空ポンプに接続した吸引用ノズルで60秒間吸引後、70℃で4Hr真空乾燥させた。
2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート共重合体は、「リン脂質類似構造を有するハイドロゲル膜からの薬物放出 高分子論文集,46,591−595(1989)」の内容に従い2−メタクリロイルオキシエチルホスホリルコリンとブチルメタクリレート比=3/7の共重合体を合成し使用した。
コート後の表面接触角を測定した結果、水との接触角は0度の超親水性であった。
次に厚み0.1mmのポリエチレンテレフタレートのシートを直径13mmφの円形に切り出し、酸素プラズマに3分間暴露した後前記親水化処理したプレートのウェル底面に敷いた。
その状態で紫外線で殺菌した後に実施例として試験に供した。
【0015】
(比較例)
細胞培養用24穴マルチウェルプレート(MS−80240)を比較例とした。表面の水との接触角は65度であった。
【0016】
(細胞産生物回収量の比較)
実施例及び比較例を用いて細胞培養を行い、産生物の回収量を比較した。
HepG2細胞を5×10個/mLの濃度で2mL/ウェルづつ播種し3日間培養後の細胞生存率を測定した結果、比較例及び実施例共に80%で生存率が同等である事を確認した。培養にはFBSを10%添加したダルベッコ改変イーグルMEM培地を使用した。
【0017】
その後実施例及び比較例で培養した細胞の培養上清中に含まれるアルブミン濃度を比較した。
アルブミンの測定にはELISA法を使用した。
坑ヒトアルブミン抗体(ウサギ)(DAKO社製A008)をリン酸バッファーで200倍に希釈した溶液を100μL/ウェルでプレートに分注し、4℃一晩静置し固相化した後0.05%tween20添加リン酸バッファーで3回洗浄した。
次にスキムミルク3%リン酸バッファー溶液を300μL/ウェルで分注し、室温で2時間静置した後0.05%tween20添加リン酸バッファーで3回洗浄した。
次に実施例及び比較例の培養上清を50μL/ウェルで分注し室温で1時間インキュベートし、0.05%tween20添加リン酸バッファーで3回洗浄した。
ペルオキシターゼ標識ウサギ抗ヒトアルブミン抗体(DAKO社製P0128)をリン酸バッファーで8000倍に希釈、100μL/ウェルで分注後室温で1時間インキュベートし、0.05%tween20添加リン酸バッファーで3回洗浄した。
TMBZ基質液を使用して発色、プレートリーダーで吸光度を測定した。
結果は表1に示す通りで、比較例に比べ実施例の吸光度が高くHepG2細胞の産生したアルブミンを有効に回収出来ている事が示された。
【0018】
【表1】

Figure 2004290111
【0019】
【発明の効果】
本発明の細胞培養容器は生理活性物質の吸着が無く、接着系細胞を使用した実験を感度及び精度良く行なう事が出来る。
【図面の簡単な説明】
【図1】内面に親水性材料の層を有する容器を示した概略図である。
【図2】細胞培養に適した表面を有するプラスチックフィルムを示した概略図である。
【図3】親水性材料の層を有する容器、及び細胞培養に適した表面を有するプラスチックフィルムを組み合わせた本発明の細胞培養容器を示した概略図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cell culture container used in biochemical experiments, clinical tests, and drug development research.
[0002]
[Prior art]
Containers used for culturing adherent cells are petri dishes, flasks, and multiwell plates in shape. The material is a plastic surface such as polystyrene, and a polar group is introduced by irradiation with oxygen plasma or radiation to adhere and spread cells. A surface modified to a suitable surface is generally used.
However, such a surface suitable for cell culture exhibits strong adsorption to proteins, and such protein adsorption may be a significant problem depending on the type of cells to be cultured and the purpose of experiments.
For example, when trying to evaluate the effect of cytokines on cells, if the cytokine added to the culture system is non-specifically adsorbed on the container wall, the correlation between the concentration of the added cytokine and the magnitude of the effect on cells will be discussed. I can't do that.
Furthermore, it is necessary to always add an excess amount of expensive reagents in consideration of the loss due to non-specific adsorption to the container, which is uneconomical.
The same applies to the case of recovering bioactive substances produced from cells.If the produced bioactive substances are non-specifically adsorbed on the container wall, it is not possible to accurately measure the amount of production. The rate also drops.
[0003]
Serum is added to the medium used for normal cultivation, and the protein concentration is relatively high, so albumin that is easily adsorbed among the coexisting proteins first adsorbs and covers the container surface. Some argue that the bioactive substance added afterwards does not adsorb because it shows the role of masking.
However, the protein once adsorbed is denatured, and the denatured protein induces secondary adsorption, so the masking effect is practically low. Depending on the concentration of contaminating proteins, pH of aqueous solution, temperature, etc. It is not preferable because the effect varies.
The smaller the amount of undesired protein to be adsorbed, the greater the effect of adsorption. According to the study of the present inventors, a maximum of 30% or more of the protein present at a protein concentration of around several μg / mL is lost by adsorption. .
The effects of the adsorption as described above may have a significant effect on the results, especially in cell-based assays such as drug efficacy evaluations that require accuracy and reproducibility of the evaluation results.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to reduce the adsorption of a physiologically active substance added during cell culture and a physiologically active substance produced by cells to the wall surface of a container, to enhance the effect of the added physiologically active substance on cells, or to enhance a cell-producing substance. It is an object of the present invention to provide a cell culture vessel capable of efficiently recovering the cells.
[0005]
[Means for Solving the Problems]
That is, the present invention
(1) A hydrophilic layer having a contact angle of 10 ° or less with water is provided on the inner surface of the container where the culture solution comes into contact, and a culture bed suitable for cell culture is provided on the inner surface of the container where the cells come into contact. Cell culture vessel,
(2) hydrophilic layer polyhydroxyalkyl methacrylates, polyoxy C 2 -C 4 alkylene group containing methacrylate polymers or copolymers comprising the same, polyvinylpyrrolidone, phospholipid-polymer composite, and 2-methacryloyloxyethyl The cell culture vessel according to (1), comprising at least one material selected from a phosphorylcholine polymer or a copolymer containing the same.
(3) The method for producing a cell culture container according to (1) or (2), wherein a superhydrophilic material is applied to the inner surface of the container and dried, and the plastic film having a surface suitable for cell culture is formed in the container shape. A method for producing a cell culture container comprising the steps of: molding according to, and combining the container and the plastic film,
It is.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The shape of the container used in the present invention is not particularly limited as long as it is a shape suitable for the intended cell culture, but generally, a conventionally used petri dish, a flask, a shape of a multi-well plate or the like is preferable. .
The material of the container is preferably transparent from the viewpoint of observing cells, and includes glass and plastics. In particular, vinyl chloride, acrylic, polystyrene, and polyester plastics are suitable from the viewpoint of moldability.
[0007]
Next, a step of providing a layer of a hydrophilic material on the inner surface of the container, which is one of the important features of the present invention, will be described.
In order to reduce the loss due to the adsorption of the added protein and the protein produced by the cells, a novel method of constructing a layer of a hydrophilic material having a contact angle with water of 10 ° or less on the inner surface of the container is adopted. The protein in the conventional solution, which is adsorbed by the hydrophobic interaction generated between the hydrophobic site in the substance and the hydrophobic site on the surface of the container, modifies the surface of the container base material to be superhydrophilic. The present inventor has already found that such adsorption can be prevented, and the technique is disclosed in WO 00/39582.
If the contact angle with water is 10 degrees or less as an index of hydrophilicity, protein adsorption can be significantly reduced as compared with conventional containers, and the lower the contact angle, the higher the adsorption control effect. This is preferred for the purpose of the present invention.
[0008]
The method for constructing the layer of the hydrophilic material is not particularly limited, and a polar group having hydrophilicity may be introduced to the surface by a known method such as a surface covalent bonding method using plasma or a graft polymerization method. A method of binding a nonionic surfactant to the surface as disclosed in Japanese Unexamined Patent Publication No. 2001-502959 may be used.
[0009]
Another technically easiest method is a coating method using a solution in which a hydrophilic material is dissolved.
An important point when applying and drying the hydrophilic material is the thickness of the coating layer.
It is preferable that the surface of the substrate is completely covered with the coating layer, but as the thickness increases, the anti-adhesion performance decreases. It is considered that the reason is that the thicker layer of the hydrophilic material contains free water and the protein molecules remain on the surface together with the free water.
Therefore, when coating, carefully consider the solute of the coating solution, that is, the concentration of the hydrophilic material and its solvent, as well as the drying conditions, and establish a state in which the coating layer covers the container surface as thinly as possible. As a result, higher adsorption prevention performance can be obtained.
[0010]
As the hydrophilic material used in the present invention, at least one selected from polyhydroxyalkyl methacrylate, polyoxy C 2 -C 4 alkylene group-containing methacrylate polymer or a copolymer containing the same, polyvinylpyrrolidone, phospholipid / polymer composite Preferably, one is used, and more preferably, a 2-methacryloyloxyethyl phosphorylcholine polymer or a copolymer containing the same is used.
The copolymer of the compound containing 2-methacryloyloxyethyl phosphorylcholine is not particularly limited, but a 2-methacryloyloxyethyl phosphorylcholine / butyl methacrylate copolymer (“having a hydrophilic group structure that affects the blood compatibility of a hydrogel”). Influence "Biomaterial Vol. 9, No. 6 Kazuhiko Ishihara, Nobuo Nakabayashi et al.) Can be suitably used.
In the 2-methacryloyloxyethyl phosphorylcholine polymer or copolymer, the higher the content of 2-methacryloyloxyethyl phosphorylcholine in the copolymer, the higher the adsorption control effect can be expected, but the higher the content of 2-methacryloyloxyethyl phosphorylcholine, the better. If the ratio is high, the copolymer becomes water-soluble, so it is necessary to adjust the copolymerization ratio according to the purpose.
[0011]
Next, another important feature of the present invention, that is, a culture bed in a portion of the inner surface of the container where the cells come into contact will be described.
The above-mentioned hydrophilic material layer is excellent in preventing protein adsorption, but at the same time, it also prevents cell adhesion, so that the cells of the adhesive system cannot adhere and spread on the surface and are used as culture vessels. I can't do things.
Therefore, as a result of diligent studies on how to solve the contradiction of preventing protein adsorption and adhering cells, it was decided to provide a culture bed suitable for cell culture in the area where cells are cultured on the inner surface. A method was devised.
Further, the manufacturing method of combining a plastic film having a surface suitable for cell culture after constructing a hydrophilic layer on the inner surface of the container by the above-described method is easy to manufacture, and has a degree of freedom of surface processing suitable for cell culture. Is also a feature of the present invention.
[0012]
The material used as a culture bed suitable for cell culture is preferably a plastic film from the viewpoint of surface processability, moldability, and transparency.The material of the plastic film must have resistance to the chemicals used for culture, tissues and cells. There is no particular limitation as long as it has the requirement that it does not show toxicity when culturing.
Examples of such a plastic include polyester, polyethylene, polypropylene, and TPX resin. The surface of the film may be subjected to a treatment such as a plasma treatment, a corona treatment, and a γ-ray treatment according to the type of cells to be cultured.
The thickness of the plastic film is not particularly limited, but a thickness in the range of 0.05 to 1.0 mm is excellent in handleability.
[0013]
When forming a plastic film in order to combine it with a container, it is essential that the shape be a shape that can be incorporated into the inner surface of the container, but if the condition is satisfied, any shape according to the purpose It can be.
There is also no particular limitation on the molding method, and examples include a method such as injection molding or cutting a plastic film sheet into an arbitrary shape.
The cell culture container of the present invention is completed by installing a culture bed on the bottom surface of the container prepared as described above.
[0014]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
(Example)
A 0.5 wt / vol% ethanol solution of 2-methacryloyloxyethylphosphorylcholine-butyl methacrylate copolymer was dispensed into a polystyrene 24-well multiwell plate (SUMIRON MS-8024R, manufactured by Sumitomo Bakelite), and allowed to stand for 5 minutes. After suctioning for 60 seconds with a suction nozzle connected to a pump, vacuum drying was performed at 70 ° C. for 4 hours.
2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate copolymer is a 2-methacryloyloxyethyl compound according to the content of “Drug Release from Hydrogel Membrane Having Phospholipid-Like Structure, Journal of Polymers, 46, 591-595 (1989)”. A copolymer having a phosphorylcholine / butyl methacrylate ratio of 3/7 was synthesized and used.
As a result of measuring the surface contact angle after coating, the contact angle with water was 0 degree and was superhydrophilic.
Next, a sheet of polyethylene terephthalate having a thickness of 0.1 mm was cut into a circle having a diameter of 13 mmφ, exposed to oxygen plasma for 3 minutes, and laid on the bottom surface of the well subjected to the hydrophilization treatment.
After being sterilized by ultraviolet rays in that state, it was subjected to a test as an example.
[0015]
(Comparative example)
A 24-well multiwell plate for cell culture (MS-80240) was used as a comparative example. The contact angle of the surface with water was 65 degrees.
[0016]
(Comparison of cell product recovery)
Cell culture was performed using the examples and comparative examples, and the amount of product recovered was compared.
HepG2 cells were seeded at a concentration of 5 × 10 5 cells / mL at a concentration of 2 mL / well, and the cell viability after culturing for 3 days was measured. As a result, it was confirmed that the survival rate was 80% in both Comparative Examples and Examples, and the survival rates were equivalent. did. Dulbecco's modified Eagle MEM medium supplemented with 10% FBS was used for the culture.
[0017]
Thereafter, the concentrations of albumin contained in the culture supernatants of the cells cultured in Examples and Comparative Examples were compared.
The ELISA method was used for the measurement of albumin.
A solution obtained by diluting anti-human albumin antibody (rabbit) (A008, manufactured by DAKO) 200-fold with a phosphate buffer was dispensed to the plate at 100 μL / well, and allowed to stand at 4 ° C. overnight to immobilize the solid phase. The plate was washed three times with a phosphate buffer containing 20% Tween20.
Next, a skim milk 3% phosphate buffer solution was dispensed at 300 μL / well, allowed to stand at room temperature for 2 hours, and then washed three times with a phosphate buffer containing 0.05% tween 20.
Next, the culture supernatants of Examples and Comparative Examples were dispensed at 50 μL / well, incubated at room temperature for 1 hour, and washed three times with a phosphate buffer containing 0.05% tween 20.
A peroxidase-labeled rabbit anti-human albumin antibody (P0128 manufactured by DAKO) was diluted 8000-fold with a phosphate buffer, dispensed at 100 μL / well, incubated at room temperature for 1 hour, and washed three times with a phosphate buffer containing 0.05% tween 20. did.
The color was developed using a TMBZ substrate solution, and the absorbance was measured with a plate reader.
The results are as shown in Table 1, indicating that the absorbance of the example was higher than that of the comparative example, and the albumin produced by the HepG2 cells could be effectively recovered.
[0018]
[Table 1]
Figure 2004290111
[0019]
【The invention's effect】
The cell culture container of the present invention has no adsorption of physiologically active substances, and can perform experiments using adhesive cells with high sensitivity and accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a container having a layer of a hydrophilic material on an inner surface.
FIG. 2 is a schematic view showing a plastic film having a surface suitable for cell culture.
FIG. 3 is a schematic diagram showing a cell culture container of the present invention in which a container having a layer of a hydrophilic material and a plastic film having a surface suitable for cell culture are combined.

Claims (3)

容器の培養液が接触する内面に水との接触角が10度以下の親水性の層を有し、該容器の内面の細胞が接触する部分に細胞培養に適した培養床を有する事を特徴とする細胞培養容器。It has a hydrophilic layer having a contact angle with water of 10 degrees or less on the inner surface of the container where the culture solution comes into contact, and has a culture bed suitable for cell culture at a portion of the inner surface of the container where the cells come into contact. Cell culture vessel. 親水性の層がポリヒドロキシアルキルメタクリレート、ポリオキシC−Cアルキレン基含有メタクリレート重合体又はこれを含む共重合体、ポリビニルピロリドン、リン脂質・高分子複合体、及び2−メタクリロイルオキシエチルホスホリルコリン重合体又はこれを含む共重合体、から選ばれる少なくとも1つの材料からなる請求項1記載の細胞培養容器。The hydrophilic layer has a polyhydroxyalkyl methacrylate, a polyoxy C 2 -C 4 alkylene group-containing methacrylate polymer or a copolymer containing the same, polyvinylpyrrolidone, a phospholipid / polymer composite, and a 2-methacryloyloxyethyl phosphorylcholine polymer The cell culture container according to claim 1, comprising at least one material selected from the group consisting of: 請求項1又は2記載の細胞培養容器の製造方法であって、容器内面に親水性材料を塗布し乾燥する工程、細胞培養に適した表面を有するプラスチックフィルムを該容器形状に合わせて成形する工程、及び該容器と該プラスチックフィルムを組み合わせる工程からなる細胞培養容器の製造方法。3. The method for producing a cell culture container according to claim 1, wherein a hydrophilic material is applied to the inner surface of the container and dried, and a plastic film having a surface suitable for cell culture is formed according to the shape of the container. And a step of combining the container with the plastic film.
JP2003088504A 2003-03-27 2003-03-27 Container for culturing cell and method for producing the same Pending JP2004290111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088504A JP2004290111A (en) 2003-03-27 2003-03-27 Container for culturing cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088504A JP2004290111A (en) 2003-03-27 2003-03-27 Container for culturing cell and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004290111A true JP2004290111A (en) 2004-10-21

Family

ID=33402614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088504A Pending JP2004290111A (en) 2003-03-27 2003-03-27 Container for culturing cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004290111A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166977A (en) * 2005-12-22 2007-07-05 Seiichi Yokoo Centrifugal tube for separating live cell
WO2008038774A1 (en) 2006-09-28 2008-04-03 Fujifilm Corporation Instrument for biochemical use having surface under the inhibition of nonspecific adsorption
JP2009050201A (en) * 2007-08-27 2009-03-12 Dainippon Printing Co Ltd Culture tool for early embryo or the like
JP4719824B2 (en) * 2009-06-15 2011-07-06 株式会社 資生堂 Cell aggregate formation container and cell aggregate formation method
JP2019110819A (en) * 2017-12-22 2019-07-11 国立大学法人山口大学 Production method of cell contact substrate
WO2020256079A1 (en) * 2019-06-21 2020-12-24 三井化学株式会社 Culture material and application for same
CN116004381A (en) * 2022-11-30 2023-04-25 苏州大学 Low-adhesion pore plate for three-dimensional cell culture, multi-organ micro-fluidic chip and application thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166977A (en) * 2005-12-22 2007-07-05 Seiichi Yokoo Centrifugal tube for separating live cell
JP4745817B2 (en) * 2005-12-22 2011-08-10 誠一 横尾 Centrifuge tube for live cell separation
WO2008038774A1 (en) 2006-09-28 2008-04-03 Fujifilm Corporation Instrument for biochemical use having surface under the inhibition of nonspecific adsorption
JP2009050201A (en) * 2007-08-27 2009-03-12 Dainippon Printing Co Ltd Culture tool for early embryo or the like
JP4719824B2 (en) * 2009-06-15 2011-07-06 株式会社 資生堂 Cell aggregate formation container and cell aggregate formation method
EP2444477A1 (en) * 2009-06-15 2012-04-25 Shiseido Company, Ltd. Container for formation of aggregated cell mass, and method for formation of aggregated cell mass
EP2444477A4 (en) * 2009-06-15 2013-01-09 Shiseido Co Ltd Container for formation of aggregated cell mass, and method for formation of aggregated cell mass
US9347031B2 (en) 2009-06-15 2016-05-24 Shiseido Company, Ltd. Container for forming a cell aggregate and a method for forming a cell aggregate
JP2019110819A (en) * 2017-12-22 2019-07-11 国立大学法人山口大学 Production method of cell contact substrate
JP7016150B2 (en) 2017-12-22 2022-02-04 国立大学法人山口大学 Method for producing cell adhesion substrate
WO2020256079A1 (en) * 2019-06-21 2020-12-24 三井化学株式会社 Culture material and application for same
JP6826244B1 (en) * 2019-06-21 2021-02-03 三井化学株式会社 Culture materials and their uses
KR20220004613A (en) * 2019-06-21 2022-01-11 미쓰이 가가쿠 가부시키가이샤 Culture medium and uses thereof
US11254904B2 (en) 2019-06-21 2022-02-22 Mitsui Chemicals, Inc. Culture material and use thereof
KR102646444B1 (en) * 2019-06-21 2024-03-11 미쓰이 가가쿠 가부시키가이샤 Culture material and its uses
CN116004381A (en) * 2022-11-30 2023-04-25 苏州大学 Low-adhesion pore plate for three-dimensional cell culture, multi-organ micro-fluidic chip and application thereof
CN116004381B (en) * 2022-11-30 2024-03-15 苏州大学 Low-adhesion pore plate for three-dimensional cell culture, multi-organ micro-fluidic chip and application thereof
WO2024113487A1 (en) * 2022-11-30 2024-06-06 苏州大学 Ultra-low adhesion microplate for three-dimensional cell culture, multi-organ micro-fluidic chip, and use thereof

Similar Documents

Publication Publication Date Title
US20230366879A1 (en) Capture, purification, and release of biological substances using a surface coating
Tanaka et al. Blood compatible aspects of poly (2-methoxyethylacrylate)(PMEA)—relationship between protein adsorption and platelet adhesion on PMEA surface
JP5443162B2 (en) Bioactive surfaces for hepatocyte-based applications
Iwasaki et al. Reduction of surface‐induced platelet activation on phospholipid polymer
EP3260862B1 (en) Method for suppressing protein adsorption
US20160291001A1 (en) Conductive hydrogels for affinity sensing
EP0226470A2 (en) Materials and methods for microchemical testing
JP2007130194A (en) Medical material
Tu et al. Surface modification of poly (dimethylsiloxane) and its applications in microfluidics-based biological analysis
CN104262668A (en) Polyurethane material with protein adsorption resistance and cell adhesion resistance and preparing method thereof
JP2002098676A (en) Isolation material and isolation and recovery method
Garcia-Seyda et al. Microfluidic device to study flow-free chemotaxis of swimming cells
Nakayama et al. Water stable nanocoatings of poly (N-isopropylacrylamide)-based block copolymers on culture insert membranes for temperature-controlled cell adhesion
US20100234240A1 (en) Surface modification
JP2004290111A (en) Container for culturing cell and method for producing the same
Kawasaki et al. Surface modification of poly (ether ether ketone) with methacryloyl-functionalized phospholipid polymers via self-initiation graft polymerization
WO2018086556A1 (en) Polymer and device for capturing or separating leucocytes, manufacturing method and use thereof
EP0524800A1 (en) Adhesive formulations for binding proteins
JP2009521951A (en) High-throughput cell-based assay assembled using integrated silicon and cell culture technology
Nishizawa et al. Stabilization of phospholipid polymer surface with three-dimensional nanometer-scaled structure for highly sensitive immunoassay
Reisch et al. Anti-fouling phosphorylcholine bearing polyelectrolyte multilayers: Cell adhesion resistance at rest and under stretching
JP5136147B2 (en) Bioactive substance detection method and measurement kit
US11485757B2 (en) Oligopeptide search method, oligopeptide, modified peptide, and immunoassay method
TWI808510B (en) A zwitterionic material capable of preventing bio-inert performance decay, its fabricating membrane and application
JP4984080B2 (en) Signal enhancer for immunochemical reaction and immunological measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106