JP2004289529A - 超電導単一磁束量子ジンクフィルタ - Google Patents
超電導単一磁束量子ジンクフィルタ Download PDFInfo
- Publication number
- JP2004289529A JP2004289529A JP2003079614A JP2003079614A JP2004289529A JP 2004289529 A JP2004289529 A JP 2004289529A JP 2003079614 A JP2003079614 A JP 2003079614A JP 2003079614 A JP2003079614 A JP 2003079614A JP 2004289529 A JP2004289529 A JP 2004289529A
- Authority
- JP
- Japan
- Prior art keywords
- zinc filter
- zinc
- filter
- input
- destructive read
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Logic Circuits (AREA)
Abstract
【解決手段】タップ付きシフトレジスタと2ビット破壊読み出しカウンタと加算器とからなる第1のジンクフィルタと、非破壊読み出しカウンタを1個以上と破壊読み出しカウンタとからなる第2のジンクフィルタと、から超電導単一磁束量子ジンクフィルタを構成する。
【選択図】 図9
Description
【発明の属する技術分野】
本発明は超電導単一磁束量子を情報担体としたシグマデルタ型アナログデジタル変換器の構成要素であるジンクフィルタ(sinc filter)の構成に関する。
【0002】
【従来の技術】
超電導単一磁束量子素子回路からなるシグマデルタ型アナログデジタル変換器はシグマデルタ型モジュレータとデシメーションフィルタの一つであるジンクフィルタとから構成される。ジンクフィルタの構成に関しては、非特許文献1において論じられている多重積分型ジンクフィルタ(第1の従来例)の構成、あるいは非特許文献2において論じられている多段デシメーション型ジンクフィルタ(第2の従来例)の構成のものが広く知られている。
【0003】
【非特許文献1】
ジェイ シー リン(J.C.Lin)他「デザイン オブ SFQ−カウンティング アナログ−ツウ−ディジタル コンバータ(Design of SFQ−Counting Analog−to−digital Converter)」アイ・イー・イー・イー、トランザクションズ オン アップライド スーパーコンダクティビィティ第5巻(1995年)第2252頁から第2259頁(IEEE Transactions on Applied Superconductivity vol.5 (1995) pp.2252−2259)
【非特許文献2】
長谷川(H. Hasegawa)他「シングル フラックス クオンタム カウンティング ジンク フイルタ ウイズ マルティステージ デシメーション ストラクチァ(Single flux quantum counting sinc filter with multistage decimation structure)」スーパーコンダクタ サイエンス アンド テクノロジ 第15巻(2002年)第161頁から第164頁(Superconductor Science and Technology vol.15 (2002) pp.161−164)
【0004】
【発明が解決しようとする課題】
第1の従来例の多重積分型ジンクフィルタは、セル面積が小さいという特徴があるものの、動作速度がやや遅いという問題があった。第2の従来例の多段デシメーション型ジンクフィルタは、動作速度が速いという特徴があるものの、セル面積が大きいという問題があった。
【0005】
高速に動作するジンクフィルタを使用する必要のある場合には、第2の従来例の多段デシメーション型ジンクフィルタを用いざるを得ないが、その際、セル面積が大きいため、チップ製造工程において欠陥が混入する確率が高く、その結果、歩留まりが低いという問題があった。歩留まり向上のためには、同程度の高速動作性能を有しながら、セル面積の小さい超電導単一磁束量子ジンクフィルタを新たに開発する必要がある。
【0006】
また、セル面積が小さいほど、同じ大きさのウェハから製造できるチップ数は多くなるので、製造効率の向上のためにも、セル面積は小さいほうが望ましい。
【0007】
従来、デジタルフィルタは、入出力関係式や伝達関数によって回路型式が定まり、その回路型式を実現するように回路が構成された。また、半導体回路からデジタルフィルタを作製する際には、カスケード型等、異なる回路型式を組み合わせる試みもなされてきた。
【0008】
一方、超電導単一磁束量子素子回路は、半導体回路とは論理の表し方が異なる。すなわち、半導体回路は電圧レベルの高低で論理の1、0を表わすが、超電導単一磁束量子素子回路は単一磁束量子パルスの有無により論理の1、0を表わす。従って、超電導単一磁束量子素子回路を用いて、デジタルフィルタの一つであるジンクフィルタを作製する場合、半導体回路の手法をそのまま用いることはできず、超電導単一磁束量子素子回路特有の性質を考慮して、これに適した独自の回路型式、回路構成を検討しなければならない。
【0009】
上記第1の従来例または第2の従来例は、超電導単一磁束量子素子回路特有の性質を考慮して、これに適した入出力関係式や伝達関数を導き、これに基づき多重積分型または多段デシメーション型という回路型式を定め、その回路型式を実現する回路構成を検討したものである。しかしながら、従来、超電導単一磁束量子素子回路からなるジンクフィルタでは、上記第1の従来例または第2の従来例のように一つの回路型式を用いて、その性能向上を図る検討がなされるのみで、異なる種類の回路型式を組み合わせる試みはなされていない。すなわち、従来、異なる種類の回路型式を組み合わせて、ジンクフィルタ全体として、高速化やセル面積の低減化を実現できる好適な回路型式の組み合わせについては検討がなされていない。半導体回路からなるデジタルフィルタでは、上記の通りカスケード型等、異なる回路型式を組み合わせる試みはなされてきたが、超電導単一磁束量子素子回路は、半導体回路とは論理の表し方が異なるので、半導体回路の手法をそのまま用いることはできない。
【0010】
【課題を解決するための手段】
本発明は実質的に十分な高速動作が実現でき、かつ、小さい面積に形成可能な、次数2以上かつデシメーション因子4以上の超電導単一磁束量子ジンクフィルタを提供することを目的とし、種々の回路型式について、それぞれの動作速度、セル面積、入力信号のビット数等の諸性能を考慮し、異なる種類の回路型式を組み合わせることにより実現する。より具体的には、第2の従来例の多段デシメーション型ジンクフィルタよりも若干劣るものの同程度の動作速度で、第2の従来例の多段デシメーション型ジンクフィルタよりも十分小さいセル面積で実現可能な超電導単一磁束量子ジンクフィルタを提供する。
【0011】
上記目的を達成するために、本発明では、高速動作が必要なデータ信号の入力段では第2の従来例の多段デシメーション型ジンクフィルタの構成を主体として回路を構成した第1のジンクフィルタとし、第1のジンクフィルタの出力を受けて動作するフィルタの出力段では、動作速度がやや遅い多重積分型ジンクフィルタを主体として回路を構成した第2のジンクフィルタとしたカスケード構造により、高速動作と小面積を同時に実現する。
【0012】
【発明の実施の形態】
以下、本発明の内容を詳細に説明するが、まず、ジンクフィルタの信号処理の概要を説明をする。
【0013】
ジンクフィルタは、入力信号列xnに対して、式(1)で示す信号列を出力するものである。
【0014】
【数1】
ここで、kはジンクフィルタの次数であり、式(1)における和の数、すなわちサメイションの数に一致する。Nはデシメーション因子であり、入力信号がビットレートfcの時、出力信号のビットレートはfc/Nとなり、入力信号の1/Nに減じられることになる。
【0015】
ジンクフィルタの回路型式は式(1)の入出力関係式の他、伝達関数によっても記述できる。次数k、デシメーション因子Nのジンクフィルタの伝達関数H(z)は、入出力関係式(1)に対応して、次式(2)−(4)と表される。
【0016】
【数2】
ここで、aiは次数k、デシメーション因子Nによって定まる数係数である。
【0017】
ジンクフィルタ等のデジタルフィルタは、式(1)の入出力関係式や式(2)乃至(4)の伝達関数によって回路型式が定まり、その回路型式を実現するように回路が構成される。例えば式(4)の伝達関数で記述される回路型式を選択した時、ジンクフィルタ回路は、k(N−1)個の遅延器z−1と、aiを数係数とする積和演算を行なう加算器とから構成されることになる。
【0018】
次数k=1のジンクフィルタは、式(1)を整理して、入出力関係式(5)で表される。
【0019】
【数3】
xiの数係数が全て1、すなわち重み付け因子が全て1であり、また、周波数fc/Nでダウンサンプリングを行うのであるから、超電導単一磁束量子素子回路を用いてジンクフィルタを作製する場合には、各周期N/fcにおいて、入力した単一磁束量子パルス数を計数し、計数値を出力後は0値へリセットすれば、k=1のジンクフィルタ動作が実行されることになる。従って、周波数fc/Nで破壊読み出しを行う破壊読み出し(destructive readout:DRO)カウンタだけで構成でき、高速で動作するジンクフィルタを小さいセル面積で形成できることになる。
【0020】
次数k=2以上のジンクフィルタは、式(1)において、xi(k)にかかる数係数が1以外の数値を含む、すなわち重み付け因子が1以外の数値を含むため、破壊読み出しカウンタだけでは構成できず、回路構成はより複雑となる。上記、第1の従来例は、k−1個の非破壊読み出し(non−destructive readout:NDRO)カウンタと1個の破壊読み出しカウンタとから構成した多重積分型ジンクフィルタの例である。この例は、次数k=2であるが、式(1)を変形して、入出力関係式(6)、(7)を得、式(7)により回路型式を記述する。
【0021】
【数4】
ここで、式(7)の演算は、k−1=1個の非破壊読み出しカウンタと1個の破壊読み出しカウンタとによって実行される。ジンクフィルタ演算を完了するためには、式(6)の演算を実行する差分器が必要であるが、これは十分遅い周波数で動作させれば良いので、別途に実行させれば良い。
【0022】
この従来例のように、k−1個の非破壊読み出しカウンタと1個の破壊読み出しカウンタとから構成した多重積分型ジンクフィルタは、要素回路がカウンタのみであるため、セル面積が小さいという特徴がある。しかし、デシメーション因子Nの増大と共に動作速度が遅くなるという欠点を有する。また、この第1の従来例は、1ビットの入力信号を用いており、入力信号が多ビットの場合の有用性については記述されていない。
【0023】
上記、第2の従来例は、次数k=3、デシメーション因子N=2Mの多段デシメーション型ジンクフィルタの例である。ここで、Mは以下に示すようにデシメーションの段数に一致する。次数k=3、デシメーション因子N=2Mのジンクフィルタの伝達関数H(z)は、入出力関係式(1)より、次式(8)−(10)となる。
【0024】
【数5】
ここで、式(10)より、次数k=3、デシメーション因子N=2Mのジンクフィルタは、次数k=3、デシメーション因子N=2のジンクフィルタをM段縦続接続し、多段にデシメーションを行うことにより実現できることになる。
【0025】
第2の従来例では、この回路型式の構成要素である次数k=3、デシメーション因子N=2のジンクフィルタを検討している。次数k=3、デシメーション因子N=2のジンクフィルタの伝達関数H(z)は、式(10)より式(11)となる。
【0026】
【数6】
図1に第2の従来例のk=3、N=16の多段デシメーション型ジンクフィルタの一例のブロック図を示す。k=3、N=2ジンクフィルタの回路セルを4段縦続接続した構成である。各段で因子2のダウンサンプリングを行うため、或る段のk=3、N=2ジンクフィルタの回路セルの動作クロック周波数fcは前段の1/2である。従って、初段が最も高速に動作することになり、初段を高速に動作できれば、ジンクフィルタ全体として高速動作を実現できることになる。図1に於いて、N=4、N=8およびN=16の2段目から3段目のジンクフィルタの各回路セルの出力は、式(11)から分かるように、重み付き加算を行うことになるが、図1では、この重み付き加算を行う合流バッファを簡単のために大きな黒丸で示した。重み付き加算を行う合流バッファは、一例を後述する。
【0027】
図2に、図1に示す多段デシメーション型ジンクフィルタを構成するk=3、N=2の回路セルの一例のブロック図を示す。式(11)に基づき、タップ付きシフトレジスタ11と、シフトレジスタ11の各タップごとに置いた2ビットの破壊読み出しカウンタ12−14と、さらに、この破壊読み出しカウンタ12−14の出力信号に対し、図1と同様黒丸で示す重み付き加算を行う合流バッファと4ビットの破壊読み出しカウンタ15とからk=3、N=2のジンクフィルタを構成している。タップ付きシフトレジスタ11の構成要素である1ビットシフトレジスタの一例は後述する。なお、図2において白抜きの大きい丸で示すのは信号のスプリッタである。スプリッタの一例は後述する。タップ付きシフトレジスタ11にリード線16を通して入力されるデータの周波数はfcであり、リード線17を通して入力されるクロック周波数もfcである。破壊読み出しカウンタ12−14の構成要素であるDROTFFのリード線18を通して入力されるクロック周波数はfc/2である。破壊読み出しカウンタ15の構成要素であるDROTFFのリード線19を通して入力されるクロック周波数もfc/2である。破壊読み出しカウンタの構成要素であるDROTFFの一例は後述する。
【0028】
この第2の従来例は、高速で動作するという特徴があるものの、同様の回路型式を用いて、より大きなデシメーション因子N=2Mのジンクフィルタを作製した場合、図1に示すように、このk=3、N=2ジンクフィルタ回路セルをM段縦続接続すると共に、さらに、この回路型式では多ビット入力は行えないので、各段において、各ビットごとに、このk=3、N=2ジンクフィルタの回路セルを配置しなければならず、従って、占有面積が大きくなるという欠点を有する。
【0029】
実際、計算機シミュレーションにより評価した結果、ジョセフソン接合の臨界電流密度が2500A/cm2の時、この第2の従来例の回路構成のk=3、N=2ジンクフィルタはクロック周波数fc=18GHzまで動作した。また、このk=3、N=2ジンクフィルタのセル面積は2×2mm2程度であるが、同様の回路型式を用いて、より大きなデシメーション因子Nのジンクフィルタ、例えば図1のk=3、N=16ジンクフィルタを設計した場合、セル面積は8×12mm2程度と大きくなる。
【0030】
したがって、高速で動作することが要求されるデータ信号の入力段では第2の従来例の多段デシメーション型ジンクフィルタの構成を主体として回路を構成するものとして、高速動作を実現し、第1のジンクフィルタの出力を受けて動作する動作速度の遅いフィルタの出力段では、多重積分型ジンクフィルタを主体として回路を構成した第2のジンクフィルタとしたカスケード構造により、高速動作と小面積を同時に実現する。
【0031】
以下、本発明を実施例を用いて説明するが、その前に、要素回路としての3ビットシフトレジスタ11の構成要素である1ビットシフトレジスタ(遅延器)、スプリッタ、重み付き加算を行う合流バッファ、破壊読み出しカウンタの構成要素である破壊読み出しトグルフリップフロップ(destructive readout toggle flip−flop:DROTFF)、本発明の実施例で必要となる非破壊読み出しカウンタの構成要素である非破壊読み出しトグルフリップフロップ(non−destructive readout toggle flip−flop:NDROTFF)および論理積回路(AND)について先に説明する。
【0032】
図3(a)は1ビットシフトレジスタ(遅延器)の等価回路を、図3(b)および(c)はそのシンボルを、それぞれ、示す。図3(b)および(c)は、各入力位置を異にするだけで機能は同じである。代表的に図中の記号に付した参照符号JJはジョセフソン結合を、BSは直流バイアス電流源を、Lは超電導配線のインダクタを、GNはグランドを、それぞれ示す。以下、これらの要素回路における参照符号の表示は省略し、同じものは同じ図形で表示する。また、これらの図に示す小さい黒丸は接続を意味するだけであり、図1および図2で述べた重み付き加算を行う合流バッファではない。データ入力はクロック入力に応じて入力側のインダクタLに取り込まれ、次のクロック入力に応じて出力側のインダクタLに転送され、次のクロック入力に応じて出力される。すなわち、1クロックだけ遅れて出力される。
【0033】
図4(a)はスプリッタの等価回路を、図4(b)はそのシンボルを、それぞれ、示す。入力信号は出力1と出力2に分流して送出される。
【0034】
図5(a)および(b)は重み付き加算を行う合流バッファの等価回路およびシンボルを示す。合流バッファは、直流バイアス電流源とジョセフソン接合とインダクタから構成される。
【0035】
図6(a)および(b)は破壊読み出しトグルフリップフロップDROTFFの等価回路およびシンボルを示す。DROTFFは入力の一つであるデータ入力が入力する度に、0状態と1状態を繰り返す。すなわちデータ入力についての2分周回路である。1状態においてデータ入力が入力すると、キャリー出力から1が出力する。また、1状態においてクロックパルスが入力すると、読み出し出力から1が出力し、さらに0状態へリセットする。
【0036】
図7(a)および(b)は非破壊読み出しトグルフリップフロップNDROTFFの等価回路およびシンボルを示す。NDROTFFは、DROTFFの読み出し出力端に直流バイアス電流源が接続され、キャリー出力端が接続されていたジョセフソン結合の直列回路の一方がインダクタに置換されている点を除けばDROTFFと同じである。したがって、入力の一つであるデータ入力が入力する度に、0状態と1状態を繰り返し、データ入力についての2分周回路である点は同じである。1状態においてデータ入力が入力すると、キャリー出力から1が出力する。また、1状態においてクロックパルスが入力すると、読み出し出力から1が出力する。しかし、0状態へのリセットはなされない。
【0037】
図8(a)および(b)はAND回路の等価回路およびシンボルを示す。AND回路は、2つの信号、入力1および入力2が入力した後にクロックが入力し、2入力のANDの演算結果が出力する。従って、それぞれのAND回路の2入力のうち、入力1は信号回路の出力とし、入力2はクロックとすれば、信号回路の出力は、クロックの周期でダウンサンプリングされたものとなる。
【0038】
以下、図9〜図15を参照しながら本発明の実施例を詳細に説明する。なお、本発明の実施例に於いても、重み付き加算を行う合流バッファは大きい黒丸で示し、信号のスプリッタは白抜きの大きい丸で示す。
【0039】
(実施例1)
図9〜図11は本発明の第1の実施例の構成を示すブロック図であり、図9は全体構成を示すブロック図、図10は第1のジンクフィルタ1の構成を示すブロック図、図11は第2のジンクフィルタ2の構成を示すブロック図である。実施例1は、組合せ回路からなる加算器を有するk=3、N=2の第1のジンクフィルタ1と、k=3、N=8の第2のジンクフィルタ2とを結合し、高速で動作するk=3、N=16のジンクフィルタを5×5mm2のチップ上に形成した例である。
【0040】
図9に示すように、第1のジンクフィルタ1は、タップ付き3ビットシフトレジスタ11に周波数fc=14GHzのクロックをリード線17から入力され、ビットレートがクロック周波数fcと同じ14Gbpsで伝送されているデータがリード線16から入力される。タップ付き3ビットシフトレジスタ11の各タップごとに置いた2ビットの破壊読み出しカウンタ12−14には、周波数fc/2=7GHzのクロックがリード線18から入力される。各破壊読み出しカウンタ12−14の出力は4つの組み合わせ回路がカスケードに接続された回路20に導入され、各組み合わせ回路は周波数fc/2=7GHzのクロックがリード線19から入力される。
【0041】
第2のジンクフィルタ2は、回路20の出力信号に対し、2つの13ビット非破壊読み出しカウンタ21、22と1つの13ビット破壊読み出しカウンタ23をカスケードに接続して構成される。入力信号は4ビット、出力信号は13ビットである。各カウンタに入力する信号のビットレートは3つのカウンタともfc/2=7Gbpsである。カウンタ値を読み出すそれぞれのクロックはカウンタ21にはリード線24から周波数fc/2=7GHz、カウンタ22にはリード線25から周波数fc22=fc/2=7GHz、カウンタ23にはリード線26から周波数fc/16=0.875GHzである。
【0042】
図10に、より詳細に示すように、第1のジンクフィルタ1は、3ビットシフトレジスタ11の各タップからは、1、z−1、z−2に対応する3つの信号列が出力する。これらの3つの信号列はそれぞれ2ビット破壊読み出しカウンタ12、13、14に入力される。各2ビット破壊読み出しカウンタは、2つの破壊読み出しトグルフリップフロップの直列接続体から構成されている。2ビット破壊読み出しカウンタは、周波数fc12=fc/2=7GHzのクロックで破壊読み出しを行うため、(1+z−1)の演算と因子2のダウンサンプリングを同時に行うことになる。k=3、N=2のジンクフィルタの伝達関数は、式(11)に示されるように、H(z)=(1+2z−1+z−2)・(1+z−1)と表されるため、1、z−1、z−2に対応する3つの2ビット破壊読み出しカウンタの出力信号列にそれぞれ1、2、1の重みを付けて加算を行えば、所望のk=3、N=2のジンクフィルタ演算を行うことになる。
【0043】
上記第2の従来例では、図2に示すように、この重み付けと加算を合流バッファと破壊読み出しカウンタを用いて行っている。合流バッファと破壊読み出しカウンタを使ったために、セル面積が小さいという長所がある。一方、計算機シミュレーションを用いて、回路動作を検証した結果、合流バッファには2つの入力端子から単一磁束量子(single flux quantum:SFQ)パルスが入力するが、合流バッファを正しく動作させるためには、この2つの入力端子から入力した2つの単一磁束量子パルスの間隔を十分に分離する必要があり、このパルス間隔が加算の動作速度を律速していることが判った。
【0044】
そこで、実施例1では、合流バッファと破壊読み出しカウンタを用いずに、組合せ回路から重み付き加算を行う加算器15を構成し、これより、第2の従来例よりも高速で動作する、第1のジンクフィルタを構成した。
【0045】
すなわち、図10に示すように、3つの2ビット破壊読み出しカウンタ12、13、14の出力に対し、半加算器(half adder:HA)、論理和回路(OR)、遅延器(z−1)を用いて重み付き加算を行う。これらの半加算器、論理和回路は、周波数fc13=fc/2=7GHzのクロック19が供給され、4段の加算演算により、4クロック周期後に重み付き加算結果を出力する。実施例1では出力信号は4ビットである。各段において、半加算器を用いて適当な2本の信号線に対し加算を行い、加算演算を行わない信号線は遅延器を用いてデータを保持する。各段で逐次に加算演算を行い、その結果を次段に送るという動作を繰り返すことにより、4段の加算演算を必要とし、レイテンシは増大する。しかし、段数が増大してもクロック周波数は低減せず、従って、入力信号に対する演算処理速度も低減しないので、高速のクロック動作で所望の重み付き加算を実現できることになる。
【0046】
計算機シミュレーションにより評価した結果、ジョセフソン接合の臨界電流密度が2500A/cm2の時、図10に示したk=3、N=2の第1のジンクフィルタはクロック周波数fc=25GHzまで高速に動作した。しかし、セル面積については、実施例1では2ビット破壊読み出しカウンタ、タップ付き3ビットシフトレジスタ、加算器と多くの要素回路を必要とするため、セル面積は2×3mm2程度であった。図2に示した、合流バッファと破壊読み出しカウンタを用いて重み付き加算を行った上記第2の従来例の場合は、セル面積は2×2mm2程度であったので、セル面積の面では、やや劣ると言える。
【0047】
図9において、第2のジンクフィルタ2はk=3、N=8のジンクフィルタ動作を行うものである。k=3、デシメーション因子Nのジンクフィルタの入出力関係式は、式(1)を変形することにより式(12)、(13)となる。
【0048】
【数7】
図11に詳細を示す第2のジンクフィルタ2は、式(13)に基づいて多重積分型ジンクフィルタの回路型式を定めたものであり、2(=k−1)つの13ビット非破壊読み出しカウンタ21、22と1つの13ビット破壊読み出しカウンタ23とから構成される。入力信号は4ビット、出力信号は13ビットである。各カウンタに入力する信号のビットレートは3つのカウンタともfc/2=7Gbpsである。2つの13ビット非破壊読み出しカウンタ21,22のカウンタ値を読み出すクロックの周波数はリード線24,25から与えられ、ともに、周波数fc/2=7GHzである。13ビット破壊読み出しカウンタのカウンタ値を読み出すクロックの周波数はリード線26から与えられ周波数fc/16=0.875GHzである。
【0049】
3つのカウンタ21−23はいずれも出力ビット数と同じ数のトグルフリップフロップからなる。すなわち、13ビット非破壊読み出しカウンタは13個の非破壊読み出しトグルフリップフロップNDROTFFから、13ビット破壊読み出しカウンタは13個の破壊読み出しトグルフリップフロップDROTFFからなる。
【0050】
図11において、1つのトグルフリップフロップは1ビットに対応している。ジンクフィルタ動作の際には、カウンタを構成する各トグルフリップフロップにクロックを供給しなければならず、クロックが1ビット目のトグルフリップフロップから13ビット目のトグルフリップフロップまで伝搬するために要する時間がジンクフィルタ動作の最大クロック周波数を決めることになる。従って、ビット数の増大、すなわちNの増大と共に、ジンクフィルタ動作の最大クロック周波数は低下することになる。
【0051】
計算機シミュレーションでは、ジョセフソン接合の臨界電流密度が2500A/cm2の時、図11に示したk=3、N=8の第2のジンクフィルタはクロック周波数fc=7GHzまで動作した。また、このk=3、N=8ジンクフィルタのセル面積は、4×2mm2程度であった。
【0052】
図11に示した第2のジンクフィルタは入力信号4ビット、出力信号13ビットのk=3、N=8ジンクフィルタであるが、このジンクフィルタは入力信号が1ビットの時、出力信号13ビットのk=3、N=16のジンクフィルタとしても機能する。従って、この実施例1の場合、入力信号1ビット、出力信号13ビットのk=3、N=16のジンクフィルタとした場合でも、セル面積は4×2mm2程度と見積られることになる。
【0053】
このように、第2のジンクフィルタは、第1のジンクフィルタよりも動作クロック周波数は低い。しかし、第2のジンクフィルタは、Nを増大させても、カウンタのビット数が増大するだけ、すなわち、トグルフリップフロップの個数が増大するだけであり、第1のジンクフィルタよりも、セル面積が小さいという長所がある。
【0054】
そこで、図9に示すように、セル面積は大きいもの高速に動作する第1のジンクフィルタ1を前段に置いて、k=3、N=2ジンクフィルタ動作を行い、信号のビットレートを1/2に低下させた後に、後段に動作速度のやや遅い第2のジンクフィルタ2を置き、k=3、N=8のジンクフィルタ動作を行い、これよりジンクフィルタ全体として、k=3、N=16のジンクフィルタ動作を実現する。第2のジンクフィルタ2は、多ビット入力が可能なので、後段に置いても、特に障害となることがなく、また、セル面積が小さいので、第1のジンクフィルタ1と第2のジンクフィルタ2を結合しても、10×10mm2程度のチップサイズ上にk=3、N=16ジンクフィルタを形成することができることになる。
【0055】
実施例1では、1.5マイクロメータの回路レイアウト設計ルールを用いた。同じ設計ルールを用いた場合の、実施例1、第1の従来例の多重積分型ジンクフィルタおよび第2の従来例の多段デシメーション型ジンクフィルタのそれぞれについて、k=3、N=16のジンクフィルタのセル面積のデシメーション因子N依存性を図12に示す。これより、あるデシメーション因子Nについて、実施例1のジンクフィルタのセル面積は、第1の従来例の多重積分型ジンクフィルタよりも若干大きいが、第2の従来例の多段デシメーション型ジンクフィルタよりも十分小さいことがわかる。計算機シミュレーション等から見積った動作クロック周波数は、例えばN=16の場合、第2の従来例、実施例1、第1の従来例の順に、18GHz、14GHz、7GHzである。これより実施例1のジンクフィルタは、第1の従来例よりも若干大きいセル面積ではあるが、第1の従来例よりも十分速い動作性能であり、また、第2の従来例よりも若干遅い動作性能ではあるが、第2の従来例よりも十分小さいセル面積で作製できることになる。
【0056】
さらに、第2のジンクフィルタの回路構成は、次数k及び出力ビットにのみ依存し、入力信号のビット数に依存せず、多ビットの入力信号を用いる時に有利であるという特徴を有する。すなわち、実施例1の場合、図10に示すように、第1のジンクフィルタは、1ビットの入力信号に対してk=3、N=2のジンクフィルタ演算を行うものであるが、これを多ビットの入力信号に対してk=3、N=2のジンクフィルタ演算を行うことを考えたときには、図10の第1のジンクフィルタの回路構成を各ビットに対応づける必要があり、そのビット数と同じ数だけ第1のジンクフィルタの回路構成を配置しなければならない。これは、図1に示す従来例と同じであり、入力信号のビット数の増大と共に、回路規模は増大し、セル面積も増大する。これに対し、図11に示す第2のジンクフィルタの場合、第2のジンクフィルタは複数段の非破壊読み出しカウンタと1段の破壊読み出しカウンタとからなり、各カウンタはビット数と同じ数のトグルフリップフロップからなるが、第2のジンクフィルタへの入力信号が1ビットの時は、この1ビットの入力信号は、初段の非破壊読み出しカウンタの中の最下位ビットに対応する非破壊読み出しトグルフリップフロップに入力すればよく、入力信号が多ビットの時は、各ビットの信号を、各ビットに対応した非破壊読み出しトグルフリップフロップに入力すればよい。従って、第2のジンクフィルタは、入力信号のビット数が増大しても、回路規模は変わらず、セル面積も変わらないという特徴を有する。
【0057】
(実施例2)
尚、実施例1では、第1のジンクフィルタ1として図10に示すk=3、N=2のジンクフィルタを用い、これと図11に示すk=3、N=8の第2のジンクフィルタ2を結合させることにより、図9に示すような高速で動作し、セル面積の小さいk=3、N=16のジンクフィルタを実現したが、第1のジンクフィルタ1として、図2に示す第2の従来例のk=3、N=2のジンクフィルタを用い、これと実施例1の第2のジンクフィルタ2を結合させ、図13に示すようなk=3、N=16のジンクフィルタを作製しても同様の効果が得られる。この例では、第1のジンクフィルタ1が合流バッファを持つことになるから、前述した、2つの入力端子から入力した2つの単一磁束量子パルスの間隔を十分に分離する必要がある。したがって、第1のジンクフイルタ1のクロック周波数の上限は18GHzとなり、実施例1よりも低下する。しかし、k=3,N=16のジンク回路全体の動作速度は、実施例1の図9、実施例2の図13ともに、第2のジンクフイルタが制限しているので、図2のジンクフイルタを用いることにより、回路全体の速度が低下することはない。
【0058】
(実施例3)
実施例1では、第1のジンクフィルタ1としてk=3、N=2のジンクフィルタを用い、その構成要素であるタップ付きシフトレジスタ11は3段のシフトレジスタとし、ダウンサンプラとして2ビット破壊読み出しカウンタ12−14を用いた。実施例3では、図14に示すように、タップ付きシフトレジスタ11は4段のシフトレジスタとし、ダウンサンプラは2ビット破壊読み出しカウンタ12−14に代えて、論理積回路(AND)110を用いて第1のジンクフィルタ1を構成して実施例1と同様の効果を得た例である。k=3、N=2のジンクフィルタの伝達関数は、式(14)と表される。
【0059】
【数8】
まず、シフトレジスタを用いて、1、z−1、z−2、z−3に対応する4つの信号列を生成する。これら4つの信号列のビットレートはクロック周波数fcに等しい。2入力の論理積回路を用い、論理積の第1の入力に、この1、z−1、z−2、z−3に対応する4つの信号を入力し、論理積の第2の入力に周波数fc/2のクロックを入力し、さらに、周波数fcのクロック信号を論理積回路に入力する。これより論理積回路は、第1の入力の信号をビットレートfc/2で間引いて出力することになり、因子2のダウンサンプリングを実行することになる。次に、4つの論理積回路から出力した4つ信号列に対し、それぞれ1、3、3、1の重みを付けて加算を行う。重み付き加算は図9の加算器15と同様にして実行できる。図9の加算器15では4段の加算演算により、重みを付き加算を行ったが、この場合は、出力の信号や重み付けの係数が異なるため、図14に示すように、5段の加算演算により所望の1、3、3、1の重み付き加算を実行でき、これよりk=3、N=2のジンクフィルタ演算を実行できることになる。
【0060】
(実施例4)
実施例1では、k=3、N=2の第1のジンクフィルタ1と、k=3、N=8の第2のジンクフィルタ2とを結合し、k=3、N=16のジンクフィルタを形成した。実施例4では、図15に示すように、k=3、N=4の第1のジンクフィルタ1と、k=3、N=4の第2のジンクフィルタ2とを結合しても同様の効果が得られ、高速で動作するk=3、N=16のジンクフィルタを形成することができる。この場合、k=3、N=4の第1のジンクフィルタ1は、k=3、N=2のジンクフィルタを2段縦続接続した構成であり、第1のジンクフィルタ1のセル面積は本実施例よりも増大する。しかし、第1のジンクフィルタ1から出力する信号のビットレートは、実施例1の1/2である。従って、第2のジンクフィルタの動作速度は実施例1の1/2となり、実施例4の第2のジンクフィルタ2に要求される動作速度が緩和されるという効果がある。
【0061】
【発明の効果】
セル面積は大きいが、高速動作の可能な第1のジンクフィルタを前段に配置し、動作速度は遅いがセル面積の小さい第2のジンクフィルタを後段に配置することにより、トータルとして、10×10mm2程度の大きさのチップ上に次数2以上かつデシメーション因子4以上の超電導単一磁束量子ジンクフィルタを実現することができる。
【図面の簡単な説明】
【図1】第2の従来例のk=3、N=16の多段デシメーション型ジンクフィルタの一例のブロック構成を示す図。
【図2】図1に示す多段デシメーション型ジンクフィルタを構成するk=3、N=2の回路セルの一例のブロック構成を示す図。
【図3】(a)および(b)(c)は、1ビットシフトレジスタ(遅延器)の等価回路およびそのシンボルを、それぞれ、示す図。
【図4】(a)および(b)はスプリッタの等価回路およびそのシンボルを、それぞれ、示す図。
【図5】(a)および(b)は重み付き加算を行う合流バッファの等価回路およびシンボルを示す図。
【図6】(a)および(b)は破壊読み出しトグルフリップフロップDROTFFの等価回路およびシンボルを示す図。
【図7】(a)および(b)は非破壊読み出しトグルフリップフロップNDROTFFの等価回路およびシンボルを示す図。
【図8】(a)および(b)は論理積AND回路ANDの等価回路およびシンボルを示す図。
【図9】本発明の第1の実施例の全体構成を示すブロック図。
【図10】図9の第1のジンクフィルタ1の構成を示すブロック図。
【図11】図9の第2のジンクフィルタ2の構成を示すブロック図。
【図12】k=3、N=16のジンクフィルタの各種の構成について、セル面積のデシメーション因子N依存性を示す図。
【図13】本発明の第2の実施例の全体構成を示すブロック図。
【図14】本発明の第3の実施例の第1のジンクフィルタ1の構成を示すブロック図。
【図15】本発明の第4の実施例の第1のジンクフィルタ1の構成を示すブロック図。
【符号の説明】
1…第1のジンクフィルタ、2…第2のジンクフィルタ、11…3ビットシフトレジスタ、12、13、14…2ビット破壊読み出しカウンタ、15…加算器、16…データ、17、18、19…クロック、110…ダウンサンプラ、21、22…13ビット非破壊読み出しカウンタ、23…13ビット破壊読み出しカウンタ、24、25、26…クロック。
Claims (4)
- 多段デシメーション型ジンクフィルタの構成を主体として回路を構成した第1のジンクフィルタと、第1のジンクフィルタの出力を受けて動作する多重積分型ジンクフィルタを主体として回路を構成した第2のジンクフィルタから構成されるとともに、第1のジンクフィルタのデシメーション因子を4以下としたことを特徴とする超電導単一磁束量子ジンクフィルタ。
- クロックと該クロックと同じビットレートで伝送するデータ信号が入力するタップ付きシフトレジスタと、該タップ付きシフトレジスタの各タップごとに置かれ、該タップから出力した信号が入力するダウンサンプラと、該ダウンサンプラから出力した信号が入力する加算器と、を含む第1のジンクフィルタと、
該第1のジンクフィルタから出力した信号が入力し、非破壊読み出しを行う非破壊読み出しカウンタを1個以上と、破壊読み出しカウンタと、を含む第2のジンクフィルタと、
から構成されることを特徴とする超電導単一磁束量子ジンクフィルタ。 - クロックと該クロックと同じビットレートで伝送するデータ信号が入力するタップ付きシフトレジスタと、該タップ付きシフトレジスタの各タップごとに置かれ、該タップから出力した信号が入力し、クロック周波数の1/2の周波数で破壊読み出しを行う破壊読み出しカウンタと、該破壊読み出しカウンタから出力した信号が入力し、クロック周波数の1/2の周波数で重み付き加算を行う加算器と、を含む第1のジンクフィルタと、
該第1のジンクフィルタから出力した信号が入力し、クロック周波数の1/2の周波数で非破壊読み出しを行う非破壊読み出しカウンタを1個以上と、クロック周波数を4以上の偶数値で除した周波数で破壊読み出しを行う破壊読み出しカウンタと、を含む第2のジンクフィルタと、
から構成されることを特徴とする超電導単一磁束量子ジンクフィルタ。 - 請求項1ないし3のいずれかに記載の超電導単一磁束量子ジンクフィルタにおいて、
上記第1のジンクフィルタの出力信号はビット数2以上の多ビット信号であり、
上記第2のジンクフィルタの構成要素であり、上記第1のジンクフィルタの出力信号が入力する、初段の非破壊読み出しカウンタは、2個以上の非破壊読み出しトグルフリップフロップからなり、
上記第1のジンクフィルタの出力信号の各ビットの信号は、各ビットにそれぞれ対応づけられた上記非破壊読み出しトグルフリップフロップに入力することを特徴とする超電導単一磁束量子ジンクフィルタ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003079614A JP3904525B2 (ja) | 2003-03-24 | 2003-03-24 | 超電導単一磁束量子ジンクフィルタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003079614A JP3904525B2 (ja) | 2003-03-24 | 2003-03-24 | 超電導単一磁束量子ジンクフィルタ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004289529A true JP2004289529A (ja) | 2004-10-14 |
JP3904525B2 JP3904525B2 (ja) | 2007-04-11 |
Family
ID=33293678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003079614A Expired - Fee Related JP3904525B2 (ja) | 2003-03-24 | 2003-03-24 | 超電導単一磁束量子ジンクフィルタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3904525B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022510327A (ja) * | 2018-11-30 | 2022-01-26 | ノースロップ グラマン システムズ コーポレーション | 反転位相モード論理フリップフロップ |
-
2003
- 2003-03-24 JP JP2003079614A patent/JP3904525B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022510327A (ja) * | 2018-11-30 | 2022-01-26 | ノースロップ グラマン システムズ コーポレーション | 反転位相モード論理フリップフロップ |
JP7100202B2 (ja) | 2018-11-30 | 2022-07-12 | ノースロップ グラマン システムズ コーポレーション | 反転位相モード論理フリップフロップ |
Also Published As
Publication number | Publication date |
---|---|
JP3904525B2 (ja) | 2007-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10103736B1 (en) | Four-input Josephson gates | |
US6518786B2 (en) | Combinational logic using asynchronous single-flux quantum gates | |
KR100481067B1 (ko) | 분산 산술 처리장치 및 그를 이용한 이차원 이산여현변환 처리장치 | |
Jabbari et al. | Splitter trees in single flux quantum circuits | |
US10171087B1 (en) | Large fan-in RQL gates | |
CN110955861A (zh) | 用于高带宽、低延迟机器学习的电路 | |
EP0630116A2 (en) | Integrated high speed synchronous counter with asynchronous read-out | |
Filippov et al. | Encoders and decimation filters for superconductor oversampling ADCs | |
Sushma et al. | QCA Based Universal Shift Register using 2 to 1 Mux and D flip-flop | |
Salameh et al. | Superconductive logic using 2ϕ—Josephson junctions with half flux quantum pulses | |
Han et al. | Design of Max Pooling Operation Circuit for Binarized Neural Networks Using Single-Flux-Quantum Circuit | |
Harshitha et al. | A novel QCA based compact scan flip-flop for digital design testing | |
JP3904525B2 (ja) | 超電導単一磁束量子ジンクフィルタ | |
US7376691B2 (en) | Arithmetic and logic unit using half adder | |
CN106505971A (zh) | 一种基于结构加法器顺序重编排的低复杂度fir滤波器结构 | |
Tang | Studies on datapath circuits for superconductor bit-slice microprocessors | |
US4678945A (en) | Unidirectional single-flux-quantum logic circuit | |
Lin et al. | Two-dimensional rank-order filter by using max-min sorting network | |
US5289400A (en) | Single-flux-quantum multiply-accumulator | |
Yu et al. | Multirate digital squarer architectures | |
Woods et al. | Design of a high-performance IIR digital filter chip | |
Sokolovic et al. | Decimation filter design | |
US20240281692A1 (en) | Temporal and sfq pulse stream encoding for area efficient superconducting accelerators | |
Takahashi et al. | Design of a superconducting ALU with a 3-input XOR gate | |
US20230351234A1 (en) | Effective synchronous gates for rapid single flux quantum logic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070109 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |