JP2004288418A - Fuel cell power generation system - Google Patents

Fuel cell power generation system Download PDF

Info

Publication number
JP2004288418A
JP2004288418A JP2003077136A JP2003077136A JP2004288418A JP 2004288418 A JP2004288418 A JP 2004288418A JP 2003077136 A JP2003077136 A JP 2003077136A JP 2003077136 A JP2003077136 A JP 2003077136A JP 2004288418 A JP2004288418 A JP 2004288418A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel
hydrogen
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003077136A
Other languages
Japanese (ja)
Inventor
Setsuo Omoto
節男 大本
Naohiko Ishibashi
直彦 石橋
Keiji Fujikawa
圭司 藤川
Masami Kondo
正實 近藤
Hiroshi Kajitani
寛士 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003077136A priority Critical patent/JP2004288418A/en
Publication of JP2004288418A publication Critical patent/JP2004288418A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generation system shortening build up time for starting compatibly with reducing a space for installation at the same time. <P>SOLUTION: The fuel cell power generation system is equipped with a fuel cell body 10; an oxidizing gas supply device 20 supplying air 1 to the oxidizing gas supply side of the fuel cell body 10; and a fuel gas supply device 30 producing hydrogen-containing gas 5 by reacting town gas 3 with vapor of water 4, supplying fuel gas 6 obtained by converting carbon monoxide into the hydrogen-containing gas 5 into carbon dioxide by reacting the hydrogen-containing gas 5 with air 2 to the fuel gas supply side of the fuel cell body 10, and an oxygen adsorbing and removing device 40 adsorbing and removing oxygen from gas supplyed to the fuel gas supply side of the fuel cell body 10 is installed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電システムに関する。
【0002】
【従来の技術】
家屋等の電力供給源としての利用が検討されている従来の燃料電池発電システムの一例の概略構成を図2を用いて説明する。
【0003】
図2に示すように、従来の燃料電池発電システムは、燃料電池本体110と、酸素を含有する酸化ガスである空気1を前記燃料電池本体110の酸化ガス供給側に送給する酸化ガス供給装置120と、炭化水素ガス含有ガスである都市ガス3と水4の蒸気とを反応させて水素含有ガス5を生成させると共に、当該水素含有ガス5を酸素含有ガスである空気2と反応させて当該水素含有ガス5中の一酸化炭素を二酸化炭素に変質させた燃料ガス6を燃料電池本体110の燃料ガス供給側に送給する燃料ガス供給装置130とを備えている。
【0004】
前記燃料ガス供給装置130は、都市ガス3と水4の蒸気とを反応させて水素含有ガス5を生成させる水蒸気改質触媒131と、この水蒸気改質触媒131で改質された前記ガス5中の一酸化炭素を二酸化炭素に変性させて当該ガス5中の一酸化炭素濃度を低減させるCO変性触媒132と、このCO変性触媒132で変性された水素含有ガス5を空気2と反応させて当該ガス5中の一酸化炭素を二酸化炭素に変質させて燃料ガス6を生成させるCO低減触媒133と、空気2と都市ガス3とを燃焼させて発生した燃焼ガス7により上記触媒131〜133を加熱する加熱装置134と、上記CO低減触媒133で生成した燃料ガス6から余剰の水分を除去する凝縮器135とを備えている。
【0005】
上記凝縮器135は、バルブ141を介して前記燃料電池本体110の燃料ガス供給側に連絡すると共に、バルブ142を介して水素燃焼器145に連絡している。上記燃料電池本体110の使用済み燃料ガス排出側は、前記加熱装置134の空気2の供給ラインに連絡している。上記燃料電池本体110の使用済み酸化ガス排出側は、バルブ144を介して上記水素燃焼器145に連絡すると共に、バルブ143を介して系外へ連絡している。
【0006】
このような従来の燃料電池発電システムの作動を次に説明する。
まず、燃料ガス供給装置130の加熱装置134を作動して、空気2と都市ガス3とを燃焼させて生成した燃焼ガス7の熱により、前記触媒131〜133を加熱する。上記触媒131〜133を加熱した燃焼ガス7は、系外へ排出される。上記触媒131〜133が蒸気発生温度(100℃以上)まで加熱されたら、上記触媒131〜133に水4を供給して蒸気を発生させながら当該触媒131〜133を引き続いて加熱する。
【0007】
上記触媒131〜133が触媒作用温度まで加熱されたら、上記触媒131〜133に都市ガス3を供給すると、都市ガス3は、水蒸気改質触媒131により水蒸気と反応して、二酸化炭素(約25%)や一酸化炭素(約2%)を含む水素を含有する(約70%)水素含有ガス5に改質され、CO変性触媒132により一酸化炭素が二酸化炭素に変性されて減少された後(約3000ppm)、CO低減触媒133において供給された空気2中の酸素と反応して、一酸化炭素がさらに低減された(10ppm以下)燃料ガス6となる。
【0008】
上記燃料ガス6は、凝縮器135により、降温されて余剰の水分が除去された後、燃料電池本体110の燃料ガス供給側に送給され、酸化ガス供給装置120から燃料電池本体110の酸化ガス供給側に供給された空気1と電気化学的に反応して発電を行った後、前記加熱装置134に送給されて、燃焼ガス7の原料に利用される。
【0009】
ここで、生成当初の上記燃料ガス6は、一酸化炭素を十分に低減できておらず、燃料電池本体110の燃料ガス供給側に供給してしまうと、電極触媒を被毒して劣化させてしまうおそれがある。このため、燃料ガス6を生成し始めてしばらくの間は(数分間程度)、前記バルブ142,144を開放して前記バルブ141,143を閉塞することにより、当該燃料ガス6を燃料電池本体110に送給せずに水素燃焼器145に送給して、燃料電池本体110を介して送給されてきた前記酸化ガス供給装置120からの空気1と共に燃焼処理して燃焼ガス8として系外へ排出し、前記CO低減触媒133から送出された燃料ガス6中の一酸化炭素濃度が規定値(10ppm)以下となった時点で、前記バルブ141,143を開放して前記バルブ142,144を閉塞することにより、当該燃料ガス6を燃料電池本体110に送給して発電に供するようにしている。
【0010】
【特許文献1】
特開2001−93550号公報
【0011】
【発明が解決しようとする課題】
前述したような従来の燃料電池発電システムにおいては、家屋等の電力供給源に適用するにあたって、起動にかかる立ち上がり時間の短縮化を図るため、都市ガス3の供給に先立って、CO低減触媒133に空気2を予め送給しておくことにより、CO低減触媒133から送出される燃料ガス6中の一酸化炭素濃度を規定値にまで早急に低減させることが考えられている。また、設置にかかる省スペース化を図るため、起動時等に必要なだけで定常運転時には不要な前記バルブ141〜144や水素燃焼器145を省略することが考えられている。
【0012】
しかしながら、上記事項を同時に行ってしまうと、燃料電池本体110の燃料ガス供給側に規定値を超える一酸化炭素が送給されることはないものの、CO低減触媒133に予め送給した空気2が燃料電池本体110の燃料ガス供給側に送給されてしまい、引き続いて送給されてきた燃料ガス6の水素と空気2中の酸素とが燃焼反応を起こして燃料電池本体110を損傷してしまう恐れがあった。
【0013】
このようなことから、本発明は、起動にかかる立ち上がり時間の短縮化及び設置にかかる省スペース化を同時に図ることが低コストで簡単にできる燃料電池発電システムを提供することを目的とする。
【0014】
【課題を解決するための手段】
前述した課題を解決するための、第一番目の発明による燃料電池発電システムは、燃料電池本体と、酸素を含有する酸化ガスを前記燃料電池本体の酸化ガス供給側に送給する酸化ガス供給手段と、炭化水素ガス含有ガスと水蒸気とを反応させて水素含有ガスを生成させると共に、当該水素含有ガスを酸素含有ガスと反応させて当該水素含有ガス中の一酸化炭素を二酸化炭素に変質させた燃料ガスを前記燃料電池本体の燃料ガス供給側に送給する燃料ガス供給手段とを備えた燃料電池発電システムにおいて、前記燃料電池本体の燃料ガス供給側に送給されるガス中から酸素ガスを吸着除去する酸素ガス吸着手段を備えていることを特徴とする。
【0015】
第二番目の発明による燃料電池発電システムは、第一番目の発明において、前記酸素ガス吸着手段が、酸素ガスを吸着除去すると共に、水素ガスにより再生可能な酸化還元機能を有する酸化還元剤を備えていることを特徴とする。
【0016】
第三番目の発明による燃料電池発電システムは、第二番目の発明において、前記酸化還元剤が、銅系または銅−亜鉛系からなることを特徴とする。
【0017】
第四番目の発明による燃料電池発電システムは、第一番目から第三番目の発明のいずれかにおいて、前記燃料ガス供給手段が、炭化水素ガス含有ガスと水蒸気とを反応させて水素含有ガスを生成させる水蒸気改質触媒と、前記水素含有ガスを酸素含有ガスと反応させて当該水素含有ガス中の一酸化炭素を二酸化炭素に変質させるCO低減触媒とを備えていることを特徴とする。
【0018】
第五番目の発明による燃料電池発電システムは、第四番目の発明において、前記燃料ガス供給手段が、前記水蒸気改質触媒で改質された前記ガス中の一酸化炭素を二酸化炭素に変性させて当該ガス中の一酸化炭素濃度を低減させるCO変性触媒を備えていることを特徴とする。
【0019】
【発明の実施の形態】
本発明による燃料電池発電システムの実施の形態を図1を用いて説明する。図1は、燃料電池発電システムの概略構成図である。
【0020】
本実施の形態にかかる燃料電池発電システムは、図1に示すように、燃料電池本体10と、酸素を含有する酸化ガスである空気1を前記燃料電池本体10の酸化ガス供給側に送給する酸化ガス供給手段である酸化ガス供給装置20と、炭化水素ガス含有ガスである都市ガス3と水4の蒸気とを反応させて水素含有ガス5を生成させると共に、当該水素含有ガス5を酸素含有ガスである空気2と反応させて当該水素含有ガス5中の一酸化炭素を二酸化炭素に変質させた燃料ガス6を燃料電池本体10の燃料ガス供給側に送給する燃料ガス供給手段である燃料ガス供給装置30とを備えた燃料電池発電システムにおいて、前記燃料電池本体10の燃料ガス供給側に送給されるガス中から酸素を吸着除去する酸素ガス吸着手段である酸素吸着除去装置40を備えたものである。
【0021】
前記燃料ガス供給装置30は、都市ガス3と水4の蒸気とを反応させて水素含有ガス5を生成させる水蒸気改質触媒31(例えばNi系やルテニウム系等)と、この水蒸気改質触媒31で改質された前記ガス5中の一酸化炭素を二酸化炭素に変性させて当該ガス5中の一酸化炭素濃度を低減させるCO変性触媒32(例えば、微粒子化されたCu−Zn系触媒等)と、このCO変性触媒32で変性された水素含有ガス5を空気2と反応させて当該ガス5中の一酸化炭素を二酸化炭素に変質させて燃料ガス6を生成させるCO低減触媒33(例えば、Pt系、Ru系等)と、空気2と都市ガス3とを燃焼させて発生した燃焼ガス7により上記触媒31〜33を加熱する加熱装置34と、上記CO低減触媒33で生成した燃料ガス6から余剰の水分を除去する凝縮器35とを備えている。
【0022】
前記酸素吸着除去装置40は、酸素ガスを吸着除去すると共に、水素ガスにより再生可能な酸化還元機能を有する銅系や比較的粒径の大きな銅−亜鉛系等からなる酸化還元剤を備えている。
【0023】
つまり、本実施の形態にかかる燃料電池発電システムは、図2に示したような従来用いられていた前記バルブ141〜144や水素燃焼器145に変えて、上記酸素吸着除去装置40をCO低減触媒33と凝縮器35との間に配設するようにしたのである。
【0024】
このような本実施の形態にかかる燃料電池発電システムの作動を次に説明する。
まず、燃料ガス供給装置30の加熱装置34を作動して、空気2と都市ガス3とを燃焼させて生成した燃焼ガス7の熱により、前記触媒31〜33を加熱する。上記触媒31〜33を加熱した燃焼ガス7は、系外へ排出される。上記触媒31〜33が蒸気発生温度(100℃以上)まで加熱されたら、上記触媒31〜33に水4を供給して蒸気を発生させながら当該触媒31〜33を引き続いて加熱する。
【0025】
上記触媒31〜33が触媒作用温度、具体的には、水蒸気改質触媒31が約650℃前後、CO変性触媒32が約250℃前後、CO低減触媒33が約130℃前後に加熱される少し前になったら(約1分前程度)、前記CO低減触媒33内に空気2を先に送給すると、当該空気2は、CO低減触媒33を介して前記酸素吸着除去装置40内に流入し、酸素ガスが吸着除去され、窒素ガスのみが通過して凝縮器35を介して燃料電池本体10の燃料ガス供給側に流入する。
【0026】
上記触媒31〜33が触媒作用温度に到達したら、上記触媒31〜33に都市ガス3の供給を開始する。都市ガス3は、水蒸気改質触媒31により水蒸気と反応して、二酸化炭素(約25%)や一酸化炭素(約2%)を含む水素を含有する(約70%)水素含有ガス5に改質され、CO変性触媒32により一酸化炭素が二酸化炭素に変性されて減少された後(約3000ppm)、CO低減触媒33において供給された空気2中の酸素と反応して、一酸化炭素がさらに低減された(10ppm以下)燃料ガス6となる。
【0027】
上記燃料ガス6は、酸素吸着除去装置40内を流通し、水素ガス成分の一部が当該酸化還元剤に吸着している酸素と反応して水を生成することにより、当該酸化還元剤から酸素を除去して当該酸化還元剤を還元再生した後、凝縮器35により降温されて余剰の水分を除去されてから、燃料電池本体10の燃料ガス供給側に送給され、酸化ガス供給装置20から燃料電池本体10の酸化ガス供給側に供給された空気1と電気化学的に反応して発電を行った後、前記加熱装置34に送給されて、燃焼ガス7の原料に利用される。
【0028】
つまり、従来は、先に説明したように、バルブ141〜144を切り換えることにより、酸素や一酸化炭素を含有するガスを燃料電池本体110の燃料ガス供給側に流入させることなく水素燃焼器145で燃焼処理するようにしていたが、本実施の形態においては、酸素吸着除去装置40により、都市ガス3の改質開始前に予め供給された空気2中の酸素ガスを吸着除去すると共に、燃料ガス6中の水素ガスにより、酸素吸着除去装置40の酸化還元剤を還元処理して続けて再生処理するようにしたのである。
【0029】
このため、本実施の形態においては、従来よりも容積を小さくしながらも(約5〜10%)、都市ガス3の供給に先立って、CO低減触媒33に空気2を予め送給して、CO低減触媒33から送出される燃料ガス6中の一酸化炭素濃度を規定値にまで早急に低減させることと、燃料電池本体10の燃料ガス供給側への酸素の流入を防止することとを同時に実現することができる。
【0030】
したがって、本実施の形態によれば、起動にかかる立ち上がり時間の短縮化及び設置にかかる省スペース化を同時に図ることが低コストで簡単に実施できる。
【0031】
また、燃料ガス6が酸素吸着除去装置40内を流通するだけで当該酸素吸着除去装置40の酸素除去能力が再生するので、当該酸素吸着除去装置40の再生に手間がまったくかからなくなり、保守点検等の簡略化を図ることができる。
【0032】
また、本実施の形態では、炭化水素ガス含有ガスとして都市ガス3を利用したが、本発明はこれに限らず、LPガス等の常温常圧下でガス状をなすものはもちろんのこと、例えば、灯油等のような常温常圧下で液状をなす石油系燃料であっても、これを加熱気化させることにより、適用することができる。
【0033】
【発明の効果】
第一番目の発明による燃料電池発電システムは、燃料電池本体と、酸素を含有する酸化ガスを前記燃料電池本体の酸化ガス供給側に送給する酸化ガス供給手段と、炭化水素ガス含有ガスと水蒸気とを反応させて水素含有ガスを生成させると共に、当該水素含有ガスを酸素含有ガスと反応させて当該水素含有ガス中の一酸化炭素を二酸化炭素に変質させた燃料ガスを前記燃料電池本体の燃料ガス供給側に送給する燃料ガス供給手段とを備えた燃料電池発電システムにおいて、前記燃料電池本体の燃料ガス供給側に送給されるガス中から酸素ガスを吸着除去する酸素ガス吸着手段を備えているので、起動にかかる立ち上がり時間の短縮化及び設置にかかる省スペース化を同時に図ることができる。
【0034】
第二番目の発明による燃料電池発電システムは、第一番目の発明において、前記酸素ガス吸着手段が、酸素ガスを吸着除去すると共に、水素ガスにより再生可能な酸化還元機能を有する酸化還元剤を備えているので、酸素ガス吸着手段の再生にかかる手間を大幅に簡素化することができ、保守点検等の簡略化を図ることができる。
【0035】
第三番目の発明による燃料電池発電システムは、第二番目の発明において、前記酸化還元剤が、銅系または銅−亜鉛系からなるので、低コストで簡単に実施することができる。
【0036】
第四番目の発明による燃料電池発電システムは、第一番目から第三番目の発明のいずれかにおいて、前記燃料ガス供給手段が、炭化水素ガス含有ガスと水蒸気とを反応させて水素含有ガスを生成させる水蒸気改質触媒と、前記水素含有ガスを酸素含有ガスと反応させて当該水素含有ガス中の一酸化炭素を二酸化炭素に変質させるCO低減触媒とを備えているので、燃料ガスの生成を比較的簡単に実施することができる。
【0037】
第五番目の発明による燃料電池発電システムは、第四番目の発明において、前記燃料ガス供給手段が、前記水蒸気改質触媒で改質された前記ガス中の一酸化炭素を二酸化炭素に変性させて当該ガス中の一酸化炭素濃度を低減させるCO変性触媒を備えているので、CO低減触媒での燃料ガス中の水素の消費量を抑えつつ一酸化炭素濃度を大幅に低減させることができる。
【図面の簡単な説明】
【図1】本発明による燃料電池発電システムの実施の形態の概略構成図である。
【図2】従来の燃料電池発電システムの一例の概略構成図である。
【符号の説明】
1,2 空気
3 都市ガス
4 水
5 水素含有ガス
6 燃料ガス
7,8 燃焼ガス
10 燃料電池本体
20 酸化ガス供給装置
30 燃料ガス供給装置
31 水蒸気改質触媒
32 CO変性触媒
33 CO低減触媒
34 加熱装置
35 凝縮器
40 酸素吸着除去装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell power generation system.
[0002]
[Prior art]
A schematic configuration of an example of a conventional fuel cell power generation system which is being considered for use as a power supply source for a house or the like will be described with reference to FIG.
[0003]
As shown in FIG. 2, a conventional fuel cell power generation system includes a fuel cell main body 110 and an oxidizing gas supply device that supplies air 1 that is an oxidizing gas containing oxygen to an oxidizing gas supply side of the fuel cell main body 110. 120, and the city gas 3 as a hydrocarbon gas-containing gas and the vapor of water 4 are reacted to generate a hydrogen-containing gas 5, and the hydrogen-containing gas 5 is reacted with the air 2 as an oxygen-containing gas to produce the hydrogen-containing gas 5. A fuel gas supply device 130 is provided for feeding the fuel gas 6 in which carbon monoxide in the hydrogen-containing gas 5 has been converted into carbon dioxide to the fuel gas supply side of the fuel cell main body 110.
[0004]
The fuel gas supply device 130 includes a steam reforming catalyst 131 that reacts the city gas 3 with the steam of the water 4 to generate the hydrogen-containing gas 5. A CO-modified catalyst 132 that denatures carbon monoxide into carbon dioxide to reduce the concentration of carbon monoxide in the gas 5, and reacts the hydrogen-containing gas 5 modified with the CO-modified catalyst 132 with air 2 The catalysts 131 to 133 are heated by a CO reduction catalyst 133 for converting carbon monoxide in the gas 5 into carbon dioxide to generate a fuel gas 6 and a combustion gas 7 generated by burning the air 2 and the city gas 3. And a condenser 135 for removing excess moisture from the fuel gas 6 generated by the CO reduction catalyst 133.
[0005]
The condenser 135 is connected to a fuel gas supply side of the fuel cell main body 110 via a valve 141, and is also connected to a hydrogen combustor 145 via a valve 142. The spent fuel gas discharge side of the fuel cell main body 110 is connected to a supply line for the air 2 of the heating device 134. The used oxidant gas discharge side of the fuel cell main body 110 is connected to the hydrogen combustor 145 via a valve 144 and to the outside of the system via a valve 143.
[0006]
The operation of such a conventional fuel cell power generation system will now be described.
First, the heating device 134 of the fuel gas supply device 130 is operated to heat the catalysts 131 to 133 by the heat of the combustion gas 7 generated by burning the air 2 and the city gas 3. The combustion gas 7 that has heated the catalysts 131 to 133 is discharged out of the system. When the catalysts 131 to 133 are heated to the steam generation temperature (100 ° C. or higher), the catalysts 131 to 133 are heated while supplying water 4 to the catalysts 131 to 133 to generate steam.
[0007]
When the catalysts 131 to 133 are heated to the catalytic action temperature, when the city gas 3 is supplied to the catalysts 131 to 133, the city gas 3 reacts with steam by the steam reforming catalyst 131, and carbon dioxide (about 25% ) And hydrogen (about 70%) containing hydrogen containing carbon monoxide (about 2%) and reformed into carbon dioxide by the CO denaturation catalyst 132 to reduce the carbon monoxide to carbon dioxide ( (About 3000 ppm) reacts with the oxygen in the air 2 supplied in the CO reduction catalyst 133 to become the fuel gas 6 in which the carbon monoxide is further reduced (10 ppm or less).
[0008]
The fuel gas 6 is sent to the fuel gas supply side of the fuel cell main body 110 after the temperature is reduced by a condenser 135 to remove excess water, and the fuel gas 6 is supplied from the oxidizing gas supply device 120 to the oxidizing gas of the fuel cell main body 110. After electrochemically reacting with the air 1 supplied to the supply side to generate electric power, it is supplied to the heating device 134 and used as a raw material of the combustion gas 7.
[0009]
Here, the fuel gas 6 at the initial stage of generation cannot sufficiently reduce carbon monoxide. If the fuel gas 6 is supplied to the fuel gas supply side of the fuel cell main body 110, the electrode catalyst is poisoned and deteriorated. There is a possibility that it will. Therefore, for a while (about several minutes) after the generation of the fuel gas 6, the valves 142 and 144 are opened and the valves 141 and 143 are closed, so that the fuel gas 6 is transferred to the fuel cell main body 110. The fuel is sent to the hydrogen combustor 145 without being sent, and is burned together with the air 1 from the oxidizing gas supply device 120 sent through the fuel cell main body 110 to be discharged as a combustion gas 8 out of the system. Then, when the concentration of carbon monoxide in the fuel gas 6 delivered from the CO reduction catalyst 133 becomes equal to or lower than a specified value (10 ppm), the valves 141 and 143 are opened and the valves 142 and 144 are closed. Thus, the fuel gas 6 is supplied to the fuel cell main body 110 to be used for power generation.
[0010]
[Patent Document 1]
JP 2001-93550 A
[Problems to be solved by the invention]
In the conventional fuel cell power generation system as described above, when applied to a power supply source such as a house, the CO reduction catalyst 133 is provided before the supply of the city gas 3 in order to shorten the startup time required for starting. It has been considered that the concentration of carbon monoxide in the fuel gas 6 delivered from the CO reduction catalyst 133 is promptly reduced to a specified value by supplying the air 2 in advance. Further, in order to save the space required for installation, it has been considered to omit the valves 141 to 144 and the hydrogen combustor 145 which are necessary only at the time of startup or the like and are unnecessary at the time of steady operation.
[0012]
However, if the above items are performed at the same time, although the carbon monoxide exceeding the specified value is not supplied to the fuel gas supply side of the fuel cell main body 110, the air 2 previously supplied to the CO reduction catalyst 133 is not supplied. The fuel gas is supplied to the fuel gas supply side of the fuel cell main body 110, and the subsequently supplied hydrogen of the fuel gas 6 and oxygen in the air 2 cause a combustion reaction to damage the fuel cell main body 110. There was fear.
[0013]
In view of the above, an object of the present invention is to provide a fuel cell power generation system capable of simultaneously reducing the startup time required for startup and saving space for installation at low cost and easily.
[0014]
[Means for Solving the Problems]
A fuel cell power generation system according to a first aspect of the present invention for solving the above-described problems includes a fuel cell main body, and an oxidizing gas supply unit that supplies an oxidizing gas containing oxygen to an oxidizing gas supply side of the fuel cell main body. And reacting a hydrocarbon gas-containing gas with water vapor to generate a hydrogen-containing gas, and reacting the hydrogen-containing gas with an oxygen-containing gas to convert carbon monoxide in the hydrogen-containing gas into carbon dioxide. A fuel gas power supply system for supplying fuel gas to the fuel gas supply side of the fuel cell body, wherein oxygen gas is supplied from the gas supplied to the fuel gas supply side of the fuel cell body. It is characterized by comprising oxygen gas adsorption means for adsorption and removal.
[0015]
The fuel cell power generation system according to a second invention is the fuel cell power generation system according to the first invention, wherein the oxygen gas adsorbing means is provided with an oxidation-reduction agent having an oxidation-reduction function capable of adsorbing and removing oxygen gas and regenerating with hydrogen gas. It is characterized by having.
[0016]
A fuel cell power generation system according to a third invention is the fuel cell power generation system according to the second invention, wherein the redox agent is made of copper or copper-zinc.
[0017]
A fuel cell power generation system according to a fourth invention is the fuel cell power generation system according to any one of the first to third inventions, wherein the fuel gas supply means generates a hydrogen-containing gas by reacting a hydrocarbon gas-containing gas with steam. And a CO reduction catalyst that reacts the hydrogen-containing gas with the oxygen-containing gas to convert carbon monoxide in the hydrogen-containing gas into carbon dioxide.
[0018]
The fuel cell power generation system according to a fifth invention is the fuel cell power generation system according to the fourth invention, wherein the fuel gas supply unit denatures carbon monoxide in the gas reformed by the steam reforming catalyst to carbon dioxide. It is characterized by having a CO-modified catalyst for reducing the concentration of carbon monoxide in the gas.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a fuel cell power generation system according to the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a fuel cell power generation system.
[0020]
As shown in FIG. 1, the fuel cell power generation system according to the present embodiment supplies a fuel cell main body 10 and air 1 which is an oxidizing gas containing oxygen to an oxidizing gas supply side of the fuel cell main body 10. An oxidizing gas supply device 20 serving as an oxidizing gas supply device is reacted with a city gas 3 and a vapor of water 4 that are hydrocarbon gas-containing gases to generate a hydrogen-containing gas 5 and to convert the hydrogen-containing gas 5 into an oxygen-containing gas. The fuel, which is a fuel gas supply means for supplying a fuel gas 6 in which carbon monoxide in the hydrogen-containing gas 5 is converted into carbon dioxide by reacting with air 2 as a gas to a fuel gas supply side of the fuel cell body 10. In the fuel cell power generation system provided with the gas supply device 30, an oxygen adsorption and removal device as an oxygen gas adsorption means for adsorbing and removing oxygen from gas supplied to the fuel gas supply side of the fuel cell main body 10. Those with a 40.
[0021]
The fuel gas supply device 30 includes a steam reforming catalyst 31 (for example, a Ni-based or ruthenium-based) that reacts the city gas 3 with the steam of the water 4 to generate the hydrogen-containing gas 5. CO-modified catalyst 32 (for example, a finely divided Cu—Zn-based catalyst or the like) that denatures carbon monoxide in the gas 5 reformed by the method into carbon dioxide to reduce the concentration of carbon monoxide in the gas 5 And a CO reduction catalyst 33 (for example, which reacts the hydrogen-containing gas 5 denatured by the CO denaturation catalyst 32 with the air 2 to convert carbon monoxide in the gas 5 into carbon dioxide to generate the fuel gas 6. A heating device 34 for heating the catalysts 31 to 33 by a combustion gas 7 generated by burning the air 2 and the city gas 3, and a fuel gas 6 generated by the CO reduction catalyst 33. Excess water from And a condenser 35 for removing.
[0022]
The oxygen adsorption / removal device 40 is provided with a redox agent made of a copper-based compound having a redox function reproducible with hydrogen gas or a copper-zinc-based compound having a relatively large particle size while adsorbing and removing oxygen gas. .
[0023]
That is, the fuel cell power generation system according to the present embodiment is different from the conventionally used valves 141 to 144 and the hydrogen combustor 145 shown in FIG. It is arranged between 33 and the condenser 35.
[0024]
The operation of the fuel cell power generation system according to the present embodiment will be described below.
First, the heating device 34 of the fuel gas supply device 30 is operated to heat the catalysts 31 to 33 by the heat of the combustion gas 7 generated by burning the air 2 and the city gas 3. The combustion gas 7 that has heated the catalysts 31 to 33 is discharged out of the system. When the catalysts 31 to 33 are heated to the steam generation temperature (100 ° C. or higher), the catalysts 31 to 33 are continuously heated while supplying water 4 to the catalysts 31 to 33 to generate steam.
[0025]
The catalysts 31 to 33 are heated to a catalytic temperature, specifically, about 650 ° C. for the steam reforming catalyst 31, about 250 ° C. for the CO-denaturing catalyst 32, and about 130 ° C. for the CO reducing catalyst 33. If the air 2 is fed before (about 1 minute before), the air 2 is fed into the CO reduction catalyst 33 first, and the air 2 flows into the oxygen adsorption and removal device 40 via the CO reduction catalyst 33. Then, the oxygen gas is adsorbed and removed, and only the nitrogen gas passes through and flows into the fuel gas supply side of the fuel cell main body 10 via the condenser 35.
[0026]
When the catalysts 31 to 33 reach the catalysis temperature, supply of the city gas 3 to the catalysts 31 to 33 is started. The city gas 3 is reacted with steam by the steam reforming catalyst 31 to be converted into a hydrogen-containing gas 5 containing hydrogen (about 70%) containing carbon dioxide (about 25%) and carbon monoxide (about 2%). After the carbon monoxide is denatured into carbon dioxide by the CO denaturation catalyst 32 and reduced (about 3000 ppm), the carbon monoxide reacts with the oxygen in the air 2 supplied in the CO reduction catalyst 33 to further reduce the carbon monoxide. The fuel gas 6 is reduced (10 ppm or less).
[0027]
The fuel gas 6 flows through the oxygen adsorption / removal device 40, and a part of the hydrogen gas component reacts with the oxygen adsorbed on the redox agent to generate water, thereby producing oxygen from the redox agent. Is removed and the redox agent is reduced and regenerated. After the temperature is lowered by the condenser 35 to remove excess water, the excess water is sent to the fuel gas supply side of the fuel cell body 10 and After electrochemically reacting with the air 1 supplied to the oxidizing gas supply side of the fuel cell body 10 to generate electric power, the electric power is supplied to the heating device 34 and used as a raw material of the combustion gas 7.
[0028]
That is, conventionally, as described above, by switching the valves 141 to 144, the gas containing oxygen or carbon monoxide is supplied to the hydrogen combustor 145 without flowing into the fuel gas supply side of the fuel cell main body 110. Although the combustion process is performed, in the present embodiment, the oxygen gas in the air 2 supplied in advance before the reforming of the city gas 3 is adsorbed and removed by the oxygen adsorption and removal device 40 and the fuel gas is removed. The redox agent of the oxygen adsorption / removal device 40 is reduced by the hydrogen gas in 6 and then continuously regenerated.
[0029]
Therefore, in the present embodiment, air 2 is previously supplied to the CO reduction catalyst 33 prior to the supply of the city gas 3 while the volume is made smaller (about 5 to 10%) than in the related art. At the same time, the concentration of carbon monoxide in the fuel gas 6 delivered from the CO reduction catalyst 33 is promptly reduced to a specified value and the flow of oxygen to the fuel gas supply side of the fuel cell body 10 is prevented. Can be realized.
[0030]
Therefore, according to the present embodiment, it is possible to easily reduce the start-up time required for activation and save the space required for installation at a low cost and easily.
[0031]
Further, since the oxygen removal capability of the oxygen adsorption and removal device 40 is regenerated only by the flow of the fuel gas 6 in the oxygen adsorption and removal device 40, the regeneration of the oxygen adsorption and removal device 40 does not require any trouble, and the maintenance and inspection is performed. And the like can be simplified.
[0032]
Further, in the present embodiment, the city gas 3 is used as the hydrocarbon gas-containing gas. However, the present invention is not limited to this. Even a petroleum-based fuel that is in a liquid state at normal temperature and pressure, such as kerosene, can be applied by heating and vaporizing it.
[0033]
【The invention's effect】
A fuel cell power generation system according to a first aspect of the present invention provides a fuel cell main body, oxidizing gas supply means for supplying an oxidizing gas containing oxygen to an oxidizing gas supply side of the fuel cell main body, a hydrocarbon gas-containing gas and steam. To generate a hydrogen-containing gas, and reacting the hydrogen-containing gas with an oxygen-containing gas to convert carbon monoxide in the hydrogen-containing gas into carbon dioxide. A fuel gas power generation system comprising: a fuel gas supply means for supplying a gas to a gas supply side; and an oxygen gas adsorption means for adsorbing and removing oxygen gas from gas supplied to a fuel gas supply side of the fuel cell body. As a result, it is possible to simultaneously shorten the startup time required for activation and save space for installation.
[0034]
The fuel cell power generation system according to a second invention is the fuel cell power generation system according to the first invention, wherein the oxygen gas adsorbing means is provided with an oxidation-reduction agent having an oxidation-reduction function capable of adsorbing and removing oxygen gas and regenerating with hydrogen gas. Therefore, the labor required for regeneration of the oxygen gas adsorbing means can be greatly simplified, and maintenance and inspection can be simplified.
[0035]
In the fuel cell power generation system according to the third invention, in the second invention, since the oxidation-reduction agent is made of a copper or copper-zinc system, it can be easily implemented at low cost.
[0036]
A fuel cell power generation system according to a fourth invention is the fuel cell power generation system according to any one of the first to third inventions, wherein the fuel gas supply means generates a hydrogen-containing gas by reacting a hydrocarbon gas-containing gas with steam. A steam reforming catalyst to be converted and a CO reduction catalyst that converts the hydrogen-containing gas with an oxygen-containing gas to convert carbon monoxide in the hydrogen-containing gas into carbon dioxide. Can be easily implemented.
[0037]
The fuel cell power generation system according to a fifth invention is the fuel cell power generation system according to the fourth invention, wherein the fuel gas supply unit denatures carbon monoxide in the gas reformed by the steam reforming catalyst to carbon dioxide. Since the CO-modified catalyst for reducing the concentration of carbon monoxide in the gas is provided, the concentration of carbon monoxide can be significantly reduced while suppressing the consumption of hydrogen in the fuel gas by the CO reduction catalyst.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of a fuel cell power generation system according to the present invention.
FIG. 2 is a schematic configuration diagram of an example of a conventional fuel cell power generation system.
[Explanation of symbols]
1, 2 Air 3 City gas 4 Water 5 Hydrogen-containing gas 6 Fuel gas 7, 8 Combustion gas 10 Fuel cell body 20 Oxidizing gas supply device 30 Fuel gas supply device 31 Steam reforming catalyst 32 CO reforming catalyst 33 CO reduction catalyst 34 Heating Device 35 Condenser 40 Oxygen adsorption removal device

Claims (5)

燃料電池本体と、
酸素を含有する酸化ガスを前記燃料電池本体の酸化ガス供給側に送給する酸化ガス供給手段と、
炭化水素ガス含有ガスと水蒸気とを反応させて水素含有ガスを生成させると共に、当該水素含有ガスを酸素含有ガスと反応させて当該水素含有ガス中の一酸化炭素を二酸化炭素に変質させた燃料ガスを前記燃料電池本体の燃料ガス供給側に送給する燃料ガス供給手段と
を備えた燃料電池発電システムにおいて、
前記燃料電池本体の燃料ガス供給側に送給されるガス中から酸素ガスを吸着除去する酸素ガス吸着手段を備えている
ことを特徴とする燃料電池発電システム。
A fuel cell body,
Oxidizing gas supply means for supplying an oxidizing gas containing oxygen to an oxidizing gas supply side of the fuel cell main body,
A fuel gas obtained by reacting a hydrocarbon-containing gas with water vapor to generate a hydrogen-containing gas, and reacting the hydrogen-containing gas with an oxygen-containing gas to convert carbon monoxide in the hydrogen-containing gas into carbon dioxide. And a fuel gas supply means for feeding the fuel gas to the fuel gas supply side of the fuel cell body,
A fuel cell power generation system comprising oxygen gas adsorbing means for adsorbing and removing oxygen gas from gas supplied to a fuel gas supply side of the fuel cell body.
請求項1において、
前記酸素ガス吸着手段が、酸素ガスを吸着除去すると共に、水素ガスにより再生可能な酸化還元機能を有する酸化還元剤を備えている
ことを特徴とする燃料電池発電システム。
In claim 1,
A fuel cell power generation system, wherein the oxygen gas adsorbing means includes an oxidation-reduction agent having an oxidation-reduction function reproducible with hydrogen gas while adsorbing and removing oxygen gas.
請求項2において、
前記酸化還元剤が、銅系または銅−亜鉛系からなる
ことを特徴とする燃料電池発電システム。
In claim 2,
The fuel cell power generation system, wherein the redox agent is made of a copper or copper-zinc compound.
請求項1から請求項3のいずれかにおいて、
前記燃料ガス供給手段が、
炭化水素ガス含有ガスと水蒸気とを反応させて水素含有ガスを生成させる水蒸気改質触媒と、
前記水素含有ガスを酸素含有ガスと反応させて当該水素含有ガス中の一酸化炭素を二酸化炭素に変質させるCO低減触媒と
を備えていることを特徴とする燃料電池発電システム。
In any one of claims 1 to 3,
The fuel gas supply means,
A steam reforming catalyst for producing a hydrogen-containing gas by reacting a hydrocarbon gas-containing gas with steam;
A fuel cell power generation system, comprising: a CO reduction catalyst that reacts the hydrogen-containing gas with an oxygen-containing gas to convert carbon monoxide in the hydrogen-containing gas into carbon dioxide.
請求項4において、
前記燃料ガス供給手段が、
前記水蒸気改質触媒で改質された前記ガス中の一酸化炭素を二酸化炭素に変性させて当該ガス中の一酸化炭素濃度を低減させるCO変性触媒を備えている
ことを特徴とする燃料電池発電システム。
In claim 4,
The fuel gas supply means,
Fuel cell power generation, comprising a CO-modified catalyst that denatures carbon monoxide in the gas reformed by the steam reforming catalyst to carbon dioxide to reduce the concentration of carbon monoxide in the gas. system.
JP2003077136A 2003-03-20 2003-03-20 Fuel cell power generation system Withdrawn JP2004288418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077136A JP2004288418A (en) 2003-03-20 2003-03-20 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077136A JP2004288418A (en) 2003-03-20 2003-03-20 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2004288418A true JP2004288418A (en) 2004-10-14

Family

ID=33291966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077136A Withdrawn JP2004288418A (en) 2003-03-20 2003-03-20 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2004288418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286472A (en) * 2005-04-01 2006-10-19 Toshiba Fuel Cell Power Systems Corp Fuel treating device, fuel cell generator, and its starting method
JP2022528613A (en) * 2019-03-21 2022-06-15 インテリジェント エナジー リミテッド Mitigation of fuel cell start-up / shutdown deterioration by removing oxygen adsorption / absorption medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286472A (en) * 2005-04-01 2006-10-19 Toshiba Fuel Cell Power Systems Corp Fuel treating device, fuel cell generator, and its starting method
JP2022528613A (en) * 2019-03-21 2022-06-15 インテリジェント エナジー リミテッド Mitigation of fuel cell start-up / shutdown deterioration by removing oxygen adsorption / absorption medium
JP7292406B2 (en) 2019-03-21 2023-06-16 インテリジェント エナジー リミテッド Mitigation of fuel cell start-up/shutdown degradation by removal of oxygen adsorption/absorptive media
US11715838B2 (en) 2019-03-21 2023-08-01 Intelligent Energy Limited Fuel cell startup/shutdown degradation mitigation by removal of oxygen ad/absorption media

Similar Documents

Publication Publication Date Title
JP5063584B2 (en) FUEL CELL DEVICE FOR FUEL CELL DEVICE AND METHOD OF OPERATING FUEL PROCESSING DEVICE FOR FUEL CELL DEVICE
JP5065605B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP2005530675A (en) Methanol steam reforming catalyst, steam reformer, and fuel cell system incorporating the same
JP2002020102A (en) Method for starting and method for stopping hydrogen producing device
JP2004284875A (en) Hydrogen production system, and fuel cell system
AU2007250925B2 (en) Method for treatment of drain in hydrogen production and hydrogen production system
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP3865479B2 (en) Carbon monoxide removal system and carbon monoxide removal method
JP2002060204A (en) Fuel reformer, its operating method and fuel cell power generation unit using the same
JP4784047B2 (en) Fuel cell system
JP2007106612A (en) Fuel reforming apparatus and fuel cell power generation system using the same
JP2005251603A (en) Method for abnormal stop of fuel gas manufacturing device
JP2006351310A (en) Fuel cell system and its operation method
JP2006076839A (en) Hydrogen purification system and fuel cell system using the same
JP2004288418A (en) Fuel cell power generation system
JP4936645B2 (en) Hydrogen production apparatus and fuel cell system
WO2001036322A1 (en) Apparatus for removing carbon monoxide and method for operation thereof
JP4506429B2 (en) Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
JP4490717B2 (en) Reformer
JP3050850B2 (en) Fuel cell power generation system
JP2005179083A (en) Hydrogen producing apparatus, fuel cell system, and its operatin method
JP2006306665A (en) Operation method of hydrogen manufacturing device
JP3916485B2 (en) Pretreatment method for hydrogen-containing gas generator
JP2005089255A (en) Hydrogen generator and its method
JP2005340008A (en) Fuel cell system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606