JP2004288092A - 自己給電式無線データ収集システム - Google Patents
自己給電式無線データ収集システム Download PDFInfo
- Publication number
- JP2004288092A JP2004288092A JP2003081941A JP2003081941A JP2004288092A JP 2004288092 A JP2004288092 A JP 2004288092A JP 2003081941 A JP2003081941 A JP 2003081941A JP 2003081941 A JP2003081941 A JP 2003081941A JP 2004288092 A JP2004288092 A JP 2004288092A
- Authority
- JP
- Japan
- Prior art keywords
- light
- unit
- data collection
- receiving surface
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
【課題】自己給電により、継続して定期的にプラントを監視することのできる自己給電式無線データ収集システムを得る。
【解決手段】センサヘッド部1は、所定期間の間にわたって、監視データを検出するセンサ14と、監視データをターミナル部2に送信する無線データ送信部16と、光の受光量に応じた発電電力および発電電流を出力する太陽電池10と、発電電力を充電する充放電制御回路12および二次電池13と、発電電流の増減に応じてデータ採取周期を増減設定し、所定期間の間、設定されたデータ採取周期でセンサ14を駆動させる電流検知部11およびセンサヘッド制御部15とを有する。また、充放電制御回路12は、各部に対して、充電された発電電力を供給する。
【選択図】 図1
【解決手段】センサヘッド部1は、所定期間の間にわたって、監視データを検出するセンサ14と、監視データをターミナル部2に送信する無線データ送信部16と、光の受光量に応じた発電電力および発電電流を出力する太陽電池10と、発電電力を充電する充放電制御回路12および二次電池13と、発電電流の増減に応じてデータ採取周期を増減設定し、所定期間の間、設定されたデータ採取周期でセンサ14を駆動させる電流検知部11およびセンサヘッド制御部15とを有する。また、充放電制御回路12は、各部に対して、充電された発電電力を供給する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
この発明は、屋内において自己給電で駆動し、屋内プラントの監視データを収集する自己給電式無線データ収集システムに関するものである。
【0002】
【従来の技術】
従来の自己給電式無線データ収集システムは、カメラ、画像処理装置、通信装置、太陽電池、バッテリ(蓄電池)、電圧検出回路および計測周期制御回路を備えており、バッテリ電圧により電池残量を判断している。例えばバッテリ電圧が設定値より小さいときには水位計測周期を大きくすることにより、バッテリの電圧消耗を低減させている。これにより、屋外での使用において、天候(日照)の状態に応じて逐次計測周期を変え、カメラによる水位計測を継続して計測することができる(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−148094号公報(第4頁、第1図)
【0004】
【発明が解決しようとする課題】
従来の自己給電式無線データ収集システムは以上のように、屋外での使用が想定されており、日照状態に応じて計測周期を変更している。しかし、特に屋内の場合、光源は照明器具であるので、太陽光に比べて照度は低い状態でほぼ一定となる。
また、プラントで監視データを採取する周期は一定であるほうが望ましい場合が多い。しかし、従来の自己給電式無線データ収集システムは、屋外での使用を想定してバッテリの電圧、すなわちバッテリ残量によって計測周期を変えているので、定期的な計測ができない。
以上のようなことから、屋内において、継続して定期的にプラント監視やデータ採取することができないという問題点があった。
【0005】
この発明は上記のような問題点を解決するためになされたもので、自己給電により、継続して定期的にプラントを監視することのできる自己給電式無線データ収集システムを得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る自己給電式無線データ収集システムは、プラントの監視対象に近接配置され、監視対象の監視データを検出して送信するセンサヘッド部と、センサヘッド部から受信される監視データを表示するターミナル部とを備えたものであって、センサヘッド部は、所定期間の間にわたって、監視データを検出するデータ検出手段と、監視データをターミナル部に送信する送信手段と、光の受光量に応じた発電電力および発電電流を出力する光発電手段と、発電電力を充電する充電・給電手段と、発電電流の増減に応じて検出周期を増減設定し、所定期間の間、設定された検出周期でデータ検出手段を駆動させる制御手段とを有する。また、充電・給電手段は、データ検出手段、送信手段および制御手段に対して、充電された発電電力を供給するものである。
【0007】
【発明の実施の形態】
実施の形態1.
以下、図面を参照しながら、この発明の実施の形態1について詳細に説明する。図1は、この発明の実施の形態1の自己給電式無線データ収集システムを示すブロック構成図である。
図1において、自己給電式無線データ収集システムは、センサヘッド部1およびターミナル部2を備えている。
センサヘッド部1は、光を受光して発電する太陽電池(光発電手段)10と、太陽電池からの電流値を検知する電流検知部(制御手段)11と、充電・放電を制御する充放電制御回路(充電・給電手段)12と、発電された電力を充電する二次電池(充電・給電手段)13と、監視データを検出するセンサ(データ検出手段)14と、監視データ採取の周期(検出周期)を決定するセンサヘッド制御部(制御手段)15と、採取された監視データを無線で送信する無線データ送信部(送信手段)16とを備えている。このセンサヘッド部1は、太陽電池10で発電された電力により駆動される。
【0008】
また、ターミナル部2は、センサヘッド部1から送信された監視データを受信する無線データ受信部20と、ターミナル部2の各部の動作を制御するターミナル制御部21と、受信した監視データを表示するデータ表示部22と、監視データを保存するデータ保存部23と、ターミナル部の各部に電力を供給する電源装置24とを備えている。
このように、自己給電式無線データ収集システムは、太陽電池10で駆動されたセンサヘッド部1によって収集された監視データを、ターミナル部2で表示させている。
【0009】
次に、この発明の実施の形態1による動作について説明する。
太陽電池10は、屋内の照明光や屋外の太陽光に照射されて電力を発電され、発電量に対応する発電電流が電流検知部11に通電される。この発電電流の大きさは設置場所の照度に比例し、電流検知部11は発電電流量を測定する。
充放電制御回路12は、発電された電力を二次電池13で充電させる。また、二次電池13に充電された電力は、センサヘッド部1の駆動のために各部に供給される。
なお、センサ14は、例えば撮像素子、温度センサ、振動センサを示し、データ採取対象、すなわち監視対象によって使い分けられる。
【0010】
センサヘッド制御部15は、センサ14により収集された監視データの中からプラントの監視に必要な情報だけを抽出してデータ容量を低減するとともに、電流検知部11で検知された発電電流量の増減に応じてデータ採取周期を増減設定する。例えば、受光量が多く発電電流量が多くなれば、センサ14を駆動させるための電力が多く発電されていると判断して、センサ14のデータ採取周期を短くする。一方、受光量が少なく発電電流量が少なくなれば、センサ14を駆動させるための電力があまり発電されていないと判断して、センサ14のデータ採取周期を長くする。
【0011】
センサヘッド制御部15は、所定のデータ採取期間の間、決定したデータ採取周期(採取タイミング)によってセンサ14を動作させてデータを採取させる。
なお、センサヘッド制御部15には、太陽電池10の発電量(発電電流量)に応じたセンサ14のデータ採取周期があらかじめ格納されており、センサ14を継続して動作させるために、すなわちプラントを継続監視できるように、発電電流量の変動(増減)に応じてデータ採取周期を増減設定し、電力の消費を節約する。
無線データ送信部16は、容量が低減された監視データを無線でターミナル部12に送信する。
【0012】
ターミナル部2は、電源装置24からの給電により駆動する。無線データ受信部20は、センサヘッド部1から送信されたデータを受信する。
ターミナル制御部21は、受信された監視データをデータ表示部22で表示させるとともに、監視データをデータ保存部11に保存させる。
以上のように、太陽電池10で駆動するセンサヘッド部1で収集された監視データをターミナル部2で表示させて、屋内プラントの監視が行われる。
【0013】
このように、センサ14のデータ採取周期が太陽電池10の発電電流によりあらかじめ決定されるので、データ採取期間における消費電流が発電電流以下になり、屋内外を問わず二次電池13が枯渇する恐れが無く、定期的なデータ採取が可能となる。
特に屋内に設置されたプラントの監視においては、定期的に監視データを採取する必要性が高い。また、屋内プラントでは照明光によって発電する必要があるが、屋内照明の場合、太陽光に比べて照度が低い。しかし、センサ5のデータ採取周期は、照明光による発電量に応じて、データ採取前にあらかじめ決定されるので、このような低照度下でも、データ採取期間においては継続的にデータ採取が可能である。また、屋内照明は照度がほぼ一定であるので、屋内の設置箇所の変更がなければ、太陽電池10の発電量はほぼ一定である。したがってデータ採取周期もほぼ一定となるので、定期的なデータ採取が可能となる。
【0014】
以上のように、自己給電かつ無線データ伝送ができる完全ワイヤレスセンサを実現でき、電源供給およびデータ採取のためのケーブルを敷設する必要がないため、低コストでデータ採取を行うことができる。
また、センサヘッド部1は、ケーブルが敷設困難な箇所にも容易に設置することが可能となり、プラントをより多角的に監視できるようになる。
なお、太陽電池10は、屋内光に対して発電効率の良いアモルファス太陽電池を用いてもよい。
また、効率良く充電が行われるための二次電池13の容量や電圧を選定してもよい。
また、充電・放電制御回路12に電力供給を抑える、例えば低消モードをあらかじめ設定させ、センサ14が動作しない採取タイミング以外の時には低消モードに切り換えて節電させてもよい。
【0015】
なお、センサヘッド部1は完全ワイヤレスで動作するために、低消費電力で駆動するための工夫がなされている。
まず、センサ14で採取した監視データは、センサヘッド制御部15で監視に必要な情報だけに限定され、データ容量が低減される。その結果、無線で伝送するデータ容量が小さくなるので、高速無線も用いなくとも充分な伝送速度で伝送可能となり、消費電力の少ない低速無線を適用することができる。
例えば、センサ14は撮像素子、温度センサ、振動センサなどがあるが、撮像素子とした場合、撮像画像をそのまま伝送するとデータ容量が大きく、消費電力の大きな高速無線を用いなければならない。ところが、センサヘッド1内において画像の圧縮、エッジ抽出、二値化などの処理を行い、プラント等の監視に必要な情報だけは保持しつつ、データ容量を低減すれば、監視データの伝送速度は低速無線で十分に実用に耐え得るものとなる。
【0016】
例えば、機器に設置してあるメータの指示値を監視する場合、センサ14にはメータを撮像するための撮像素子を用いるが、撮像画像全体を伝送せずに、撮像画像を二値化処理してメータの位置を割り出し、その指示値のみを伝送するようにする。そして、無線データ通信方式として微弱無線方式や特定小電力無線といった、消費電力が極めて少ない方式を採用する。このようにすればデータ容量を大幅に削減でき、センサヘッド全体として低消費電力を実現することができる。
以上のような工夫により、低消費電力による駆動を可能にし、センサヘッド部1とターミナル部2との間が完全ワイヤレスで動作させることができる。
【0017】
このように、プラントが屋内に設置されている場合には、屋内照明の照明光を太陽電池10の発電に用いてセンサヘッド部1を動作させる。所定のデータ採取期間におけるデータ採取周期は、太陽電池10の発電電流に応じてあらかじめ決定され、所定のデータ採取期間の間、データ採取周期でデータ採取が行われる。したがって、所定のデータ採取期間に継続してデータ採取できるだけのデータ採取周期に決定するので、データ採取期間の消費電流は発電電流以下になり、二次電池10が枯渇する恐れが無く、定期的なデータ採取が可能となる。
【0018】
実施の形態2.
上記実施の形態1では、太陽電池10の受光方向について言及しなかったが、太陽電池10の受光方向を一方向だけでなく任意の方向に変化させてもよい。
図2は、この発明の実施の形態2のセンサヘッド部を示す構成図である。
図2において、前述(図1参照)と同様のものについては、同一符号または符号の後に「A」を付して詳述を省略する。
センサヘッド110には、前述の電流検知部11、充放電制御回路12、二次電池13、センサヘッド制御部15および無線データ送信部16を備えており、センサ14と接続されている。
太陽電池10Aはセンサヘッド110に対して、可動部(角度調整手段)17により任意の傾き角を持つように可動させることができる。可動方向は一方向ではなく、360度任意の方向を向くようになっている。
【0019】
このような構成によれば、太陽電池受光面が、発電量を大きくできる向き、すなわち照度の高い光源(照明器具)3の向きに調整可能である。例えば屋内プラントにおいては、センサヘッド部1Aの設置場所と照明位置との関係が個々の場合によって異なる。しかし、本実施の形態1のように太陽電池受光面をフレキシブルに変えることができるので、どのような場所においても可能な限り効率の良い発電を行うことができる。よって、屋内プラントのような低照度下においても必要な電力を得ることができ、自己給電かつ無線データ伝送が可能な完全ワイヤレスのセンサヘッド部1Aが実現できる。
【0020】
実施の形態3.
上記実施の形態1では、センサ14の1つとして撮像素子を例に挙げたが、撮像素子による監視精度向上のために撮像対象を照明してもよい。
図3は、この発明の実施の形態3のセンサヘッド部を示すブロック構成図である。
図3において、前述(図1参照)と同様のものについては、同一符号または符号の後に「B」を付して詳述を省略する。
図3において、センサヘッド部1Bは、センサ14として撮像素子14Bが備えられ、また、撮像対象を光で照射する照明装置18が備えられている。
【0021】
センサヘッド制御部15Bは、太陽電池10の発電電流量に応じて照明装置18の照度を決定し、照明装置18は、決定された照度の光をデータ採取対象あるいは監視対象に照射する。
センサヘッド制御部15Bは、撮像素子14Bを動作させてデータを採取する。
これにより、対象物を撮像する際のコントラストが向上して監視・計測精度を向上させることができるとともに、所定のデータ採取期間における消費電流が発電電流以下になるため、定期的なデータ採取が可能な完全ワイヤレスのセンサヘッド部が実現できる。
【0022】
実施の形態4.
上記実施の形態2では、太陽電池10の受光方向を変更させることによって発電効率を良くさせたが、太陽電池10の受光面を追加してもよい。
図4〜図6は、この発明の実施の形態4の太陽電池を示す構成図である。
図4〜図6において、前述(図1参照)と同様のものについては、同一符号または符号の後にそれぞれ「C」、「D」、「E」を付して詳述を省略する。
図4において、太陽電池10Cは、太陽電池(第1の受光面)101の辺縁部に垂直にさらに太陽電池(第2の受光面)102、103を配置した構造となっている。
なお、太陽電池102、103の受光面は、ともに内側、すなわち太陽電池101のほうを向いている。
【0023】
このような構成によれば、太陽電池101に対して鉛直方向からの光だけでなく、斜め方向からの光も効率よく収集することができる。
具体的には、空気に比べて太陽電池の屈折率が大きいために、斜め方向からの光4の入射角が大きい場合は、境界面で光が反射される割合が大きくなり、発電に寄与する光が少なくなる。
したがって、太陽電池101の表面で反射した光を辺縁部にある太陽電池102、103に入射させることにより、発電に寄与する光を効率良く利用できる。その結果、屋内照明のように様々な方向から照射される光に対して、鉛直方向だけでなく斜め方向からの光も効率良く発電に寄与することができる。発電量が大きくなる程、発電電流量が大きくなり、データ採取周期をより短くすることができ、細めにプラントを監視することができる。
【0024】
ただし、図4に示す太陽電池10Cでは、光5のように辺縁部に配置された太陽電池103の裏面に入射する光を発電に寄与させることができない。このような光を受光してさらに発電効率を上げるために、図5に示すように太陽電池102の裏面および太陽電池103の裏面にそれぞれ外側に受光面を向かせて、太陽電池(第3の受光面)104および太陽電池(第3の受光面)105を配置して、太陽電池Dを構成することにより、入射光が光5のような場合でも発電に寄与させることができ、発電電流を大きくすることができる。
【0025】
また、図6に示すように、太陽電池101を反射した光を受光するための太陽電池102、103の代わりに反射鏡106、107を配置して太陽電池Eを構成することでも同様の効果を得ることができる。この場合、反射鏡106、107は、太陽電池101を反射した光を再度太陽電池101の方向に反射させる。したがって、太陽電池101への入射角が大きくても、太陽電池101で受光することができる。
図6のように反射鏡106、107を用いる場合は、当該箇所に太陽電池を用いる場合に比べて低コストで光の利用率の増大をはかることができる。
以上のような太陽電池の構成により、屋内照明光を効率良く収集することができるので、データ採取周期を短くすることができ、自己給電で無線データ伝送を行う完全ワイヤレスセンサを実現することができる。
【0026】
実施の形態5.
上記実施の形態1では、異常時などにおけるデータ採取周期やセンサ14の測定パラメータの変更について言及しなかったが、ターミナル部2から太陽電池10が受信することのできる光信号を送信することによって変更可能としてもよい。
図7は、この発明の実施の形態5の自己給電式無線データ収集システムを示すブロック構成図である。
なお、図7において、前述(図1参照)と同様のものについては、同一符号または符号の後に「F」を付して詳述を省略する。
図7において、センサヘッド部1Fは、太陽電池10による発電電流の周波数を判定する周波数判定部19を備えている。また、ターミナル部2Fは、太陽電池10に光信号を送信する光信号送信部(光信号照射手段)25を備えている。
【0027】
次に、この発明の実施の形態5による動作について説明する。
ターミナル部2Fの光信号送信部25は、特定の周波数で光信号をセンサヘッド部1Fの太陽電池10に送信する(光を対象電池10に向けて照射する)。
太陽電池10は送信された光信号を受信(光を受光)すると、周波数判定部19は、太陽電池10による発電電流の周波数を検知する。
センサヘッド制御部15Fは、光信号の周波数に対応するデータ採取周期をあらかじめ格納しており、ターミナル部2Fから送信された光信号の周波数に応じてデータ採取周期を決定し、決定された値にデータ採取周期を変更する。
【0028】
例えば異常時などに、ターミナル部2Fから強制的にデータ採取周期を変更させる場合、従来ではターミナル部2Fの制御信号送信部(図示せず)からデータ採取周期変更のための制御信号をセンサヘッド部1Fの制御信号受信部(図示せず)に伝送されている。
本実施の形態5では、ターミナル部2Fから太陽電池10に、所望のデータ採取周期に応じた周波数で光信号を送信することにより、データ採取周期を変更するための受信動作が必要無くなり、受信動作に必要であった電力の消費を削減することができる。
また、光信号の周波数はデータ採取周期だけでなく、撮像時間や蓄積時間、画像処理における処理モードなど、光信号の周波数に応じてセンサ14の各パラメータ(検出パラメータ)の変更を行うことも可能である。その結果、これらの変更の際の無線データ通信に要する消費電力を低減させることができる。
【0029】
【発明の効果】
以上のように、この発明によれば、太陽電池で発電された発電電流に応じてデータ採取周期を決定し、所定のデータ採取期間の間、データ採取周期でセンサを駆動させるので、データ採取期間の消費電流は発電電流以下になり、二次電池が枯渇する恐れが無く、定期的にデータ採取することのできる自己給電式無線データ収集システムが得られる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1の自己給電式無線データ収集システムを示すブロック構成図である。
【図2】この発明の実施の形態2のセンサヘッド部を示す構成図である。
【図3】この発明の実施の形態3のセンサヘッド部を示すブロック構成図である。
【図4】この発明の実施の形態4の太陽電池を示す構成図である。
【図5】この発明の実施の形態4の太陽電池を示す構成図である。
【図6】この発明の実施の形態4の太陽電池を示す構成図である。
【図7】この発明の実施の形態5の自己給電式無線データ収集システムを示すブロック構成図である。
【符号の説明】
1、1A、1B、1F センサヘッド部、2、2F、 ターミナル部、3 光源、4、5 光、10、10A、10C、10D、10E 太陽電池、11 電流検知部、12 充放電制御回路、13 二次電池、14、14B センサ(撮像素子)、15、15B、15F センサヘッド制御部、16 無線データ送信部、17 可動部、20 無線データ受信部、21、21F ターミナル制御部、22 データ表示部、23 データ保存部、24 電源装置、101、102、103、104、105 太陽電池、106、107 反射鏡。
【発明の属する技術分野】
この発明は、屋内において自己給電で駆動し、屋内プラントの監視データを収集する自己給電式無線データ収集システムに関するものである。
【0002】
【従来の技術】
従来の自己給電式無線データ収集システムは、カメラ、画像処理装置、通信装置、太陽電池、バッテリ(蓄電池)、電圧検出回路および計測周期制御回路を備えており、バッテリ電圧により電池残量を判断している。例えばバッテリ電圧が設定値より小さいときには水位計測周期を大きくすることにより、バッテリの電圧消耗を低減させている。これにより、屋外での使用において、天候(日照)の状態に応じて逐次計測周期を変え、カメラによる水位計測を継続して計測することができる(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−148094号公報(第4頁、第1図)
【0004】
【発明が解決しようとする課題】
従来の自己給電式無線データ収集システムは以上のように、屋外での使用が想定されており、日照状態に応じて計測周期を変更している。しかし、特に屋内の場合、光源は照明器具であるので、太陽光に比べて照度は低い状態でほぼ一定となる。
また、プラントで監視データを採取する周期は一定であるほうが望ましい場合が多い。しかし、従来の自己給電式無線データ収集システムは、屋外での使用を想定してバッテリの電圧、すなわちバッテリ残量によって計測周期を変えているので、定期的な計測ができない。
以上のようなことから、屋内において、継続して定期的にプラント監視やデータ採取することができないという問題点があった。
【0005】
この発明は上記のような問題点を解決するためになされたもので、自己給電により、継続して定期的にプラントを監視することのできる自己給電式無線データ収集システムを得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る自己給電式無線データ収集システムは、プラントの監視対象に近接配置され、監視対象の監視データを検出して送信するセンサヘッド部と、センサヘッド部から受信される監視データを表示するターミナル部とを備えたものであって、センサヘッド部は、所定期間の間にわたって、監視データを検出するデータ検出手段と、監視データをターミナル部に送信する送信手段と、光の受光量に応じた発電電力および発電電流を出力する光発電手段と、発電電力を充電する充電・給電手段と、発電電流の増減に応じて検出周期を増減設定し、所定期間の間、設定された検出周期でデータ検出手段を駆動させる制御手段とを有する。また、充電・給電手段は、データ検出手段、送信手段および制御手段に対して、充電された発電電力を供給するものである。
【0007】
【発明の実施の形態】
実施の形態1.
以下、図面を参照しながら、この発明の実施の形態1について詳細に説明する。図1は、この発明の実施の形態1の自己給電式無線データ収集システムを示すブロック構成図である。
図1において、自己給電式無線データ収集システムは、センサヘッド部1およびターミナル部2を備えている。
センサヘッド部1は、光を受光して発電する太陽電池(光発電手段)10と、太陽電池からの電流値を検知する電流検知部(制御手段)11と、充電・放電を制御する充放電制御回路(充電・給電手段)12と、発電された電力を充電する二次電池(充電・給電手段)13と、監視データを検出するセンサ(データ検出手段)14と、監視データ採取の周期(検出周期)を決定するセンサヘッド制御部(制御手段)15と、採取された監視データを無線で送信する無線データ送信部(送信手段)16とを備えている。このセンサヘッド部1は、太陽電池10で発電された電力により駆動される。
【0008】
また、ターミナル部2は、センサヘッド部1から送信された監視データを受信する無線データ受信部20と、ターミナル部2の各部の動作を制御するターミナル制御部21と、受信した監視データを表示するデータ表示部22と、監視データを保存するデータ保存部23と、ターミナル部の各部に電力を供給する電源装置24とを備えている。
このように、自己給電式無線データ収集システムは、太陽電池10で駆動されたセンサヘッド部1によって収集された監視データを、ターミナル部2で表示させている。
【0009】
次に、この発明の実施の形態1による動作について説明する。
太陽電池10は、屋内の照明光や屋外の太陽光に照射されて電力を発電され、発電量に対応する発電電流が電流検知部11に通電される。この発電電流の大きさは設置場所の照度に比例し、電流検知部11は発電電流量を測定する。
充放電制御回路12は、発電された電力を二次電池13で充電させる。また、二次電池13に充電された電力は、センサヘッド部1の駆動のために各部に供給される。
なお、センサ14は、例えば撮像素子、温度センサ、振動センサを示し、データ採取対象、すなわち監視対象によって使い分けられる。
【0010】
センサヘッド制御部15は、センサ14により収集された監視データの中からプラントの監視に必要な情報だけを抽出してデータ容量を低減するとともに、電流検知部11で検知された発電電流量の増減に応じてデータ採取周期を増減設定する。例えば、受光量が多く発電電流量が多くなれば、センサ14を駆動させるための電力が多く発電されていると判断して、センサ14のデータ採取周期を短くする。一方、受光量が少なく発電電流量が少なくなれば、センサ14を駆動させるための電力があまり発電されていないと判断して、センサ14のデータ採取周期を長くする。
【0011】
センサヘッド制御部15は、所定のデータ採取期間の間、決定したデータ採取周期(採取タイミング)によってセンサ14を動作させてデータを採取させる。
なお、センサヘッド制御部15には、太陽電池10の発電量(発電電流量)に応じたセンサ14のデータ採取周期があらかじめ格納されており、センサ14を継続して動作させるために、すなわちプラントを継続監視できるように、発電電流量の変動(増減)に応じてデータ採取周期を増減設定し、電力の消費を節約する。
無線データ送信部16は、容量が低減された監視データを無線でターミナル部12に送信する。
【0012】
ターミナル部2は、電源装置24からの給電により駆動する。無線データ受信部20は、センサヘッド部1から送信されたデータを受信する。
ターミナル制御部21は、受信された監視データをデータ表示部22で表示させるとともに、監視データをデータ保存部11に保存させる。
以上のように、太陽電池10で駆動するセンサヘッド部1で収集された監視データをターミナル部2で表示させて、屋内プラントの監視が行われる。
【0013】
このように、センサ14のデータ採取周期が太陽電池10の発電電流によりあらかじめ決定されるので、データ採取期間における消費電流が発電電流以下になり、屋内外を問わず二次電池13が枯渇する恐れが無く、定期的なデータ採取が可能となる。
特に屋内に設置されたプラントの監視においては、定期的に監視データを採取する必要性が高い。また、屋内プラントでは照明光によって発電する必要があるが、屋内照明の場合、太陽光に比べて照度が低い。しかし、センサ5のデータ採取周期は、照明光による発電量に応じて、データ採取前にあらかじめ決定されるので、このような低照度下でも、データ採取期間においては継続的にデータ採取が可能である。また、屋内照明は照度がほぼ一定であるので、屋内の設置箇所の変更がなければ、太陽電池10の発電量はほぼ一定である。したがってデータ採取周期もほぼ一定となるので、定期的なデータ採取が可能となる。
【0014】
以上のように、自己給電かつ無線データ伝送ができる完全ワイヤレスセンサを実現でき、電源供給およびデータ採取のためのケーブルを敷設する必要がないため、低コストでデータ採取を行うことができる。
また、センサヘッド部1は、ケーブルが敷設困難な箇所にも容易に設置することが可能となり、プラントをより多角的に監視できるようになる。
なお、太陽電池10は、屋内光に対して発電効率の良いアモルファス太陽電池を用いてもよい。
また、効率良く充電が行われるための二次電池13の容量や電圧を選定してもよい。
また、充電・放電制御回路12に電力供給を抑える、例えば低消モードをあらかじめ設定させ、センサ14が動作しない採取タイミング以外の時には低消モードに切り換えて節電させてもよい。
【0015】
なお、センサヘッド部1は完全ワイヤレスで動作するために、低消費電力で駆動するための工夫がなされている。
まず、センサ14で採取した監視データは、センサヘッド制御部15で監視に必要な情報だけに限定され、データ容量が低減される。その結果、無線で伝送するデータ容量が小さくなるので、高速無線も用いなくとも充分な伝送速度で伝送可能となり、消費電力の少ない低速無線を適用することができる。
例えば、センサ14は撮像素子、温度センサ、振動センサなどがあるが、撮像素子とした場合、撮像画像をそのまま伝送するとデータ容量が大きく、消費電力の大きな高速無線を用いなければならない。ところが、センサヘッド1内において画像の圧縮、エッジ抽出、二値化などの処理を行い、プラント等の監視に必要な情報だけは保持しつつ、データ容量を低減すれば、監視データの伝送速度は低速無線で十分に実用に耐え得るものとなる。
【0016】
例えば、機器に設置してあるメータの指示値を監視する場合、センサ14にはメータを撮像するための撮像素子を用いるが、撮像画像全体を伝送せずに、撮像画像を二値化処理してメータの位置を割り出し、その指示値のみを伝送するようにする。そして、無線データ通信方式として微弱無線方式や特定小電力無線といった、消費電力が極めて少ない方式を採用する。このようにすればデータ容量を大幅に削減でき、センサヘッド全体として低消費電力を実現することができる。
以上のような工夫により、低消費電力による駆動を可能にし、センサヘッド部1とターミナル部2との間が完全ワイヤレスで動作させることができる。
【0017】
このように、プラントが屋内に設置されている場合には、屋内照明の照明光を太陽電池10の発電に用いてセンサヘッド部1を動作させる。所定のデータ採取期間におけるデータ採取周期は、太陽電池10の発電電流に応じてあらかじめ決定され、所定のデータ採取期間の間、データ採取周期でデータ採取が行われる。したがって、所定のデータ採取期間に継続してデータ採取できるだけのデータ採取周期に決定するので、データ採取期間の消費電流は発電電流以下になり、二次電池10が枯渇する恐れが無く、定期的なデータ採取が可能となる。
【0018】
実施の形態2.
上記実施の形態1では、太陽電池10の受光方向について言及しなかったが、太陽電池10の受光方向を一方向だけでなく任意の方向に変化させてもよい。
図2は、この発明の実施の形態2のセンサヘッド部を示す構成図である。
図2において、前述(図1参照)と同様のものについては、同一符号または符号の後に「A」を付して詳述を省略する。
センサヘッド110には、前述の電流検知部11、充放電制御回路12、二次電池13、センサヘッド制御部15および無線データ送信部16を備えており、センサ14と接続されている。
太陽電池10Aはセンサヘッド110に対して、可動部(角度調整手段)17により任意の傾き角を持つように可動させることができる。可動方向は一方向ではなく、360度任意の方向を向くようになっている。
【0019】
このような構成によれば、太陽電池受光面が、発電量を大きくできる向き、すなわち照度の高い光源(照明器具)3の向きに調整可能である。例えば屋内プラントにおいては、センサヘッド部1Aの設置場所と照明位置との関係が個々の場合によって異なる。しかし、本実施の形態1のように太陽電池受光面をフレキシブルに変えることができるので、どのような場所においても可能な限り効率の良い発電を行うことができる。よって、屋内プラントのような低照度下においても必要な電力を得ることができ、自己給電かつ無線データ伝送が可能な完全ワイヤレスのセンサヘッド部1Aが実現できる。
【0020】
実施の形態3.
上記実施の形態1では、センサ14の1つとして撮像素子を例に挙げたが、撮像素子による監視精度向上のために撮像対象を照明してもよい。
図3は、この発明の実施の形態3のセンサヘッド部を示すブロック構成図である。
図3において、前述(図1参照)と同様のものについては、同一符号または符号の後に「B」を付して詳述を省略する。
図3において、センサヘッド部1Bは、センサ14として撮像素子14Bが備えられ、また、撮像対象を光で照射する照明装置18が備えられている。
【0021】
センサヘッド制御部15Bは、太陽電池10の発電電流量に応じて照明装置18の照度を決定し、照明装置18は、決定された照度の光をデータ採取対象あるいは監視対象に照射する。
センサヘッド制御部15Bは、撮像素子14Bを動作させてデータを採取する。
これにより、対象物を撮像する際のコントラストが向上して監視・計測精度を向上させることができるとともに、所定のデータ採取期間における消費電流が発電電流以下になるため、定期的なデータ採取が可能な完全ワイヤレスのセンサヘッド部が実現できる。
【0022】
実施の形態4.
上記実施の形態2では、太陽電池10の受光方向を変更させることによって発電効率を良くさせたが、太陽電池10の受光面を追加してもよい。
図4〜図6は、この発明の実施の形態4の太陽電池を示す構成図である。
図4〜図6において、前述(図1参照)と同様のものについては、同一符号または符号の後にそれぞれ「C」、「D」、「E」を付して詳述を省略する。
図4において、太陽電池10Cは、太陽電池(第1の受光面)101の辺縁部に垂直にさらに太陽電池(第2の受光面)102、103を配置した構造となっている。
なお、太陽電池102、103の受光面は、ともに内側、すなわち太陽電池101のほうを向いている。
【0023】
このような構成によれば、太陽電池101に対して鉛直方向からの光だけでなく、斜め方向からの光も効率よく収集することができる。
具体的には、空気に比べて太陽電池の屈折率が大きいために、斜め方向からの光4の入射角が大きい場合は、境界面で光が反射される割合が大きくなり、発電に寄与する光が少なくなる。
したがって、太陽電池101の表面で反射した光を辺縁部にある太陽電池102、103に入射させることにより、発電に寄与する光を効率良く利用できる。その結果、屋内照明のように様々な方向から照射される光に対して、鉛直方向だけでなく斜め方向からの光も効率良く発電に寄与することができる。発電量が大きくなる程、発電電流量が大きくなり、データ採取周期をより短くすることができ、細めにプラントを監視することができる。
【0024】
ただし、図4に示す太陽電池10Cでは、光5のように辺縁部に配置された太陽電池103の裏面に入射する光を発電に寄与させることができない。このような光を受光してさらに発電効率を上げるために、図5に示すように太陽電池102の裏面および太陽電池103の裏面にそれぞれ外側に受光面を向かせて、太陽電池(第3の受光面)104および太陽電池(第3の受光面)105を配置して、太陽電池Dを構成することにより、入射光が光5のような場合でも発電に寄与させることができ、発電電流を大きくすることができる。
【0025】
また、図6に示すように、太陽電池101を反射した光を受光するための太陽電池102、103の代わりに反射鏡106、107を配置して太陽電池Eを構成することでも同様の効果を得ることができる。この場合、反射鏡106、107は、太陽電池101を反射した光を再度太陽電池101の方向に反射させる。したがって、太陽電池101への入射角が大きくても、太陽電池101で受光することができる。
図6のように反射鏡106、107を用いる場合は、当該箇所に太陽電池を用いる場合に比べて低コストで光の利用率の増大をはかることができる。
以上のような太陽電池の構成により、屋内照明光を効率良く収集することができるので、データ採取周期を短くすることができ、自己給電で無線データ伝送を行う完全ワイヤレスセンサを実現することができる。
【0026】
実施の形態5.
上記実施の形態1では、異常時などにおけるデータ採取周期やセンサ14の測定パラメータの変更について言及しなかったが、ターミナル部2から太陽電池10が受信することのできる光信号を送信することによって変更可能としてもよい。
図7は、この発明の実施の形態5の自己給電式無線データ収集システムを示すブロック構成図である。
なお、図7において、前述(図1参照)と同様のものについては、同一符号または符号の後に「F」を付して詳述を省略する。
図7において、センサヘッド部1Fは、太陽電池10による発電電流の周波数を判定する周波数判定部19を備えている。また、ターミナル部2Fは、太陽電池10に光信号を送信する光信号送信部(光信号照射手段)25を備えている。
【0027】
次に、この発明の実施の形態5による動作について説明する。
ターミナル部2Fの光信号送信部25は、特定の周波数で光信号をセンサヘッド部1Fの太陽電池10に送信する(光を対象電池10に向けて照射する)。
太陽電池10は送信された光信号を受信(光を受光)すると、周波数判定部19は、太陽電池10による発電電流の周波数を検知する。
センサヘッド制御部15Fは、光信号の周波数に対応するデータ採取周期をあらかじめ格納しており、ターミナル部2Fから送信された光信号の周波数に応じてデータ採取周期を決定し、決定された値にデータ採取周期を変更する。
【0028】
例えば異常時などに、ターミナル部2Fから強制的にデータ採取周期を変更させる場合、従来ではターミナル部2Fの制御信号送信部(図示せず)からデータ採取周期変更のための制御信号をセンサヘッド部1Fの制御信号受信部(図示せず)に伝送されている。
本実施の形態5では、ターミナル部2Fから太陽電池10に、所望のデータ採取周期に応じた周波数で光信号を送信することにより、データ採取周期を変更するための受信動作が必要無くなり、受信動作に必要であった電力の消費を削減することができる。
また、光信号の周波数はデータ採取周期だけでなく、撮像時間や蓄積時間、画像処理における処理モードなど、光信号の周波数に応じてセンサ14の各パラメータ(検出パラメータ)の変更を行うことも可能である。その結果、これらの変更の際の無線データ通信に要する消費電力を低減させることができる。
【0029】
【発明の効果】
以上のように、この発明によれば、太陽電池で発電された発電電流に応じてデータ採取周期を決定し、所定のデータ採取期間の間、データ採取周期でセンサを駆動させるので、データ採取期間の消費電流は発電電流以下になり、二次電池が枯渇する恐れが無く、定期的にデータ採取することのできる自己給電式無線データ収集システムが得られる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1の自己給電式無線データ収集システムを示すブロック構成図である。
【図2】この発明の実施の形態2のセンサヘッド部を示す構成図である。
【図3】この発明の実施の形態3のセンサヘッド部を示すブロック構成図である。
【図4】この発明の実施の形態4の太陽電池を示す構成図である。
【図5】この発明の実施の形態4の太陽電池を示す構成図である。
【図6】この発明の実施の形態4の太陽電池を示す構成図である。
【図7】この発明の実施の形態5の自己給電式無線データ収集システムを示すブロック構成図である。
【符号の説明】
1、1A、1B、1F センサヘッド部、2、2F、 ターミナル部、3 光源、4、5 光、10、10A、10C、10D、10E 太陽電池、11 電流検知部、12 充放電制御回路、13 二次電池、14、14B センサ(撮像素子)、15、15B、15F センサヘッド制御部、16 無線データ送信部、17 可動部、20 無線データ受信部、21、21F ターミナル制御部、22 データ表示部、23 データ保存部、24 電源装置、101、102、103、104、105 太陽電池、106、107 反射鏡。
Claims (7)
- プラントの監視対象に近接配置され、前記監視対象の監視データを検出して送信するセンサヘッド部と、前記センサヘッド部から受信される前記監視データを表示するターミナル部とを備えた自己給電式無線データ収集システムであって、
前記センサヘッド部は、
所定期間の間にわたって、前記監視データを検出するデータ検出手段と、
前記監視データを前記ターミナル部に送信する送信手段と、
光の受光量に応じた発電電力および発電電流を出力する光発電手段と、
前記発電電力を充電する充電・給電手段と、
前記発電電流の増減に応じて検出周期を増減設定し、前記所定期間の間、設定された検出周期で前記データ検出手段を駆動させる制御手段とを有し、
前記充電・給電手段は、前記データ検出手段、前記送信手段および前記制御手段に対して、充電された発電電力を供給することを特徴とする自己給電式無線データ収集システム。 - 前記光発電手段は、受光角度を調整する角度調整手段を有することを特徴とする請求項1に記載の自己給電式無線データ収集システム。
- 前記センサヘッド部は、前記監視対象に向けて光を照射する照明手段を有し、
前記制御手段は、前記光発電手段からの発電電流の増減に応じて前記照明手段の照射量を増減設定し、
前記データ検出手段は、前記監視対象を撮像する撮像手段により構成され、前記監視対象の撮像画像を前記監視データとして出力することを特徴とする請求項1または請求項2に記載の自己給電式無線データ収集システム。 - 前記光発電手段は、
入射光に対向する第1の受光面と、
前記第1の受光面の辺縁部に配置され、前記第1の受光面に対して垂直な第2の受光面とを有し、
前記第1および第2の受光面の受光量に応じて前記発電電力を出力し、
前記第2の受光面は、前記第1の受光面に対向するように内側に向けられたことを特徴とする請求項1から請求項3までの何れか1項に記載の自己給電式無線データ収集システム。 - 前記光発電手段は、
入射光に対向する第1の受光面と、
前記第1の受光面の辺縁部に配置され、前記第1の受光面に対して垂直に第2の受光面とを有し、
前記第1および第2の受光面の受光量に応じて前記発電電力を出力し、
前記第2の受光面は、前記第1の受光面に対して外側に向けられ、
前記第2の受光面の裏面に、反射光を前記第1の受光面に向けるための反射鏡を配置したことを特徴とする請求項1から請求項3までの何れか1項に記載の自己給電式無線データ収集システム。 - 前記ターミナル部は、
前記検出周期に対応した周波数で前記光発電手段に光を照射する光信号照射手段を有し、
前記制御手段は、前記発電手段から出力された発電電流の周波数に応じた検出周期に決定することを特徴とする請求項1から請求項5までの何れか1項に記載の自己給電式無線データ収集システム。 - 前記光信号照射手段は、前記発電手段の所定の検出パラメータに対応した周波数で前記光発電手段に光を照射し、
前記制御手段は、前記発電電流の周波数に応じて前記所定の検出パラメータの値を設定することを特徴とする請求項6に記載の自己給電式無線データ収集システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003081941A JP2004288092A (ja) | 2003-03-25 | 2003-03-25 | 自己給電式無線データ収集システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003081941A JP2004288092A (ja) | 2003-03-25 | 2003-03-25 | 自己給電式無線データ収集システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004288092A true JP2004288092A (ja) | 2004-10-14 |
Family
ID=33295354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003081941A Pending JP2004288092A (ja) | 2003-03-25 | 2003-03-25 | 自己給電式無線データ収集システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004288092A (ja) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007036112A (ja) * | 2005-07-29 | 2007-02-08 | Tdk Corp | センサ内蔵発電装置 |
JP2008171403A (ja) * | 2006-12-12 | 2008-07-24 | Koyo Electronics Ind Co Ltd | 無線出力センサ、近接センサ、加工装置、および制御システム |
JP2008527493A (ja) * | 2005-01-03 | 2008-07-24 | ローズマウント インコーポレイテッド | ワイヤレスプロセスフィールド装置の診断機能 |
JP2008292319A (ja) * | 2007-05-24 | 2008-12-04 | Kobe Steel Ltd | 振動センサシステム |
JP2011013765A (ja) * | 2009-06-30 | 2011-01-20 | Fuji Electric Systems Co Ltd | センサーネットワークシステム |
JP2011244548A (ja) * | 2010-05-14 | 2011-12-01 | Sharp Corp | 発電量通知装置、発電量通知方法、および、携帯機器 |
US8106768B2 (en) | 2006-07-19 | 2012-01-31 | Somfy Sas | Method of operating a self-powered home automation sensor device for detecting the existence of and/or for measuring the intensity of a physical phenomenon |
JP2014175522A (ja) * | 2013-03-11 | 2014-09-22 | Masanori Kobayashi | 太陽の高度に係わらず一定以上の受光量が可能な受光装置 |
CN105093978A (zh) * | 2014-05-22 | 2015-11-25 | 恩智浦有限公司 | 传感器装置和关联方法 |
JP2016540397A (ja) * | 2013-09-26 | 2016-12-22 | ローズマウント インコーポレイテッド | 画像処理を用いた無線工業プロセスフィールド装置 |
CN109581909A (zh) * | 2017-09-29 | 2019-04-05 | 艾普凌科有限公司 | 无线控制系统 |
JP2019212908A (ja) * | 2018-06-08 | 2019-12-12 | バット ホールディング アーゲー | ウェハ搬送ユニットおよびウェハ搬送システム |
US10823592B2 (en) | 2013-09-26 | 2020-11-03 | Rosemount Inc. | Process device with process variable measurement using image capture device |
US10914635B2 (en) | 2014-09-29 | 2021-02-09 | Rosemount Inc. | Wireless industrial process monitor |
US11076113B2 (en) | 2013-09-26 | 2021-07-27 | Rosemount Inc. | Industrial process diagnostics using infrared thermal sensing |
JP2021113732A (ja) * | 2020-01-17 | 2021-08-05 | 三菱重工業株式会社 | 計測装置、計測システムおよび計測方法 |
-
2003
- 2003-03-25 JP JP2003081941A patent/JP2004288092A/ja active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008527493A (ja) * | 2005-01-03 | 2008-07-24 | ローズマウント インコーポレイテッド | ワイヤレスプロセスフィールド装置の診断機能 |
JP2007036112A (ja) * | 2005-07-29 | 2007-02-08 | Tdk Corp | センサ内蔵発電装置 |
JP4661433B2 (ja) * | 2005-07-29 | 2011-03-30 | Tdk株式会社 | 無線送受信機 |
US8106768B2 (en) | 2006-07-19 | 2012-01-31 | Somfy Sas | Method of operating a self-powered home automation sensor device for detecting the existence of and/or for measuring the intensity of a physical phenomenon |
JP2008171403A (ja) * | 2006-12-12 | 2008-07-24 | Koyo Electronics Ind Co Ltd | 無線出力センサ、近接センサ、加工装置、および制御システム |
JP2008292319A (ja) * | 2007-05-24 | 2008-12-04 | Kobe Steel Ltd | 振動センサシステム |
JP2011013765A (ja) * | 2009-06-30 | 2011-01-20 | Fuji Electric Systems Co Ltd | センサーネットワークシステム |
JP2011244548A (ja) * | 2010-05-14 | 2011-12-01 | Sharp Corp | 発電量通知装置、発電量通知方法、および、携帯機器 |
JP2014175522A (ja) * | 2013-03-11 | 2014-09-22 | Masanori Kobayashi | 太陽の高度に係わらず一定以上の受光量が可能な受光装置 |
JP2016540397A (ja) * | 2013-09-26 | 2016-12-22 | ローズマウント インコーポレイテッド | 画像処理を用いた無線工業プロセスフィールド装置 |
US10638093B2 (en) | 2013-09-26 | 2020-04-28 | Rosemount Inc. | Wireless industrial process field device with imaging |
US10823592B2 (en) | 2013-09-26 | 2020-11-03 | Rosemount Inc. | Process device with process variable measurement using image capture device |
US11076113B2 (en) | 2013-09-26 | 2021-07-27 | Rosemount Inc. | Industrial process diagnostics using infrared thermal sensing |
CN105093978A (zh) * | 2014-05-22 | 2015-11-25 | 恩智浦有限公司 | 传感器装置和关联方法 |
US10914635B2 (en) | 2014-09-29 | 2021-02-09 | Rosemount Inc. | Wireless industrial process monitor |
US11927487B2 (en) | 2014-09-29 | 2024-03-12 | Rosemount Inc. | Wireless industrial process monitor |
CN109581909A (zh) * | 2017-09-29 | 2019-04-05 | 艾普凌科有限公司 | 无线控制系统 |
JP2019212908A (ja) * | 2018-06-08 | 2019-12-12 | バット ホールディング アーゲー | ウェハ搬送ユニットおよびウェハ搬送システム |
JP7469855B2 (ja) | 2018-06-08 | 2024-04-17 | バット ホールディング アーゲー | ウェハ搬送ユニットおよびウェハ搬送システム |
JP2021113732A (ja) * | 2020-01-17 | 2021-08-05 | 三菱重工業株式会社 | 計測装置、計測システムおよび計測方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004288092A (ja) | 自己給電式無線データ収集システム | |
US8692505B2 (en) | Charge apparatus | |
US20140217955A1 (en) | Charge apparatus | |
US20110265840A1 (en) | Solar panel efficiency estimator | |
KR101570809B1 (ko) | 최대전력 추종 방법 및 장치 | |
CA2533975A1 (en) | Wireless node and method of powering a wireless node employing ambient light to charge an energy store | |
WO2016053812A1 (en) | Device, method and system for collecting and processing weather data and images | |
CN206574235U (zh) | 一种启动电路及人体状态检测装置 | |
US10211664B2 (en) | Apparatus for transmission of wireless energy | |
US20150033832A1 (en) | Apparatus for remotely measuring outdoor water quality and method thereof | |
CN107613251A (zh) | 监控系统、太阳能违法抓拍系统及其控制方法 | |
CN208580200U (zh) | 监控装置及监控系统 | |
KR20090011586U (ko) | 본 고안은 환경상태 계측, 센서 상태 계측 ,영상 J-peg전송해서 볼 수 있고 그 모든 것이 SD 카드에 저장 되고네트워크 되는 지능형 태양광 LED 가로등 | |
CN104570878B (zh) | 太阳能采集控制系统 | |
JP2012080622A (ja) | センサノード電力予測制御装置、センサノード電力予測制御方法及びプログラム | |
CN116390306B (zh) | 智能照明感知系统、方法、装置、控制设备及存储介质 | |
KR20190023952A (ko) | 에너지 하베스팅 기반의 에너지 관리 장치 | |
EP2933601A1 (en) | Light source position detection device, light source tracking device, control method, and program | |
CN113819849B (zh) | 积尘厚度检测装置和积尘清洁告警系统 | |
KR20160005484A (ko) | 진동발생장치를 포함한 태양광 발전 장치 | |
KR100959447B1 (ko) | 광전지를 이용한 전원장치 시스템 및 그 구동방법 | |
US11444484B2 (en) | Sensor, corresponding system and operating method | |
EP1725025A1 (en) | Method for operating an electronic imaging system, and electronic imaging system | |
CN201134768Y (zh) | 设置有光敏传感器的便携式太阳能供电装置 | |
CN107390599A (zh) | 基于光伏逆变器的监测传感系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20051102 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080214 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080304 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20080701 Free format text: JAPANESE INTERMEDIATE CODE: A02 |