JP2004286900A - Manufacturing method of optical fiber array arrangement part and optical recording device - Google Patents

Manufacturing method of optical fiber array arrangement part and optical recording device Download PDF

Info

Publication number
JP2004286900A
JP2004286900A JP2003076745A JP2003076745A JP2004286900A JP 2004286900 A JP2004286900 A JP 2004286900A JP 2003076745 A JP2003076745 A JP 2003076745A JP 2003076745 A JP2003076745 A JP 2003076745A JP 2004286900 A JP2004286900 A JP 2004286900A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
array
optical fibers
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076745A
Other languages
Japanese (ja)
Inventor
Michio Yokosuka
道雄 横須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Printing Systems Ltd
Original Assignee
Hitachi Printing Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Printing Solutions Inc filed Critical Hitachi Printing Solutions Inc
Priority to JP2003076745A priority Critical patent/JP2004286900A/en
Publication of JP2004286900A publication Critical patent/JP2004286900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical recording device improved in the accuracy of an optical fiber array arrangement, permitting high quality printing by increasing reliability of the optical system of a laser beam printer. <P>SOLUTION: This is a manufacturing method of an optical fiber array arrangement member for arranging each fiber at a same level by mounting optical fibers a plurality of positioning grooves arranged on an optical fiber arranging member, applying a coat of an ultraviolet-setting resin between each optical fiber and the positioning groove side, placing a plate-form member on the part away from the beam exiting ends of the optical fibers by a predetermined length, holding the optical fibers between the positioning groove side and the plate-form member, next, selecting an optical fiber most falling into the positioning groove side from among the arranged optical fibers, and making the other optical fibers fall into the positioning groove side by a position correcting device so that they are aligned with the optical axis of the selected optical fiber as the reference. The manufacturing method is characterized that the viscosity of the ultraviolet-setting resin is made to 0.2Pa s or lower, and a setting contraction rate is made to 0.25% or lower. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の半導体レーザから出射する多数のビームを走査し印刷する、レーザプリンタの光ファイバアレイ配列部材の製造方法及び光記録装置に関するものである。
【0002】
【従来の技術】
図1、2、4、5、6、7により、従来技術を説明する。マルチビーム光記録を行うマルチビーム光記録装置の1例を図4で説明する。半導体モジュール14の半導体レーザ光を光ファイバ1に導いている。複数の光ファイバ1は光ファイバアレイ配列部15で一列に配列されている。この光ファイバアレイ配列部15から出射するアレイ状の複数ビーム、いわゆるマルチビームは、レンズ16、17、18、19を通過して回転多面鏡20に入射し、回転多面鏡20により感光体ドラム22上に並列な光走査線23を同時に走査する。走査レンズ21は、回転多面鏡20によって偏向されたビームを感光体ドラム22上で微小なスポットとして絞り込む。
【0003】
光ファイバアレイ配列部15の構造は、図1に示すように、外径125μmのクラッド2と称される部分と、その中心部の光を伝播する外径4μmのコア3から成る光ファイバ1を、シリコン結晶の異方性エッチングによって複数のVまたは台形のガイド溝5(本例は、V溝とする)を形成したガイド溝基板4のガイド溝5に、横にアレイ配列している。ガイド溝5の間隔は例えば150μmである。ガイド溝基板4上のアレイ配列した光ファイバ1の先端から一定長さより後部に板状部材13を接着し、光ファイバ1を固定している(以下、この部分を粗配列部24という。)。ガイド溝5に光ファイバ1をアレイ配列する際、板状部材13にて固定しない部分(以下、高精度配列部25という。)のガイド溝5と光ファイバ1の間に、粘度が0.3Pa・s、硬化収縮率が3%以下の紫外線硬化樹脂11を流し込む。
【0004】
高精度配列部25の光ファイバ1の配列位置修正を可能とするためには、ガイド溝5と光ファイバ1の間には、光ファイバ1が移動する隙間が必要となる。光ファイバアレイ配列部15の粗配列部24の光ファイバ1を板状部材13にて固定、接着した時に、高精度配列部25の光ファイバ1が反り上がり、ガイド溝5と光ファイバ1の間に隙間が生じることがあるが、高精度配列部25の光ファイバ1に反りが生じない場合を考え、粗配列部24と高精度配列部25のガイド溝5にエッチング加工によって段差26を形成している。これにより、高精度配列部25のガイド溝5が粗配列部24より低いガイド溝基板4が形成され、高精度配列部25のガイド溝5と光ファイバ1が接触しない位置に設定している。
【0005】
図1、2、7に、前記高精度配列部25の光ファイバ1の配列誤差を修正する配列手段を示す。光ファイバ1の配列誤差の修正に位置修正装置を使用する。位置修正装置は、位置合せ部材6、ガイド部材7からなる。位置合せ部材6は、高精度配列部25の光ファイバ1を押して位置修正をする。
【0006】
図6にガイド部材7の構造を示す。ガイド部材7は、位置合せ部材6が通過する複数の通路9を、アレイ状に有する。本実施例のガイド部材7はシリコン結晶の異方性エッチングによって、150μm間隔に複数のガイド溝5が形成されたガイド溝基板8を、ガイド溝5側を向かい合せに配置し接着剤にて接着している。向かい合う2個のガイド溝5によって、ガイド部材7には複数のアレイ状の通路9が形成される。位置合せ部材6は通路9を通過することにより直線的に移動することが可能となる。また、通路9の接触最大内径は約120μmであるため、位置合せ部材6の外径を接触最大内径及び光ファイバ1の配列間隔150μmより小さい100μmとしている。複数の位置合せ部材6を、ガイド部材7の通路9を通過し、先端をガイド部材7から1mm突出した位置にアレイ状に設置した。位置合せ部材6の材質は、ステンレス線から成る。
【0007】
前記位置修正装置による光ファイバ1の配列手段を以下に説明する。本実施例では、前記光ファイバアレイ配列部15に5本の光ファイバ1をガイド溝5にアレイ配列し、粗配列部24の光ファイバ1を板状部材13で固定、接着する。位置合せ部材6は、高精度配列部25の各光ファイバ1に対応する位置に設置している。
【0008】
1例として、図2に示すように高精度配列部25の「C」のガイド溝5に位置する光ファイバ1が、直線状に配列した他の光ファイバ1に対して垂直方向にaμmの位置ズレ(以下、垂直誤差とする。)が生じた場合、「C」の位置合せ部材6がガイド部材7の通路9の中を移動し、その先端で「C」のガイド溝5に位置する光ファイバ1を押すことにより位置を修正する。この時、ガイド溝5に流し込んだ紫外線硬化樹脂11に紫外光を照射し、他の光ファイバ1と同時に接着する。位置を修正する光ファイバ1が複数合った場合でも、同様な操作により修正する。
【0009】
前記配列手段に於いて、光ファイバ1と位置合せ部材6位置は、カメラを有するモニターにて拡大し観察する。光ファイバ1の位置は、光ファイバ1の反対側から光を入射し、コア3からの出射光をカメラを有するモニターにて拡大し、観察する。
【0010】
図5に、位置合せ部材6の動作手段を示した。位置合せ部材6の動力として、圧電素子27を使用している。電源29の電圧を制御し、配線28を通して印可電圧を変えることにより、圧電素子27の変位量を制御する。圧電素子27の変位量は、位置合せ部材6と同質の伝達部材10によって位置合せ部材6に伝えられ、移動する。尚、伝達部材10は、途中で変形することを防ぐために、金属の誘導管(図示せず)内に配置している。
【0011】
以上の方法によって、光ファイバアレイ配列部15を形成している。
【0012】
【発明が解決しようとする課題】
上記した従来の方法では、位置合せ部材6にて高精度配列部25の光ファイバ1を押して位置修正する際、光ファイバ1を配列する前にガイド溝5に流し込んだ紫外線硬化樹脂11がガイド溝5から溢れて光ファイバ1の先端に回り込み、図7に示すように、コア3の表面を覆ってしまう場合がある。紫外線硬化樹脂11の粘度が0.3Pa・sと高いため、光ファイバ1表面からはけず、コア3からの出射光が遮られてモニターにて光ファイバが観察できない。また、位置修正後に、光ファイバ1を紫外線硬化樹脂11にて接着するが、その硬化収縮率が3.0%と高いため硬化収縮により、光ファイバの位置変動が生じ、高精度な光ファイバアレイ配列部15の製造ができない。然るに、光記録装置にて高品質な印刷画像を得ることができない。
【0013】
本発明の目的は、光ファイバ1が高精度にアレイ配列された光ファイバアレイ配列部15を提供し、高品質印刷を可能とし、光記録装置の光学系の信頼性を高めることにある。
【0014】
【課題を解決するための手段】
上記の目的は、紫外線硬化樹脂の粘度を0.2Pa・s以下、硬化収縮率を0.25%以下とすることによって達成される。
【0015】
【発明の実施の形態】
以下に本発明の実施例を図1〜図6により説明する。本発明は、上記した従来技術の方法において、ガイド溝5に光ファイバ1をアレイ配列する際、高精度配列部25のガイド溝5と光ファイバ1の間に、粘度が0.1Pa・s、硬化収縮率が0.25%以下の紫外線硬化樹脂11を流し込むことを特徴とするものである。その他は上記した従来技術と同じであるので、説明を省略する。
【0016】
図2に示すように高精度配列部25の「C」のガイド溝5に位置する光ファイバ1が、直線状に配列した他の光ファイバ1に対して垂直方向にaμmの位置ズレ(以下、垂直誤差とする。)が生じた場合、これを「C」の位置合せ部材6が、ガイド部材7の通路9の中を移動し、その先端で「C」のガイド溝5に位置する光ファイバ1を押すことにより位置を修正する。この時、ガイド溝5の紫外線硬化樹脂11は、ガイド溝5の開口部から溢れ出し、光ファイバの先端に回り込みコア3を覆うが、紫外線硬化樹脂11の粘度が0.1Pa・sで低いため、図3のように直ぐにはけてコア3光は観察できた。尚、0.2Pa・sでも同様な結果が得られた。よって、紫外線硬化樹脂11の粘度は0.2Pa・s以下が好ましい。次にガイド溝5の紫外線硬化樹脂11に紫外光を照射し、他の光ファイバ1と同時に接着した場合、位置を修正する光ファイバ1が複数あった場合でも、同様な操作により位置修正が可能であり、複数の光ファイバ1を同時に接着可能である。この時、紫外線硬化樹脂11の硬化収縮率が0.25%以下と小さいため、光ファイバの位置変動が小さく、高精度な光ファイバアレイ配列部15が形成できる。
【0017】
前記光ファイバアレイ配列部15を光記録装置の光学系として使用することにより、それから出射されるマルチビームにて、感光体ドラム22上に並列なる等間隔の光走査線23が形成され、高品質印刷が可能となった。
【0018】
また、2本から10本、またはそれ以上の光ファイバ1からなる光ファイバアレイ配列部15の形成が可能である。
【0019】
【発明の効果】
本発明によれば、高品質印刷が可能となり、レーザビームプリンタの光学系の信頼性を高めることができる。
【図面の簡単な説明】
【図1】光ファイバアレイ配列部と位置修正装置を示す斜視図である。
【図2】位置修正装置による光ファイバアレイ配列部の配列手段を示す正面図である。
【図3】本発明の実施例における光ファイバ位置修正時の高精度配列部を示す正面図である。
【図4】光ファイバアレイによるマルチビームを用いた光記録装置を示す模式図である。
【図5】位置修正装置の移動手段を示す正面図である。
【図6】ガイド部材を示す正面図である。
【図7】従来の光ファイバの位置修正時の高精度配列部を示す正面図である。
【符号の説明】
1は光ファイバ、2はクラッド、3はコア、4はガイド溝基板、5はガイド溝、6は位置合せ部材、7はガイド部材、8はガイド溝基板、9は通路、10は伝達部材、11は紫外線硬化樹脂、13は板状部材、14は半導体モジュール、15は光ファイバアレイ配列部、16はレンズ、17はレンズ、18はレンズ、19はレンズ、20は回転多面鏡、21は走査レンズ、22は感光体ドラム、23は光走査線、24は粗配列部、25は高精度配列部、26は段差、27は圧電素子、28は配線、29は電源である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing an optical fiber array array member of a laser printer, which scans and prints a number of beams emitted from a plurality of semiconductor lasers, and an optical recording apparatus.
[0002]
[Prior art]
The prior art will be described with reference to FIGS. 1, 2, 4, 5, 6, and 7. FIG. An example of a multi-beam optical recording device for performing multi-beam optical recording will be described with reference to FIG. The semiconductor laser light of the semiconductor module 14 is guided to the optical fiber 1. The plurality of optical fibers 1 are arranged in a line in the optical fiber array arrangement section 15. A plurality of beams in the form of an array, so-called multi-beams, emitted from the optical fiber array arrangement section 15 pass through lenses 16, 17, 18, and 19, enter a rotary polygon mirror 20, and are rotated by a rotary polygon mirror 20 to form a photosensitive drum 22. The upper parallel optical scanning lines 23 are simultaneously scanned. The scanning lens 21 narrows the beam deflected by the rotary polygon mirror 20 as a minute spot on the photosensitive drum 22.
[0003]
As shown in FIG. 1, the structure of the optical fiber array arranging section 15 is such that an optical fiber 1 composed of a portion called a clad 2 having an outer diameter of 125 μm and a core 3 having an outer diameter of 4 μm that propagates light at the center thereof. A plurality of V or trapezoidal guide grooves 5 (in this example, V grooves) are formed laterally in the guide grooves 5 of the guide groove substrate 4 formed by anisotropic etching of a silicon crystal. The interval between the guide grooves 5 is, for example, 150 μm. A plate-like member 13 is adhered to the rear of a predetermined length from the tip of the arrayed optical fibers 1 on the guide groove substrate 4 to fix the optical fiber 1 (hereinafter, this portion is referred to as a coarsely arranged portion 24). When the optical fibers 1 are arrayed in the guide grooves 5, the viscosity between the guide grooves 5 and the optical fibers 1 at a portion not fixed by the plate member 13 (hereinafter, referred to as a high-precision arrangement portion 25) is 0.3 Pa. Pour in the UV curable resin 11 having a curing shrinkage of 3% or less.
[0004]
In order to make it possible to correct the arrangement position of the optical fibers 1 in the high-precision arrangement section 25, a gap in which the optical fibers 1 move is required between the guide groove 5 and the optical fibers 1. When the optical fibers 1 of the coarse array portion 24 of the optical fiber array array portion 15 are fixed and adhered by the plate member 13, the optical fibers 1 of the high-precision array portion 25 are warped, and the space between the guide groove 5 and the optical fiber 1 is increased. Considering the case where the optical fiber 1 of the high-precision arrangement portion 25 does not warp, a step 26 is formed in the guide groove 5 of the coarse arrangement portion 24 and the high-accuracy arrangement portion 25 by etching. ing. As a result, the guide groove substrate 4 in which the guide grooves 5 of the high-precision arrangement section 25 are lower than the coarse arrangement sections 24 is formed, and the guide grooves 5 of the high-accuracy arrangement section 25 are set at positions where the optical fibers 1 do not contact.
[0005]
FIGS. 1, 2 and 7 show arrangement means for correcting an arrangement error of the optical fiber 1 in the high-precision arrangement section 25. FIG. A position correcting device is used to correct the alignment error of the optical fiber 1. The position correcting device includes a positioning member 6 and a guide member 7. The alignment member 6 corrects the position by pushing the optical fiber 1 of the high-precision array section 25.
[0006]
FIG. 6 shows the structure of the guide member 7. The guide member 7 has a plurality of passages 9 through which the alignment member 6 passes in an array. The guide member 7 of this embodiment is formed by arranging a guide groove substrate 8 having a plurality of guide grooves 5 formed at intervals of 150 μm facing each other by anisotropic etching of a silicon crystal, with the guide grooves 5 facing each other, and using an adhesive. are doing. A plurality of arrays of passages 9 are formed in the guide member 7 by the two facing guide grooves 5. The positioning member 6 can move linearly by passing through the passage 9. Since the maximum contact inner diameter of the passage 9 is about 120 μm, the outer diameter of the positioning member 6 is set to 100 μm which is smaller than the maximum contact inner diameter and the arrangement interval of the optical fibers 1 of 150 μm. A plurality of positioning members 6 were arranged in an array at positions where the positioning members 6 passed through the passage 9 of the guide member 7 and protruded from the guide member 1 by 1 mm. The material of the positioning member 6 is made of a stainless wire.
[0007]
The arrangement of the optical fiber 1 by the position correcting device will be described below. In this embodiment, five optical fibers 1 are arrayed in the guide groove 5 in the optical fiber array array section 15, and the optical fibers 1 in the coarse array section 24 are fixed and adhered by the plate member 13. The positioning member 6 is installed at a position corresponding to each optical fiber 1 of the high-precision arrangement section 25.
[0008]
As an example, as shown in FIG. 2, the optical fiber 1 located in the “C” guide groove 5 of the high-precision arrangement section 25 has a position of a μm in the vertical direction with respect to the other optical fibers 1 arranged linearly. When a displacement (hereinafter, referred to as a vertical error) occurs, the “C” alignment member 6 moves in the passage 9 of the guide member 7, and the light positioned at the tip thereof in the “C” guide groove 5. Pressing fiber 1 corrects the position. At this time, the ultraviolet curable resin 11 poured into the guide groove 5 is irradiated with ultraviolet light, and is bonded together with the other optical fibers 1. Even when a plurality of optical fibers 1 whose positions are to be corrected are matched, the correction is performed by the same operation.
[0009]
In the arrangement means, the position of the optical fiber 1 and the position of the positioning member 6 are enlarged and observed on a monitor having a camera. The position of the optical fiber 1 is such that light enters from the opposite side of the optical fiber 1, and the light emitted from the core 3 is enlarged and observed by a monitor having a camera.
[0010]
FIG. 5 shows the operation means of the positioning member 6. The piezoelectric element 27 is used as power for the positioning member 6. The displacement of the piezoelectric element 27 is controlled by controlling the voltage of the power supply 29 and changing the applied voltage through the wiring 28. The displacement amount of the piezoelectric element 27 is transmitted to the positioning member 6 by the transmission member 10 of the same quality as the positioning member 6 and moves. The transmission member 10 is disposed in a metal guide tube (not shown) to prevent the transmission member 10 from being deformed on the way.
[0011]
The optical fiber array array 15 is formed by the above method.
[0012]
[Problems to be solved by the invention]
In the above-described conventional method, when the positioning member 6 presses the optical fiber 1 of the high-precision arrangement portion 25 to correct the position, the ultraviolet curable resin 11 poured into the guide groove 5 before arranging the optical fiber 1 has the guide groove. In some cases, the fiber overflows from 5 and reaches the tip of the optical fiber 1 to cover the surface of the core 3 as shown in FIG. Since the viscosity of the ultraviolet curable resin 11 is as high as 0.3 Pa · s, the ultraviolet light is not emitted from the surface of the optical fiber 1 and the light emitted from the core 3 is blocked, so that the optical fiber cannot be observed on the monitor. After the position correction, the optical fiber 1 is bonded with an ultraviolet curing resin 11, but the curing shrinkage is as high as 3.0%. The array section 15 cannot be manufactured. However, a high-quality print image cannot be obtained by the optical recording device.
[0013]
An object of the present invention is to provide an optical fiber array array unit 15 in which optical fibers 1 are arrayed with high precision, to enable high-quality printing, and to increase the reliability of an optical system of an optical recording apparatus.
[0014]
[Means for Solving the Problems]
The above object is achieved by setting the viscosity of the ultraviolet curable resin to 0.2 Pa · s or less and the curing shrinkage to 0.25% or less.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS. According to the present invention, when the optical fibers 1 are arrayed in the guide grooves 5 in the above-described prior art method, the viscosity between the guide grooves 5 of the high-precision arrangement section 25 and the optical fibers 1 is 0.1 Pa · s, It is characterized by pouring in an ultraviolet curable resin 11 having a curing shrinkage of 0.25% or less. The rest is the same as the above-described conventional technology, and thus the description is omitted.
[0016]
As shown in FIG. 2, the optical fiber 1 located in the guide groove 5 of “C” of the high-precision arrangement section 25 is displaced vertically by a μm with respect to the other optical fibers 1 arranged linearly (hereinafter, referred to as “a”). When a vertical error occurs, the “C” positioning member 6 moves in the passage 9 of the guide member 7 and the optical fiber positioned at the tip thereof in the “C” guide groove 5. Press 1 to correct the position. At this time, the ultraviolet curable resin 11 in the guide groove 5 overflows from the opening of the guide groove 5 and wraps around the tip of the optical fiber to cover the core 3. However, since the viscosity of the ultraviolet curable resin 11 is low at 0.1 Pa · s, As shown in FIG. 3, the core 3 light was immediately observed. Similar results were obtained at 0.2 Pa · s. Therefore, the viscosity of the ultraviolet curing resin 11 is preferably 0.2 Pa · s or less. Next, when the ultraviolet curing resin 11 in the guide groove 5 is irradiated with ultraviolet light and adhered to the other optical fibers 1 at the same time, even if there are a plurality of optical fibers 1 whose positions are to be corrected, the position can be corrected by the same operation. Thus, a plurality of optical fibers 1 can be simultaneously bonded. At this time, since the curing shrinkage of the ultraviolet curable resin 11 is as small as 0.25% or less, the position fluctuation of the optical fiber is small, and the optical fiber array arrangement section 15 with high accuracy can be formed.
[0017]
By using the optical fiber array array section 15 as an optical system of an optical recording apparatus, multi-beams emitted from the optical fiber array array section 15 form parallel light scanning lines 23 on the photosensitive drum 22 at equal intervals, thereby achieving high quality. Printing is now possible.
[0018]
Further, it is possible to form the optical fiber array arrangement portion 15 composed of two to ten or more optical fibers 1.
[0019]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, high quality printing is attained and the reliability of the optical system of a laser beam printer can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an optical fiber array arrangement section and a position correcting device.
FIG. 2 is a front view showing an arrangement means of an optical fiber array arrangement unit by a position correcting device.
FIG. 3 is a front view showing a high-precision array portion when correcting an optical fiber position in the embodiment of the present invention.
FIG. 4 is a schematic diagram showing an optical recording apparatus using multiple beams by an optical fiber array.
FIG. 5 is a front view showing moving means of the position correcting device.
FIG. 6 is a front view showing a guide member.
FIG. 7 is a front view showing a conventional high-precision array portion when correcting the position of an optical fiber.
[Explanation of symbols]
1 is an optical fiber, 2 is a clad, 3 is a core, 4 is a guide groove substrate, 5 is a guide groove, 6 is an alignment member, 7 is a guide member, 8 is a guide groove substrate, 9 is a passage, 10 is a transmission member, 11 is an ultraviolet curing resin, 13 is a plate-like member, 14 is a semiconductor module, 15 is an optical fiber array arrangement portion, 16 is a lens, 17 is a lens, 18 is a lens, 19 is a lens, 20 is a rotating polygon mirror, and 21 is scanning. A lens, 22 is a photosensitive drum, 23 is an optical scanning line, 24 is a coarse arrangement portion, 25 is a high-precision arrangement portion, 26 is a step, 27 is a piezoelectric element, 28 is a wiring, and 29 is a power supply.

Claims (2)

複数個の光源と、前記各光源から出射されたビームを所望の位置へ導く複数本の光ファイバと、前記各光ファイバのビーム出射端をアレイ状に整列させる光ファイバ配列部材とを備え、前記光ファイバ配列部材に設けられた複数本の位置合せ溝上に前記各光ファイバを載せ、前記各光ファイバと前記位置合せ溝の間に紫外線硬化樹脂を塗布し、前記光ファイバのビーム出射端から所定長さ離した部位に板状部材を設置し、前記位置合せ溝と前記板状部材とで前記光ファイバを挟持し、次に前記整列された光ファイバの内前記位置合せ溝側に最も落ち込んでいる光ファイバを選定し、選定された基準となる光ファイバの光軸と一致するように位置修正装置によって他の光ファイバを前記位置合せ溝側へ降下させて各光ファイバを同じ高さに整列させる光ファイバアレイ配列部材の製造方法において、紫外線硬化樹脂の粘度を0.2Pa・s以下、硬化収縮率を0.25%以下としたことを特徴とする光ファイバアレイ配列部の製造方法。A plurality of light sources, a plurality of optical fibers for guiding a beam emitted from each of the light sources to a desired position, and an optical fiber array member for aligning the beam emitting ends of the optical fibers in an array, Each of the optical fibers is placed on a plurality of alignment grooves provided in the optical fiber array member, an ultraviolet curable resin is applied between each of the optical fibers and the alignment groove, and a predetermined amount is applied from a beam emission end of the optical fiber. A plate-like member is installed at a site separated by a length, the optical fiber is sandwiched between the alignment groove and the plate-like member, and then the optical fiber is dropped to the alignment groove side of the aligned optical fibers. Select the optical fiber that is located, and lower the other optical fiber to the alignment groove side by a position correcting device so that it matches the optical axis of the selected reference optical fiber, and align each optical fiber at the same height. In the method for manufacturing an optical fiber array alignment members that, following viscosity 0.2 Pa · s of the ultraviolet curing resin, a method of manufacturing an optical fiber array sequence unit, characterized in that the cure shrinkage is 0.25% or less. 請求項1に記載の光ファイバアレイ配列部の製造方法によって製造した光ファイバアレイ配列部を備えた光記録装置。An optical recording apparatus comprising an optical fiber array array manufactured by the method for manufacturing an optical fiber array array according to claim 1.
JP2003076745A 2003-03-20 2003-03-20 Manufacturing method of optical fiber array arrangement part and optical recording device Pending JP2004286900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076745A JP2004286900A (en) 2003-03-20 2003-03-20 Manufacturing method of optical fiber array arrangement part and optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076745A JP2004286900A (en) 2003-03-20 2003-03-20 Manufacturing method of optical fiber array arrangement part and optical recording device

Publications (1)

Publication Number Publication Date
JP2004286900A true JP2004286900A (en) 2004-10-14

Family

ID=33291679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076745A Pending JP2004286900A (en) 2003-03-20 2003-03-20 Manufacturing method of optical fiber array arrangement part and optical recording device

Country Status (1)

Country Link
JP (1) JP2004286900A (en)

Similar Documents

Publication Publication Date Title
KR101062192B1 (en) Caution for harmonic laser light, laser light harmonic light source and exposure apparatus
KR101191843B1 (en) Pattern exposure method and pattern exposure apparatus
JP4244156B2 (en) Projection exposure equipment
US20090046262A1 (en) Exposure apparatus and exposure method
US5006201A (en) Method of making a fiber optic array
US4991930A (en) Fiber optic array
JP3808327B2 (en) Image recording device
JP2004335640A (en) Projection aligner
US6853505B2 (en) Optical module apparatus, projection television and method of fabricating optical module apparatus
TWI654492B (en) Beam exposure device
JP2004286900A (en) Manufacturing method of optical fiber array arrangement part and optical recording device
US6330019B1 (en) Image recording apparatus and optical recording head
JP2004354659A (en) Pattern drawing device
JP2000180605A (en) Manufacture of refracting micro-lens and its device
JP3877138B2 (en) Optical recording device
JP2003167167A (en) Method for manufacturing multibeam generating device
JP2003295077A (en) Optical recorder and method of manufacturing optical fiber array alignment part thereof
JP3959833B2 (en) Optical fiber array device, imaging head device, and imaging device
JP3663614B2 (en) Multi-beam optical recording device
JP2004020786A (en) Optical fiber and multiple beam generating device using the same
JP3707068B2 (en) Multi-beam optical recording device
WO2002052343A2 (en) Imaging head with pigtailed laser diodes and micromachined light-pipe and arrays thereof
JP2008065306A (en) Multibeam generating element and optical recording apparatus using multibeam
JP2002267980A (en) Optical fiber array recording device
US6647189B2 (en) Image forming apparatus having an optical fiber array