JP2004286729A - 微小片持はりのばね定数計測方法及びはり状体のばね定数計測装置 - Google Patents

微小片持はりのばね定数計測方法及びはり状体のばね定数計測装置 Download PDF

Info

Publication number
JP2004286729A
JP2004286729A JP2003342805A JP2003342805A JP2004286729A JP 2004286729 A JP2004286729 A JP 2004286729A JP 2003342805 A JP2003342805 A JP 2003342805A JP 2003342805 A JP2003342805 A JP 2003342805A JP 2004286729 A JP2004286729 A JP 2004286729A
Authority
JP
Japan
Prior art keywords
cantilever
spring constant
micro
measuring
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003342805A
Other languages
English (en)
Inventor
Mikio Muraoka
幹夫 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACTLAS KK
Original Assignee
ACTLAS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACTLAS KK filed Critical ACTLAS KK
Priority to JP2003342805A priority Critical patent/JP2004286729A/ja
Publication of JP2004286729A publication Critical patent/JP2004286729A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

【課題】 AFM微小カンチレバー等の任意形状の微小片持はりその他はり状体のばね定数を、不活性ガスの流体力を利用して非接触かつ簡便に計測、評価できる計測方法を提供する。
【解決手段】 カンチレバー10の探針11背面側からピペット12を接近させ、ピペット12からアルゴンガスを噴射してカンチレバー10に流体力を与える。カンチレバー10のバネ定数kをカンチレバー10に作用する力とカンチレバー10のたわみの比例係数として定義し、流体力Fとたわみの計測値wの関係からカンチレバー10のばね定数を求める。
【選択図】 図4

Description

本発明は、微小片持はり(マイクロカンチレバー)のばね定数計測方法に関し、詳細には走査型プローブ顕微鏡(Scanning Probe Microscope:SPM)の一種である原子間力顕微鏡(Atomic Force Microscope)用微小片持はりのばね定数計測等に用い得る計測方法、及びこの方法を用いて物体のばね定数を計測するための装置に関する。
原子間力顕微鏡(以下、AFMという)は試料表面の形状を高分解能で計測できるだけでなく、微小領域の弾性係数の評価、付着力計測、単一分子の弾性や結合力の研究などに有用である。図1にAFMの原理的構成を示す。AFMは、先端に鋭い探針(プローブ:先端半径は数十nm)1を有する低剛性のAFM微小片持はり(AFMマイクロカンチレバー:以下では単にカンチレバーという場合もある)2を用い、レーザ3から射出したレーザ光Lをカンチレバー2に照射し、その反射光L’を、検出領域を四分割した光検出器4で検出するという構成を有する。そして、試料5の表面を原子レベルで探針1によりなぞりつつカンチレバー2の上下の動きやねじれを光検出器4上でのレーザ光Lの反射光L’の縦、横方向への動きに変換して読み取る。読み取った反射光L’の動きをコンピューターで演算することによって、試料5の表面の凹凸やその摩擦力等を像として表すことができる。
ところで、カンチレバーの力検出機能を利用した計測においては、カンチレバーのばね定数が極めて重要な量となる。AFM用のカンチレバーは、長さ数百μm、幅数十μm、厚さ数μmの微小寸法材である。そのため、ばね定数でさえも、その定量的評価は容易ではなく、市販品では一般にばね定数計測は行われていない。
上述のような微小のカンチレバーのばね定数を評価する方法として現在知られているものに、共振法や熱振動法がある。共振法はカンチレバーの共振周波数、形状、寸法からばね定数を算出する方法である。また、熱振動法はカンチレバーの熱振動ノイズを計測し、理論式との比較からばね定数を算出する方法である。しかしながら、前者は、評価誤差が不明(大きい)であり、V型のようにカンチレバーの形状が複雑な場合に適用が困難である。また、後者では、約0.05N/m以下のようなばね定数が小さいカンチレバーに評価が限られてしまい、これもV型のような複雑な形状のカンチレバーには適用が困難である。
その他の評価法としては液中振動法が挙げられる。この方法はカンチレバーを液体中で振動させ、このときの固有振動数と空気中の固有振動数を比較し、ばね定数を評価する方法である。この評価法も比較的正確な評価が行えるが(不確かさ±10%)、カンチレバーを液中に入れるため、計測に手間を要する。また、V型のようなカンチレバー形状が複雑な場合には適用が困難である。汎用的方法としてスロープ法も提案されている。この方法は、既知のばね定数を持つ規準片持はりを用い、被測定カンチレバーを負荷する方法である。この方法では比較的正確な評価を行えるが、規準片持はりの準備等、計測に手間を要する。また、直接接触による探針接触負荷を伴うため、カンチレバーにダメージを与えてしまう可能性がある。
Rabe,U.,ほか2名,Rev. Sci. Instrum., 67(1996), 3281 Muraoka,M.及びArnold,W., JSME Int.J.,Ser.A,44−3(2001),396 Sader,J.E.及びWhite,L., Appl.Phys.,74(1993),1 Levy,R.及びMaaloum,M., Nanotechnology,13(2002),33 Sader,J.E.,Rev.Sci.Instrum.,70−10(1999),3967 Comella,B.T.及びScanlon,M.R.,J.Mater. Sci.,35(2000),567
本発明は上記従来の問題点にかんがみ、不活性ガスの流体力を利用し、AFM用のマイクロカンチレバーに用いるような微小なはりのばね定数計測に用い得る非接触負荷計測方法を提案するものである。
本発明の請求項1に係る微小片持はりのばね定数計測方法は、片持はり状に保持した微小片持はり先端平面に非活性ガス噴射体の噴射口を接近させて非活性ガスを一定またはほぼ一定流速で集中させかつ該微小片持はり先端平面に対して垂直に噴射し、該ガス流体力の利用により上記微小片持はりに非接触状態で安定した負荷を与え、上記微小片持はりのバネ定数kを該微小片持はりに作用する力と該微小片持はりのたわみの比例係数として定義し、流体力Fとたわみの計測値wの関係を、
Figure 2004286729
(式中、ηは補正係数で、
Figure 2004286729

であり、式中lは上記微小片持はりの全長)とし、上記非活性ガス噴流の上記微小片持はり先端平面に対して垂軸な軸方向流速成分をゼロとし、該先端平面に作用する流体力を、上記非活性ガス噴流の流量Qを用いて、
Figure 2004286729

(ρは25℃、1気圧における非活性ガスの密度、Aは非活性ガス噴出口の面積)とし、上記数式1と数式3から
Figure 2004286729

(式中、Cは係数で、
Figure 2004286729

である)として上記微小片持はりのばね定数kを求めることを特徴とする。
同請求項2に係るものは、請求項1の微小片持はりのばね定数計測方法において、安定した微小流量の噴流を発生させるために、上記非活性ガス噴射体の非活性ガス流れ方向上流側に貯気槽を設けることを特徴とする。
同請求項3に係るものは、請求項1または2の微小片持はりのばね定数計測方法において、上記非活性ガス噴射体の噴射口からの噴流速を、上記微小片持はりに安定して流体力を作用させるために、マッハ数が1を超えないようにしたことを特徴とする。
同請求項4に係るものは、請求項1ないし3のいずれかの微小片持はりのばね定数計測方法において、上記非活性ガス噴射体の噴射口と上記微小片持はり先端平面の隙間を、上記噴射口の口径の4分の1以上で、かつ片持はりの幅の2分の1以下の範囲としてなることを特徴とする。
同請求項5に係る微小片持はりのばね定数計測装置は、光学顕微鏡の試料台に計測対象となるはり状体を片持はり状に固定し、上記試料台の両側にたわみ計測用のレーザ干渉変位計を配し、上記はり状体の先端平面に非活性ガス噴射体の噴射口を接近させて非活性ガスを一定またはほぼ一定流速で集中させかつ該はり状体の先端平面に対して垂直に噴射可能に配し、該はり状体のばね定数を上記請求項1ないし4のいずれかの微小片持はりのばね定数計測方法を用いて計測可能としてなることを特徴とする。
本発明に係る微小片持はりのばね定数計測方法、及びこれを利用したばね定数計測装置は、AFM微小カンチレバー等の任意形状の微小片持はりその他はり状体のばね定数を、不活性ガスの流体力を利用して非接触かつ簡便に計測、評価できる。
以下本発明を実施するための最良の形態を、実施例とその図を参照して説明する。
まず本実施例の実験装置及びばね定数の測定原理を説明する。
<AFMマイクロカンチレバー>
図2に本実験のばね定数計測に用いたカンチレバーチップを示す。現在、市販されている一般のカンチレバーのばね定数の仕様は誤差±50%という現状にあるが、今回は本評価法の精度を検証するため、液中振動法によりばね定数が較正されたカンチレバー(誤差±10%)をばね定数計測に用いる。図示のチップは単結晶シリコンカンチレバーチップ(Silicon−MDT製)であり、それぞれ長方形のCSC17(図2A)とNSC12(図2B)である。図2(C)はカンチレバー部分の拡大概念図である。なおNSC12についてはカンチレバーのタイプEを用いた。これらサンプルの仕様を図3に示す。図3(A)は試験片CSC17について、図3(B)は試験片NSC12について示す。図3中、共振周波数(1次)とばね定数は、厚さに強く依存する。またばね定数値は寸法に基づいてはり理論より計算した結果である。
<光学顕微鏡下の負荷試験>
本実験は、光学顕微鏡の試料台に金属製ブロックを設置し、その側面に両面テープによりカンチレバーチップを固定して行った。また試料台の両側に3軸ステージを取り付け、それぞれたわみ計測用レーザー干渉変位計(キャノン製DS−80、変位分解能0.08nm、レーザースポット20μm×10μm)とガス噴流負荷用マイクロピペット(マイクロノズル)貯気槽を設置した。マイクロピペットは、外径1mm、長さ90mm、厚さ0.5mmのガラス管(NARISIGE製G−1)をもとにマイクロピペット作製器(NARISIGE製PB−7)を用いて二段引きにより作製した。本実験に用いたピペットの先端内径はdin=10μmとした。
図4は、本実験におけるマイクロピペットとレーザ光のスポットの位置関係を示す断面図である。図示のように、カンチレバー10の探針11背面側からピペット12を接近させ、ピペット12からアルゴンガスを噴射してカンチレバー10に流体力を与えるようになっている。なお図示は省略するが、ピペット12からのアルゴンガスの噴射については、噴出微小流量の安定化と調整を行えるように、ピペット12に直結させて金属製貯気槽を設置した。貯気槽圧は圧力センサ(Honeywell社製、40PC015、ゲージ圧仕様、定格公称感度0.0386V/kPa(3.92V/atm)、零出力0.542V(ゲージ圧が零のときの出力)、精度0.2%)により監視した。
図5は、貯気槽13の圧力(岐点圧p)が一定である場合の噴出流量Qと隙間h(ピペット12の先端とカンチレバー10の背面との間隔)の関係を模式的に示す図である。隙間hが小さい場合、噴流が、カンチレバー10の背面の影響を受ける。すなわちオリフィス効果によって、流量(Q)が隙間hの相違により変化してしまう。なお、この効果は空気マイクロメーターに応用されている(小林昭著、超精密生産技術大系 第3巻(1995)、282、株式会社フジテクノ・システム発行)。オリフィス効果が現れる領域は、非圧縮性を仮定した場合h≦din/4(本実験では2.5μm以下)の範囲となることが知られている(上記文献参照)。一方、隙間hが大きい場合、噴流が広がり、カンチレバー10に与える流体力が減少し、噴流断面のすべてがカンチレバー10の背面に当たらなくなる。
本実験の負荷方法では、流量及び流体力が隙間hに依存しないように隙間hを設定する必要がある。隙間設定条件は後述のように実験により検討するが、その結果を踏まえて、ばね定数評価では、ピペット12先端をカンチレバー10の背面から10μm離した(h=10μm)。また、図6に示すように、ピペット中心軸(位置δ)は、ピペット12先端面がカンチレバー10の背面からはみ出さないようにして、可能な限り探針11の軸(試験片CSC17の場合δ=15μm、NSC14の場合δ=5μm)に合わせた。カンチレバー10のたわみ計測位置は、良好な干渉信号強度を得るため、カンチレバー10先端からL(=20μm〜40μm)だけ離れた位置に設定した。
以上の配置のもとで、流量(貯気槽圧)を増減することにより負荷、除荷を行い、たわみと流量の関係を計測した。流量の増減については次のように行った。Arガスボンベのレギュレータの元栓を開け、レギュレータのゲージ圧を約0.8atmに設定し、レギュレータ出口に設置したスピードコントローラ(スピコン)を開く。このスピコン(第1スピコン)と貯気槽13は長さ3m程度のホースにより繋ぎ、その中間に分岐を設けて第2スピコンを取り付けた。これにより意図的に漏れを作り、貯気槽圧力を所要の値で一定に保つことを可能とした。そして第2スピコンにより貯気槽13の定常圧力(最大圧力)を設定し、圧力上昇速度は第1スピコンで調節した。その後、レギュレータ元栓を開閉することにより負荷、除荷を同一の条件で何度でも行えるようにした。またカンチレバー10のたわみの最大値は、その板厚の約10%(約200nm〜300nm)に設定した。流量及びたわみの出力は、データ収集ユニット(Agilent Technologies製34970A)を介し、GP−IB用USBケーブルによりパーソナルコンピュータに取り込み、データ処理を行った。実験はすべて大気中25±1℃の実験室環境で行った。
<微小流量の計測>
貯気槽圧力と噴出流量の関係を以下のようにして較正した。較正装置には膜流量計を用いた。すなわち内径7.5mmのガラス管内にシャボン膜を張り、ガラス管の片側からピペットを挿入してピペットとガラス管の隙間を粘土でふさぎ(ガラス管の他端は開放してあり、シャボン膜には大気圧が作用している)、貯気槽13の圧力を一定に保ち、アルゴンガスを噴出する。シャボン膜は大気圧と釣り合いながらゆっくりと移動する。そこで初期位置から40mm移動する時間を測定し、流量(25℃大気圧における単位時間当たりの体積流量)を求めた。これを貯気槽圧の種々の値に対して行った。
<負荷の安定性>
アルゴンガスの出口速度(流速)Vが音速aを超えるとき(マッハ数M=V/a>1)、出口圧力と背圧(大気圧)に差が生じ不可逆膨張が起こる。このとき流れの乱れやエネルギー逸散が顕著となるため流体力の評価が困難になる。本実験の負荷方法では、不可逆膨張を避けるため、出口マッハ数(M)が1以下となる条件を設けた。M=1のときの貯気槽圧力(岐点圧p)は、簡単のために理想気体の等エントロピー流れを仮定すれば、ゲージ圧で0.894atmとなる。また、M=1のとき、ピペット出口のレイノルズ数Re(=adin/ν、ν:動粘性係数)は近似的に80となる。この値は十分小さく、本負荷試験におけるピペット12の出口近傍の流れ場が層流状態であることを意味する。したがって、貯気槽圧力をゲージ圧0.894atm以下に設定すれば、不可逆膨張がなく、層流噴流状態が実現でき、安定した負荷が期待できる。
図6は、負荷試験時の変位計出力(カンチレバー10のたわみに対応)と貯気槽圧力センサ出力の時間変化の測定例を示す図である。試験片はCSC17−1、h=10μmである。変位出力が負の方向に増加しているが、これはレーザ干渉変位計を図4に示すようにピペット12と反対側に設置したためである。横軸に平行な部分は無負荷状態にほぼ等しい(若干の圧力が作用している)。ここでは最大で約200nmのたわみを与えている。この図からわかるように、カンチレバー10のたわみは貯気槽圧とともに安定かつ敏感に変化している。また、振動ノイズも比較的小さい。なお、貯気槽圧を一定に保持した場合には、カンチレバー10のたわみも一定となることを確認した。このように微小ガス噴流の流体力を利用した本発明方法は、低レイノルズ数の効果により安定に負荷を与えることができる。
<たわみと荷重の関係>
カンチレバーのばね定数kは、探針に作用する力と探針部分のたわみの比例係数として定義されている。本実験ではたわみ計測の都合上、図4に示すように、変位計測位置及び流体力の作用する位置が探針の位置からずれている。材料力学的には、負荷(流体力)Fとたわみの計測値wの関係は数式6のように表すことができる。
Figure 2004286729
ここでηは数式7に示す補正係数である。
Figure 2004286729

lはカンチレバー10の全長である。
<流量と流体力の関係及び流量とたわみの関係>
図7はアルゴンガス噴流がカンチレバーの背面に垂直に当たり検査面を出る時点で噴流軸方向の流速成分が零になる場合を示す概念的断面図である。図示のように、ピペット12の先端から出たアルゴンガス噴流(Ar)がカンチレバー10の背面に垂直に当たって点線xで示す検査面を出る時点では噴流軸方向の流速成分が零になるとすると、カンチレバー10の背面に作用する流体力は、検査面xに運動量の法則を適用することにより、流量(大気圧における単位時間当たりの体積流量)Qを用いて数式8のように表すことができる。
Figure 2004286729

は検査面xに流入する運動量である。ρは25℃で、大気圧におけるアルゴンの密度である(ρ=1.6343kg/m)。またA(=πdin /4)は、ピペット12の噴出口の断面積である(A=7.854x10−11)。上述の数式6と数式8から数式9を得られる。
Figure 2004286729

ここで
Figure 2004286729

である。すなわちQとwの関係を計測し、数式9を用いて係数Cを定めれば、数式10からカンチレバー10のばね定数を求めることができる。
次に、実験結果及びばね定数評価について説明する。
<貯気槽圧と流量の関係>
図8は流量の較正結果(QとVp0の関係)を示す図である。ここにVp0は、貯気槽圧力センサ出力から零出力(0.542V)を差し引いた電圧であり、貯気槽13のゲージ圧に比例する(公称値0.255atm/V)。図8からわかるように、流量の二乗と圧力差(ゲージ圧)の関係は、2次曲線に近い。これは圧縮性粘性流体の等温管内流れの理論(西山哲男、流体力学(II)、(1979)、144、日刊工業発行)と一致する。計測結果に忠実に従う式(流量較正曲線)を求めるため、多項式による最小二乗近似を行った。近似結果は数式11、数式12のようになる。
すなわちVp0=0〜0.7[V]のとき
Figure 2004286729
またVp0=0.7〜3[V]のとき
Figure 2004286729
図9は負荷試験時に計測したVp0とwの関係の一例を示す図である(試験片CSC17−1、CSC17−2、h=10μm)。縦軸は無負荷時の変位計出力(変位計のオフセット)wを含んでいる。この図からわかるように、Vp0とwの関係は線形関係にはならない。一方、図10に示すように横軸のVp0を数式11、数式12を用いてQに変換すれば、線形関係すなわち理論式である数式9に従っていることが確認できる。また、このことから流量較正曲線式である数式11、数式12が適切であるともいえる。
<隙間及び負荷時間の設定>
上述のように、負荷試験では流体力が隙間に依存しない領域に隙間hを設定する必要がある。図11に、Qとwの関係に及ぼす隙間hの影響を示す(試験片はNSC12 type E)。ここでは5回程度の負荷除荷サイクルを行っている。この図からわかるように、隙間hが大きくなる程、Qとwの関係の傾きが小さくなっている。しかしながら、h=10μmとh=20μmの場合では傾きが互いに等しい。このことから、少なくともh=10μm〜20μmの範囲では、流体力が隙間に依存しないことがわかる。
また、負荷試験ではレーザ干渉変位計の出力ドリフトがたわみ計測に影響しないように、短時間の負荷が好ましい。しかしながら短時間負荷(迅速負荷)でも、先の較正曲線(数式11、数式12)が利用できるように準静的な負荷変動である必要がある。図12は、貯気槽圧の平均的上昇速度を0.07atm/s、0.02atm/s、0.006atm/sの三種類に設定した場合のQとwの関係を示す図である(試験片NSC12 (type E)、隙間h=10μm)。この図から、すべて互いに等しい傾きが得られることがわかる。したがって、この範囲の圧力上昇速度では、準静的な負荷変動になっていると考えられる。なお、平均的上昇速度とは、負荷試験時の最大圧力をそれに達するまでの時間で割った値である。
以上の結果より、先に説明したばね定数評価のための負荷条件すなわちh=10μm及び0.02atm/sが適切であることを確認できる。
<ばね定数の評価例>
図10に実線で示したように、Q−w関係の計測結果を直線で最小二乗近似し、その傾きより係数Cを決定した。評価対象は試験片CSC17(2個)及びNSC12 type E(1個)の合計3個である。それぞれについて、10回の計測(10サイクルの負荷除荷)を行い、係数Cの平均値及び標準偏差を得た。その結果を図13に示す。この図13に示すように、係数Cの標準偏差は3%以下でありQ−w関係の計測に再現性があることがわかる。ばね定数kは、数式10から数式13のように表すことができる。
Figure 2004286729


















図13には、係数Cの値をもとに数式13より求めたばね定数kをも示す。なお、試験片CSC17(2個)については、比較のために液中振動法により評価した結果も示してある。本手法と液中振動法による評価は互いによく一致している。試験片CSC17−1については、若干の相違があるが、次の理由により、本結果は液中振動法の結果よりも信頼性が高いといえる。また参考のため、図13には共振周波数の実測値を示す。これは音源として発振器を用いスピーカーにより空気を音響振動させ、その際の片持はりの共振を本負荷装置のレーザ干渉変位計により調べた結果である。試験片CSC17−1の共振周波数は試験片CSC17−2よりも大きいという結果が得られている。ところで、共振周波数やばね定数のばらつきは、主にカンチレバー10板厚のばらつきによって決まる。したがって共振周波数が大きい場合は、カンチレバー10ばね定数も大きくなるはずである。ばね定数についての本実験の評価結果はこの傾向に従っているが、液中振動法の結果では大小関係が逆である。
試験片NSC12(type E)のばね定数の評価結果も、図3(B)に示す仕様の範囲内にあり妥当であると思われる。本評価法は、このチップのように1個のチップに多数のカンチレバーが付いている場合でも、すべてのカンチレバーを壊すことなく、ばね定数の評価ができる。
<ばね定数の評価精度の検討>
本評価法の精度に最も大きく影響するのは、ピペット12先端出口の内径(din)の寸法誤差である。本評価では光学顕微鏡観察により内径を計測した。画像処理を含め注意深く計測して、dinの計測値10μmの標準偏差を0.1μmとすることが好ましい。また、光学顕微鏡観察に基づき計測したl値、δ値、δ値(図13参照)の標準偏差をすべて1μmとすることが好ましい。L値については、レーザ光Lのスポット中心位置の同定に比較的大きい不確かさを伴うので、標準偏差を2μmとすることが好ましい。以上の標準偏差の諸値と数式13をもとに誤差の伝播を考慮して、ばね定数評価値の標準偏差を求めた。その結果を図13で括弧内に示してある。本ばね定数評価の標準偏差は約4%以下である。±2倍の標準偏差の区間(確率95.4%の信頼性)を、本評価方法の不確かさ(誤差)と定義すれば、本手法の不確かさは±8%以下となる。液中振動法の不確かさの値(±10%)の統計的定義は不明であるが、本研究の評価法の精度は、液中振動法と同程度あるいは、より高いといえる。
<適用範囲>
本発明の負荷方式の容量(最大発生力)Fmaxは、ピペット12の出口流速が音速(アルゴンの25℃大気圧における音速a=321m/s)に達したときの流体力に対応するから、数式8を用いて次式のように表すことができる。
Figure 2004286729



















この数式14より、本実験に使用したマイクロピペット(出口内径10μm)では、Fmax=13μNを得る。この力により200nmだけ撓むカンチレバーのばね定数は65N/mとなる。したがって本手法により評価できるばね定数の上限kmaxは65N/m程度である。なお、カンチレバーの長さ、幅が十分大きければ、ピペット12の出口内径(din)をより大きくできる。これによりFmaxとkmaxも大きくなる。例えばdin=33μm(3.3倍)にすれば、Fmaxとkmaxが10倍になる。
値が明確である発生力の最小値Fminは制御可能な流量の最小値Qminにより決まる。本発明の場合Qmin=0.5mm/s(=0.03ml/min)である。したがって数式8よりFmin=4.6nNを得る。この値の10倍の負荷により200nmだけ撓むカンチレバーのばね定数は0.2N/mとなる。したがって本手法で評価可能なばね定数の下限kminは、kmin=0.2N/m程度である。なお、ピペット12の出口内径を5分の1(2μm)にすれば、Fmin=0.2nN、kmin=0.01N/mまで下限値を下げることができる。またアルゴンに代えて、密度が10分の1のヘリウムを使用すれば、Fmin、kminの値を10分の1に低下させることができる。さらに、上述した流量測定において、シャボン膜用ガラス管(内径7.5mm)をより細くする等することにより、Qmin値をさらに小さくすることも考え得る。
さらに、AFM用微小片持はりの上記ばね定数計測方法において、上記非活性ガス噴射体の噴出口と上記微小片持はり先端平面の隙間については、非活性ガスの噴出流量との関係でオリフィス効果が生ぜず、かつ噴出するガスが広がらず片持はりの先端平面に当たることが望まれる。このため隙間を噴射口径の約4分の1以上に設定し、さらに実験例で用いた片持はりの幅(W)は35μmであったことから、20μm(隙間の上限)÷35μm(片持はりの幅)=0.57(≒1/2)となり、該隙間を片持はりの幅の約2分の1以下とすることで、こうした条件を満足することが確認された。
以上説明してきた実施例に係る微小片持はりのばね定数計測方法及びばね定数計測装置)は、不活性ガスの流体力を利用した非接触負荷方法を用い、任意形状のAFM用微小片持はり(AFMマイクロカンチレバー)を対象とするものであるが、本発明は、レーザ干渉変位計と併せて汎用的な、特に微小なはりを対象とするのに好適な、ばね状体のばね定数計測装置とすることができる。
原子間力顕微鏡の概念図 AFMカンチレバー(カンチレバー)チップを示す図 カンチレバーの仕様を示す図 ピペットをカンチレバーに接近させ、一定流量のアルゴンガスを噴射した状態を模式的に示す図 貯気槽圧力が一定の場合の噴出流量と隙間の関係を模式的に示す図 負荷試験時の変位計出力と貯気槽圧力センサ出力の時間変化の測定例を示す図 アルゴンガス噴流がカンチレバーの背面に垂直に当たり検査面を出る時点で噴流軸方向の流速成分が零になる場合を示す概念的断面図 流量の較正結果を示す図 負荷試験時に計測した、貯気槽圧力センサ出力から零出力を差し引いた電圧とたわみの計測値の関係の一例を示す図 同アルゴンガス流量の2乗値とたわみの計測値の関係の一例を示す図 アルゴンガス流量の2乗値とたわみの計測値の関係に及ぼすアルゴンガス噴出口とカンチレバー背面の隙間の影響を示す図 貯気槽圧の平均的上昇速度を三種類に設定した場合のアルゴンガス流量の2乗値とたわみの計測値の関係を示す図 係数Cの値をもとに求めたばね定数k等を示す図
符号の説明
10:カンチレバー
11:カンチレバーの探針
12:ピペット
13:貯気槽

Claims (5)

  1. 片持はり状に保持した微小片持はり先端平面に非活性ガス噴射体の噴射口を接近させて非活性ガスを一定または略一定流速で集中させかつ該微小片持はり先端平面に対して垂直に噴射し、該ガス流体力の利用により上記微小片持はりに非接触状態で安定した負荷を与え、上記微小片持はりのバネ定数kを該微小片持はりに作用する力と該微小片持はりのたわみの比例係数として定義し、流体力Fとたわみの計測値wの関係を、
    Figure 2004286729
    (式中、ηは補正係数で、
    Figure 2004286729

    であり、式中lは上記微小片持はりの全長)とし、上記非活性ガス噴流の上記微小片持はり先端平面に対して垂軸な軸方向流速成分をゼロとし、該先端平面に作用する流体力を、上記非活性ガス噴流の流量Qを用いて、
    Figure 2004286729
    (ρは25℃、1気圧における非活性ガスの密度、Aは非活性ガス噴出口の面積)とし、上記数式1と数式3から
    Figure 2004286729

    (式中、Cは係数で、
    Figure 2004286729

    である)として上記微小片持はりのばね定数kを求めることを特徴とする微小片持はりのばね定数計測方法。
  2. 請求項1の微小片持はりのばね定数計測方法において、安定した微小流量の噴流を発生させるために、上記非活性ガス噴射体の非活性ガス流れ方向上流側に貯気槽を設けることを特徴とする微小片持はりのばね定数計測方法。
  3. 請求項1または2の微小片持はりのばね定数計測方法において、上記非活性ガス噴射体の噴射口からの噴流速を、上記微小片持はりに安定して流体力を作用させるために、マッハ数が1を超えないようにしたことを特徴とする微小片持はりのばね定数計測方法。
  4. 請求項1ないし3のいずれかの微小片持はりのばね定数計測方法において、上記非活性ガス噴射体の噴射口と上記微小片持はり先端平面の隙間を、上記噴射口の口径の4分の1以上で、かつ片持はりの幅の2分の1以下の範囲としてなることを特徴とする微小片持はりのばね定数計測方法。
  5. 光学顕微鏡の試料台に計測対象となるはり状体を片持はり状に固定し、上記試料台の両側にたわみ計測用のレーザ干渉変位計を配し、上記はり状体の先端平面に非活性ガス噴射体の噴射口を接近させて非活性ガスを一定またはほぼ一定流速で集中させかつ該はり状体の先端平面に対して垂直に噴射可能に配し、該はり状体のばね定数を上記請求項1ないし4のいずれかの微小片持はりのばね定数計測方法を用いて計測可能としてなることを特徴とするはり状体のばね定数計測装置。
JP2003342805A 2003-03-05 2003-10-01 微小片持はりのばね定数計測方法及びはり状体のばね定数計測装置 Withdrawn JP2004286729A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342805A JP2004286729A (ja) 2003-03-05 2003-10-01 微小片持はりのばね定数計測方法及びはり状体のばね定数計測装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003058300 2003-03-05
JP2003342805A JP2004286729A (ja) 2003-03-05 2003-10-01 微小片持はりのばね定数計測方法及びはり状体のばね定数計測装置

Publications (1)

Publication Number Publication Date
JP2004286729A true JP2004286729A (ja) 2004-10-14

Family

ID=33302075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342805A Withdrawn JP2004286729A (ja) 2003-03-05 2003-10-01 微小片持はりのばね定数計測方法及びはり状体のばね定数計測装置

Country Status (1)

Country Link
JP (1) JP2004286729A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356160C (zh) * 2005-05-25 2007-12-19 中国科学院上海微系统与信息技术研究所 一种经改进的微悬臂梁弹性系数的测试方法
WO2014041331A1 (en) * 2012-09-17 2014-03-20 University Court Of The University Of St Andrews Torsional and lateral stiffness measurement
JP2019128157A (ja) * 2018-01-19 2019-08-01 国立大学法人電気通信大学 分光用デバイス、分光器、及び分光測定方法
CN113687106A (zh) * 2021-08-04 2021-11-23 大连海事大学 一种基于原子力显微镜的极低流速测量装置及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356160C (zh) * 2005-05-25 2007-12-19 中国科学院上海微系统与信息技术研究所 一种经改进的微悬臂梁弹性系数的测试方法
WO2014041331A1 (en) * 2012-09-17 2014-03-20 University Court Of The University Of St Andrews Torsional and lateral stiffness measurement
US10900878B2 (en) 2012-09-17 2021-01-26 University Court Of The University Of St Andrews Torsional and lateral stiffness measurement
JP2019128157A (ja) * 2018-01-19 2019-08-01 国立大学法人電気通信大学 分光用デバイス、分光器、及び分光測定方法
JP7084020B2 (ja) 2018-01-19 2022-06-14 国立大学法人電気通信大学 分光用デバイス、分光器、及び分光測定方法
CN113687106A (zh) * 2021-08-04 2021-11-23 大连海事大学 一种基于原子力显微镜的极低流速测量装置及方法

Similar Documents

Publication Publication Date Title
Gibson et al. Scanning force microscopy—calibrative procedures for ‘best practice’
Munz Force calibration in lateral force microscopy: a review of the experimental methods
Pratt et al. Progress toward Systeme International d'Unites traceable force metrology for nanomechanics
DeVecchio et al. Localized surface elasticity measurements using an atomic force microscope
Bhushan et al. Contact resonance force microscopy techniques for nanomechanical measurements
JP2009531656A (ja) ナノ圧子
ES2502517T3 (es) Medición de velocidad de flujo y de presión usando un dispositivo de viga en voladizo vibratorio
Clifford et al. Improved methods and uncertainty analysis in the calibration of the spring constant of an atomic force microscope cantilever using static experimental methods
TW201840976A (zh) 外差式原子力顯微術裝置、方法以及微影製程系統
Wang et al. Principle and methods of nanoindentation test
CN100356160C (zh) 一种经改进的微悬臂梁弹性系数的测试方法
Bhushan et al. A surface topography-independent friction measurement technique using torsional resonance mode in an AFM
Große et al. Dynamic calibration technique for the micro-pillar shear-stress sensor MPS3
Ying et al. Direct measurement of cantilever spring constants and correction for cantilever irregularities using an instrumented indenter
Fahrbach et al. Customized piezoresistive microprobes for combined imaging of topography and mechanical properties
Majstrzyk et al. Electromagnetic cantilever reference for the calibration of optical nanodisplacement systems
Grutzik et al. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers
JP2004286729A (ja) 微小片持はりのばね定数計測方法及びはり状体のばね定数計測装置
Fontaine et al. A critical look at surface force measurement using a commercial atomic force microscope in the noncontact mode
Gao et al. Dynamic behavior of tuning fork shear-force structures in a SNOM system
US7246513B2 (en) Lateral calibration device and method
Sikora Quantitative normal force measurements by means of atomic force microscopy towards the accurate and easy spring constant determination
Shaw et al. SI-traceable spring constant calibration of microfabricated cantilevers for small force measurement
Hoummady et al. Applications of dynamic techniques for accurate determination of silicon nitride Young's moduli
Harb et al. Resonator-based touch-sensitive probe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205