JP2004286652A - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
JP2004286652A
JP2004286652A JP2003080436A JP2003080436A JP2004286652A JP 2004286652 A JP2004286652 A JP 2004286652A JP 2003080436 A JP2003080436 A JP 2003080436A JP 2003080436 A JP2003080436 A JP 2003080436A JP 2004286652 A JP2004286652 A JP 2004286652A
Authority
JP
Japan
Prior art keywords
movable
movable electrode
electrode
fluid
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003080436A
Other languages
Japanese (ja)
Other versions
JP3938080B2 (en
Inventor
Toshitaka Kanamaru
俊隆 金丸
Kenichi Yokoyama
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003080436A priority Critical patent/JP3938080B2/en
Publication of JP2004286652A publication Critical patent/JP2004286652A/en
Application granted granted Critical
Publication of JP3938080B2 publication Critical patent/JP3938080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a cantilever from being stuck by flow-in of moisture or the like, by simple structure without complicating structure itself of a movable electrode. <P>SOLUTION: A fluid 11 having elasticity, a shock absorbing property or viscosity such as gel is sealed between a fixed electrode 1 and a movable structure such as the movable electrode 2, and the sticking and binding are thereby prevented while moderating abrupt fluctuation of the movable structure such as the movable electrode. A through hole 20 is provided in the movable structure such as the movable electrode to enhance flowability of the fluid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固定電極と可動電極の間の容量に基づいて加速度を検出する加速度センサに関する。
【0002】
【従来の技術】
図4、図5はそれぞれ従来の表面加工型Gセンサの概略構成を示し、断面を含む斜視図及び断面図である。この表面加工型Gセンサでは、半導体基板(Si基板)10及び酸化膜(SiO)10aに溝を形成することにより複数組の固定電極1と可動電極2が加速度検出方向(X方向)に対向して容量を形成するように構成されている。可動電極2は、X方向に伸びた錘3に対して±Y方向に伸長するように、櫛歯状に複数組形成されている。また、錘3の両端にはX方向に変位可能な2枚構造の梁4が形成されている。
【0003】
このような構成において、このセンサにX方向の加速度が印加されると、梁4がX方向に変位することにより図6(a)、(b)に示すように固定電極1と可動電極2の間の各距離が変化して、固定電極1と可動電極2の間の容量が変化する。そこで、この発生した容量の変化を可動電極2から取り出して電圧に変換することにより加速度を検出することができる。
【0004】
ところで、このような加速度センサでは、図6(a)、(b)に示すように電極1、2間の距離の変化を、容量変化として検出する構造になっているので、電極1、2間は容量として使用するため、微細な構造にする必要がある。また、従来例では、図7に示すように固定電極1と、可動電極2などの可動構造体の間に窒素雰囲気などの気体5を封入することで、外界からの影響(例えば水分のしみこみなど)を防止している。しかし、かかる従来例の構造には、下記のような問題点がある。
【0005】
・水分の吸着によるスティッキング(接触・付着)で生じる動作不良(製造工程及び完成後でも発生する可能性がある)。
・パーティクル(ゴミなど)によるカンチレバー間の目詰まりで生じる動作不良(主に製造工程で発生)。
・共振周波数による振動、過度の衝撃などによるカンチレバーの破損及びスティッキング(製造工程及び完成後でも発生する可能性がある)。
・力(加速度)が加わることにより、カンチレバーがいつまでも振動しており、更に連続的な振動が加わった場合に、大きな振動又は、高速な振動に変化し、カンチレバーの破損又はスティッキングが発生。
・気体封入のため、誘電容量が小さく、カンチレバー間の距離を微細な間隔にしつつ、大きな面積が必要。
【0006】
可動電極と固定電極の付着といった問題点を解決するために、従来例として、下記の特許文献1には、梁の構造、製造方法を工夫するものが開示されている。また、下記の特許文献2には、可動電極の停止部を作成することにより、容量部の付着を防止するものが開示されている。また、下記の特許文献3には、蒸気相による洗浄工程により可動電極の付着を防止するものが開示されている。
【0007】
【特許文献1】
特開平11−51966号公報
【特許文献2】
特開平11−68122号公報
【特許文献3】
特表平8−510598号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記従来例では、可動電極の付着を防止するために可動電極の構造自体に工夫を施しているので、可動電極の構造自体が複雑になるという問題点がある。
【0009】
本発明は上記従来例の問題点に鑑み、可動電極の構造自体を複雑にすることなく簡単な構造で、水分などの流入によるカンチレバーのスティッキング、過度な加速度の発生時に生じるカンチレバーの破損、カンチレバー間の容量低下、共振によるカンチレバーの破損などを防止することができる加速度センサを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記目的を達成するために、可動電極を含む可動構造体と固定電極の間に粘性のある流体を封入したことを特徴とする。
上記構成により、可動電極を含む可動構造体と固定電極の間に粘性のある流体を封入したので、可動電極の構造自体を複雑にすることなく簡単な構造で、水分などの流入によるカンチレバーのスティッキング、過度な加速度の発生時によるカンチレバーの破損、カンチレバー間の容量低下、共振によるカンチレバーの破損などを防止することができる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。図1は本発明に係る加速度センサの一実施の形態の要部を示す構成図、図2は図1の流体の作成方法の一例を示す工程図、図3は図1の加速度センサの変形例を示す構成図である。
【0012】
図1では、図4、図5に示す固定電極1と、可動電極2などの可動構造体の間にゲルのような弾性、衝撃吸収性又は、粘性のある流体11を封入することで、可動電極2の急激な変動を緩和しつつ、かつ、スティッキング及び、目詰まりを防止する。また、誘電率εが高い流体11を使用する場合、C=ε・S/d(Cは電極間容量、Sは電極間の対向面積、dは電極間距離)により微細な力(加速度)でも容量変化ΔCが大きくなり、検出感度が増加する。また、感度向上により、電極1、2間の距離dを長くでき、パーティクルによる目詰まりが改善され、加工が容易になる。また、気体ではないため、水分による電極1、2のスティッキング及び目詰まり(パーティクルなどによる)を改善できる。
【0013】
次に流体11の封入方法について説明する。可動電極2などを含む可動構造体を作成後、ゲルなどの緩衝材12を流し込み封入する。ただし、緩衝材12が流動体の場合、流し込み時にスティッキングする可能性があるため、以下の
1.ゲルを低温下で微細な結晶(固体)状態で、カンチレバーに吹き付け後、常温に戻す方法
2.高温の蒸気状態で、カンチレバーに吹き付け、常温に戻す方法
3.緩衝材を封入後、超音波にてスティッキング部を戻す方法
などが考えられる。
また、緩衝材12は、微小な固体状態のものでもかまわないが、均一に埋め込むことは困難であるため、流動性のある液体のほうが静電容量の変化などが明確になるので望ましい。また、流体11の材料としては、温度が変化しても粘性変化、容量変化及び体積の増減が極力少ないものが望ましい。
【0014】
図2は一例として上記の2.による封入方法を示す。まず、図2(a)に示すように固定電極1と可動電極2などの可動構造体を作成した後、図2(b)に示すように固定電極1と可動電極2などの可動構造体の間に緩衝材12を蒸着し、次いで図2(c)に示すように常温に戻して緩衝材12を流体11に変化させる。
【0015】
また、上記構成によれば、図3に示すように可動電極2などの可動構造体に貫通穴20を設けることで、流体11の流動性が向上するのでより効果的である。
【図面の簡単な説明】
【図1】本発明に係る加速度センサの一実施の形態の要部を示す構成図である。
【図2】図1の流体の作成方法の一例を示す工程図である。
【図3】図1の加速度センサの変形例を示す構成図である。
【図4】従来の表面加工型Gセンサの概略構成を示し、断面を含む斜視図である。
【図5】図4の表面加工型Gセンサの断面図である。
【図6】加速度センサの容量検出原理を示す説明図である。
【図7】従来の加速度センサの要部を示す構成図である。
【符号の説明】
1 固定電極
2 可動電極
5 気体
10 半導体基板(Si基板)
10a 酸化膜(SiO
11 流体
12 緩衝材
20 貫通穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an acceleration sensor that detects acceleration based on a capacitance between a fixed electrode and a movable electrode.
[0002]
[Prior art]
4 and 5 show a schematic configuration of a conventional surface-processed G sensor, and are a perspective view including a cross section and a cross-sectional view, respectively. In this surface-processed G sensor, a plurality of pairs of fixed electrodes 1 and movable electrodes 2 are opposed to each other in an acceleration detection direction (X direction) by forming grooves in a semiconductor substrate (Si substrate) 10 and an oxide film (SiO 2 ) 10a. To form a capacitor. A plurality of movable electrodes 2 are formed in a comb-like shape so as to extend in the ± Y direction with respect to the weight 3 extending in the X direction. At both ends of the weight 3, two beams 4 which can be displaced in the X direction are formed.
[0003]
In such a configuration, when an acceleration in the X direction is applied to this sensor, the beam 4 is displaced in the X direction, thereby causing the fixed electrode 1 and the movable electrode 2 to move as shown in FIGS. The distance between the electrodes changes and the capacitance between the fixed electrode 1 and the movable electrode 2 changes. Then, the acceleration can be detected by taking out the generated change in capacitance from the movable electrode 2 and converting it into a voltage.
[0004]
By the way, in such an acceleration sensor, as shown in FIGS. 6A and 6B, a change in the distance between the electrodes 1 and 2 is detected as a change in capacitance. Needs to have a fine structure because it is used as a capacitor. Further, in the conventional example, as shown in FIG. 7, a gas 5 such as a nitrogen atmosphere is sealed between a fixed electrode 1 and a movable structure such as a movable electrode 2 so that an influence from the outside world (for example, penetration of moisture or the like) is obtained. ) Is prevented. However, such a conventional structure has the following problems.
[0005]
-Operation failure caused by sticking (contact / adhesion) due to moisture adsorption (may occur even in the manufacturing process and after completion).
-Malfunctions caused by clogging between cantilevers due to particles (dust, etc.) (mainly in the manufacturing process).
Damage and sticking of the cantilever due to vibration due to resonance frequency, excessive impact, etc. (may occur even during the manufacturing process and after completion).
-The cantilever vibrates indefinitely due to the application of force (acceleration). If continuous vibration is applied, the vibration changes to large vibration or high-speed vibration, causing breakage or sticking of the cantilever.
・ Because of gas filling, the dielectric capacity is small, and the area between the cantilevers is required to be small while maintaining a large area.
[0006]
In order to solve the problem such as the adhesion of the movable electrode and the fixed electrode, Japanese Patent Application Laid-Open Publication No. H11-163,897 discloses a conventional beam structure and manufacturing method. Further, Japanese Patent Application Laid-Open No. H11-163,897 discloses a technique in which a stop portion of a movable electrode is formed to prevent a capacitance portion from adhering. Further, Patent Document 3 below discloses a technique in which a movable electrode is prevented from adhering by a cleaning step using a vapor phase.
[0007]
[Patent Document 1]
JP-A-11-51966 [Patent Document 2]
JP-A-11-68122 [Patent Document 3]
Japanese Unexamined Patent Publication No. Hei 8-510598
[Problems to be solved by the invention]
However, in the above conventional example, the structure of the movable electrode itself is devised in order to prevent the attachment of the movable electrode, and thus there is a problem that the structure itself of the movable electrode becomes complicated.
[0009]
The present invention has been made in view of the problems of the conventional example described above, and has a simple structure without complicating the structure of the movable electrode itself. It is an object of the present invention to provide an acceleration sensor capable of preventing a reduction in capacity of a cantilever due to resonance, and the like.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized in that a viscous fluid is sealed between a movable structure including a movable electrode and a fixed electrode.
With the above configuration, a viscous fluid is sealed between the movable structure including the movable electrode and the fixed electrode, so that the structure of the movable electrode itself is simple without complicating the structure itself, and the sticking of the cantilever due to the inflow of moisture or the like. Further, it is possible to prevent the cantilever from being damaged due to excessive acceleration, the capacity between the cantilevers from being reduced, and the cantilever from being damaged due to resonance.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a main part of an embodiment of an acceleration sensor according to the present invention, FIG. 2 is a process diagram showing an example of a method for producing a fluid in FIG. 1, and FIG. 3 is a modified example of the acceleration sensor in FIG. FIG.
[0012]
In FIG. 1, the movable electrode 11 shown in FIGS. 4 and 5 and a movable structure such as the movable electrode 2 are filled with an elastic, shock-absorbing, or viscous fluid 11 such as a gel so as to be movable. While alleviating sudden fluctuations of the electrode 2, sticking and clogging are prevented. When the fluid 11 having a high dielectric constant ε is used, C = ε · S / d (C is the capacitance between the electrodes, S is the facing area between the electrodes, and d is the distance between the electrodes), so that even a fine force (acceleration) can be obtained. The capacitance change ΔC increases, and the detection sensitivity increases. In addition, by improving the sensitivity, the distance d between the electrodes 1 and 2 can be increased, clogging by particles is improved, and processing becomes easier. In addition, since it is not a gas, sticking and clogging of the electrodes 1 and 2 due to moisture (due to particles or the like) can be improved.
[0013]
Next, a method of sealing the fluid 11 will be described. After creating a movable structure including the movable electrode 2 and the like, a buffer material 12 such as a gel is poured and sealed. However, if the buffer material 12 is a fluid, there is a possibility of sticking at the time of pouring. 1. A method of spraying the gel in a fine crystal (solid) state at a low temperature onto a cantilever and then returning the temperature to normal temperature. 2. Method of spraying the cantilever in a high temperature steam state to return to normal temperature A method of returning the sticking portion by ultrasonic waves after enclosing the buffer material may be considered.
The buffer material 12 may be in a fine solid state, but since it is difficult to embed the buffer material uniformly, a liquid having fluidity is preferable because the change in capacitance becomes clear. Further, as a material of the fluid 11, it is desirable that the fluid 11 has as small a change in viscosity, a change in volume, and a change in volume as possible even when the temperature changes.
[0014]
FIG. The following shows the method of encapsulation. First, as shown in FIG. 2A, a movable structure such as a fixed electrode 1 and a movable electrode 2 is formed, and then, as shown in FIG. The buffer material 12 is vapor-deposited in between, and then the temperature is returned to normal temperature as shown in FIG.
[0015]
Further, according to the above configuration, as shown in FIG. 3, by providing the through hole 20 in the movable structure such as the movable electrode 2, the fluidity of the fluid 11 is improved, which is more effective.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a main part of an embodiment of an acceleration sensor according to the present invention.
FIG. 2 is a process chart showing an example of a method for producing the fluid of FIG.
FIG. 3 is a configuration diagram showing a modification of the acceleration sensor of FIG. 1;
FIG. 4 is a perspective view showing a schematic configuration of a conventional surface-processed G sensor, including a cross section.
5 is a cross-sectional view of the surface-processed G sensor of FIG.
FIG. 6 is an explanatory diagram showing the principle of detecting the capacitance of the acceleration sensor.
FIG. 7 is a configuration diagram showing a main part of a conventional acceleration sensor.
[Explanation of symbols]
Reference Signs List 1 fixed electrode 2 movable electrode 5 gas 10 semiconductor substrate (Si substrate)
10a oxide film (SiO 2 )
11 fluid 12 cushioning material 20 through hole

Claims (2)

固定電極と可動電極の間の容量に基づいて加速度を検出する加速度センサにおいて、
前記可動電極を含む可動構造体と前記固定電極の間に粘性のある流体を封入したことを特徴とする加速度センサ。
In an acceleration sensor that detects acceleration based on a capacitance between a fixed electrode and a movable electrode,
An acceleration sensor, wherein a viscous fluid is sealed between a movable structure including the movable electrode and the fixed electrode.
前記可動電極に、前記流体が流入可能な貫通穴を形成したことを特徴とする請求項1に記載の加速度センサ。The acceleration sensor according to claim 1, wherein a through hole through which the fluid can flow is formed in the movable electrode.
JP2003080436A 2003-03-24 2003-03-24 Method for manufacturing acceleration sensor Expired - Fee Related JP3938080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080436A JP3938080B2 (en) 2003-03-24 2003-03-24 Method for manufacturing acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080436A JP3938080B2 (en) 2003-03-24 2003-03-24 Method for manufacturing acceleration sensor

Publications (2)

Publication Number Publication Date
JP2004286652A true JP2004286652A (en) 2004-10-14
JP3938080B2 JP3938080B2 (en) 2007-06-27

Family

ID=33294286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080436A Expired - Fee Related JP3938080B2 (en) 2003-03-24 2003-03-24 Method for manufacturing acceleration sensor

Country Status (1)

Country Link
JP (1) JP3938080B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410666U (en) * 1987-07-10 1989-01-20
JPH04307369A (en) * 1991-04-04 1992-10-29 Tokai Rika Co Ltd Acceleration sensor
JPH05142250A (en) * 1991-11-15 1993-06-08 Omron Corp Acceleration sensor
JPH06160417A (en) * 1992-11-24 1994-06-07 Fujikura Ltd Semiconductor acceleration sensor
JPH0832090A (en) * 1994-07-12 1996-02-02 Mitsubishi Electric Corp Inertia force sensor and manufacture thereof
JPH09178769A (en) * 1995-12-18 1997-07-11 Whitaker Corp:The Acceleration sensor and manufacture thereof
JP2000055669A (en) * 1998-07-31 2000-02-25 Toyota Central Res & Dev Lab Inc Oscillating type angular velocity detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410666U (en) * 1987-07-10 1989-01-20
JPH04307369A (en) * 1991-04-04 1992-10-29 Tokai Rika Co Ltd Acceleration sensor
JPH05142250A (en) * 1991-11-15 1993-06-08 Omron Corp Acceleration sensor
JPH06160417A (en) * 1992-11-24 1994-06-07 Fujikura Ltd Semiconductor acceleration sensor
JPH0832090A (en) * 1994-07-12 1996-02-02 Mitsubishi Electric Corp Inertia force sensor and manufacture thereof
JPH09178769A (en) * 1995-12-18 1997-07-11 Whitaker Corp:The Acceleration sensor and manufacture thereof
JP2000055669A (en) * 1998-07-31 2000-02-25 Toyota Central Res & Dev Lab Inc Oscillating type angular velocity detector

Also Published As

Publication number Publication date
JP3938080B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US8746066B2 (en) Acceleration sensor having a damping device
EP0840128B1 (en) Vibrating beam accelerometer and method for manufacturing the same
JP7120843B2 (en) Accelerometer
WO2015033543A1 (en) Acceleration sensor
JP2002131331A (en) Semiconductor dynamical quantity sensor
US20120111112A1 (en) Resonating Sensor with Mechanical Constraints
US20050229704A1 (en) Physical quantity sensor having multiple through holes
WO2014122910A1 (en) Mems device
US6508126B2 (en) Dynamic quantity sensor having movable and fixed electrodes with high rigidity
JP2004170260A (en) Capacity type acceleration sensor
JP2006084327A (en) Capacitance-type mechanical force sensor unit
JP2002228680A (en) Capacity-type mechanical amount sensor
US6502462B2 (en) Capacitance type dynamic quantity sensor having displacement portion and formed by wire bonding
JP4362877B2 (en) Angular velocity sensor
JP2004069562A (en) Capacitance type mechanical quantity sensor
US6430999B2 (en) Semiconductor physical quantity sensor including frame-shaped beam surrounded by groove
US6973829B2 (en) Semiconductor dynamic quantity sensor with movable electrode and fixed electrode supported by support substrate
JP2004286652A (en) Acceleration sensor
JP2004069349A (en) Capacity type acceleration sensor
JP2004170145A (en) Capacitance-type dynamic quantity sensor
JP2004347499A (en) Semiconductor dynamical quantity sensor
JP4410478B2 (en) Semiconductor dynamic quantity sensor
JP5299353B2 (en) Semiconductor device
JP4362739B2 (en) Vibration type angular velocity sensor
JP2002005954A (en) Semiconductor dynamical quantity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees