JP2004286554A - Semiconductor dynamic quantity sensor - Google Patents

Semiconductor dynamic quantity sensor Download PDF

Info

Publication number
JP2004286554A
JP2004286554A JP2003078197A JP2003078197A JP2004286554A JP 2004286554 A JP2004286554 A JP 2004286554A JP 2003078197 A JP2003078197 A JP 2003078197A JP 2003078197 A JP2003078197 A JP 2003078197A JP 2004286554 A JP2004286554 A JP 2004286554A
Authority
JP
Japan
Prior art keywords
acceleration
displaced
quantity sensor
beams
dynamic quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003078197A
Other languages
Japanese (ja)
Other versions
JP4410478B2 (en
Inventor
Mineichi Sakai
峰一 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003078197A priority Critical patent/JP4410478B2/en
Priority to US10/795,322 priority patent/US7243545B2/en
Priority to DE102004013935A priority patent/DE102004013935A1/en
Publication of JP2004286554A publication Critical patent/JP2004286554A/en
Application granted granted Critical
Publication of JP4410478B2 publication Critical patent/JP4410478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a wide range of acceleration with a small size. <P>SOLUTION: Three beams 41, 42, 43 having different lengths are formed in respective end parts of a weight 3, the longest beam 41 is displaced when low G is impressed, the beam 42 having the middle length is displaced when middle G higher than the low G is impressed, the beam 43 having the shortest length is displaced to a space d3 when high G higher than the middle G is impressed, and a distance between a fixed electrode 1 and a movable electrode 2 is changed followed thereto within a range from the low G to the high G. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固定電極と可動電極の間の容量に基づいて加速度などの力学量を検出する半導体力学量センサに関する。
【0002】
【従来の技術】
この種の従来例としては、例えば下記の特許文献1に開示されているものがある。ここで、図3を参照して1軸方向(X方向)の容量式加速度センサについて説明する。図3(a)は平面図、図3(b)は図3(a)のb−b断面図、図3(c)は図3(a)のc−c断面図であり、Siなどの半導体基板10の半導体層に溝11を形成することにより複数組の固定電極1と可動電極2がX方向に対向して容量を形成するように構成されている。可動電極2は、X方向に伸びた錘3に対して±Y方向に櫛歯状に複数組形成されている。錘3の両端はX方向に変位可能に半導体基板10上に形成され、錘3の両端には加速度に応じて変位可能な梁4が形成されている。そして、可動電極2に対向するように±Y方向にそれぞれ配列された各固定電極1はそれぞれAlなどのパッド5a、5bに接続され、可動電極2はパッド5cに接続されている。パッド5a、5b、5cはワイヤWによるボンディングによりマザー基板などの他の回路チップ6のパッド6a、6b、6cを通して外部に接続される。
【0003】
ここで、隣接している固定電極1a、1bの間には可動電極2aが配置されており、このような構成において、このセンサにX方向の加速度が印加されると、梁4がX方向に変位することにより固定電極1a、1bと可動電極2aの間の各距離が変化して、固定電極1aと可動電極2aの間の容量CS1と、固定電極1bと可動電極2aの間の容量CS2が変化する。この半導体力学量センサの等価回路を図4の左側に示す。固定電極1a、1bにはパルス電圧Vccが印加されている。そして、この発生した容量CS1、CS2の変化ΔC(=CS1−CS2)を可動電極2aから取り出し、例えば図4の右側に示すようなスイッチドキャパシタ回路5により電圧=(CS1−CS2)・Vcc/Cfに変換して加速度を検出することができる。
【0004】
ここで、従来、比較的低い加速度(低G)から比較的高い加速度(高G)まで検出可能にする場合、櫛歯構造の梁4、電極1、2、錘3の寸法を変更した複数のセンサを用いることにより対応している。図3(a)は、その一例として、梁4の長さが異なる2つのセンサを同じ方向に配置した従来例を示し、左側に示すセンサの梁4aは比較的長いので低Gで変位し、右側に示すセンサの梁4bは比較的短いので高Gで変位することから、低Gと高Gの2段階のレンジを検出することができる。
【0005】
【特許文献1】
特開平5−304303号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来例では、広範囲の加速度を検出するために櫛歯構造の梁4、電極1、2、錘3の寸法を変更した複数のセンサを用いるので、センサ全体のサイズが大きくなるという問題点がある。
【0007】
本発明は上記従来例の問題点に鑑み、小さなサイズで広範囲の加速度を検出することができる半導体力学量センサを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成するために、加速度に応じて変位する梁をバネ定数の異なる複数の梁で構成したことを特徴とする。
上記構成により、加速度に応じたバネ定数の梁が変位するので、1つのセンサで広範囲の加速度を検出することができる。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。図1は本発明に係る半導体力学量センサの一実施の形態を示す平面図及び断面図、図2は従来例と図1の半導体力学量センサの加速度−電極間隔を示すグラフである。
【0010】
図1(a)は平面図、図1(b)は図1(a)のb−b断面図、図1(c)は図1(a)のc−c断面図である。図1は加速度に応じて変位する梁をバネ定数の異なる複数の梁で構成する一例として、長さが異なる3つの梁41、42、43が錘3の各端部に形成されている。この例では、梁41が最も長く、梁43が最も短く形成されている。錘3は3つの梁41、42、43を保持可能なようにアンカ7を介して半導体基板10上に支持されている。他の構成は図3に示した従来のセンサの構成と同じであるので、その詳細な説明は省略する。
【0011】
また、梁41、42、43のそれぞれは加速度検出方向(X方向)に2枚構造で構成され、梁41、42、43の内部の各間隔d1、d2、d3と、電極間隔(固定電極と可動電極の間隔)の関係は、
d1<d2<d3=電極間隔
である。
【0012】
上記構成において、低Gが印加された場合には最も長い梁41が変位し、間隔d1まで変位すると2枚の梁41が接触するため、それ以上は変位しない。さらに、低Gより高い中Gが印加された場合には2番目に長い梁42が変位し、間隔d2まで変位すると2枚の梁42が接触するため、それ以上は変位しない。さらに、中Gより高い高Gが印加された場合には最も短い梁43が間隔d3まで変位する。このように長さが異なる3つの梁41、42、43がそれぞれ変位すると、図2(2)に示すように固定電極1と可動電極2の間の距離が低Gから高Gまでの範囲で追従して変化するので、1つのセンサで広範囲の加速度を検出することができる。ちなみに、図2(1)は梁4の長さが異なる3つのセンサを用いた場合の加速度−電極間隔を示し、低Gでは梁4の長さが最も長いセンサの電極間隔が変化し、中Gでは梁4の長さが2番目のセンサの電極間隔が変化し、高Gでは梁4の長さが最も短いセンサの電極間隔が変化する。
【図面の簡単な説明】
【図1】本発明に係る半導体力学量センサの一実施の形態を示す(a)平面図及び(b)b−b断面図、(c)c−c断面図である。
【図2】従来例と図1の半導体力学量センサの加速度−電極間隔を示すグラフである。
【図3】従来例の半導体力学量センサを示す(a)平面図及び(b)b−b断面図、(c)c−c断面図である。
【図4】半導体力学量センサの等価回路及びスイッチドキャパシタ回路を示す回路図である。
【符号の説明】
1、1a、1b 固定電極
2、2a 可動電極
3 錘
4、4a、4b、41、42、43 梁
5 スイッチドキャパシタ回路
5a、5b、5c、6a、6b、6c パッド
7 アンカ
10 半導体基板
11 溝
W ワイヤ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor dynamic quantity sensor that detects a dynamic quantity such as acceleration based on a capacitance between a fixed electrode and a movable electrode.
[0002]
[Prior art]
As a conventional example of this kind, there is one disclosed in, for example, Patent Document 1 below. Here, a capacitive acceleration sensor in one axis direction (X direction) will be described with reference to FIG. 3A is a plan view, FIG. 3B is a bb cross-sectional view of FIG. 3A, and FIG. 3C is a cc cross-sectional view of FIG. By forming a groove 11 in the semiconductor layer of the semiconductor substrate 10, a plurality of sets of the fixed electrode 1 and the movable electrode 2 face each other in the X direction to form a capacitor. A plurality of sets of movable electrodes 2 are formed in a comb shape in the ± Y direction with respect to the weight 3 extending in the X direction. Both ends of the weight 3 are formed on the semiconductor substrate 10 so as to be displaceable in the X direction, and beams 4 that are displaceable according to acceleration are formed at both ends of the weight 3. The fixed electrodes 1 arranged in the ± Y direction so as to face the movable electrode 2 are respectively connected to pads 5a and 5b made of Al or the like, and the movable electrode 2 is connected to a pad 5c. The pads 5a, 5b, and 5c are connected to the outside through the pads 6a, 6b, and 6c of another circuit chip 6 such as a mother board by bonding with wires W.
[0003]
Here, the movable electrode 2a is disposed between the adjacent fixed electrodes 1a and 1b. In such a configuration, when acceleration in the X direction is applied to the sensor, the beam 4 moves in the X direction. The displacement changes the distance between the fixed electrodes 1a and 1b and the movable electrode 2a, and the capacitance CS1 between the fixed electrode 1a and the movable electrode 2a and the capacitance CS2 between the fixed electrode 1b and the movable electrode 2a are changed. Change. An equivalent circuit of this semiconductor dynamic quantity sensor is shown on the left side of FIG. A pulse voltage Vcc is applied to the fixed electrodes 1a and 1b. Then, the change ΔC (= CS1−CS2) of the generated capacitances CS1 and CS2 is taken out from the movable electrode 2a, and for example, the voltage = (CS1−CS2) · Vcc / by the switched capacitor circuit 5 as shown on the right side of FIG. The acceleration can be detected by converting the acceleration into Cf.
[0004]
Here, conventionally, when it is possible to detect from a relatively low acceleration (low G) to a relatively high acceleration (high G), a plurality of beams in which the dimensions of the comb-shaped beam 4, the electrodes 1, 2, and the weight 3 are changed. This is supported by using a sensor. FIG. 3A shows, as an example, a conventional example in which two sensors having different lengths of the beam 4 are arranged in the same direction. Since the beam 4a of the sensor shown on the left side is relatively long, it is displaced at a low G, Since the beam 4b of the sensor shown on the right side is relatively short and is displaced at a high G, it is possible to detect two ranges of low G and high G.
[0005]
[Patent Document 1]
JP-A-5-304303
[Problems to be solved by the invention]
However, in the above conventional example, since a plurality of sensors in which dimensions of the beam 4, the electrodes 1, 2 and the weight 3 of the comb structure are changed to detect a wide range of acceleration, the size of the whole sensor becomes large. There are points.
[0007]
An object of the present invention is to provide a semiconductor dynamic quantity sensor capable of detecting a wide range of acceleration with a small size in view of the problems of the conventional example.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized in that a beam displaced according to acceleration is constituted by a plurality of beams having different spring constants.
According to the above configuration, since the beam having the spring constant corresponding to the acceleration is displaced, a wide range of acceleration can be detected by one sensor.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a plan view and a sectional view showing an embodiment of a semiconductor dynamic quantity sensor according to the present invention, and FIG. 2 is a graph showing an acceleration-electrode distance between a conventional example and the semiconductor dynamic quantity sensor of FIG.
[0010]
1A is a plan view, FIG. 1B is a bb cross-sectional view of FIG. 1A, and FIG. 1C is a cc cross-sectional view of FIG. FIG. 1 shows an example in which a beam displaced in accordance with acceleration is composed of a plurality of beams having different spring constants, and three beams 41, 42, and 43 having different lengths are formed at each end of the weight 3. In this example, the beam 41 is longest and the beam 43 is shortest. The weight 3 is supported on the semiconductor substrate 10 via the anchor 7 so as to be able to hold three beams 41, 42, 43. The other configuration is the same as the configuration of the conventional sensor shown in FIG. 3, and a detailed description thereof will be omitted.
[0011]
Each of the beams 41, 42, and 43 has a two-piece structure in the acceleration detection direction (X direction). Each of the intervals d1, d2, and d3 inside the beams 41, 42, and 43, and the electrode interval (the fixed electrode and the The relationship between the movable electrodes)
d1 <d2 <d3 = electrode spacing.
[0012]
In the above configuration, when a low G is applied, the longest beam 41 is displaced, and when displaced up to the distance d1, the two beams 41 come into contact with each other, so that no further displacement occurs. Further, when a medium G higher than the low G is applied, the second longest beam 42 is displaced. When the medium G is displaced up to the interval d2, the two beams 42 come into contact with each other, so that no further displacement occurs. Further, when a high G higher than the medium G is applied, the shortest beam 43 is displaced to the interval d3. When the three beams 41, 42, and 43 having different lengths are displaced in this way, as shown in FIG. 2B, the distance between the fixed electrode 1 and the movable electrode 2 is in a range from low G to high G. Since it changes following, a single sensor can detect a wide range of acceleration. By the way, FIG. 2A shows the acceleration-electrode interval when three sensors having different lengths of the beam 4 are used. At low G, the electrode interval of the sensor having the longest beam 4 changes. In G, the electrode interval of the sensor having the second beam 4 changes, and at high G, the electrode interval of the sensor having the shortest beam 4 changes.
[Brief description of the drawings]
FIG. 1A is a plan view, FIG. 1B is a bb cross-sectional view, and FIG. 1C is a cc cross-sectional view showing an embodiment of a semiconductor dynamic quantity sensor according to the present invention.
FIG. 2 is a graph showing acceleration-electrode spacing of a conventional example and the semiconductor dynamic quantity sensor of FIG. 1;
3A is a plan view, FIG. 3B is a cross-sectional view taken along line bb, and FIG. 3C is a cross-sectional view taken along line c-c showing a conventional semiconductor dynamic quantity sensor.
FIG. 4 is a circuit diagram showing an equivalent circuit and a switched capacitor circuit of the semiconductor dynamic quantity sensor.
[Explanation of symbols]
1, 1a, 1b Fixed electrode 2, 2a Movable electrode 3 Weight 4, 4a, 4b, 41, 42, 43 Beam 5 Switched capacitor circuit 5a, 5b, 5c, 6a, 6b, 6c Pad 7 Anchor 10 Semiconductor substrate 11 Groove W wire

Claims (2)

固定電極と、加速度に応じて変位可能な梁に連結された可動電極との間の容量に基づいて加速度を検出する半導体力学量センサにおいて、
前記梁をバネ定数の異なる複数の梁で構成したことを特徴とする半導体力学量センサ。
In a semiconductor physical quantity sensor that detects acceleration based on a capacitance between a fixed electrode and a movable electrode connected to a beam that can be displaced according to acceleration,
A semiconductor dynamic quantity sensor, wherein the beam is constituted by a plurality of beams having different spring constants.
前記複数の梁は、加速度検出方向と直交する方向の長さが異なることを特徴とする請求項1に記載の半導体力学量センサ。The semiconductor dynamic quantity sensor according to claim 1, wherein the plurality of beams have different lengths in a direction orthogonal to an acceleration detection direction.
JP2003078197A 2003-03-20 2003-03-20 Semiconductor dynamic quantity sensor Expired - Fee Related JP4410478B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003078197A JP4410478B2 (en) 2003-03-20 2003-03-20 Semiconductor dynamic quantity sensor
US10/795,322 US7243545B2 (en) 2003-03-20 2004-03-09 Physical quantity sensor having spring
DE102004013935A DE102004013935A1 (en) 2003-03-20 2004-03-22 Sensor for a physical size with a spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078197A JP4410478B2 (en) 2003-03-20 2003-03-20 Semiconductor dynamic quantity sensor

Publications (2)

Publication Number Publication Date
JP2004286554A true JP2004286554A (en) 2004-10-14
JP4410478B2 JP4410478B2 (en) 2010-02-03

Family

ID=33292745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078197A Expired - Fee Related JP4410478B2 (en) 2003-03-20 2003-03-20 Semiconductor dynamic quantity sensor

Country Status (1)

Country Link
JP (1) JP4410478B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078648A (en) * 2005-09-16 2007-03-29 Matsushita Electric Works Ltd Sensor device
JP2009053180A (en) * 2007-07-27 2009-03-12 Hitachi Metals Ltd Acceleration sensor
JP2009224462A (en) * 2008-03-14 2009-10-01 Denso Corp Capacitance type physical quantity sensor
JP2011112620A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Acceleration sensor
JP2012137368A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Acceleration sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078648A (en) * 2005-09-16 2007-03-29 Matsushita Electric Works Ltd Sensor device
JP2009053180A (en) * 2007-07-27 2009-03-12 Hitachi Metals Ltd Acceleration sensor
JP2009224462A (en) * 2008-03-14 2009-10-01 Denso Corp Capacitance type physical quantity sensor
JP2011112620A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Acceleration sensor
JP2012137368A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Acceleration sensor

Also Published As

Publication number Publication date
JP4410478B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
US7243545B2 (en) Physical quantity sensor having spring
US9791472B2 (en) Acceleration sensor
US8333113B2 (en) Triaxial acceleration sensor
CN100568001C (en) Capacitive transducer
JP2005351904A (en) Acceleration sensor
JP2007139505A (en) Capacitance-type dynamic quantity sensor
JP4134853B2 (en) Capacitive mechanical sensor device
JP2006084327A (en) Capacitance-type mechanical force sensor unit
ITUB20154667A1 (en) MICROELETTROMECHANICAL SENSOR DEVICE WITH REDUCED SENSITIVITY TO STRESS
JP2003240798A (en) Capacitive physical quantity sensor
US20160131680A1 (en) Capacitive physical quantity sensor
JP2004286554A (en) Semiconductor dynamic quantity sensor
JP2008275325A (en) Sensor device
US9725300B2 (en) Capacitive MEMS-sensor element having bond pads for the electrical contacting of the measuring capacitor electrodes
US7004029B2 (en) Semiconductor dynamic quantity sensor
JP2008292426A (en) Electrostatic capacity type sensor
JP6354603B2 (en) Acceleration sensor and acceleration sensor mounting structure
US20040187571A1 (en) Capacitive-type semiconductor sensor
JP2011106822A (en) Acceleration sensor
JP2004271464A (en) Semiconductor dynamical quantity sensor
JP2004286581A (en) Capacitance type dynamic quantity sensor
JP2004286615A (en) Semiconductor acceleration sensor
JP2005098891A (en) Electrostatic capacity type sensor
JP2009014488A (en) Capacitive semiconductor acceleration sensor
JP2010032367A (en) Capacitance-type acceleration sensor and capacitance-type accelerometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080115

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees