JP2004286530A - Method and apparatus for evaluating suspension - Google Patents

Method and apparatus for evaluating suspension Download PDF

Info

Publication number
JP2004286530A
JP2004286530A JP2003077678A JP2003077678A JP2004286530A JP 2004286530 A JP2004286530 A JP 2004286530A JP 2003077678 A JP2003077678 A JP 2003077678A JP 2003077678 A JP2003077678 A JP 2003077678A JP 2004286530 A JP2004286530 A JP 2004286530A
Authority
JP
Japan
Prior art keywords
suspension
ultrasonic
ultrasonic attenuation
distance
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003077678A
Other languages
Japanese (ja)
Other versions
JP4184844B2 (en
Inventor
Tomohiro Sakurai
智宏 櫻井
Junichiro Tsubaki
淳一郎 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2003077678A priority Critical patent/JP4184844B2/en
Publication of JP2004286530A publication Critical patent/JP2004286530A/en
Application granted granted Critical
Publication of JP4184844B2 publication Critical patent/JP4184844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel method for evaluating suspension, which uses ultrasonic attenuation and can evaluate dispersibility of the suspension in a short time. <P>SOLUTION: The method for evaluating the suspension enables ultrasonic waves transmitted from an ultrasonic transmitter to enter the suspension and receives the ultrasonic waves passing through the suspension by using an ultrasonic receiver, thereby measuring attenuation values of the ultrasonic waves. In the method, the passing distance of the ultrasonic waves in the suspension is varied, and the attenuation values of the ultrasonic waves are measured with respect to a plurality of passing distance values of the suspension, and the suspension is evaluated based on relations of the obtained passing distance values of the suspension, concentration of the suspension and the attenuation values of the ultrasonic waves. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超音波減衰を用いた懸濁液の評価方法およびその評価方法を用いた装置に関するものである。
【0002】
【従来の技術】
ファインセラミックスの製造方法の一つである鋳込み成型法では、原料粉体を水などの分散媒に分散させてスラリーとし、そのスラリーを石膏などの多孔質である型に流し込み乾燥させて成形体とし、その成形体を焼結して製品とする。またプレス成形法ではスラリーを噴霧乾燥して顆粒体をつくり、この顆粒体を型に入れプレスして成形体にし、その成形体を焼結させて製品とする。ファインセラミックスは耐熱性、耐摩擦性、高強度など優れた特性を持っているが、製品中に気泡や巨大粒子などの欠陥が含まれると、先の優れた特性が損なわれてしまう。そのため、どちらの成形方法においても成形体の段階で不均質が存在すると、焼結によってその不均質性が増幅し製品の耐熱性や耐摩擦性、高強度を損なうため、高信頼性の製品を得るためには、均質かつ緻密な成形体が必要となる。成形体の密度や微構造はスラリー特性によって支配されているため、セラミックス製造プロセスにおいてスラリーの調製が重要な行程となっている。また、セラミックス製造プロセスの後行程における製造のし易さや製造効率を上げるため、スラリーはできるだけ高濃度に調製される。しかしながら、スラリーの濃度が上がることにより、混入した気泡を除くことが難しくなったり、スラリー中の粒子が凝集してしまい、成形体中に気泡や凝集体が残り、不均質な成形体となってしまう。そのため、製造プロセスの行程でスラリーが分散性の良い状態(凝集の少ない状態)となっているか否かを評価することが望まれている。
【0003】
従来、スラリーの評価は、主に見かけ粘度の評価によって行われている。この評価方法は、見かけ粘度の高いスラリーはスラリー中の粒子が凝集していて成形体中にその凝集構造が残ってしまい不均質な成形体になると考えられていることに基づく。つまり粒子がよく分散し、見かけ粘度が最も低いスラリーが最適であると捉えることができる。しかし実際には、分散剤を見かけ粘度が最も低くなる量よりも過剰に添加して、見かけ粘度が少し高くなったスラリーから最も密度の高い成形体が得られることが経験的に知られている。そのため、見かけ粘度を用いたスラリーの評価は正確性に欠けるという問題点がある。
【0004】
また、ファインセラミックスの成形プロセスは、スラリーが濃縮・脱水されるとスラリー中の粒子は微粒子構造体を形成し、その構造体が圧密されて成形体ができるものと捉えることができる。したがって、微粒子構造体の圧密特性が成形体の密度や微構造に大きく影響すると考えられている。微粒子構造体の圧密特性を評価するためのひとつの方法として、スラリーを定圧ろ過して充填率を算出する評価方法があり、充填率の最も高いスラリーから密度の高い成形体を得ようとすることが試みられている。しかしながら、スラリーを定圧ろ過する方法は、手間と時間を要し、セラミックス製造プロセスに組み込むことは非常に難しい。
【0005】
また、粉体分散性を評価する方法として、例えば、粉体を懸濁させたスラリー中に錘を懸垂し、該錘の重力の時間的な変化量から、そのスラリー中の特定の場所における粉体濃度の変化量を求める方法が知られている(特許文献1参照)。しかしながら、この方法には測定時間が数時間かかってしまうという問題点がある。
【0006】
【特許文献1】
特開平6−103876号公報
【0007】
【発明が解決しようとする課題】
本発明は上記事情に鑑み、超音波減衰を用いた新規な懸濁液の評価方法を提供することを課題とする。また、本発明は、短時間で懸濁液の分散性を評価することができる評価方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明の懸濁液の評価方法は、超音波発信部から発信された超音波を懸濁液に通し懸濁液を通過した超音波を超音波受信部で受信して超音波減衰量を測定する懸濁液の評価方法において、超音波の懸濁液通過距離を変化させて、複数の懸濁液通過距離における超音波減衰量をそれぞれ測定し、得られた懸濁液通過距離と、懸濁液濃度と、超音波減衰量との関係に基づいて懸濁液を評価することを特徴とする。
【0009】
本発明において、懸濁液通過距離と懸濁液濃度との積と、超音波減衰量との関係を表わす線分の傾きに基づいて懸濁液を評価することが好ましい。
【0010】
また、前記傾きと基準値を比較することにより懸濁液の分散性の良否を決定することが好ましい。
【0011】
また、本発明の懸濁液の評価方法は、超音波発信部から発信された超音波を懸濁液に通し懸濁液を通過した超音波を超音波受信部で受信して超音波減衰量を測定する懸濁液の評価方法において、超音波の懸濁液通過距離と、懸濁液濃度と、超音波減衰量との関係に基づいて懸濁液を評価することを特徴とする。
【0012】
本発明において、懸濁液通過距離と懸濁液濃度との積と、超音波減衰量との比の値に基づいて懸濁液を評価することが好ましい。
【0013】
また、前記比の値と基準値を比較することにより懸濁液の分散性を評価することが好ましい。
【0014】
本発明の懸濁液の評価装置は、懸濁液を収容する収容部と、収容部に収容された懸濁液に超音波を発信する超音波発信部と、懸濁液を通過した超音波を受信する超音波の懸濁液通過距離を変化させる通過距離変更部と、超音波の懸濁液通過距離、懸濁液濃度および超音波減衰量の関係を求める制御部とを備えたことを特徴とする。
【0015】
本発明の装置において、前記制御部が、異なる複数の懸濁液通過距離における各超音波減衰量、前記各懸濁液通過距離および懸濁液濃度の関係を求めることが好ましい。
【0016】
また、前記制御部が、各懸濁液通過距離と懸濁液濃度との積と、各超音波減衰量との関係を表わす線分の傾きを求めることが好ましい。
【0017】
また、前記制御部が、前記傾きと基準値とを比較することによって懸濁液の分散性を評価することが好ましい。
【0018】
また、 前記制御部が、懸濁液通過距離と懸濁液濃度との積と、超音波減衰量の比の値を求めることが好ましい。
【0019】
前記制御部が、前記比の値と基準値とを比較することによって懸濁液の分散性を評価することが好ましい。
【0020】
【発明の実施の形態】
まず、本発明の懸濁液の評価方法を実施するにあたり、超音波減衰の原理について説明する。
【0021】
超音波減衰の原理を模式的に表わした図を図4に示した。図4において、ΔLは超音波減衰距離(超音波の懸濁液通過距離)、Ioは超音波入射強度、Isは超音波検出強度を示している。超音波は懸濁液中を通過するときに、存在する粒子や媒質によってエネルギーを減衰する。エネルギー減衰が起こる原因としては1)scattering loss(散乱・回折損失)、2)viscous loss(媒質中を粒子が振動することによっておこる粘性損失)、3)thermal loss(粒子が断熱圧縮・膨張する事によって起こる熱的損失)、4)intrinsic loss(材料特性による損失)、5)structural loss(粒子のつながり等によって起こる構造損失)等が知られている。また、これらの損失は、懸濁液の濃度や凝集状態などによって変化する。
【0022】
粒子がすべて一次粒子の状態で、なおかつ相互作用しないほど距離が離れている場合、ランベルト−ベール(Lambert−Beer)の法則に従い下記式Aが成立し、超音波減衰係数κは超音波減衰距離ΔLと粒子濃度φによらず一定である。
【数1】

Figure 2004286530
【0023】
しかしながら、試料濃度が高い場合や、粒子が凝集して構造体を形成している場合には、粒子間相互作用や不均一性のために、超音波減衰係数κは粒子濃度に依存すると考えられる。そのため、この超音波減衰係数κを比較することにより、同じ粒子体積量における超音波の減衰量が比較できるので、良分散した懸濁液と凝集した懸濁液の分散性(凝集状態)の違いを評価できる。また、超音波減衰係数κは、式Aを変形した下記式Bで示されるので、X軸を「超音波減衰距離ΔL」*「粒子濃度φ」、Y軸を「超音波減衰量log(Io/Is)」としたグラフの傾きから求めることができる。
【数2】
Figure 2004286530
【0024】
具体的にそのグラフを示すと、後述する超音波を用いてスラリーを評価したグラフである図5がそれにあたる。図5はX軸を「超音波減衰距離ΔL」*「粒子濃度φ」、Y軸を「超音波減衰量log(Io/Is)」として、濃度の異なる5種類の懸濁液の測定値をプロットしたグラフである。上述したように粒子が完全に分散している場合には、懸濁液濃度が異なっていても理論的には1本の線分になるはずである。しかし、実際には各懸濁液の粒子の分散性が異なっているため、図5に示されるように傾きの異なる線分がプロットされる。以上のように、図5に示した結果は上述した理論を反映したものとなっている。
【0025】
次に、本発明の懸濁液の評価方法を実施するために使用する懸濁液の評価装置について説明する。図8に懸濁液の評価装置の一実施形態の構成図を示す。懸濁液の評価装置は、超音波発信部22と、超音波受信部23と、超音波発信部22と超音波受信部23との間の距離を変化させる駆動部24と、制御部21と、測定チャンバ26と、操作入力部28と、出力部29から構成される。測定チャンバ26は攪拌器25を備え、攪拌器25は測定チャンバ26内の懸濁液27を攪拌する。制御部21は、超音波発信部22、超音波受信部23、駆動部24および攪拌器25等の動作制御を行い、メモリに格納されたプログラムに基づいて超音波減衰量の測定や懸濁液の評価を行う。測定結果や評価結果は出力部29に出力される。
【0026】
懸濁液27は、固体粒子を分散媒に分散させた固−液分散系の懸濁液と液体粒子を分散媒に分散させた液−液分散系の懸濁液が適用可能である。
固体粒子を分散媒に分散させた固−液分散系の懸濁液としてはスラリーなどがあり、液体粒子を分散媒に分散させた液−液分散系の懸濁液としてはエマルジョンなどがある。
スラリーに用いる固体粒子としては、ファインセラミックスなどの原料となるアルミナ、窒化ケイ素、酸化チタン、酸化ジルコニウムなどを用いることができる。スラリーには水などの分散媒が使用可能であり、この分散媒には分散剤としてポリアクリル酸アンモニウム、ポリカルボン酸アンモニウム塩、オキシフェノキシエタノールなどを添加することが望ましい。
【0027】
図8に示した懸濁液の評価装置において、懸濁液を通過する超音波の通過距離を変化させるため、駆動部24が超音波発信部22を移動させる構成となっているが、超音波受信部23を移動させる構成であっても良い。また、超音波発信部22と超音波受信部23の両方を移動させる構成であっても良い。
【0028】
制御部21は、CPU、RAMやROM等のメモリ、I/Oポートからなるマイクロコンピュータまたはパーソナルコンピュータから構成することができる。制御部21のメモリには、超音波の懸濁液通過距離(超音波減衰距離)と懸濁液濃度との積と、懸濁液通過距離を変化させて得られた超音波減衰量との関係式から傾きを算出するプログラムが予め格納されている。また、前記関係式が原点を通る直線式になることが予めわかっている場合、ある超音波減衰距離と懸濁液濃度との積と、この超音波減衰距離における超音波減衰量との比の値を算出するプログラムであっても良い。
【0029】
操作入力部28は、キーボード、マウス、テンキーおよびタッチキーなどのいずれかによって構成することができる。また、出力部29は、CRTや液晶ディスプレイなどの表示装置やプリンタ等の印字装置などから構成することができる。
【0030】
次に、本装置の動作について説明する。測定チャンバ26に懸濁液27を入れるとともに懸濁液濃度を操作入力部28から入力すると、制御部21で一定の回転数で回転するように制御された攪拌器25にて懸濁液27は攪拌される。超音波発信部22を駆動部24で駆動して、超音波発信部22と超音波受信部23との間の距離を所定の距離とし、超音波減衰量を測定する。超音波発信部22と超音波受信部23との間の距離である超音波減衰距離と測定された超音波減衰量のデータは、制御部21に送信される。次に、再度、超音波発信部22を駆動部24で駆動して、超音波発信部22と超音波受信部23との間の距離を所定の距離とし、超音波減衰量を測定する。超音波減衰距離と測定された超音波減衰量のデータは、制御部21に送信される。この動作は、必要に応じて数回繰り返しても良い。制御部21において超音波発信部22と超音波受信部23との間の距離である超音波減衰距離と懸濁液濃度との積に対する測定された超音波減衰量との関係式から傾きを算出する。算出された傾きは、出力部29に出力される。この傾きの値を用いて、懸濁液の状態を評価する。また、前記傾きに加えて関係式のグラフを出力部29に出力しても良い。
【0031】
次に、本装置を用いた懸濁液の一種であるスラリーの評価手順について説明する。
図9はスラリーの評価手順をフローチャートに表わした図である。まず、評価対象のスラリーを懸濁液の評価装置のチャンバー26(図8)に規定量入れ、懸濁液濃度を操作入力部28から入力し、所定の周波数で所定の超音波減衰距離ΔLで超音波減衰量log(Io/Is)を測定する(ステップS1)。次に、超音波減衰距離ΔLを変化させる(ステップS2)。次に、変更後のΔLでスラリーの超音波減衰量log(Io/Is)を測定し(ステップS3)、測定終了のステップに進む(ステップS4)。測定終了しない場合は、再び超音波減衰距離ΔLを変化させるステップに進み(ステップS2)、変更後のΔLでスラリーの超音波減衰量log(Io/Is)を測定する(ステップS3)。測定終了する場合は、超音波減衰距離ΔL*粒子濃度φに対する超音波減衰量log(Io/Is)の関係式から傾きnを算出する(ステップ5)。次に、超音波減衰距離ΔL*粒子濃度φに対する超音波減衰量log(Io/Is)の関係式のグラフ(図)と、傾きnを出力部29に出力(表示)する(ステップS6)。次に、傾きnと基準値を比較し、分散性を評価する(ステップS7)。例えば、傾きnが基準値より大きい場合はスラリーの分散性は“良”と判断し、傾きnが基準値より小さい場合はスラリーの分散性は“否”(悪い)と判断するようにしても良い。次に、傾きnと基準値を比較した結果を表示する(ステップS8)。上述したように、分散性が“良”と判断した場合は“良”と表示し、分散性が“否”(悪い)と判断した場合は“否”と表示するようにしても良い。
また、超音波減衰距離ΔL*粒子濃度φに対する超音波減衰量log(Io/Is)の関係式が原点を通る直線式になることが予めわかっている場合、ΔL(超音波減衰距離)のある測定点において、超音波減衰距離ΔL*粒子濃度φと、超音波減衰量log(Io/Is)との比の値を算出し、この値と基準値を比較することによってスラリーの分散性を評価しても良い。
また、この評価手順において、ステップS6までで終了しても良い。この場合、測定者が、表示された超音波減衰距離ΔL*粒子濃度φに対する超音波減衰量log(Io/Is)の関係式のグラフと傾きnを見ることによって、スラリーの分散性を評価する。
また、この評価手順において、ステップ5を省略し、ステップ6で超音波減衰距離ΔL*粒子濃度φに対する超音波減衰量log(Io/Is)の関係式のグラフを表示し、ここで終了するようにしても良い。なおこの場合、基準値に対応する線分を上記グラフに表示することが好ましい。
また、超音波減衰距離ΔL*粒子濃度φに対する超音波減衰量log(Io/Is)の関係式のグラフ(図)を表示する代わりに評価結果がわかるような表を表示しても良い。
【0032】
本発明を以下の実施例によって説明するが、本発明の範囲はこれに限定されない。
【0033】
【実施例】
まず、測定対象となるスラリーの調製方法について説明する。
スラリーの調製
原料粉体に易焼結アルミナ(住友化学製 ASE−11E、平均粒子径:0.48μm)、分散媒に蒸留水、分散剤にポリアクリル酸アンモニウム(東亞合成製 アロンA−30SL)を用いた。これらの試料で粒子濃度を1,3,5,10,20,35vol%とし、分散剤の量は吸着量が一定(0.11g/100gAl)になるように加え、スラリー総量は500mLとした。
次に、容量1LのPEポットにアルミナボール(直径5mm:ニッカトー製 HDボール)を750g入れ、これに分散媒、分散剤、原料粉体を加えて万能型ボールミル架台(ANEX製)を用いて回転数120rpmで1時間ボールミル混合を行った。混合後、ふるいを用いてスラリーとボールを分離し、直結型油回転真空ポンプ(真空機工製)を用いて10分間真空脱泡後、インキュベータ(三洋電機製 MIR−153)内で粒子濃度の高いスラリーは簡易型攪拌機(井内盛栄堂製 K−3)、粒子濃度の低いスラリーはマグネチックスタラー(井内盛栄堂製 HS−3E)を用いて攪拌しながら20℃で2時間の温度調整を行った。
【0034】
次に、定圧ろ過法によりスラリーの充填率を求める方法について説明する。
定圧ろ過法による測定
図1に定圧ろ過法を実施するための実験装置の構成図を示す。実験装置は、アクリルシリンダー1(内径35mm)、コンプレッサー2、タンク3、電子天びん4、パーソナルコンピュータ5、フィルタ6、通信ケーブル7から構成されている。電子天びん4とパーソナルコンピュータ5は通信ケーブル7で接続されており、電子天びん4の測定データは通信ケーブル7を介してパーソナルコンピュータ5に送信される。この実験装置を用いて、各粒子濃度1,3,5,10,20,35vol%において、定圧ろ過法を実施した。
【0035】
先に調製したスラリー40mLをアクリルシリンダー1内に入れ、圧力200KPaでろ過した。ろ過時間(s)に対するろ過量(g)のデータはパーソナルコンピュータ5に入力され、ろ過時間t(s)に対するろ過量v(mm)が算出される(ろ過量gは体積mmに換算された後、アクリルシリンダー1の内径35mmから算出された内径面積mmと、体積mmとからろ過量v(mm)を算出する)。
次にろ過量v(mm)に対するルースプロット(Ruth’s plot)dt/dv(s/mm)をプロットすることにより、図2に示すようなグラフが得られた。図2に示すように、各粒子濃度1,3,5,10,20,35vol%のスラリーにおいて、ろ過量v(mm)に対するルースプロットdt/dv(s/mm)は直線関係が成立した。各粒子濃度のスラリーにおけるそれぞれの直線の傾きを求め、充填率とした。
【0036】
各粒子濃度のスラリーに対する充填率をプロットしたグラフを図3に示した。スラリーの粒子濃度が高くなるにつれて、充填率が低下することが判明した。
【0037】
次に懸濁液の評価装置(図8)を用いて、先に調製したスラリーの評価方法について説明する。
【0038】
懸濁液の評価装置のチャンバー26(図8)に先に調製したスラリーを規定量入れ、回転数500rpmで攪拌器25によってスラリーを攪拌しながら、20MHzの周波数で超音波減衰距離ΔLを1mm〜100mm変化させて超音波減衰量log(Io/Is)を測定した。超音波減衰距離ΔLの測定は、各粒子濃度1,3,5,10,20vol%のスラリーに対して実施した。
【0039】
次に、超音波減衰距離ΔL*粒子濃度φに対する超音波減衰量log(Io/Is)をプロットすることにより、図5に示すようなグラフが得られた。図5に示すように、各粒子濃度1,3,5,10,20vol%のスラリーにおいて、超音波減衰距離ΔL*粒子濃度φに対する超音波減衰量log(Io/Is)は直線関係が成立した。図5において、傾きκが大きい方から順に粒子濃度1,3,5,10,20vol%のスラリーを示す。各粒子濃度のスラリーにおけるそれぞれの直線の傾きκを求めた。
【0040】
各粒子濃度に対する前記の傾きκをプロットしたグラフを図6に示した。図6に示したように、傾きはスラリーの粒子濃度が高くなるにつれて、低下することが判明した。この傾向は、図3に示したスラリーの粒子濃度が高くなるにつれて、充填率が低下する傾向と一致している。つまり、充填率の代わりに超音波減衰を用いてスラリーの分散性を評価できることを表わしている。
【0041】
次に、図3のグラフの充填率をX軸、図6のグラフの傾きκをY軸にとったグラフを図7に示した。図7に示したように、スラリーの超音波減衰量と超音波減衰距離の関係から得られた傾きκはスラリーの定圧ろ過法により得られた充填率と良好な相関関係を示した。
以上ことから、超音波減衰を用いたスラリーの評価方法は、セラミックス製造プロセスにおけるスラリーの評価に適用が可能であり、スラリーの分散状態(凝集状態)を評価できる。
【0042】
【発明の効果】
超音波減衰を用いて懸濁液の分散状態(凝集状態)評価することが可能となり、短時間で懸濁液の分散性を評価することができるようになった。
【図面の簡単な説明】
【図1】定圧ろ過法を実施するための実験装置の構成図である。
【図2】ろ過量に対するdt/dvのグラフである。
【図3】スラリーの粒子濃度に対する充填率のグラフである。
【図4】超音波減衰距離と超音波入射強度と検出強度との関係を模式的に示した図である。
【図5】超音波減衰距離に対する超音波減衰量のグラフである。
【図6】スラリーの粒子濃度に対する図5のグラフの傾きのグラフである。
【図7】充填率に対する傾きκのグラフである。
【図8】懸濁液の評価装置の構成図である。
【図9】スラリーの評価フローを示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a suspension evaluation method using ultrasonic attenuation and an apparatus using the evaluation method.
[0002]
[Prior art]
In the casting method, which is one of the methods for manufacturing fine ceramics, the raw material powder is dispersed in a dispersion medium such as water to form a slurry, and the slurry is poured into a porous mold such as gypsum and dried to form a compact. Then, the formed body is sintered to obtain a product. In the press molding method, the slurry is spray-dried to form granules, and the granules are put into a mold and pressed to form a compact, and the compact is sintered to obtain a product. Fine ceramics have excellent properties such as heat resistance, friction resistance, and high strength. However, if a product contains defects such as air bubbles or giant particles, the above-mentioned excellent properties will be lost. Therefore, in any of the molding methods, if heterogeneity exists at the stage of the compact, the heterogeneity is amplified by sintering and the heat resistance, friction resistance and high strength of the product are impaired. In order to obtain it, a homogeneous and dense compact is required. Since the density and microstructure of a compact are governed by the properties of the slurry, preparation of the slurry is an important step in the ceramics manufacturing process. Further, the slurry is prepared to have a concentration as high as possible in order to increase the easiness of production and the production efficiency in the later process of the ceramics production process. However, as the concentration of the slurry increases, it becomes difficult to remove the mixed air bubbles, or the particles in the slurry are agglomerated, and the air bubbles and agglomerates remain in the formed body, resulting in a non-uniform formed body. I will. Therefore, it is desired to evaluate whether or not the slurry is in a state of good dispersibility (a state of little aggregation) in the process of the manufacturing process.
[0003]
Conventionally, evaluation of a slurry has been mainly performed by evaluation of apparent viscosity. This evaluation method is based on the fact that a slurry having a high apparent viscosity is considered to be a non-homogeneous molded body because particles in the slurry are aggregated and the aggregated structure remains in the molded body. That is, it can be considered that the slurry in which the particles are well dispersed and the apparent viscosity is the lowest is optimal. However, in practice, it is empirically known that the highest density molded product can be obtained from a slurry whose apparent viscosity is slightly increased by adding a dispersant in excess of the amount at which the apparent viscosity is lowest. . Therefore, there is a problem that the evaluation of the slurry using the apparent viscosity lacks accuracy.
[0004]
In the fine ceramics molding process, when the slurry is concentrated and dehydrated, the particles in the slurry form a fine particle structure, and the structure is compacted to form a compact. Therefore, it is considered that the compaction characteristics of the fine particle structure greatly affect the density and the microstructure of the compact. As one method for evaluating the compaction characteristics of the fine particle structure, there is an evaluation method in which the slurry is subjected to constant-pressure filtration to calculate a filling rate, and an attempt is made to obtain a high-density compact from the slurry having the highest filling rate. Have been tried. However, the method of filtering the slurry at a constant pressure requires time and effort and is very difficult to incorporate into the ceramics manufacturing process.
[0005]
In addition, as a method of evaluating powder dispersibility, for example, a weight is suspended in a slurry in which powder is suspended, and a powder at a specific location in the slurry is determined based on a temporal change in gravity of the weight. There is known a method of calculating the amount of change in body concentration (see Patent Document 1). However, this method has a problem that the measurement time takes several hours.
[0006]
[Patent Document 1]
JP-A-6-103876
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide a novel suspension evaluation method using ultrasonic attenuation. Another object of the present invention is to provide an evaluation method capable of evaluating the dispersibility of a suspension in a short time.
[0008]
[Means for Solving the Problems]
In the method for evaluating a suspension according to the present invention, the ultrasonic wave transmitted from the ultrasonic transmission unit is passed through the suspension, the ultrasonic wave transmitted through the suspension is received by the ultrasonic reception unit, and the ultrasonic attenuation is measured. In the method of evaluating a suspension to be suspended, the ultrasonic passage distance of a plurality of suspension passage distances is measured by changing the ultrasonic passage distance, and the obtained suspension passage distance and suspension amount are measured. The suspension is evaluated based on the relationship between the suspension concentration and the amount of ultrasonic attenuation.
[0009]
In the present invention, it is preferable to evaluate the suspension based on the slope of a line segment representing the relationship between the product of the suspension passage distance and the suspension concentration and the amount of ultrasonic attenuation.
[0010]
Further, it is preferable to determine whether the dispersibility of the suspension is good or not by comparing the slope with a reference value.
[0011]
Further, the method for evaluating a suspension of the present invention is characterized in that the ultrasonic wave transmitted from the ultrasonic transmission unit is passed through the suspension, the ultrasonic wave passing through the suspension is received by the ultrasonic reception unit, and the ultrasonic attenuation is obtained. In the method for evaluating a suspension, the suspension is evaluated based on the relationship among the ultrasonic wave passage distance, the suspension concentration, and the amount of ultrasonic attenuation.
[0012]
In the present invention, it is preferable to evaluate the suspension based on the ratio of the product of the suspension passage distance and the suspension concentration to the amount of ultrasonic attenuation.
[0013]
Further, it is preferable to evaluate the dispersibility of the suspension by comparing the value of the ratio with a reference value.
[0014]
The suspension evaluation device of the present invention includes a storage unit that stores the suspension, an ultrasonic transmission unit that transmits ultrasonic waves to the suspension stored in the storage unit, and an ultrasonic wave that has passed through the suspension. A passing distance changing unit that changes the suspension passing distance of the ultrasonic wave that receives the ultrasonic wave, and a control unit that obtains a relationship between the suspension passing distance of the ultrasonic wave, the suspension concentration, and the ultrasonic attenuation. Features.
[0015]
In the apparatus of the present invention, it is preferable that the control unit obtains a relationship among each ultrasonic attenuation amount, each of the suspension passage distances, and the suspension concentration at a plurality of different suspension passage distances.
[0016]
Further, it is preferable that the control unit obtains a gradient of a line segment representing a relationship between a product of each suspension passage distance and the suspension concentration and each ultrasonic attenuation.
[0017]
Further, it is preferable that the control unit evaluates the dispersibility of the suspension by comparing the inclination with a reference value.
[0018]
Further, it is preferable that the control unit obtains a value of a ratio of a product of a suspension passage distance and a suspension concentration and an ultrasonic attenuation amount.
[0019]
It is preferable that the control unit evaluates the dispersibility of the suspension by comparing the value of the ratio with a reference value.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the principle of ultrasonic attenuation in carrying out the suspension evaluation method of the present invention will be described.
[0021]
FIG. 4 schematically shows the principle of ultrasonic attenuation. In FIG. 4, ΔL denotes an ultrasonic attenuation distance (a distance through which an ultrasonic wave passes through a suspension), Io denotes an ultrasonic incident intensity, and Is denotes an ultrasonic detected intensity. Ultrasonic waves attenuate energy when passing through a suspension due to particles and media present. The causes of energy attenuation are: 1) scattering loss (scattering / diffraction loss), 2) viscos loss (viscous loss caused by vibration of particles in a medium), 3) thermal loss (adiabatic compression / expansion of particles). Thermal loss), 4) intrinsic loss (loss due to material properties), 5) structural loss (structural loss caused by connection of particles, etc.). These losses vary depending on the concentration of the suspension, the state of aggregation, and the like.
[0022]
If the particles are all primary particles and are far enough apart that they do not interact, the following formula A holds according to Lambert-Beer's law, and the ultrasonic attenuation coefficient κ is the ultrasonic attenuation distance ΔL And constant regardless of the particle concentration φ.
(Equation 1)
Figure 2004286530
[0023]
However, when the sample concentration is high, or when the particles are aggregated to form a structure, the ultrasonic attenuation coefficient κ is considered to be dependent on the particle concentration due to interaction between particles and non-uniformity. . Therefore, by comparing the ultrasonic attenuation coefficient κ, it is possible to compare the attenuation amount of the ultrasonic wave at the same particle volume, so that the difference in the dispersibility (aggregation state) of the well dispersed suspension and the aggregated suspension is different. Can be evaluated. Further, since the ultrasonic attenuation coefficient κ is represented by the following expression B which is a modification of the expression A, the X axis is “ultrasonic attenuation distance ΔL” * “particle concentration φ”, and the Y axis is “ultrasonic attenuation log (Io / Is) ".
(Equation 2)
Figure 2004286530
[0024]
Specifically, the graph is shown in FIG. 5, which is a graph in which the slurry is evaluated using ultrasonic waves described below. FIG. 5 shows the measured values of five types of suspensions having different concentrations, with the X axis being “ultrasonic attenuation distance ΔL” * “particle concentration φ” and the Y axis being “ultrasonic attenuation log (Io / Is)”. It is a graph plotted. As described above, when the particles are completely dispersed, theoretically, one line segment should be obtained even if the suspension concentration is different. However, actually, since the dispersibility of the particles in each suspension is different, line segments having different slopes are plotted as shown in FIG. As described above, the results shown in FIG. 5 reflect the above-mentioned theory.
[0025]
Next, a suspension evaluation device used for carrying out the suspension evaluation method of the present invention will be described. FIG. 8 shows a configuration diagram of an embodiment of the suspension evaluation device. The suspension evaluation device includes an ultrasonic transmitting unit 22, an ultrasonic receiving unit 23, a driving unit 24 that changes a distance between the ultrasonic transmitting unit 22 and the ultrasonic receiving unit 23, and a control unit 21. , Measurement chamber 26, operation input unit 28, and output unit 29. The measurement chamber 26 includes a stirrer 25, and the stirrer 25 stirs the suspension 27 in the measurement chamber 26. The control unit 21 controls the operation of the ultrasonic transmission unit 22, the ultrasonic reception unit 23, the driving unit 24, the stirrer 25, and the like, and measures the ultrasonic attenuation amount and the suspension based on the program stored in the memory. Is evaluated. The measurement result and the evaluation result are output to the output unit 29.
[0026]
As the suspension 27, a suspension of a solid-liquid dispersion system in which solid particles are dispersed in a dispersion medium and a suspension of a liquid-liquid dispersion system in which liquid particles are dispersed in a dispersion medium are applicable.
A suspension of solid-liquid dispersion in which solid particles are dispersed in a dispersion medium includes a slurry, and a suspension of liquid-liquid dispersion in which liquid particles are dispersed in a dispersion medium includes an emulsion.
As the solid particles used for the slurry, alumina, silicon nitride, titanium oxide, zirconium oxide, or the like, which is a raw material of fine ceramics or the like, can be used. A dispersion medium such as water can be used for the slurry, and it is desirable that ammonium polyacrylate, ammonium polycarboxylate, oxyphenoxyethanol, or the like be added to the dispersion medium as a dispersant.
[0027]
The suspension evaluation apparatus shown in FIG. 8 has a configuration in which the driving unit 24 moves the ultrasonic transmission unit 22 to change the passage distance of the ultrasonic wave passing through the suspension. The structure which moves the receiving part 23 may be sufficient. Further, a configuration in which both the ultrasonic wave transmitting unit 22 and the ultrasonic wave receiving unit 23 are moved may be employed.
[0028]
The control unit 21 can be configured by a CPU, a memory such as a RAM or a ROM, a microcomputer including an I / O port, or a personal computer. The memory of the control unit 21 stores the product of the ultrasonic suspension passing distance (ultrasonic attenuation distance) and the suspension concentration, and the ultrasonic attenuation obtained by changing the suspension passing distance. A program for calculating the inclination from the relational expression is stored in advance. Further, when it is known in advance that the relational expression is a linear expression passing through the origin, the product of a certain ultrasonic attenuation distance and the suspension concentration, and the ratio of the ultrasonic attenuation amount at this ultrasonic attenuation distance. It may be a program for calculating a value.
[0029]
The operation input unit 28 can be configured by any of a keyboard, a mouse, a numeric keypad, a touch key, and the like. Further, the output unit 29 can be configured by a display device such as a CRT or a liquid crystal display, a printing device such as a printer, or the like.
[0030]
Next, the operation of the present apparatus will be described. When the suspension 27 is placed in the measurement chamber 26 and the suspension concentration is input from the operation input unit 28, the suspension 27 is controlled by the stirrer 25 controlled to rotate at a constant rotation speed by the control unit 21. Stirred. The ultrasonic transmitting unit 22 is driven by the driving unit 24, and the distance between the ultrasonic transmitting unit 22 and the ultrasonic receiving unit 23 is set to a predetermined distance, and the ultrasonic attenuation is measured. The data of the ultrasonic attenuation distance, which is the distance between the ultrasonic transmitting unit 22 and the ultrasonic receiving unit 23, and the measured ultrasonic attenuation amount are transmitted to the control unit 21. Next, the ultrasonic transmission unit 22 is again driven by the drive unit 24, the distance between the ultrasonic transmission unit 22 and the ultrasonic reception unit 23 is set to a predetermined distance, and the ultrasonic attenuation is measured. The data of the ultrasonic attenuation distance and the measured ultrasonic attenuation are transmitted to the control unit 21. This operation may be repeated several times as needed. The control unit 21 calculates the slope from the relational expression of the measured ultrasonic attenuation to the product of the ultrasonic attenuation distance, which is the distance between the ultrasonic transmitting unit 22 and the ultrasonic receiving unit 23, and the suspension concentration. I do. The calculated inclination is output to the output unit 29. The value of this gradient is used to evaluate the state of the suspension. In addition, a graph of a relational expression may be output to the output unit 29 in addition to the inclination.
[0031]
Next, a procedure for evaluating a slurry, which is a kind of suspension, using the present apparatus will be described.
FIG. 9 is a flowchart showing the procedure of evaluating the slurry. First, a specified amount of the slurry to be evaluated is put into the chamber 26 (FIG. 8) of the suspension evaluation apparatus, and the suspension concentration is input from the operation input unit 28, and at a predetermined frequency and a predetermined ultrasonic attenuation distance ΔL. The ultrasonic attenuation log (Io / Is) is measured (step S1). Next, the ultrasonic attenuation distance ΔL is changed (step S2). Next, the ultrasonic attenuation log (Io / Is) of the slurry is measured at ΔL after the change (step S3), and the process proceeds to the step of terminating the measurement (step S4). If the measurement is not completed, the process proceeds to the step of changing the ultrasonic attenuation distance ΔL again (step S2), and the ultrasonic attenuation log (Io / Is) of the slurry is measured using the changed ΔL (step S3). When the measurement is completed, the slope n is calculated from the relational expression of the ultrasonic attenuation log (Io / Is) with respect to the ultrasonic attenuation distance ΔL * particle concentration φ (step 5). Next, a graph (FIG.) Of a relational expression of the ultrasonic attenuation amount log (Io / Is) with respect to the ultrasonic attenuation distance ΔL * particle concentration φ and the slope n are output (displayed) to the output unit 29 (step S6). Next, the dispersibility is evaluated by comparing the slope n with the reference value (step S7). For example, when the slope n is larger than the reference value, the dispersibility of the slurry is determined to be “good”, and when the slope n is smaller than the reference value, the dispersibility of the slurry is determined to be “bad” (bad). good. Next, the result of comparing the slope n with the reference value is displayed (step S8). As described above, “good” may be displayed when the dispersibility is determined to be “good”, and “no” may be displayed when the dispersibility is determined to be “bad” (bad).
If it is known in advance that the relational expression of the ultrasonic attenuation amount log (Io / Is) with respect to the ultrasonic attenuation distance ΔL * particle concentration φ is a linear expression passing through the origin, there is ΔL (ultrasonic attenuation distance). At the measurement point, the value of the ratio of the ultrasonic attenuation distance ΔL * particle concentration φ to the ultrasonic attenuation log (Io / Is) is calculated, and the dispersibility of the slurry is evaluated by comparing this value with a reference value. You may.
In this evaluation procedure, the processing may be completed up to step S6. In this case, the measurer evaluates the dispersibility of the slurry by viewing the graph of the relational expression of the ultrasonic attenuation log (Io / Is) with respect to the displayed ultrasonic attenuation distance ΔL * particle concentration φ and the slope n. .
In this evaluation procedure, step 5 is omitted, and in step 6, a graph of a relational expression of ultrasonic attenuation log (Io / Is) with respect to ultrasonic attenuation distance ΔL * particle concentration φ is displayed, and the processing is ended here. You may do it. In this case, it is preferable to display a line segment corresponding to the reference value on the graph.
Further, instead of displaying a graph (FIG.) Of a relational expression of the ultrasonic attenuation amount log (Io / Is) with respect to the ultrasonic attenuation distance ΔL * particle concentration φ, a table for understanding the evaluation result may be displayed.
[0032]
The present invention will be described by the following examples, but the scope of the present invention is not limited thereto.
[0033]
【Example】
First, a method for preparing a slurry to be measured will be described.
Preparation of slurry Sintered alumina (ASE-11E manufactured by Sumitomo Chemical Co., Ltd., average particle size: 0.48 μm) as raw material powder, distilled water as dispersion medium, ammonium polyacrylate (Aron manufactured by Toagosei Co., Ltd.) as dispersant A-30SL) was used. In these samples, the particle concentration was 1, 3, 5, 10, 20, 35 vol%, the amount of the dispersant was added so that the adsorption amount was constant (0.11 g / 100 g Al 2 O 3 ), and the total amount of the slurry was 500 mL. And
Next, 750 g of an alumina ball (diameter: 5 mm: HD ball made by Nikkato) is put into a 1 L PE pot, and a dispersion medium, a dispersant, and raw material powder are added thereto, and the mixture is rotated using a universal ball mill mount (made by ANEX). Ball mill mixing was performed at several 120 rpm for 1 hour. After the mixing, the slurry and the balls are separated by using a sieve, and after vacuum defoaming for 10 minutes using a direct connection type oil rotary vacuum pump (manufactured by Vacuum Kiko Co., Ltd.), the particle concentration is high in an incubator (MIR-153 manufactured by Sanyo Electric) The temperature of the slurry was adjusted at 20 ° C. for 2 hours while stirring using a simple stirrer (K-3, manufactured by Inuchi Seieido) and slurry with a low particle concentration using a magnetic stirrer (HS-3E, manufactured by Inuchi Seiseido). .
[0034]
Next, a method for obtaining the filling rate of the slurry by the constant pressure filtration method will be described.
Measurement by Constant Pressure Filtration Method FIG. 1 shows a configuration diagram of an experimental apparatus for performing the constant pressure filtration method. The experimental apparatus includes an acrylic cylinder 1 (inner diameter 35 mm), a compressor 2, a tank 3, an electronic balance 4, a personal computer 5, a filter 6, and a communication cable 7. The electronic balance 4 and the personal computer 5 are connected by a communication cable 7, and measurement data of the electronic balance 4 is transmitted to the personal computer 5 via the communication cable 7. Using this experimental apparatus, a constant pressure filtration method was performed at each particle concentration of 1, 3, 5, 10, 20, and 35 vol%.
[0035]
40 mL of the previously prepared slurry was placed in the acrylic cylinder 1 and filtered at a pressure of 200 KPa. Data volume filtration (g) for filtration time (s) is input to the personal computer 5, filtration rate v (mm) is calculated for the filtering time t (s) (filtration rate g was converted to volume mm 3 after, the inner diameter area mm 2 calculated from the inner diameter 35mm acrylic cylinder 1 is calculated filtration rate v a (mm) from the volume mm 3 Prefecture).
Next, a graph as shown in FIG. 2 was obtained by plotting a Ruth's plot dt / dv (s / mm) against the filtration amount v (mm). As shown in FIG. 2, in the slurries having the particle concentrations of 1, 3, 5, 10, 20, and 35 vol%, the loose plot dt / dv (s / mm) with respect to the filtration amount v (mm) had a linear relationship. The slope of each straight line in the slurry of each particle concentration was determined and defined as the filling rate.
[0036]
FIG. 3 is a graph plotting the packing ratio of each particle concentration with respect to the slurry. It was found that as the particle concentration of the slurry increased, the filling rate decreased.
[0037]
Next, a method for evaluating the previously prepared slurry using the suspension evaluation apparatus (FIG. 8) will be described.
[0038]
A predetermined amount of the previously prepared slurry is put into the chamber 26 (FIG. 8) of the suspension evaluation apparatus, and the ultrasonic attenuation distance ΔL is set to 1 mm at a frequency of 20 MHz while stirring the slurry by the stirrer 25 at a rotation speed of 500 rpm. The ultrasonic attenuation log (Io / Is) was measured by changing the distance by 100 mm. The measurement of the ultrasonic attenuation distance ΔL was performed on slurries having a particle concentration of 1, 3, 5, 10, and 20 vol%.
[0039]
Next, by plotting the ultrasonic attenuation log (Io / Is) with respect to the ultrasonic attenuation distance ΔL * particle concentration φ, a graph as shown in FIG. 5 was obtained. As shown in FIG. 5, in the slurries having the respective particle concentrations of 1, 3, 5, 10, and 20 vol%, a linear relationship was established between the ultrasonic attenuation amount log (Io / Is) and the ultrasonic attenuation distance ΔL * particle concentration φ. . In FIG. 5, slurries having particle concentrations of 1, 3, 5, 10, and 20 vol% are shown in descending order of the slope κ. The slope κ of each straight line in the slurry having each particle concentration was determined.
[0040]
FIG. 6 is a graph plotting the above-mentioned slope κ with respect to each particle concentration. As shown in FIG. 6, the slope was found to decrease as the particle concentration of the slurry increased. This tendency is consistent with the tendency shown in FIG. 3 that the filling rate decreases as the particle concentration of the slurry increases. In other words, it indicates that the dispersibility of the slurry can be evaluated using ultrasonic attenuation instead of the filling rate.
[0041]
Next, FIG. 7 shows a graph in which the filling rate in the graph of FIG. 3 is taken on the X axis, and the slope κ of the graph in FIG. 6 is taken on the Y axis. As shown in FIG. 7, the slope κ obtained from the relationship between the ultrasonic attenuation amount of the slurry and the ultrasonic attenuation distance showed a good correlation with the filling rate obtained by the constant pressure filtration method of the slurry.
From the above, the method for evaluating a slurry using ultrasonic attenuation can be applied to the evaluation of a slurry in a ceramics manufacturing process, and the dispersion state (aggregation state) of the slurry can be evaluated.
[0042]
【The invention's effect】
The dispersion state (aggregation state) of the suspension can be evaluated using ultrasonic attenuation, and the dispersibility of the suspension can be evaluated in a short time.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an experimental apparatus for performing a constant pressure filtration method.
FIG. 2 is a graph of dt / dv with respect to a filtration amount.
FIG. 3 is a graph showing a packing ratio with respect to a particle concentration of a slurry.
FIG. 4 is a diagram schematically showing a relationship among an ultrasonic attenuation distance, an ultrasonic incident intensity, and a detected intensity.
FIG. 5 is a graph of an ultrasonic attenuation amount with respect to an ultrasonic attenuation distance.
FIG. 6 is a graph of the gradient of the graph of FIG. 5 with respect to the particle concentration of the slurry.
FIG. 7 is a graph of a slope κ with respect to a filling factor.
FIG. 8 is a configuration diagram of a suspension evaluation device.
FIG. 9 is a view showing an evaluation flow of a slurry.

Claims (12)

超音波発信部から発信された超音波を懸濁液に通し懸濁液を通過した超音波を超音波受信部で受信して超音波減衰量を測定する懸濁液の評価方法において、超音波の懸濁液通過距離を変化させて、複数の懸濁液通過距離における超音波減衰量をそれぞれ測定し、得られた懸濁液通過距離と、懸濁液濃度と、超音波減衰量との関係に基づいて懸濁液を評価することを特徴とする懸濁液の評価方法。In a suspension evaluation method in which an ultrasonic wave transmitted from an ultrasonic transmission unit is passed through a suspension, and the ultrasonic wave that has passed through the suspension is received by an ultrasonic reception unit and the amount of ultrasonic attenuation is measured. , The ultrasonic attenuation at a plurality of suspension passing distances was measured, and the obtained suspension passing distance, suspension concentration, and ultrasonic attenuation were measured. A suspension evaluation method characterized by evaluating a suspension based on a relationship. 懸濁液通過距離と懸濁液濃度との積と、超音波減衰量との関係を表わす線分の傾きに基づいて懸濁液を評価することを特徴とする請求項2記載の懸濁液の評価方法。The suspension according to claim 2, wherein the suspension is evaluated based on a slope of a line segment representing a relationship between a product of a suspension passage distance and a suspension concentration and an ultrasonic attenuation. Evaluation method. 前記傾きと基準値を比較することにより懸濁液の分散性を評価することを特徴とする請求項3記載の懸濁液の評価方法。The method for evaluating a suspension according to claim 3, wherein the dispersibility of the suspension is evaluated by comparing the slope with a reference value. 超音波発信部から発信された超音波を懸濁液に通し懸濁液を通過した超音波を超音波受信部で受信して超音波減衰量を測定する懸濁液の評価方法において、超音波の懸濁液通過距離と、懸濁液濃度と、超音波減衰量との関係に基づいて懸濁液を評価することを特徴とする懸濁液の評価方法。In a suspension evaluation method in which an ultrasonic wave transmitted from an ultrasonic transmission unit is passed through a suspension, and the ultrasonic wave that has passed through the suspension is received by an ultrasonic reception unit and the amount of ultrasonic attenuation is measured. A suspension evaluation method based on a relationship among a suspension passage distance, a suspension concentration, and an ultrasonic attenuation amount. 懸濁液通過距離と懸濁液濃度との積と、超音波減衰量との比の値に基づいて懸濁液を評価することを特徴とする請求項4記載の懸濁液の評価方法。The suspension evaluation method according to claim 4, wherein the suspension is evaluated based on a value of a ratio of a product of the suspension passage distance and the suspension concentration to an ultrasonic attenuation. 前記比の値と基準値を比較することにより懸濁液の分散性を評価することを特徴とする請求項5記載の懸濁液の評価方法。The method for evaluating a suspension according to claim 5, wherein the dispersibility of the suspension is evaluated by comparing the value of the ratio with a reference value. 懸濁液を収容する収容部と、収容部に収容された懸濁液に超音波を発信する超音波発信部と、懸濁液を通過した超音波を受信する超音波の懸濁液通過距離を変化させる通過距離変更部と、超音波の懸濁液通過距離、懸濁液濃度および超音波減衰量の関係を求める制御部と、を備えたことを特徴とする懸濁液の評価装置。A storage unit that stores the suspension, an ultrasonic transmission unit that transmits ultrasonic waves to the suspension stored in the storage unit, and a suspension passage distance of the ultrasonic waves that receives the ultrasonic waves that have passed through the suspension A suspension evaluation apparatus, comprising: a passage distance changing unit that changes the distance; and a control unit that obtains a relationship between an ultrasonic suspension passage distance, a suspension concentration, and an ultrasonic attenuation. 前記制御部が、異なる複数の懸濁液通過距離における各超音波減衰量、前記各懸濁液通過距離および懸濁液濃度の関係を求めることを特徴とする請求項7記載の懸濁液の評価装置。The suspension according to claim 7, wherein the control unit obtains a relationship between each ultrasonic attenuation amount at a plurality of different suspension passage distances, each of the suspension passage distances, and the suspension concentration. Evaluation device. 前記制御部が、各懸濁液通過距離と懸濁液濃度との積と、各超音波減衰量との関係を表わす線分の傾きを求めることを特徴とする請求項8記載の懸濁液の評価装置。9. The suspension according to claim 8, wherein the control unit calculates a slope of a line segment representing a relationship between a product of each suspension passage distance and the suspension concentration and each ultrasonic attenuation. Evaluation device. 前記制御部が、前記傾きと基準値とを比較することによって懸濁液の分散性を評価することを特徴とする請求項9記載の懸濁液の評価装置。The suspension evaluation apparatus according to claim 9, wherein the control unit evaluates the dispersibility of the suspension by comparing the inclination with a reference value. 前記制御部が、懸濁液通過距離と懸濁液濃度との積と、超音波減衰量の比の値を求めることを特徴とする請求項7記載の懸濁液の評価装置。The suspension evaluation apparatus according to claim 7, wherein the control unit obtains a value of a ratio of a product of a suspension passage distance and a suspension concentration and an ultrasonic attenuation amount. 前記制御部が、前記比の値と基準値とを比較することによって懸濁液の分散性を評価することを特徴とする請求項11記載の懸濁液の評価装置。The suspension evaluation apparatus according to claim 11, wherein the control unit evaluates the dispersibility of the suspension by comparing the value of the ratio with a reference value.
JP2003077678A 2003-03-20 2003-03-20 Suspension evaluation method and apparatus Expired - Fee Related JP4184844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077678A JP4184844B2 (en) 2003-03-20 2003-03-20 Suspension evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077678A JP4184844B2 (en) 2003-03-20 2003-03-20 Suspension evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2004286530A true JP2004286530A (en) 2004-10-14
JP4184844B2 JP4184844B2 (en) 2008-11-19

Family

ID=33292369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077678A Expired - Fee Related JP4184844B2 (en) 2003-03-20 2003-03-20 Suspension evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP4184844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231257A (en) * 2019-05-28 2019-09-13 西南交通大学 A kind of experimental rig and method for the test of shield synchronization slip casting water resistant dispersibility

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012069A (en) * 1973-05-23 1975-02-07
JPS5015584A (en) * 1973-06-08 1975-02-19
JPS62500612A (en) * 1984-10-23 1987-03-12 ロフラ−、フリ−ドリッヒ Ultrasonic measurement method for solid concentration and particle size distribution
JPS63233365A (en) * 1987-03-20 1988-09-29 Kajima Corp Method for measuring degree of mixing of mixed solution of stabilizing liquid and setting material
JPH04505368A (en) * 1989-11-13 1992-09-17 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー How to measure particle size distribution and concentration in suspensions using ultrasound
JP2000074815A (en) * 1998-08-31 2000-03-14 Lucent Technol Inc Characteristic determination process of suspended particle
WO2002050511A2 (en) * 2000-12-18 2002-06-27 E.I. Du Pont De Nemours And Company Method and apparatus for ultrasonic sizing of particles in suspensions
JP2003065936A (en) * 2001-08-22 2003-03-05 Sony Corp Method of evaluating paint

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012069A (en) * 1973-05-23 1975-02-07
JPS5015584A (en) * 1973-06-08 1975-02-19
JPS62500612A (en) * 1984-10-23 1987-03-12 ロフラ−、フリ−ドリッヒ Ultrasonic measurement method for solid concentration and particle size distribution
JPS63233365A (en) * 1987-03-20 1988-09-29 Kajima Corp Method for measuring degree of mixing of mixed solution of stabilizing liquid and setting material
JPH04505368A (en) * 1989-11-13 1992-09-17 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー How to measure particle size distribution and concentration in suspensions using ultrasound
JP2000074815A (en) * 1998-08-31 2000-03-14 Lucent Technol Inc Characteristic determination process of suspended particle
WO2002050511A2 (en) * 2000-12-18 2002-06-27 E.I. Du Pont De Nemours And Company Method and apparatus for ultrasonic sizing of particles in suspensions
JP2003065936A (en) * 2001-08-22 2003-03-05 Sony Corp Method of evaluating paint

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
櫻井智宏,他2名: "超音波減衰法(ウルトラサイザー)を用いた高濃度スラリーの評価方法", 粉体工学会研究発表会講演論文集, JPN6008022541, 27 May 2002 (2002-05-27), JP, pages 122 - 123, ISSN: 0001041942 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231257A (en) * 2019-05-28 2019-09-13 西南交通大学 A kind of experimental rig and method for the test of shield synchronization slip casting water resistant dispersibility

Also Published As

Publication number Publication date
JP4184844B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
Olhero et al. Influence of particle size distribution on rheology and particle packing of silica-based suspensions
US4368296A (en) Free-flowing sintering powders which have improved properties and are based on tetrafluoroethylene polymers, and a process for their manufacture
Davis et al. Settling suspensions of colloidal silica: observations and X-ray measurements
JP5130227B2 (en) Silicon dioxide produced by densified pyrolysis for crust formation
Vieira et al. Performance analysis and design of filtering hydrocyclones
Kamiya et al. Powder Processing for the Fabrication of Si3N4 Ceramics: I, Influence of Spray‐Dried Granule Strength on Pore Size Distribution in Green Compacts
CN107124880A (en) Ceramic and its production method with orientation particle
CN103547545A (en) Proppant particles formed from slurry droplets and method of use
JP2004286530A (en) Method and apparatus for evaluating suspension
Omura et al. Fabrication of stable Al2O3 slurries and dense green bodies using wet jet milling
CN110320076A (en) A kind of artificial carbonate rock rock core and preparation method thereof for developing secondary pore
WO2024051711A1 (en) Tailings settlement test device and method
Liu et al. Fabrication and properties of 3-3 type PZT-ordinary Portland cement composites
Martin et al. Effect of particle size distribution upon specific surface area and ultrasonic velocity in sintered ceramic powders
JP3968315B2 (en) Evaluation method of slurry.
Sarraf et al. Rheological behavior of concentrated alumina suspension: Effect of electrosteric stabilization
JP2010037146A (en) Method for preparing dispersed slurry and dispersed slurry production device
CN109053176B (en) Chromium-containing mullite refractory material and preparation method thereof
Juradin Determination of rheological properties of fresh concrete and similar materials in a vibration rheometer
Ring Processing of fine ceramic powders
CN107796734A (en) A kind of method of testing of Iron Ore Powder adhesive property
KR20120135547A (en) Manufacturing method of non-sintering ceramics and non-sintering ceramics manufactured by the method
CN115091619B (en) Ultra-high performance concrete stirring system determining device and method
JP4288448B2 (en) Method and apparatus for evaluating characteristics of solid-liquid dispersion slurry
KR102533253B1 (en) Method for manufacturing ceramic body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees