JP2004286521A - Leakage sensor of conductive liquid substance - Google Patents

Leakage sensor of conductive liquid substance Download PDF

Info

Publication number
JP2004286521A
JP2004286521A JP2003077441A JP2003077441A JP2004286521A JP 2004286521 A JP2004286521 A JP 2004286521A JP 2003077441 A JP2003077441 A JP 2003077441A JP 2003077441 A JP2003077441 A JP 2003077441A JP 2004286521 A JP2004286521 A JP 2004286521A
Authority
JP
Japan
Prior art keywords
insulator
insulators
conductive liquid
sensor
core wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003077441A
Other languages
Japanese (ja)
Other versions
JP3711281B2 (en
Inventor
Yutaka Tadokoro
裕 田所
Katsumi Yaguchi
勝己 矢口
Hidekazu Yoshida
英一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Nuclear Cycle Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Cycle Development Institute filed Critical Japan Nuclear Cycle Development Institute
Priority to JP2003077441A priority Critical patent/JP3711281B2/en
Publication of JP2004286521A publication Critical patent/JP2004286521A/en
Application granted granted Critical
Publication of JP3711281B2 publication Critical patent/JP3711281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve durability, to prevent erroneous operation, and to secure required detection sensitivity. <P>SOLUTION: In a leakage sensor of a conductive liquid substance, a metal conductor 28 is inserted into a row of a number of electrically insulated cylindrical insulators 24 that are made of heat-resistant/corrosion-resistant substance and have a conductor insertion hole 26 at the center, and the outer periphery of the row of insulators is surrounded by a metal coil 30 to compose a sensor body 20. By detecting a change in electrical resistance between the conductor and the coil, the presence or absence of the leakage of the conductive liquid substance is detected. The shape of the insulators is optional, only the cylindrical insulators may be arranged, or two types, namely the cylindrical insulators and spherical insulators having an outer diameter being larger than the inner diameter, may be arranged alternately. A through-hole that has a size for allowing the conductive liquid substance to fully enter and reaches the inner periphery surface from the outer periphery surface is preferably formed on the side of the cylindrical insulators. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、導電性を有する液状物質を検知対象とする漏洩センサに関し、更に詳しく述べると、芯線を保持する多数の碍子列の外周を金属製のコイルが取り囲むようにして、耐久性を向上し、誤動作を防止した導電性液状物質の漏洩センサに関するものである。この技術は、特に限定されるものではないが、例えば液体金属や溶融金属化合物を用いた材料腐食試験装置などにおける漏洩検知に有用である。
【0002】
【従来の技術】
各種の液体を保持している機器においては、万一、液体が容器等から漏洩したときに、それを迅速且つ確実に検知する必要がある場合も多い。使用液体が導電性を有していれば、その性質を利用した漏洩センサが構成できる。従来技術の一例を図7に示す。この漏洩センサは、中心に芯線挿通孔を有する多数の電気絶縁性の碍子10の列に金属製の芯線12を挿通し、その碍子列を金属製の編組チューブ14が取り囲むようにしてセンサ本体部を構成している。ここで碍子10は短尺の円筒形状である。また編組チューブ14は、金属細線を用いて全体をチューブ状に編み上げたものである。漏洩検知の動作原理は、漏洩物質(導電性液状物質)が芯線と編組チューブ間に付着すると、芯線と編組チューブ(即ちアース)との間の電気抵抗が変化するため、この電気抵抗の変化を検出することで漏洩の有無を検知するというものである。
【0003】
このような同軸ケーブル状の漏洩センサは、通常、導電性液状物質を保持している容器等の外側に、底部全体をカバーするように、曲がりくねった形状で敷設される。
【0004】
【発明が解決しようとする課題】
しかし従来の漏洩センサでは、使用状態・使用環境によっては、実際には漏洩が発生していないのに漏洩検知信号が生じるといった誤動作が起き易い問題があった。編組チューブは柔軟性や引っ張り強度の面では優れているが、高温における使用では温度変化による熱膨張と収縮の繰り返し損傷や高温酸化による劣化が激しいため、編組チューブを構成している金属細線の断線や表面酸化物による毛羽立ちが生じる。誤動作の原因は、この毛羽立った金属細線が芯線に接触し短絡する(図7の符号Xで囲んだ箇所参照)ためである。
【0005】
また従来の漏洩センサでは、漏洩物質が急速に固化する性質を有する場合、特に漏洩量が少ないと、編組チューブで漏洩物質が遮断されてそのまま固化することがある。すると、漏洩物質は芯線まで浸透しないため、漏洩検知ができない。このように、漏洩を検知すべき導電性液状物質の性状や漏洩状況によっては検知できなかったり、検知感度が低くなる問題も生じる。
【0006】
本発明の目的は、耐久性に優れ、誤動作を防止でき、検知感度も良好な導電性液状物質の漏洩センサを提供することである。
【0007】
【課題を解決するための手段】
本発明は、耐熱・耐食性物質からなり中心に芯線挿通孔を有する多数の電気絶縁性の碍子の列に金属製の芯線を挿通し、その碍子列の外周を金属製の保護部材で取り囲んだ構造のセンサ本体部を備え、芯線と保護部材間の電気抵抗の変化を検出することで導電性液状物質の漏洩の有無を検知するセンサにおいて、碍子列の外周を取り囲む保護部材としてコイルを用いることを特徴とする導電性液状物質の漏洩センサである。
【0008】
ここで、碍子の具体的な形状は任意であるが、短尺筒状(典型的には円筒状)とし、多数の同一形状又は異なる形状の筒状碍子を一列に配列したものとする。あるいは、円筒状碍子と、該円筒状碍子の内径よりも大きな外径の球状碍子との2種類を交互に配列したものでもよい。これらにおいて、円筒状碍子の側面に、導電性液状物質が十分に浸入可能な大きさで且つ外周面から内周面まで達する貫通穴を形成するのが好ましい。
【0009】
【発明の実施の形態】
図1は本発明に係る漏洩センサの一つの実施形態を示す説明図である。この漏洩センサは、センサ本体部20と、その両端に位置する接続部22とからなる。これは、特に大気中高温(例えば700〜900℃)の環境下で使用するのに好適な導電性液状物質の漏洩センサである。センサ本体部20は、センサとして機能する部分であり、接続部22は、センサ本体部と外部配線とを接続するための部分である。
【0010】
この実施形態では、センサ本体部20は、電気絶縁性を有する同一形状の円筒状碍子24を多数一列に配列し、それらの中心に形成されている芯線挿通孔26に金属製の芯線28を挿通し、多数の円筒状碍子24からなる列の外周を金属製のコイル30で取り囲んだ構造である。詳細構造及び曲げ状態を図2に示す。
【0011】
円筒状碍子24は、セラミックス系材料(例えばアルミナやステアタイト等)などの耐熱・耐食性物質からなる。円筒状碍子24の内径は芯線28が余裕を持って挿通可能な寸法とし、外径や長さ寸法も使用する芯線の線径などに応じて決定するのがよい。セラミックス系材料は殆ど変形しないため、軸方向寸法が大きくなるとセンサ本体部20の曲げ自由度が乏しくなる。そこで、小さな曲率で曲げて取り付ける必要がある場合には、短尺形状として互いに密着させずに若干の隙間があくようにして多数配列する。円筒状碍子は、長さの異なるものを複数種類組み合わせて配列してもよい。また、センサ本体部を曲げると、隣接する碍子同士が擦れ合うことから、碍子の両端面の周縁部分に面取り加工やアール加工を施しておくのが好ましい。
【0012】
芯線28としては、銅線でもよいが、酸化による材質劣化を極力抑えるために耐熱金属線(ここではニッケル線)を使用している。線径は、漏洩センサの設置条件や強度などに応じて決定する。例えば、狭いスペースに小さな曲率で曲げながら設置する場合には、線径が小さい方が敷設しやすいが、極端に細径になると強度や耐久性が乏しくなる。そのような場合には、可撓性(曲げ自由性)の高い1mm程度の線径が適している。また線径を大きくすることによって、繰り返し損傷・高温酸化等による劣化を抑制することができるから、曲げ自由性を問わない場合には、線径を2〜3mmとすることも可能である。従って、一般的には、使用条件・使用環境(敷設の自由性、強度、耐久性など)を考慮し、0.5〜3mm程度の範囲から適宜決定することになる。
【0013】
コイル30は、ステンレス鋼など耐熱性・耐酸化性に優れ、必要な強度を確保できる材料からなる線材を螺旋状に巻き付けたものである。コイル外径は、内側の碍子24を保護でき、曲げなどの変形に対して自由性を確保できる空間を有すること(曲げた時に碍子との摩擦が生じないこと)が望ましく、碍子外径の2倍程度(ギャップ1〜2mm程度)とするのがよい。コイルピッチは、検知対象物である導電性液状物質がコイル内部に浸入できるように設定する。漏洩物質が凝固せず流動性が高い場合にはコイルの隙間は殆ど無くてもよい。たとえ自然状態で隙間が無いようなコイルであっても、敷設時に曲げられることで自然にある程度の隙間は生じるからである。そこで図面では、便宜的に自然状態で隙間が無いように描いている。漏洩物質の性状にもよるが、一般的には0.5〜1mm程度の隙間のあるコイルが好ましい。なお図2では、分かり易くするために、曲がり部分でコイルを非常に疎に(コイルの隙間を非常に広げて)描いているが、実際にはもっと密になる。
【0014】
センサ本体部20の両端に位置する接続部22の構造は次の如くである。芯線28の端部は、絶縁被覆31(ゴム等による被覆)が施されたリード線32を介して外部に導かれる。リード線32は電気抵抗の少ない金属線(銅やアルミニウム等)からなり、リード線32と芯線28とは突き合わせスリーブ34を圧着することで接続する。従ってこの突き合わせスリーブ34は、圧着性の良好な銅などからなる。なお、碍子列の端部近傍は、ステンレス鋼製のチューブ36を被せることで保護する。突き合わせスリーブ34によるリード線32と芯線28との接続部の外周にはステンレス鋼製のアダプタ38を被せて、エポキシ樹脂により固定する。更に、それらの最外周にステンレス鋼製のカラー40を設け、その両端部でアタプタ38及びコイル30と溶接等によって接合し、内部構造を保護する。芯線28とリード線32は、アダプタ38及びチューブ36、カラー40との短絡による誤動作が生じないように、碍子及びエポキシ樹脂により絶縁されている。
【0015】
この漏洩センサの動作原理は、基本的には従来と同様である。即ち、漏洩物質が芯線28とコイル30との間に付着すると、芯線28とコイル30(即ちアース)間の電気抵抗が変化するため、この電気抵抗の変化を検出することで漏洩の有無を検知するというものである。そのため漏洩センサは、導電性液状物質を保持している容器等の外側に、底部全体をカバーするように、曲がりくねった形状で敷設される。この漏洩センサでは、センサ本体部20を曲げたときでも、コイル30は追従性が良好で、塑性変形することなく曲げることができ、曲がり部の劣化を抑えることができる。また、コイル30の採用によって、従来の編組チューブのような劣化による毛羽立ちが生じないため、短絡による誤動作が生じることはない。更に、コイルピッチを調整することによって、漏洩物質の芯線への浸透性を確保することができ、漏洩検知感度も向上する。
【0016】
図3は本発明に係る漏洩センサの他の実施形態を示す説明図である。この漏洩センサも外周の保護部材にコイルを使用しており、基本的な構成は前記図1と同様であるので、対応する部材には同一符号を付し、それらについての詳細な説明は省略する。碍子部の詳細を図4に示し、またセンサ本体部の曲げ状態を図5に示す。
【0017】
この実施形態では、碍子として円筒状碍子50と、該円筒状碍子50の内径よりも大きな外径の球状碍子52との2種類を使用し、それらを交互に配列している。図4のAに円筒状碍子50と球状碍子52との組み合わせ状態(但し、図面を分かり易くするために両者を離して描いてある)を示し、Bには円筒状碍子50の詳細を、Cには球状碍子52の詳細を、それぞれ示す。円筒状碍子50の中心に形成されている芯線挿通孔54と、球状碍子52に形成されている芯線挿通孔56とに芯線28を挿通する。碍子材料としては、前述のように、耐熱性、漏洩物質に対する耐食性、電気絶縁性といった観点からセラミックス系材料が最適である。
【0018】
しかし、セラミックス系材料は殆ど変形しないために、芯線28の被覆には短尺の円筒状碍子を配列するが、曲がり部分では円筒状碍子同士に隙間が生じる。もし、その隙間が大きすぎるとコイルが芯線に接触する恐れがある。そこで、この実施形態では、円筒状碍子50の両端面を、球状碍子52の球面形状に対応した凹陥面51に加工している。このような円筒状碍子50の間に、球状碍子52を挟み込むことによって、図5に示すように、センサ本体部20を曲げたときに碍子間に大きな隙間が生じないようにし、コイル30が芯線28に接触するのを確実に防止している。
【0019】
しかし、碍子間に隙間が全く形成されないような構造にしたり、隙間を極端に小さくしすぎると、漏洩物質が芯線にまで到達せず漏洩センサとしての機能が十分に発揮できなかったり、漏洩物質が芯線に到達するまでに時間がかかり感度が悪くなることも予想される。そこで、そのような場合には、円筒状碍子50の側面に、外周側から内周側に達する貫通穴58を設ける。貫通穴58の形成個数は任意である。貫通穴58の大きさは、漏洩物質が容易に浸入可能な寸法であればよい。なお、球状碍子にも貫通孔を設けてもよいが、製作の容易性などの点からは円筒状碍子の対向する外周面間を横断するように貫通穴を形成するのがよく、それだけで十分である。碍子の側面に貫通穴58を設けることによって、コイル30と芯線28との不要な接触を防ぎつつ、漏洩物質の芯線28への浸入が容易になる。
【0020】
このような漏洩センサの使用状態の一例を図6に示す。Aは縦断面を、Bは平面(Y−Y間)を表している。これは材料腐食試験装置への適用例である。この装置は、試験融液を保持している鍔付き内容器62と、それを取り囲む外容器64との2重構造であり、蓋体66がOリング68を介して外容器64のフランジ部に載置され、複数本のボルト70で締め付けることによって密封可能となっている。なお鍔付き内容器62は、外容器64のフランジ部内側の凸部65に載置した状態で保持されている。鍔付き内容器62には試験融液72(ここではナトリウム化合物試薬融液)が収容され、該試験融液中に試験片74が浸漬される。試験片74は試験片保持具76によって保持されており、該試験片保持具76は蓋体66を貫通して吊り下げられている。その他、攪拌機78と熱電対80を設ける。外容器64の外側には、側面から底部にかけて電気ヒータ82を設置する。
【0021】
このような材料腐食試験装置において、外容器64の内側面、特に底面にできるだけ広範囲にわたって均一に漏洩センサ84を敷設する。具体的には、図6のBに示すように、底面上に曲がりくねった蛇行形状にして左右対称に配置し、スポット溶接で固定する。勿論、渦巻き形状などでにしてもよい。漏洩センサ84の接続部を端子部86に接続し、配線にて制御盤88に導くようにする。このように内外2重の容器構造にすると、万一、鍔付き内容器62から試験融液72の漏洩が生じても外容器64で受け止めることができるし、その漏洩発生は、直ちに漏洩センサ84によって検知され、制御盤88から漏洩警報として報知させることができる。
【0022】
本発明は、各種液体金属(Li,Na,K,Hg,Pb,Bi等の純金属及びそれらの合金)、あるいはそれらの化合物(LiOH,NaOH,NaO,Na,NaCl等)の漏洩検知に好適であるし、その他、各種のイオン性溶液(HNO,HCl,HSO,CHCOOH等)の漏洩検知にも適用できる。
【0023】
【実施例】
本発明品と比較品を用いて温度サイクル試験を行った。本発明品は図1に示す構造であり、比較品は図7に示す従来構造のセンサ本体部を有するものである。材質及び寸法は次の通りである。
(1)本発明品
芯線…材質:ニッケル材、線径=1mm
円筒状碍子…材質:アルミナ(99.7質量%Al)、外径=3mm、内径=1.6mm、長さ5mm
コイル…材質:ステンレス鋼(SUS304)、コイル外径=5mm、線の直径=0,3mm、コイルの隙間≒0mm、長さ=1900mm
(2)比較品
芯線…材質:ニッケル材、線径=1mm
円筒状碍子…材質:ステアタイト(60質量%SiO,30質量%MgO)、外径=3.2mm、内径1.5mm、長さ3.2mm
編組チューブ…材質:ステンレス鋼(SUS304)、外径=8.2mm、細線の直径=0.12mm、長さ=1900mm
【0024】
このような漏洩センサを図6に示す材料腐食試験装置に組み込み、温度サイクル試験を行った。温度サイクルは、2〜3時間かけてヒータ温度を700〜900℃に昇温し、試験片浸漬のため700〜900℃の一定温度で約1時間保持した後、24時間以上かけて室温まで自然冷却するのが代表的パターンである。このような温度サイクルの試験を3回実施した。試薬には水酸化ナトリウムと過酸化ナトリウムの混合試薬(2回)と水酸化ナトリウムと酸化ナトリウムの混合試薬(1回)を用いた。
【0025】
試験終了後に観察した結果、本発明品ではコイル表面が酸化被膜で覆われていたが、コイルや碍子に破損や変形などの損傷は全く認められなかった。それに対して従来構造の比較品では、編組チューブに部分的な変形や酸化物による毛羽立ちが認められた。
【0026】
また温度サイクル試験を20回実施したところ、比較品では20回目に漏洩警報が作動した。しかし、試薬漏洩の痕跡は認められず、誤動作であることが判明した。それに対して本発明品では誤動作は生じなかった。誤動作を生じた比較品について詳細に観察した結果、碍子を覆っている編組チューブに、そのほぼ全長にわたって細線の切断と毛羽立ちが認められた。また、ステアタイト製の碍子には、温度サイクルと外容器内に浸入したナトリウム化合物蒸気(水酸化ナトリウム等)の付着による化学変化により、割れが生じていた。
【0027】
【発明の効果】
本発明に係る漏洩センサは、上記のように、碍子列の外周に保護部材として金属製のコイルを用いる構造としたので、繰り返し温度変化やそれによる膨張・収縮があっても、従来の編組チューブのような細線切断や毛羽立ちが生じず、耐久性が向上し、誤動作発生を防止でき、信頼性が著しく向上する。また、交換や点検などメンテナンスに要する手間や費用を節約できる。
【0028】
また、コイルピッチ(コイル隙間)を適切に設定することで、漏洩物質(導電性液状物質)の十分な浸透性を確保することができるので、液体金属等の凝固し易い液体であっても検知感度が低下する恐れはない。更に、曲げの自由性も良好であるので、曲がりくねった蛇行形状の敷設が困難となることもない。
【図面の簡単な説明】
【図1】本発明に係る漏洩センサの一実施形態を示す説明図。
【図2】そのセンサ本体部における曲げ状態の拡大説明図。
【図3】本発明に係る漏洩センサの他の実施形態を示す説明図。
【図4】その碍子部の拡大説明図。
【図5】そのセンサ本体部における曲げ状態の拡大説明図。
【図6】漏洩センサを材料腐食試験装置に組み込んだ状態の説明図。
【図7】従来の漏洩センサのセンサ本体部の一例を示す説明図。
【符号の説明】
20 センサ本体部
22 接続部
24 円筒状碍子
26 芯線挿通孔
28 芯線
30 コイル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a leak sensor for detecting a liquid material having conductivity, and more specifically, to improve durability by making a metal coil surround the outer periphery of a large number of insulator rows holding a core wire. The present invention relates to a conductive liquid material leakage sensor that prevents malfunction. This technique is not particularly limited, but is useful for leak detection in, for example, a material corrosion test apparatus using a liquid metal or a molten metal compound.
[0002]
[Prior art]
In a device holding various liquids, it is often necessary to quickly and surely detect when a liquid leaks from a container or the like. If the liquid used has conductivity, a leak sensor utilizing the property can be constructed. One example of the prior art is shown in FIG. In this leak sensor, a metal core wire 12 is inserted into a row of a large number of electrically insulating insulators 10 having a core wire insertion hole at the center, and a metal braided tube 14 surrounds the row of insulators. Is composed. Here, the insulator 10 has a short cylindrical shape. The braided tube 14 is formed by knitting the whole into a tube shape using a thin metal wire. The principle of operation of the leak detection is that if a leaked substance (conductive liquid material) adheres between the core wire and the braided tube, the electrical resistance between the core wire and the braided tube (that is, ground) changes. By detecting, the presence or absence of leakage is detected.
[0003]
Such a leak sensor in the form of a coaxial cable is usually laid in a meandering shape outside the container or the like holding the conductive liquid substance so as to cover the entire bottom.
[0004]
[Problems to be solved by the invention]
However, the conventional leak sensor has a problem that a malfunction is liable to occur, depending on a use state and a use environment, such that a leak detection signal is generated even though no leak actually occurs. Braided tubes are excellent in flexibility and tensile strength, but when used at high temperatures, repeated damage due to thermal expansion and contraction due to temperature changes and deterioration due to high-temperature oxidation are severe, so the thin metal wires that make up the braided tubes are broken. And fuzzing due to surface oxides. The cause of the malfunction is that the fluffy thin metal wires come into contact with the core wire and short-circuit (see a portion surrounded by a symbol X in FIG. 7).
[0005]
Further, in the conventional leak sensor, when the leaked material has a property of rapidly solidifying, particularly when the leak amount is small, the leaked material may be blocked by the braided tube and solidified as it is. Then, since the leaked substance does not penetrate to the core wire, leak detection cannot be performed. As described above, there is also a problem that the detection cannot be performed or the detection sensitivity is lowered depending on the properties of the conductive liquid substance to be detected and the state of the leakage.
[0006]
An object of the present invention is to provide a conductive liquid substance leakage sensor which has excellent durability, can prevent malfunction, and has good detection sensitivity.
[0007]
[Means for Solving the Problems]
The present invention provides a structure in which a metal core wire is inserted into a row of a large number of electrically insulating insulators made of a heat-resistant and corrosion-resistant substance and having a core wire insertion hole at the center, and the outer periphery of the insulator row is surrounded by a metal protection member. In a sensor that has a sensor main body and detects a leak of a conductive liquid material by detecting a change in electric resistance between a core wire and a protective member, the use of a coil as a protective member surrounding the outer periphery of the insulator row is considered. It is a leakage sensor of a conductive liquid material which is a feature.
[0008]
Here, the specific shape of the insulator is arbitrary, but is assumed to be a short tubular shape (typically a cylindrical shape), and a large number of tubular insulators having the same shape or different shapes are arranged in a line. Alternatively, a cylindrical insulator and a spherical insulator having an outer diameter larger than the inner diameter of the cylindrical insulator may be alternately arranged. In these, it is preferable to form a through hole in the side surface of the cylindrical insulator, the through hole having a size that allows the conductive liquid material to sufficiently penetrate and extending from the outer peripheral surface to the inner peripheral surface.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an explanatory diagram showing one embodiment of a leak sensor according to the present invention. This leak sensor comprises a sensor body 20 and connecting portions 22 located at both ends thereof. This is a leak sensor for a conductive liquid material, which is particularly suitable for use in an environment having a high temperature in the atmosphere (for example, 700 to 900 ° C.). The sensor main body 20 is a part that functions as a sensor, and the connection part 22 is a part that connects the sensor main body to external wiring.
[0010]
In this embodiment, the sensor main body 20 has a large number of cylindrical insulators 24 of the same shape having electrical insulation arranged in a line, and a metal core 28 is inserted into a core insertion hole 26 formed at the center thereof. In addition, the outer periphery of the row composed of a large number of cylindrical insulators 24 is surrounded by a metal coil 30. FIG. 2 shows the detailed structure and the bending state.
[0011]
The cylindrical insulator 24 is made of a heat and corrosion resistant material such as a ceramic material (for example, alumina or steatite). It is preferable that the inner diameter of the cylindrical insulator 24 is a dimension that allows the core wire 28 to be inserted with a margin, and the outer diameter and the length dimension are also determined according to the wire diameter of the core wire used. Since the ceramic material hardly deforms, the degree of freedom of bending of the sensor main body 20 becomes poor when the dimension in the axial direction increases. Therefore, when it is necessary to bend and attach with a small curvature, a large number is arranged in a short shape so as not to be in close contact with each other but to have a slight gap. The cylindrical insulators may be arranged by combining a plurality of types having different lengths. In addition, when the sensor main body is bent, adjacent insulators rub against each other. Therefore, it is preferable to perform chamfering or rounding on peripheral portions of both end surfaces of the insulator.
[0012]
The core wire 28 may be a copper wire, but a heat-resistant metal wire (here, a nickel wire) is used in order to minimize material deterioration due to oxidation. The wire diameter is determined according to the installation conditions and strength of the leak sensor. For example, in the case of bending and setting in a narrow space with a small curvature, the smaller the wire diameter is, the easier it is to lay. However, when the diameter is extremely small, the strength and durability are poor. In such a case, a wire diameter of about 1 mm having high flexibility (flexibility) is suitable. In addition, by increasing the wire diameter, deterioration due to repeated damage and high-temperature oxidation can be suppressed, so that the wire diameter can be set to 2 to 3 mm when bending flexibility is not required. Therefore, in general, it is appropriately determined from the range of about 0.5 to 3 mm in consideration of use conditions and use environment (freedom of installation, strength, durability, and the like).
[0013]
The coil 30 is formed by spirally winding a wire made of a material having excellent heat resistance and oxidation resistance such as stainless steel and capable of securing necessary strength. It is desirable that the coil outer diameter has a space capable of protecting the inner insulator 24 and securing freedom against deformation such as bending (no friction with the insulator when bent). It is preferable to set it to about double (gap about 1 to 2 mm). The coil pitch is set so that a conductive liquid substance as a detection target can enter the inside of the coil. When the leaked material does not solidify and has high fluidity, the gap between the coils may be almost nonexistent. This is because even if the coil has no gap in a natural state, a certain gap is naturally generated by being bent at the time of laying. Therefore, the drawings are drawn in a natural state without any gaps for convenience. In general, a coil having a gap of about 0.5 to 1 mm is preferable, although it depends on the properties of the leaked substance. In FIG. 2, the coil is drawn very sparsely at the bent portion (extending the gap between the coils very wide) for the sake of simplicity.
[0014]
The structure of the connecting portions 22 located at both ends of the sensor main body 20 is as follows. The end of the core wire 28 is led to the outside via a lead wire 32 provided with an insulating coating 31 (covered with rubber or the like). The lead wire 32 is made of a metal wire having low electric resistance (such as copper or aluminum), and the lead wire 32 and the core wire 28 are connected by press-fitting a butt sleeve 34. Therefore, the butting sleeve 34 is made of copper or the like having good crimpability. The vicinity of the end of the insulator row is protected by covering with a tube 36 made of stainless steel. A stainless steel adapter 38 is placed over the outer periphery of the connection between the lead wire 32 and the core wire 28 by the butt sleeve 34, and is fixed with epoxy resin. Further, a stainless steel collar 40 is provided on the outermost periphery thereof, and the both ends thereof are joined to the adapter 38 and the coil 30 by welding or the like to protect the internal structure. The core wire 28 and the lead wire 32 are insulated by an insulator and epoxy resin so that a malfunction does not occur due to a short circuit between the adapter 38, the tube 36, and the collar 40.
[0015]
The principle of operation of this leak sensor is basically the same as in the prior art. That is, if a leaked substance adheres between the core wire 28 and the coil 30, the electric resistance between the core wire 28 and the coil 30 (that is, the ground) changes. Therefore, the presence or absence of leakage is detected by detecting the change in the electric resistance. It is to do. Therefore, the leak sensor is laid outside the container or the like holding the conductive liquid material in a meandering shape so as to cover the entire bottom. In this leak sensor, even when the sensor main body 20 is bent, the coil 30 has good followability, can be bent without plastic deformation, and deterioration of the bent portion can be suppressed. In addition, the use of the coil 30 does not cause fluffing due to deterioration unlike a conventional braided tube, so that a malfunction due to a short circuit does not occur. Further, by adjusting the coil pitch, it is possible to ensure the permeability of the leaked substance into the core wire, and the leak detection sensitivity is improved.
[0016]
FIG. 3 is an explanatory view showing another embodiment of the leak sensor according to the present invention. This leak sensor also uses a coil as a protection member on the outer periphery, and the basic configuration is the same as that in FIG. 1 described above. Therefore, corresponding members are denoted by the same reference numerals, and detailed description thereof will be omitted. . FIG. 4 shows details of the insulator portion, and FIG. 5 shows a bent state of the sensor main body portion.
[0017]
In this embodiment, two types of insulators, a cylindrical insulator 50 and a spherical insulator 52 having an outer diameter larger than the inner diameter of the cylindrical insulator 50, are used and arranged alternately. FIG. 4A shows a combined state of the cylindrical insulator 50 and the spherical insulator 52 (however, they are drawn apart for easy understanding of the drawing), and FIG. 3 shows details of the spherical insulator 52, respectively. The core wire 28 is inserted into a core wire insertion hole 54 formed in the center of the cylindrical insulator 50 and a core wire insertion hole 56 formed in the spherical insulator 52. As described above, a ceramic material is optimal as the insulator material from the viewpoints of heat resistance, corrosion resistance to leaked substances, and electrical insulation.
[0018]
However, since the ceramic-based material is hardly deformed, short cylindrical insulators are arranged on the covering of the core wire 28, but a gap is formed between the cylindrical insulators at the bent portion. If the gap is too large, the coil may contact the core wire. Therefore, in this embodiment, both end surfaces of the cylindrical insulator 50 are machined into concave surfaces 51 corresponding to the spherical shape of the spherical insulator 52. By interposing the spherical insulator 52 between such cylindrical insulators 50, as shown in FIG. 5, when the sensor main body 20 is bent, a large gap is not formed between the insulators, and the coil 30 is connected to the core wire. 28 is reliably prevented.
[0019]
However, if the structure is such that no gap is formed between the insulators, or if the gap is made extremely small, the leaked substance will not reach the core wire and the function as a leak sensor will not be fully exhibited, It is also expected that it takes a long time to reach the core wire and the sensitivity is deteriorated. Therefore, in such a case, a through hole 58 extending from the outer peripheral side to the inner peripheral side is provided on the side surface of the cylindrical insulator 50. The number of the through holes 58 formed is arbitrary. The size of the through hole 58 may be a size that allows the leaked substance to easily enter. A through hole may be provided in the spherical insulator, but from the viewpoint of ease of manufacture, etc., it is preferable to form the through hole so as to cross between the facing outer peripheral surfaces of the cylindrical insulator. It is. By providing the through hole 58 on the side surface of the insulator, unnecessary contact between the coil 30 and the core wire 28 can be prevented, and leakage material can easily enter the core wire 28.
[0020]
FIG. 6 shows an example of a use state of such a leak sensor. A represents a longitudinal section, and B represents a plane (between Y 1 and Y 2 ). This is an example of application to a material corrosion test device. This device has a double structure of a flanged inner container 62 holding a test melt and an outer container 64 surrounding the inner container 62. A lid 66 is attached to a flange portion of the outer container 64 via an O-ring 68. It is mounted and can be sealed by tightening with a plurality of bolts 70. In addition, the inner container 62 with a flange is held in a state of being placed on the convex portion 65 inside the flange portion of the outer container 64. A test melt 72 (here, a sodium compound reagent melt) is stored in the inner container 62 with a flange, and a test piece 74 is immersed in the test melt. The test piece 74 is held by a test piece holder 76, and the test piece holder 76 is suspended from the lid 66. In addition, a stirrer 78 and a thermocouple 80 are provided. An electric heater 82 is installed outside the outer container 64 from the side to the bottom.
[0021]
In such a material corrosion test apparatus, the leak sensor 84 is laid on the inner side surface, particularly the bottom surface, of the outer container 64 as widely as possible over a wide range. Specifically, as shown in FIG. 6B, a meandering meandering shape is provided on the bottom surface, symmetrically arranged, and fixed by spot welding. Of course, a spiral shape or the like may be used. The connection part of the leak sensor 84 is connected to the terminal part 86 and led to the control panel 88 by wiring. If the inner and outer container structure is doubled as described above, even if the test melt 72 leaks from the inner container 62 with the flange, it can be received by the outer container 64. The occurrence of the leak is immediately detected by the leak sensor 84. , And can be notified from the control panel 88 as a leak warning.
[0022]
The present invention relates to various liquid metals (pure metals such as Li, Na, K, Hg, Pb, Bi and alloys thereof) or compounds thereof (LiOH, NaOH, Na 2 O, Na 2 O 2 , NaCl, etc.). It is suitable for detecting leakage of various ionic solutions (HNO 3 , HCl, H 2 SO 4 , CH 3 COOH, etc.).
[0023]
【Example】
A temperature cycle test was performed using the product of the present invention and the comparative product. The product of the present invention has the structure shown in FIG. 1, and the comparative product has the sensor body of the conventional structure shown in FIG. The materials and dimensions are as follows.
(1) Core wire of the product of the present invention ... Material: Nickel material, wire diameter = 1 mm
Cylindrical insulator: Material: alumina (99.7% by mass Al 2 O 3 ), outer diameter = 3 mm, inner diameter = 1.6 mm, length 5 mm
Coil: Material: stainless steel (SUS304), coil outer diameter = 5 mm, wire diameter = 0.3 mm, coil gap ≒ 0 mm, length = 1900 mm
(2) Comparative core wire: Material: Nickel material, wire diameter = 1 mm
Cylindrical insulator: Material: steatite (60 mass% SiO 2 , 30 mass% MgO), outer diameter = 3.2 mm, inner diameter 1.5 mm, length 3.2 mm
Braided tube ... Material: Stainless steel (SUS304), outer diameter = 8.2mm, fine wire diameter = 0.12mm, length = 1900mm
[0024]
Such a leak sensor was incorporated in a material corrosion test apparatus shown in FIG. 6, and a temperature cycle test was performed. The temperature cycle is to raise the heater temperature to 700 to 900 ° C over 2 to 3 hours, hold at a constant temperature of 700 to 900 ° C for about 1 hour for immersion of the test piece, and then let it naturally reach room temperature over 24 hours. Cooling is a typical pattern. Three such temperature cycling tests were performed. As the reagent, a mixed reagent of sodium hydroxide and sodium peroxide (twice) and a mixed reagent of sodium hydroxide and sodium oxide (one time) were used.
[0025]
As a result of observation after the end of the test, in the product of the present invention, the coil surface was covered with the oxide film, but no damage such as breakage or deformation was found on the coil or the insulator. On the other hand, in the comparative product having the conventional structure, the braided tube was partially deformed and fuzzed by the oxide.
[0026]
When the temperature cycle test was performed 20 times, the leak alarm was activated at the 20th time for the comparative product. However, no trace of reagent leakage was observed, and it was found that the operation was malfunctioning. In contrast, no malfunction occurred in the product of the present invention. As a result of observing the malfunctioning comparative product in detail, it was found that the braided tube covering the insulator was cut and fuzzed over almost the entire length of the braided tube. In addition, cracks occurred in the insulator made of steatite due to a chemical change due to the temperature cycle and the adhesion of sodium compound vapor (such as sodium hydroxide) that had entered the outer container.
[0027]
【The invention's effect】
As described above, the leak sensor according to the present invention has a structure in which a metal coil is used as a protection member on the outer periphery of the insulator row. As described above, the thin wires are not cut or fluffed, the durability is improved, malfunctions can be prevented, and the reliability is significantly improved. Further, labor and cost required for maintenance such as replacement and inspection can be saved.
[0028]
Also, by setting the coil pitch (coil gap) appropriately, sufficient permeability of the leaked substance (conductive liquid substance) can be ensured, so that even liquids such as liquid metal which are easily solidified can be detected. There is no danger that the sensitivity will drop. Further, since the bending flexibility is good, it is not difficult to lay the meandering shape.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing one embodiment of a leak sensor according to the present invention.
FIG. 2 is an enlarged explanatory view of a bent state of the sensor main body.
FIG. 3 is an explanatory view showing another embodiment of the leak sensor according to the present invention.
FIG. 4 is an enlarged explanatory view of the insulator portion.
FIG. 5 is an enlarged explanatory view of a bent state of the sensor main body.
FIG. 6 is an explanatory view showing a state in which the leak sensor is incorporated in a material corrosion test apparatus.
FIG. 7 is an explanatory view showing an example of a sensor body of a conventional leak sensor.
[Explanation of symbols]
Reference Signs List 20 sensor body portion 22 connection portion 24 cylindrical insulator 26 core wire insertion hole 28 core wire 30 coil

Claims (3)

耐熱・耐食性物質からなり中心に芯線挿通孔を有する多数の電気絶縁性の碍子の列に金属製の芯線を挿通し、その碍子列の外周を金属製の保護部材で取り囲んだ構造のセンサ本体部を備え、芯線と保護部材間の電気抵抗の変化を検出することで導電性液状物質の漏洩を検知するセンサにおいて、碍子列の外周を取り囲む保護部材としてコイルを用いることを特徴とする導電性液状物質の漏洩センサ。A sensor body with a structure in which a metal core wire is inserted into a row of a large number of electrically insulating insulators made of a heat-resistant and corrosion-resistant substance and having a core wire insertion hole at the center, and the outer periphery of the insulator row is surrounded by a metal protection member. A sensor for detecting leakage of the conductive liquid material by detecting a change in electrical resistance between the core wire and the protection member, wherein a coil is used as a protection member surrounding the outer periphery of the insulator row. Material leak sensor. 碍子は、円筒状碍子と、該円筒状碍子の内径よりも大きな外径の球状碍子との2種類からなり、それらが交互に配列されていている請求項1記載の導電性液状物質の漏洩センサ。2. The leakage sensor according to claim 1, wherein the insulator comprises two types of insulators: a cylindrical insulator and a spherical insulator having an outer diameter larger than the inner diameter of the cylindrical insulator, and these are alternately arranged. . 円筒状碍子の側面に、導電性液状物質が浸入可能な大きさの貫通穴が形成されている請求項2記載の導電性液状物質の漏洩センサ。3. The leakage sensor for a conductive liquid material according to claim 2, wherein a through hole is formed in a side surface of the cylindrical insulator so that the conductive liquid material can enter.
JP2003077441A 2003-03-20 2003-03-20 Conductive liquid substance leakage sensor Expired - Fee Related JP3711281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077441A JP3711281B2 (en) 2003-03-20 2003-03-20 Conductive liquid substance leakage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077441A JP3711281B2 (en) 2003-03-20 2003-03-20 Conductive liquid substance leakage sensor

Publications (2)

Publication Number Publication Date
JP2004286521A true JP2004286521A (en) 2004-10-14
JP3711281B2 JP3711281B2 (en) 2005-11-02

Family

ID=33292193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077441A Expired - Fee Related JP3711281B2 (en) 2003-03-20 2003-03-20 Conductive liquid substance leakage sensor

Country Status (1)

Country Link
JP (1) JP3711281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231224A (en) * 2018-01-17 2018-06-29 中国科学院上海应用物理研究所 A kind of analogy method of nuclear material in molten salt reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231224A (en) * 2018-01-17 2018-06-29 中国科学院上海应用物理研究所 A kind of analogy method of nuclear material in molten salt reactor
CN108231224B (en) * 2018-01-17 2019-12-17 中国科学院上海应用物理研究所 Simulation method of nuclear material in molten salt reactor

Also Published As

Publication number Publication date
JP3711281B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
US7740403B2 (en) High-temperature sensor
KR101113532B1 (en) Temperature sensor for a resistance thermometer, in particular for use in the exhaust gas system of combustion engines
JPH0778441B2 (en) High temperature Coriolis mass flow meter
US8444317B2 (en) Multiposition temperature measuring cable
US20110222583A1 (en) Apparatus for determining and/or monitoring a process variable
CN103308207A (en) Temperature sensor
JP5618310B1 (en) Temperature sensor for high temperature
JP5126563B1 (en) MI cable with terminal sleeve that does not disturb the magnetic field and is not affected by the magnetic field
CN108204863A (en) High-temperature exhaust air sensor
US20150349234A1 (en) Methods Of Making A Specialty Junction Thermocouple For Use In High Temperature And Corrosive Environments
JP3711281B2 (en) Conductive liquid substance leakage sensor
JP2009002890A (en) Gas sensor
KR101623382B1 (en) Thermocouple of generator water cooling coil and Temperature measurement using the same
JP5574788B2 (en) Conductive liquid leak detection line
JP5780809B2 (en) Conductive liquid detection sensor
JP7114507B2 (en) sensor
JP5562168B2 (en) Resistance temperature detector manufacturing method, and temperature measurement sensor incorporating resistance temperature detector
JP5317854B2 (en) Conductive fluid detector
EP0989393A2 (en) Thermocouple and method of manufacture
KR101009658B1 (en) Alumina mandrel type thermocouple and its fabrication method
JP2024008126A (en) thermocouple
KR101463302B1 (en) Guide unit and sensing device for liquid metal leak detection having the same
JP6362971B2 (en) Tube temperature measuring device and method for manufacturing tube temperature measuring device
JP2017219449A (en) Liquid level sensor
KR102511323B1 (en) Laser welding method and temperature sensor manufacturing method using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050812

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees