JP2004286403A - Pipe connecting method of refrigerating machine using combustible refrigerant - Google Patents

Pipe connecting method of refrigerating machine using combustible refrigerant Download PDF

Info

Publication number
JP2004286403A
JP2004286403A JP2003082195A JP2003082195A JP2004286403A JP 2004286403 A JP2004286403 A JP 2004286403A JP 2003082195 A JP2003082195 A JP 2003082195A JP 2003082195 A JP2003082195 A JP 2003082195A JP 2004286403 A JP2004286403 A JP 2004286403A
Authority
JP
Japan
Prior art keywords
refrigerant
combustible refrigerant
pipe
adhesive
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003082195A
Other languages
Japanese (ja)
Inventor
Yoshihiko Nagase
好彦 長瀬
Kazuma Sakai
数馬 阪井
Katsuichi Idei
克一 出井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003082195A priority Critical patent/JP2004286403A/en
Publication of JP2004286403A publication Critical patent/JP2004286403A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipe connecting method capable of efficiently connecting a pipe with a refrigerating machine using a combustible refrigerant in safety, while preventing ignition by the combustible refrigerant even in a state in which the combustible refrigerant is filled up. <P>SOLUTION: In this pipe connecting method in the refrigerating device using the combustible refrigerant, the pipe of the refrigerating machine using the combustible refrigerant is connected by means of brazing filler metal or adhesive agent. A melting point of the brazing filler metal or an adhesion temperature of the adhesive agent is lower than an ignition point of the combustible refrigerant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、可燃性冷媒を使用する冷蔵庫等の冷凍装置の配管接続方法に関する。
【0002】
【従来の技術】
冷蔵庫を始めとした冷凍装置の配管接続には、一般的に、銅ロウや銀ロウ等の融点の高いろう材を用い、バーナー等を使用して接続箇所を溶接して行っている。これは、使用する冷媒(例えば、R134a:CHFCF等)に可燃性がないため、銅ロウや銀ロウ等の融点の高いろう材を使用しても引火等が起こらず、安全上問題がないからである。
【0003】
ところで、近年、オゾン層の破壊や地球温暖化に対する影響を考慮して、冷凍装置の冷媒に炭化水素系冷媒(HC冷媒)やアンモニア等の冷媒を用いることが実用化されている。
これらの冷媒は可燃性であるため、当該冷媒を用いた冷蔵庫等の配管の接続作業をする場合、上記のようなろう材での溶接では、冷凍回路内に残った冷媒やコンプレッサのオイル中に溶け込んだ冷媒が溶接時に熱の影響を受け、発泡、噴出しバーナーにより爆発する恐れがある。
これは、上記ろう材の融点が上記可燃性冷媒の発火点がはるかに高いためであり、可燃性冷媒を用いた冷凍装置のメンテナンスを安全かつ円滑に行うには、配管接続作業における上記問題を解決する必要がある。
【0004】
ここで、室内ユニットと室外ユニットとを配管にて結合した後、作動媒体を全体に循環させる前に、炭化水素ガスで配管内の空気を置換する冷凍システムの施工方法が提案されている(例えば、特許文献1参照)。
しかし、当該方法では、上記のような置換により冷凍サイクル中への空気の混入を防ぐことはできるが、具体的な配管接続方法、特に、安全かつ効率のよい配管接続方法ついては言及されていない。
【0005】
また、サービスバルブを使用して冷媒を封入する冷媒入れ替え方法が提案されている(例えば、特許文献2参照)。しかし、当該方法でも、可燃性冷媒や可燃性冷媒を含有するオイル等が残留する場合があり、その場合には、既述の通り、可燃性冷媒への発火の危険性が生じてしまう。
【0006】
【特許文献1】
特開平9−133440号公報
【特許文献2】
特開平10−160295号公報
【0007】
【発明が解決しようとする課題】
以上から、本発明は、上記問題点を解決することを目的とする。すなわち、本発明は、可燃性冷媒を使用する冷凍装置に対し、可燃性冷媒を充填した状態でも、当該可燃性冷媒による発火を防ぎながら、安全かつ効率よく配管接続をすることが可能な配管接続方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決すべく鋭意検討の結果、本発明者は、下記本発明に想到し、当該課題を解決することができることを見出した。
すなわち、本発明は、可燃性冷媒を使用する冷凍装置の配管をろう材または接着剤によって接続する方法であって、前記ろう材の融点または接着剤の接着温度が前記可燃性冷媒の発火点より低いことを特徴とする可燃性冷媒を使用する冷凍装置の配管接続方法である(以下、単に「本発明の配管接続方法」ということがある)。
【0009】
前記可燃性冷媒の発火点(X)と、前記ろう材の融点(Y)との差(X−Y)は、100℃以上であることが好ましい。また、前記可燃性冷媒の発火点(X)と、前記接着剤の接着温度(Z)との差(X−Z)は、100℃以上であることが好ましい。さらに、前記ろう材はハンダであることが好ましい。
【0010】
【発明の実施の形態】
本発明の冷凍装置の配管接続方法は、可燃性冷媒を使用する冷凍装置に適用される。可燃性冷媒としては、イソブタン、プロパン、プロピレン、アンモニア等が挙げられる。これらの冷媒は発火点が420〜650℃であるため、当該発火点以上でバーナーを使用し銀ろう(融点約700℃)等での溶接により配管接続を行った場合、配管中に残留する可燃性冷媒等が発火し、爆発してしまう危険性が高い。
そこで、本発明では、配管をろう材または接着剤によって接続するが、当該ろう材または接着剤としては、ろう材の融点または接着温度が可燃性冷媒の発火点より低いものを使用する。
可燃性冷媒の発火点よりも、融点の低いろう材または接着温度の低い接着剤を用いることで、既述の可燃性冷媒への発火を防ぎながら、効率よく配管の接続を行うことが可能となる。
【0011】
前記可燃性冷媒の発火点(X)と、前記ろう材の融点(Y)との差(X−Y)は100℃以上であることが好ましい。100℃以上とすることで、可燃性冷媒が残留していても、より安全かつ安心して配管の接続をすることができる。
また、前記可燃性冷媒の発火点(X)と、前記接着剤の接着温度(Z)との差(X−Z)は、100℃以上であることが好ましい。100℃以上とすることで、可燃性冷媒が残留していても、より安全かつ安心して配管の接続をすることができる。
【0012】
前記ろう材としては、ハンダを使用することが好ましい。ハンダは、銀ロウや銅ロウより融点が低く、安価であり、取り扱い性もよいという利点がある。
また、例えば、可燃性冷媒の一つであるイソブタンは、従来から使用されているR134aに比べ、高圧側圧力が約1/2になるため、配管接続強度も小さくてすむ。従って、ハンダによる溶接でも実用上問題ない接続強度を維持することができる。
【0013】
ハンダとしては、一般的なもの使用することができる。具体的には、PbやAg、Cu等の金属を含有するSn系合金を使用することが好ましい。Pb、Ag、Cu等の含有量は、用途や所望の特性に応じて調整することが好ましい。
例えば、ファインソルダー FLF03(松尾ハンダ)組成Sn99.3%、Cu0.7%等は、融点も低く、配管接続強度も高い状態に維持することができるため好ましい。
なお、環境を配慮するとPbを含有しないハンダを使用することが好ましい。
【0014】
ハンダによる配管の接続は、一般的に使用されるハンダゴテ等を用いて行うことができる。接続する際の配管は、振動などによるズレを防ぐため予め固定しておくことが好ましい。
【0015】
接続する配管と配管との間は、0.25mm以下とすることが好ましい。0.25mm以下であればハンダ等のろう材が毛細管現象により狭い間隙に拡散し、接合を比較的容易に行うことができる。
【0016】
本発明の配管接続方法に使用される接着剤としては、エポキシ系の接着剤等を使用することができる。
エポキシ系の接着剤としては、一液型の接着剤、二液型(主剤+硬化剤)の接着剤、三成分以上を混合する接着剤等があるが、特に限定されず、接着温度や配管の材質等により適宜選択することが好ましい。これらエポキシ系の接着剤の接着温度は、一般的は、200℃以下であることが好ましく、160℃以下であることがより好ましい。
【0017】
接続する配管は、予め、接続する表面付近の酸化被膜や油等を除去しておくことが好ましい。酸化膜の除去法としては、サンドペーパーやワイヤーブラシ等を使用することが好ましい。油の除去には、アセトン等の有機溶剤を使用することが好ましい。
【0018】
本発明の配管接続方法が適用される冷凍装置の冷凍サイクルの一例である概念図を図1に示す。
図1に示すように、当該冷凍サイクルは、圧縮機100、ガスクーラ120、膨張機構140、蒸発器160、四方弁180、乾燥装置200が配管10により接続されて構成されている。また、図1中、実線および破線の矢印はそれぞれ可燃性冷媒(以下、単に「冷媒」ということがある)が流れる方向を示し、実線は通常の冷却を行う場合を、破線は除霜等を行う場合を示す。乾燥装置200は、図1では膨張機構140とガスクーラ120との間に設けている例を示しているが、この位置だけでなく、条件によっては低圧側の位置に設けられる場合もある。
【0019】
庫内を冷却する場合、圧縮機100で圧縮された高温高圧の冷媒ガスは、四方弁180を通りガスクーラ120で冷却され、低温高圧の冷媒液となる。この冷媒液は膨張機構140(例えば、キャピラリーチューブ、温度式膨張弁など)で減圧され、僅かにガスを含む低温低圧液となって蒸発器160に至り、室内の空気から熱を得て蒸発し、再び四方弁180を通って圧縮機100に至り庫内を冷却する。
【0020】
蒸発器160を除霜等する場合は、四方弁180を冷媒が破線を通るように切り替えて冷媒の流れを冷房の場合とは逆方向に変えればよい。
【0021】
本発明の配管接続方法では、既述のようなろう材もしくは接着剤を使用して配管接続を行うものであるため、可燃性冷媒を完全に除去する等の処理や、安全のための新たな装置を設ける必要がない。従って、可燃性冷媒を作動冷媒とする上記のような冷凍サイクル等を具備する冷凍装置の配管の接続を安全かつ効率よく行うことができる。
なお、本発明の配管接続方法を適用できる冷凍装置としては、特に限定されず、一般的な冷蔵庫等に適用できる。また、配管接続のほかに、配管にピンホールや亀裂等の欠陥が生じた場合の修理にも適用できる。
【0022】
【発明の効果】
以上本発明の配管接続方法によれば、可燃性冷媒を充填した状態でも、当該可燃性冷媒による発火を防ぎながら、安全かつ効率よく配管接続をすることができため、可燃性冷媒を作動冷媒とする冷凍装置の配管接続に最適である。
【図面の簡単な説明】
【図1】冷凍装置に適用される冷凍サイクルの一例を示す概念図である。
【符号の説明】
10 配管
100 圧縮機
120 ガスクーラ
140 膨張機構
160 蒸発器
180 四方弁
200 乾燥装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piping connection method for a refrigerating device such as a refrigerator using a combustible refrigerant.
[0002]
[Prior art]
In general, a pipe connection of a refrigerating apparatus such as a refrigerator is performed by using a brazing material having a high melting point, such as copper brazing or silver brazing, and using a burner or the like to weld a connecting portion. This is because the refrigerant to be used (for example, R134a: CH 2 FCF 3 ) does not have flammability, so that even if a brazing material having a high melting point such as copper brazing or silver brazing is used, ignition does not occur and a safety problem occurs. Because there is no.
[0003]
By the way, in recent years, in consideration of the destruction of the ozone layer and the effect on global warming, the use of a refrigerant such as a hydrocarbon-based refrigerant (HC refrigerant) or ammonia as a refrigerant for a refrigerating apparatus has been put to practical use.
Since these refrigerants are flammable, when connecting pipes of refrigerators and the like using the refrigerant, welding with the brazing material as described above causes the refrigerant remaining in the refrigeration circuit or the oil of the compressor to remain in the refrigerant circuit. The melted refrigerant is affected by heat during welding and may explode due to foaming and jet burners.
This is because the melting point of the brazing filler metal is much higher than the ignition point of the flammable refrigerant.To safely and smoothly perform maintenance of the refrigeration system using the flammable refrigerant, the above problem in the pipe connection work must be solved. Need to be resolved.
[0004]
Here, there has been proposed a construction method of a refrigeration system in which air in a pipe is replaced with a hydrocarbon gas before the working medium is circulated through the entire pipe after the indoor unit and the outdoor unit are connected by a pipe (for example, And Patent Document 1).
However, this method can prevent air from being mixed into the refrigeration cycle by the above-described replacement, but does not mention a specific piping connection method, particularly a safe and efficient piping connection method.
[0005]
In addition, a refrigerant replacement method for enclosing a refrigerant using a service valve has been proposed (for example, see Patent Document 2). However, even in this method, the flammable refrigerant or oil containing the flammable refrigerant may remain, in which case, as described above, there is a risk of ignition of the flammable refrigerant.
[0006]
[Patent Document 1]
JP-A-9-133440 [Patent Document 2]
JP-A-10-160295
[Problems to be solved by the invention]
As described above, an object of the present invention is to solve the above problems. That is, the present invention provides a pipe connection that can safely and efficiently connect a pipe to a refrigeration apparatus using a combustible refrigerant while preventing the combustible refrigerant from firing even in a state where the combustible refrigerant is charged. The aim is to provide a method.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have arrived at the present invention described below and have found that the problems can be solved.
That is, the present invention relates to a method of connecting piping of a refrigeration system using a combustible refrigerant with a brazing material or an adhesive, wherein the melting point of the brazing material or the bonding temperature of the adhesive is higher than the ignition point of the combustible refrigerant. This is a piping connection method for a refrigeration system using a flammable refrigerant characterized by a low temperature (hereinafter, may be simply referred to as “the piping connection method of the present invention”).
[0009]
The difference (X−Y) between the ignition point (X) of the flammable refrigerant and the melting point (Y) of the brazing material is preferably 100 ° C. or more. The difference (XZ) between the ignition point (X) of the flammable refrigerant and the bonding temperature (Z) of the adhesive is preferably 100 ° C. or more. Further, it is preferable that the brazing material is solder.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The piping connection method for a refrigerating device of the present invention is applied to a refrigerating device using a combustible refrigerant. Examples of the flammable refrigerant include isobutane, propane, propylene, and ammonia. Since these refrigerants have an ignition point of 420 to 650 ° C., if the pipes are connected by welding with a silver solder (melting point of about 700 ° C.) using a burner above the ignition point, the flammable residue remaining in the pipes There is a high risk that the flammable refrigerant or the like will ignite and explode.
Therefore, in the present invention, the pipes are connected by a brazing material or an adhesive. As the brazing material or the adhesive, one having a melting point or an adhesion temperature of the brazing material lower than the ignition point of the flammable refrigerant is used.
By using a brazing material having a lower melting point or an adhesive having a lower bonding temperature than the ignition point of the flammable refrigerant, it is possible to efficiently connect the pipes while preventing ignition of the flammable refrigerant described above. Become.
[0011]
The difference (X−Y) between the ignition point (X) of the flammable refrigerant and the melting point (Y) of the brazing material is preferably 100 ° C. or more. By setting the temperature at 100 ° C. or more, even if the flammable refrigerant remains, it is possible to connect the piping more safely and safely.
The difference (XZ) between the ignition point (X) of the flammable refrigerant and the bonding temperature (Z) of the adhesive is preferably 100 ° C. or more. By setting the temperature at 100 ° C. or more, even if the flammable refrigerant remains, it is possible to connect the piping more safely and safely.
[0012]
It is preferable to use solder as the brazing material. Solder has the advantages that it has a lower melting point than silver or copper brazing, is inexpensive, and has good handleability.
Further, for example, isobutane, which is one of the flammable refrigerants, has a high pressure side pressure of about 比 べ as compared with conventionally used R134a, so that the pipe connection strength can be small. Therefore, even in welding by soldering, it is possible to maintain a connection strength that is practically no problem.
[0013]
As the solder, a general solder can be used. Specifically, it is preferable to use a Sn-based alloy containing a metal such as Pb, Ag, or Cu. It is preferable to adjust the content of Pb, Ag, Cu and the like according to the use and desired characteristics.
For example, fine solder FLF03 (Matsuo solder) composition Sn 99.3%, Cu 0.7%, or the like is preferable since it has a low melting point and a high pipe connection strength.
In consideration of the environment, it is preferable to use solder that does not contain Pb.
[0014]
The connection of the pipes with solder can be performed using a commonly used soldering iron or the like. It is preferable that the piping at the time of connection be fixed in advance to prevent displacement due to vibration or the like.
[0015]
It is preferable that the distance between the connecting pipes is 0.25 mm or less. If the thickness is 0.25 mm or less, the brazing material such as solder diffuses into a narrow gap due to a capillary phenomenon, so that bonding can be performed relatively easily.
[0016]
As the adhesive used in the pipe connection method of the present invention, an epoxy adhesive or the like can be used.
Examples of the epoxy-based adhesive include a one-component type adhesive, a two-component type (main agent + curing agent) adhesive, and an adhesive which mixes three or more components. It is preferable to select as appropriate depending on the material and the like. Generally, the bonding temperature of these epoxy-based adhesives is preferably 200 ° C. or lower, more preferably 160 ° C. or lower.
[0017]
It is preferable that the pipe to be connected has an oxide film, oil, and the like near the surface to be connected removed in advance. As a method for removing the oxide film, it is preferable to use a sandpaper, a wire brush, or the like. For removing oil, it is preferable to use an organic solvent such as acetone.
[0018]
FIG. 1 is a conceptual diagram showing an example of a refrigeration cycle of a refrigeration apparatus to which the pipe connection method of the present invention is applied.
As shown in FIG. 1, the refrigeration cycle includes a compressor 100, a gas cooler 120, an expansion mechanism 140, an evaporator 160, a four-way valve 180, and a drying device 200 connected by a pipe 10. In FIG. 1, solid and dashed arrows indicate the directions in which flammable refrigerant (hereinafter, sometimes simply referred to as “refrigerant”) flows, the solid line indicates normal cooling, and the dashed line indicates defrosting or the like. Here is an example. Although FIG. 1 shows an example in which the drying device 200 is provided between the expansion mechanism 140 and the gas cooler 120, the drying device 200 may be provided not only at this position but also at a lower pressure side depending on conditions.
[0019]
When cooling the inside of the refrigerator, the high-temperature and high-pressure refrigerant gas compressed by the compressor 100 passes through the four-way valve 180 and is cooled by the gas cooler 120 to become a low-temperature and high-pressure refrigerant liquid. This refrigerant liquid is decompressed by an expansion mechanism 140 (for example, a capillary tube, a temperature-type expansion valve, etc.), becomes a low-temperature low-pressure liquid containing a small amount of gas, reaches an evaporator 160, and evaporates by obtaining heat from indoor air. Then, the refrigerant reaches the compressor 100 again through the four-way valve 180, and cools the inside of the refrigerator.
[0020]
When the evaporator 160 is to be defrosted or the like, the four-way valve 180 may be switched so that the refrigerant passes through a dashed line, and the flow of the refrigerant may be changed in a direction opposite to that for cooling.
[0021]
In the pipe connection method of the present invention, since the pipe connection is performed using the brazing material or the adhesive as described above, processing such as completely removing the flammable refrigerant, and a new method for safety. There is no need to provide equipment. Therefore, it is possible to safely and efficiently connect the piping of the refrigerating apparatus including the above-described refrigerating cycle using the combustible refrigerant as the working refrigerant.
The refrigeration apparatus to which the pipe connection method of the present invention can be applied is not particularly limited, and can be applied to general refrigerators and the like. In addition to the pipe connection, the present invention can also be applied to repair when a defect such as a pinhole or a crack occurs in the pipe.
[0022]
【The invention's effect】
According to the pipe connection method of the present invention, even in a state in which the flammable refrigerant is charged, the flammable refrigerant can be connected safely and efficiently while preventing ignition by the flammable refrigerant. It is most suitable for piping connection of refrigeration equipment.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram illustrating an example of a refrigeration cycle applied to a refrigeration apparatus.
[Explanation of symbols]
10 piping 100 compressor 120 gas cooler 140 expansion mechanism 160 evaporator 180 four-way valve 200 drying device

Claims (1)

可燃性冷媒を使用する冷凍装置の配管をろう材または接着剤によって接続する方法であって、
前記ろう材の融点または接着剤の接着温度が前記可燃性冷媒の発火点より低いことを特徴とする可燃性冷媒を使用する冷凍装置の配管接続方法。
A method of connecting piping of a refrigeration apparatus using a combustible refrigerant by brazing material or an adhesive,
A pipe connection method for a refrigeration apparatus using a flammable refrigerant, wherein a melting point of the brazing material or an adhesion temperature of the adhesive is lower than a firing point of the flammable refrigerant.
JP2003082195A 2003-03-25 2003-03-25 Pipe connecting method of refrigerating machine using combustible refrigerant Pending JP2004286403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082195A JP2004286403A (en) 2003-03-25 2003-03-25 Pipe connecting method of refrigerating machine using combustible refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082195A JP2004286403A (en) 2003-03-25 2003-03-25 Pipe connecting method of refrigerating machine using combustible refrigerant

Publications (1)

Publication Number Publication Date
JP2004286403A true JP2004286403A (en) 2004-10-14

Family

ID=33295549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082195A Pending JP2004286403A (en) 2003-03-25 2003-03-25 Pipe connecting method of refrigerating machine using combustible refrigerant

Country Status (1)

Country Link
JP (1) JP2004286403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073292A1 (en) * 2010-12-03 2012-06-07 三菱電機株式会社 Part replacement method for refrigeration cycle device
WO2012073294A1 (en) * 2010-12-03 2012-06-07 三菱電機株式会社 Part replacement method for refrigeration cycle device and refrigeration cycle device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073292A1 (en) * 2010-12-03 2012-06-07 三菱電機株式会社 Part replacement method for refrigeration cycle device
WO2012073294A1 (en) * 2010-12-03 2012-06-07 三菱電機株式会社 Part replacement method for refrigeration cycle device and refrigeration cycle device
CN103221764A (en) * 2010-12-03 2013-07-24 三菱电机株式会社 Part replacement method for refrigeration cycle device
CN103229008A (en) * 2010-12-03 2013-07-31 三菱电机株式会社 Part replacement method for refrigeration cycle device and refrigeration cycle device
EP2647930A1 (en) * 2010-12-03 2013-10-09 Mitsubishi Electric Corporation Part replacement method for refrigeration cycle device
EP2647929A1 (en) * 2010-12-03 2013-10-09 Mitsubishi Electric Corporation Part replacement method for refrigeration cycle device and refrigeration cycle device
JPWO2012073294A1 (en) * 2010-12-03 2014-05-19 三菱電機株式会社 Method for replacing parts of refrigeration cycle apparatus and refrigeration cycle apparatus
JPWO2012073292A1 (en) * 2010-12-03 2014-05-19 三菱電機株式会社 Parts replacement method for refrigeration cycle equipment
EP2647930A4 (en) * 2010-12-03 2014-09-03 Mitsubishi Electric Corp Part replacement method for refrigeration cycle device
EP2647929A4 (en) * 2010-12-03 2014-09-03 Mitsubishi Electric Corp Part replacement method for refrigeration cycle device and refrigeration cycle device
AU2010364874B2 (en) * 2010-12-03 2014-12-11 Mitsubishi Electric Corporation Part replacement method for refrigeration cycle device and refrigeration cycle device
JP5677461B2 (en) * 2010-12-03 2015-02-25 三菱電機株式会社 Refrigeration cycle apparatus parts replacement method and refrigeration cycle apparatus
AU2010364872B2 (en) * 2010-12-03 2015-06-04 Mitsubishi Electric Corporation Part replacement method for refrigeration cycle device
EP2921801A1 (en) * 2010-12-03 2015-09-23 Mitsubishi Electric Corporation Method of part replacement for refrigeration cycle apparatus
CN103229008B (en) * 2010-12-03 2015-12-02 三菱电机株式会社 The part replacement method of freezing cycle device and freezing cycle device
US9279607B2 (en) 2010-12-03 2016-03-08 Mitsubishi Electric Corporation Method of part replacement for refrigeration cycle apparatus
US9476622B2 (en) 2010-12-03 2016-10-25 Mitsubishi Electric Corporation Method of part replacement for refrigeration cycle apparatus and refrigeration cycle apparatus

Similar Documents

Publication Publication Date Title
EP3730869A1 (en) Air conditioning unit
JP6857815B2 (en) Refrigeration cycle equipment
JP6979563B2 (en) Refrigeration cycle device
JP6979565B2 (en) Refrigeration cycle device
JP6979564B2 (en) Refrigeration cycle device
WO2019124329A1 (en) Refrigerant cycling device
CN107110624B (en) Refrigerant distributor, method and apparatus for manufacturing the same
JP6292342B1 (en) Solder alloy for joining Cu pipe and / or Fe pipe, preform solder, cored solder and solder joint
JP2004286403A (en) Pipe connecting method of refrigerating machine using combustible refrigerant
JP6924888B1 (en) Refrigeration cycle equipment
JP2015001335A (en) Coolant flow diverter and refrigeration cycle device
MXPA06009784A (en) Cooling apparatus comprising metal tubes connected through soldered lap joints.
JPH0925480A (en) Hydraulic fluid
Wilson et al. Design of accelerated fatigue tests for flame free refrigeration fittings
JP2001181660A (en) Working fluid and freezing device
JP3284720B2 (en) Construction method of refrigeration system and refrigeration system
US9175782B2 (en) Alloy for a fusible plug and a fusible plug
JP2004198062A (en) Refrigerating device
JP6583288B2 (en) Working medium recovery device
JP2007303001A (en) Alloy for fusible plug and fusible plug
JP3813317B2 (en) Refrigeration cycle equipment
JP2013221697A (en) Refrigerator
CN109048118B (en) Copper brazing filler metal, workpiece, heat exchanger, air conditioner and refrigeration equipment
JPH0882464A (en) Freezer device
JPH08151569A (en) Working fluid