JP2004286220A - Gasket for sanitary piping and method of manufacturing the same - Google Patents

Gasket for sanitary piping and method of manufacturing the same Download PDF

Info

Publication number
JP2004286220A
JP2004286220A JP2004141756A JP2004141756A JP2004286220A JP 2004286220 A JP2004286220 A JP 2004286220A JP 2004141756 A JP2004141756 A JP 2004141756A JP 2004141756 A JP2004141756 A JP 2004141756A JP 2004286220 A JP2004286220 A JP 2004286220A
Authority
JP
Japan
Prior art keywords
gasket
solidified
inner peripheral
melt
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004141756A
Other languages
Japanese (ja)
Other versions
JP3894928B2 (en
Inventor
Makoto Abe
阿部  誠
Katsuo Wada
勝男 和田
Takeshi Mitsuyoshi
猛 三吉
Satoyasu Tanimura
聡康 谷村
Tetsuya Akai
徹也 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Shionogi and Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd, Shionogi and Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2004141756A priority Critical patent/JP3894928B2/en
Publication of JP2004286220A publication Critical patent/JP2004286220A/en
Application granted granted Critical
Publication of JP3894928B2 publication Critical patent/JP3894928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gasket Seals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To securely prevent penetration leakage which is a fatal material defect without eliminating characteristics and meanings produced by using porous polytetrafluoroethylene as a structural material in a gasket for sanitary piping of porous polytetrafluoroethylene. <P>SOLUTION: The surface layer of a gasket inner peripheral portion 1c in direct contact with fluid to be sealed is molten and solidified to form a non-porous molten and solidified layer 1'c. The molten and solidified layer 1'c is thick at the center portion thereof in the thickness direction of the gasket 1 and thin at both end portions thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、医薬品,食品等の生産装置におけるサニタリ配管の継手部分に使用される多孔質ポリテトラフルオロエチレン製のサニタリ配管用ガスケット及びその製作方法に関するものである。   The present invention relates to a gasket for sanitary piping made of porous polytetrafluoroethylene used for a joint portion of a sanitary piping in a production device for pharmaceuticals, foods, and the like, and a method of manufacturing the same.

サニタリ配管用ガスケットとしては、一般に、シリコンゴム等からなるゴム製の環状ガスケットやポリテトラフルオロエチレン製の環状ガスケットがある。しかし、ゴム製のものは、長期使用のうちに可塑剤が溶出し易く、高度のクリーン度が要求されるサニタリ配管には適用し難い。また、サニタリ配管においては、近時、蒸気滅菌処理を行う頻度が高くなっているが、かかる処理を行う場合、ガスケットが高温条件下で使用されるため劣化し易く、耐久性に問題がある。特に、劣化切断した場合には、漏れが生じて、所定のシール機能を発揮できない。一方、ポリテトラフルオロエチレン製のものは、ポリテトラフルオロエチレンの特性から、上記したような問題は生じないが、その反面、硬質であるため柔軟性,馴染み性,復元性等に劣る。したがって、所定のシール機能を発揮させるためには、極めて大きな締付トルクが必要となったり、頻繁な増締め作業が必要となり、また再度の締付けによるシール機能回復も困難である。   As the gasket for sanitary piping, there is generally a rubber annular gasket made of silicon rubber or the like or a polytetrafluoroethylene annular gasket. However, those made of rubber tend to elute the plasticizer during long-term use, and are difficult to apply to sanitary piping that requires a high degree of cleanliness. Further, in the sanitary piping, steam sterilization processing is frequently performed recently, but when such processing is performed, the gasket is used under high-temperature conditions, so that the gasket is easily deteriorated and has a problem in durability. In particular, when the cutting is performed with deterioration, leakage occurs, and the predetermined sealing function cannot be exhibited. On the other hand, those made of polytetrafluoroethylene do not have the above-mentioned problems due to the characteristics of polytetrafluoroethylene, but are inferior in flexibility, adaptability, restorability, etc. because they are hard. Therefore, in order to exert a predetermined sealing function, an extremely large tightening torque is required, frequent retightening work is required, and it is difficult to recover the sealing function by retightening.

そこで、近時、このようなシリコンゴム製ガスケットやポリテトラフルオロエチレン製ガスケットにおける問題を解決したものとして、多孔質ポリテトラフルオロエチレンつまり延伸により多孔質化させたポリテトラフルオロエチレンを構成素材とした環状のサニタリ配管用ガスケット(以下「従来ガスケット」という)が提案されている(例えば、特許文献1参照)。かかる従来ガスケットは、軟質材である多孔質ポリテトラフルオロエチレンを構成材とするものであることから、耐久性,クリーン性,耐薬品性等に優れるといったポリテトラフルオロエチレン本来の特性を担保しつつ、通常のポリテトラフルオロエチレン製のガスケットでは得ることのできない優れた柔軟性,馴染み性,復元性等を有するものであり、サニタリ配管における厳しいシール条件下でも好適に使用することができるものである。   Therefore, recently, as a solution to the problem of such a gasket made of silicon rubber or a gasket made of polytetrafluoroethylene, a porous polytetrafluoroethylene, that is, a polytetrafluoroethylene made porous by stretching was used as a constituent material. An annular gasket for sanitary piping (hereinafter referred to as “conventional gasket”) has been proposed (for example, see Patent Document 1). Such a conventional gasket is made of porous polytetrafluoroethylene, which is a soft material, so that the inherent properties of polytetrafluoroethylene, such as excellent durability, cleanliness, and chemical resistance, are ensured. It has excellent flexibility, conformability, resilience, etc., which cannot be obtained with ordinary polytetrafluoroethylene gaskets, and can be suitably used even under severe sealing conditions in sanitary piping. .

しかし、従来ガスケットにあっては、それが多孔質材で構成されているため、被密封流体に直接触れるガスケット内周部分から被密封流体が浸透して、所謂浸透洩れを生じる虞れがある。かかる浸透洩れは、被密封流体が液体である場合はさほど生じないが、ガスシールとして使用する場合や真空保持シールとして使用した場合には甚だしい。浸透洩れを防止するために、ガスケットの成形密度を高めておくことも考えられるが、成形密度を高めるにも限度があり、浸透洩れはこれを確実には阻止することは不可能である。また、成形密度を必要以上に高めると、多孔質ポリテトラフルオロエチレン本来の特性(柔軟性等)が損なわれることになり、多孔質ポリテトラフルオロエチレンを構成材として使用したことの意義が消失することになる。このように、多孔質ポリテトラフルオロエチレン製の環状ガスケットにあって、浸透洩れは材質上宿命的な欠点であり、そのために用途が大幅に制限されているのが実情である。
特開平5−99343号公報
However, in the conventional gasket, since the gasket is made of a porous material, the sealed fluid permeates from the inner peripheral portion of the gasket that directly contacts the sealed fluid, and thus there is a possibility that so-called leakage may occur. Such permeation leakage does not occur so much when the sealed fluid is a liquid, but is severe when used as a gas seal or as a vacuum holding seal. It is conceivable to increase the molding density of the gasket in order to prevent seepage leakage. However, there is a limit to increasing the molding density, and it is impossible to reliably prevent penetration leakage. Further, if the molding density is increased more than necessary, the original properties (flexibility etc.) of porous polytetrafluoroethylene will be impaired, and the significance of using porous polytetrafluoroethylene as a constituent material will be lost. Will be. As described above, in the case of the porous gasket made of porous polytetrafluoroethylene, permeation leakage is a fatal defect in terms of the material, and the actual use thereof is greatly restricted.
JP-A-5-99343

本発明は、かかる点に鑑みてなされたもので、多孔質ポリテトラフルオロエチレン製ガスケットにおける材質上の宿命的な欠点である浸透洩れを、多孔質ポリテトラフルオロエチレンを構成材としたことによる特性,意義を消失させることなく、確実に防止することができるサニタリ配管用ガスケットを提供すると共に、かかるサニタリ配管用ガスケットを好適に製作しうる方法を提供することを目的とするものである。   The present invention has been made in view of the above point, and the penetration leakage, which is a fatal defect in the material of a porous polytetrafluoroethylene gasket, is characterized by using porous polytetrafluoroethylene as a constituent material. It is an object of the present invention to provide a gasket for sanitary piping that can be reliably prevented without losing its significance, and to provide a method for suitably manufacturing such a gasket for sanitary piping.

この課題を解決した本発明のサニタリ配管用ガスケットは、多孔質ポリテトラフルオロエチレン製の環状ガスケットであって、上記の目的を達成すべく、特に、被密封流体に直接触れるガスケット内周部分の表面層を、ガスケットの厚み方向における中央部分で厚く且つ両端部分で薄くなっている無孔質の溶融固化層となしたものである。   The gasket for sanitary piping according to the present invention that solves this problem is an annular gasket made of porous polytetrafluoroethylene. In order to achieve the above object, particularly, the surface of the inner peripheral portion of the gasket that directly contacts the sealed fluid. The layer is a non-porous melt-solidified layer that is thicker at the center in the thickness direction of the gasket and thinner at both ends.

また、かかるサニタリ配管用ガスケットを製作するための本発明の方法は、多孔質ポリテトラフルオロエチレン製の環状ガスケットにおける、被密封流体に直接触れるガスケット内周部分の表面層を、加熱溶融させた上、冷却固化させることによって、無孔質の溶融固化層となすようにするものである。かかる方法にあっては、前記表面層の溶融固化処理を420〜460℃で10〜30秒の条件で行うようにすることが好ましい。また、前記表面層の加熱溶融処理は、具体的には、加熱された金属部材を該表面層に全面的に接触させることにより行うようにすることが好ましい。   In addition, the method of the present invention for manufacturing such a gasket for sanitary piping includes heating and melting a surface layer of a gasket inner peripheral portion of a porous polytetrafluoroethylene annular gasket that directly contacts a sealed fluid. By cooling and solidifying, a non-porous melt-solidified layer is formed. In this method, it is preferable that the solidification treatment of the surface layer is performed at 420 to 460 ° C. for 10 to 30 seconds. Further, it is preferable that the heat melting treatment of the surface layer is specifically performed by bringing a heated metal member into full contact with the surface layer.

本発明のサニタリ配管用ガスケットによれば、多孔質ポリテトラフルオロエチレン製ガスケット本来の特性を損なうことなく、その宿命的な欠点であるガスケット内周部分からの浸透洩れを確実に防止することができる。したがって、多孔質ポリテトラフルオロエチレン製ガスケットのシール特性(ガスシール性,気密保持性等)を、従来ガスケットに比して、大幅に向上させ得て、当該ガスケットの用途を大幅に拡大することができる。   ADVANTAGE OF THE INVENTION According to the gasket for sanitary piping of this invention, the penetration leakage from the gasket inner peripheral part which is a fatal defect can be reliably prevented, without impairing the original characteristic of the porous polytetrafluoroethylene gasket. . Therefore, the sealing characteristics (gas sealing, airtightness, etc.) of the porous polytetrafluoroethylene gasket can be greatly improved as compared with the conventional gasket, and the use of the gasket can be greatly expanded. it can.

また、本発明の方法によれば、上記浸透洩れ防止構造を有するサニタリ配管用ガスケットを好適に製作することができる。   Further, according to the method of the present invention, a gasket for sanitary piping having the above-described permeation leakage prevention structure can be suitably manufactured.

被密封流体に直接触れるガスケット内周部分に無孔質の溶融固化層が形成されているから、該部分からの浸透洩れは、ガスケットが多孔質材で構成されているにも拘わらず、確実に防止される。しかも、この溶融固化層はガスケット内周部分の表面層のみにすぎないから、ガスケット全体として柔軟性,馴染み性等の多孔質ポリテトラフルオロエチレン本来の特性は何ら損なわれず、これをガスケット構成材として使用することの意義は消失しない。   Since a non-porous melt-solidified layer is formed on the inner peripheral portion of the gasket that directly contacts the sealed fluid, the leakage from this portion is ensured despite the fact that the gasket is made of a porous material. Is prevented. Moreover, since the melt-solidified layer is only the surface layer of the inner peripheral portion of the gasket, the original characteristics of porous polytetrafluoroethylene, such as flexibility and adaptability, are not impaired as a whole gasket. The significance of using does not disappear.

以下、本発明の構成を図1〜図3に示す実施例に基づいて具体的に説明する。   Hereinafter, the configuration of the present invention will be specifically described based on the embodiment shown in FIGS.

この実施例のサニタリ配管用ガスケット1は、図1に示す如く、多孔質ポリテトラフルオロエチレン製のシート材から打抜いた環状素材を金型により加圧成形することによって得られたもので、両面に環状の突条1a,1bを突設してなる円環状板形状をなす。なお、多孔質ポリテトラフルオロエチレン製シート材としては、例えば、ポリテトラフルオロエチレン素材を加圧ロールにより結晶配向処理した上、ゴム被覆ピンチロールにより、327℃未満の温度条件下において延伸率110〜300%で延伸させてなる空隙率40〜86%のものが使用される。 As shown in FIG. 1, the gasket 1 for sanitary piping according to this embodiment is obtained by press-molding an annular material punched from a porous polytetrafluoroethylene sheet material using a metal mold. An annular plate shape is formed by projecting annular projections 1a and 1b. In addition, as a sheet material made of porous polytetrafluoroethylene, for example, a polytetrafluoroethylene material is subjected to crystal orientation treatment by a pressure roll, and then stretched at a temperature of less than 327 ° C. by a rubber-coated pinch roll. The one having a porosity of 40 to 86% stretched at 300% is used.

このガスケット1は、図2及び図3に示す如く、サニタリ配管2a,2bの端部に形成したフェルール3a,3b間に挟圧状態で介挿することによって、サニタリ配管2a,2bの継手部分をシールさせるべく機能するものである。すなわち、ガスケット1を、フェルール3a,3b間の所定位置つまり配管2a,2bと同心となる位置に位置させる。この位置決めは、フェルール3a,3bの対向面に形成した円環状の凹部4a,4bに、ガスケット1の突条1a,1bを係合させることによって行われる。そして、フェルール3a,3b間をクランプバンド5により締付けて、ガスケット1をフェルール3a,3b間に挟圧させるのである。なお、このクランプバンド5は、一般に、環状に連結された2〜3個の円弧状セグメント5a…からなる二つ割り又は三つ割り構造のものであり、セグメント5a,5a間の連結ネジを締付けて環形状を縮径変形させることにより、フェルール3a,3b間を締付けうるようになっている。   As shown in FIGS. 2 and 3, the gasket 1 is inserted between ferrules 3a, 3b formed at the ends of the sanitary pipes 2a, 2b in a sandwiching state, thereby connecting the joints of the sanitary pipes 2a, 2b. It functions to seal. That is, the gasket 1 is positioned at a predetermined position between the ferrules 3a and 3b, that is, a position concentric with the pipes 2a and 2b. This positioning is performed by engaging the ridges 1a and 1b of the gasket 1 with the annular concave portions 4a and 4b formed on the opposing surfaces of the ferrules 3a and 3b. Then, the ferrules 3a and 3b are tightened by the clamp band 5 to press the gasket 1 between the ferrules 3a and 3b. The clamp band 5 generally has a two- or three-segment structure composed of two or three arc-shaped segments 5a... Connected in a ring shape, and the ring is tightened by connecting screws between the segments 5a. By reducing the diameter of the shape, the space between the ferrules 3a and 3b can be tightened.

したがって、フェルール3a,3bによるガスケット1の締付面圧つまりクランプバンド5の締付トルクを適当としておくことによって、フェルール3a,3b間がガスケット1によりシールされることになるが、フェルール3a,3bによる拘束を何ら受けずに配管2a,2b内の被密封流体に直接触れることになるガスケット内周部分1cからは、前述した如く、ガスケット1が多孔質ポリテトラフルオロエチレンを構成材とするものであることから浸透洩れが生ずる虞れがある。この実施例では、ガスケット内周部分1cを次のような浸透洩れ防止構造となすことによって、かかる浸透洩れを効果的に防止している。   Therefore, by properly setting the tightening surface pressure of the gasket 1 by the ferrules 3a and 3b, that is, the tightening torque of the clamp band 5, the ferrules 3a and 3b are sealed by the gasket 1, but the ferrules 3a and 3b are sealed. As described above, the gasket 1 is made of porous polytetrafluoroethylene as a component from the inner peripheral portion 1c of the gasket which comes into direct contact with the sealed fluid in the pipes 2a and 2b without any restriction by the gasket. Because of this, there is a possibility that leakage of the seepage will occur. In this embodiment, the gasket inner peripheral portion 1c has the following permeation leakage prevention structure, thereby effectively preventing such permeation leakage.

すなわち、ガスケット内周部分1cの表面層を、図1〜図3に示す如く、内周部分1cの全面に亘って、無孔質の溶融固化層1´cとなしてある。   That is, as shown in FIGS. 1 to 3, the surface layer of the gasket inner peripheral portion 1c is a nonporous melt-solidified layer 1'c over the entire inner peripheral portion 1c.

かかる浸透洩れ防止構造を有するサニタリ配管用ガスケット1の製作は、ガスケット内周部分1cの表面層を加熱溶融させた上、冷却固化させることによって行われる。かかる熱処理は種々の手法によって行うことができるが、この実施例では、ガスケット1が円環状であることに鑑み、内部にヒータを装填した円筒状の金属部材を使用して、溶融固化層1´cを形成するようにしている。すなわち、この金属部材はその外径寸法をガスケット1の内径寸法に略一致させた円筒状のもので、ヒータにより金属部材を多孔質ポリテトラフルオロエチレンの融点以上の適当温度に加熱した上、ガスケット1を金属部材に外嵌保持させて、ガスケット内周部1aをその全周に亘って金属部材の外周部に均等に接触させる。そして、金属部材の外周部に接触しているガスケット内周部分1cの表面層を、その全周に亘って同時に且つ均一に溶融させた後、ヒータによる金属部材の加熱を除去して、溶融部分を冷却固化させ、ガスケット内周部分1cの表面層を無孔質の溶融固化層1´cとなすのである。かくして形成された溶融固化層1´cは、図3に示す如く、ガスケット1の厚み方向における中央部分で厚く且つ両端部分で薄くなっている(以下、かかる層断面形状を「中高形状」という)。即ち、無効質の溶融固化層1´cは、図3に示すように断面視においてガスケットの直径の外側方向へ向けて突出する形状を呈しており、また、その内周部分1cは、断面視において直線状となる滑らかな面となっている。なお、前記ヒータは温度制御が可能なものを使用することが好ましい。   Manufacture of the gasket 1 for sanitary piping having such a permeation leakage prevention structure is performed by heating and melting the surface layer of the gasket inner peripheral portion 1c, and then cooling and solidifying the surface layer. Such heat treatment can be performed by various methods. In this embodiment, in consideration of the fact that the gasket 1 is annular, the molten and solidified layer 1 ′ is formed by using a cylindrical metal member having a heater mounted therein. c is formed. That is, the metal member is a cylindrical member whose outer diameter is approximately equal to the inner diameter of the gasket 1. The metal member is heated by a heater to an appropriate temperature equal to or higher than the melting point of the porous polytetrafluoroethylene, and then the gasket is heated. 1 is fitted to and held on the metal member, and the inner peripheral portion 1a of the gasket is uniformly contacted with the outer peripheral portion of the metal member over the entire circumference. Then, after the surface layer of the gasket inner peripheral portion 1c that is in contact with the outer peripheral portion of the metal member is simultaneously and uniformly melted over its entire circumference, the heating of the metal member by the heater is removed, and the molten portion is removed. Is cooled and solidified to form the surface layer of the gasket inner peripheral portion 1c as a non-porous melt-solidified layer 1'c. As shown in FIG. 3, the melt-solidified layer 1'c thus formed is thicker at the center in the thickness direction of the gasket 1 and thinner at both ends (hereinafter, such a layer cross-sectional shape is referred to as "middle-high shape"). . That is, as shown in FIG. 3, the ineffective molten and solidified layer 1'c has a shape protruding outward in the cross-sectional view of the gasket diameter, and its inner peripheral portion 1c has a cross-sectional view. Has a smooth surface that is linear. It is preferable to use a heater whose temperature can be controlled.

このようにガスケット内周部分1cの表面層を無孔質の溶融固化層1´cとなしておくと、ガスケット1が多孔質材からなるものであっても、ガスケット内周部分1cからの浸透洩れは溶融固化層1´cによって効果的に防止される。また、溶融固化されたガスケット内周部分1cの表面層1´cは硬質となっているが、この溶融固化層1´cは極く薄いものであり且つ被密封流体が直接触れる部分にのみ形成されたにすぎないものであるから、溶融固化層1´cの存在によっては、ガスケット1全体として多孔質ポリテトラフルオロエチレン本来の特性(柔軟性,馴染み性,復元性等)は何ら損なわれることがない。すなわち、浸透洩れを防止できる点を除いては、従来ガスケットと同一の機能を有する。特に、溶融固化層1´cを前記した中高形状としておくと、ガスケット1を厚み方向に圧縮(フェルール2a,2bにより挟圧)した場合、溶融固化層1´cの両端薄肉部は中央厚肉部に比して容易に変形することから、溶融固化層1´cの存在がガスケット1の弾性特性(柔軟性,馴染み性等)に与える悪影響を充分に排除し得ることになる。   If the surface layer of the gasket inner peripheral portion 1c is formed as the non-porous melt-solidified layer 1'c in this way, even if the gasket 1 is made of a porous material, the gasket inner peripheral portion 1c can be penetrated from the gasket inner peripheral portion 1c. Leakage is effectively prevented by the melt-solidified layer 1'c. The surface layer 1'c of the melt-solidified gasket inner peripheral portion 1c is hard, but the melt-solidified layer 1'c is extremely thin and is formed only in a portion directly contacted by the sealed fluid. However, the properties (such as flexibility, adaptability, and resilience) of the porous polytetrafluoroethylene as a whole are impaired by the presence of the melt-solidified layer 1'c. There is no. That is, it has the same function as the conventional gasket except that it can prevent seepage leakage. In particular, when the melt-solidified layer 1'c is formed in the above-mentioned middle and high-profile shape, when the gasket 1 is compressed in the thickness direction (pressed by the ferrules 2a and 2b), the thin portions at both ends of the melt-solidified layer 1'c are thick at the center. Since the gasket 1 is easily deformed as compared with the portion, the adverse effect of the presence of the melt-solidified layer 1'c on the elastic properties (flexibility, adaptability, etc.) of the gasket 1 can be sufficiently eliminated.

上記した如くしてガスケット内周部1aの表面層を溶融固化層1´cとなしたサニタリ配管用ガスケット1が、浸透洩れを効果的に防止でき、ガスシール性,気密保持性に優れたものであることは、以下に述べる実験によって確認されている。   As described above, the gasket 1 for sanitary piping in which the surface layer of the inner peripheral portion 1a of the gasket has become the molten and solidified layer 1'c can effectively prevent permeation leakage, and is excellent in gas sealability and airtightness. Is confirmed by the experiment described below.

すなわち、この実験では、まず、各々複数個の多孔質ポリテトラフルオロエチレン製ガスケットI〜VIを、多孔質ポリテトラフルオロエチレン製シートを原材料として、同一条件で製作した。各ガスケットI〜VIは、同一形状のものであり、図1に示すサニタリ配管用ガスケット形状をなす、内径23.2mm,外径50.5mm,厚さ2mmの円環状板形状のものである。   That is, in this experiment, first, a plurality of porous polytetrafluoroethylene gaskets I to VI were manufactured under the same conditions using a porous polytetrafluoroethylene sheet as a raw material. Each of the gaskets I to VI has the same shape, and is an annular plate having an inner diameter of 23.2 mm, an outer diameter of 50.5 mm, and a thickness of 2 mm, which has the shape of the gasket for sanitary piping shown in FIG.

さらに、ガスケットVIを除くガスケットI〜Vについては、上記した熱処理条件の範囲ではあるが、異なる熱処理条件でガスケット内周部分に溶融固化層を形成した。すなわち、ガスケットIについては420℃,10秒の条件で、ガスケットIIについては440℃,10秒の条件で、ガスケット IIIについては440℃,20秒の条件で、ガスケットIVについては440℃,30秒の条件で、ガスケットVについては460℃,10秒の条件で、夫々、上記実施例におけると同様の方法(内部に温度調節可能なヒータを装備した金属製の薄肉円筒を使用)により、ガスケット内周部分に中高形状の溶融固化層を形成した。なお、ガスケットVIは上記熱処理を一切行わないもの、つまり溶融固化層が全く形成されていない従来ガスケットである。   Further, for the gaskets I to V excluding the gasket VI, a molten solidified layer was formed on the inner peripheral portion of the gasket under the above-mentioned heat treatment conditions but under different heat treatment conditions. That is, the gasket I was set at 420 ° C. for 10 seconds, the gasket II was set at 440 ° C. for 10 seconds, the gasket III was set at 440 ° C. for 20 seconds, and the gasket IV was set at 440 ° C. for 30 seconds. In the gasket V under the conditions of 460 ° C. and 10 seconds, the inside of the gasket was obtained in the same manner as in the above embodiment (using a thin metal cylinder equipped with a temperature-adjustable heater inside). A middle-high-level melt-solidified layer was formed around the periphery. The gasket VI is a conventional gasket that does not perform any of the above heat treatments, that is, has no molten solidified layer.

そして、各ガスケットI〜VIのシール特性について、次のような確認実験を行った。実験装置は、図2に示すサニタリ配管継手構造において配管2a,2bを盲栓により閉塞したものと同様構造をなすもので、閉塞された配管2a,2b内を当該ガスケットによりシールされた密閉空間(以下「検査空間」という)としたものである。なお、説明の便宜上、実験装置の各部材については、図2に示すサニタリ配管継手構造において対応部材に付した符号をそのまま使用することとする。   The following confirmation experiments were performed on the sealing properties of each of the gaskets I to VI. The experimental apparatus has the same structure as the sanitary pipe joint structure shown in FIG. 2 in which the pipes 2a and 2b are closed with blind plugs, and the closed space in which the closed pipes 2a and 2b are sealed by the gasket. Hereinafter, referred to as “inspection space”). Note that, for convenience of description, the reference numerals assigned to the corresponding members in the sanitary pipe joint structure shown in FIG.

すなわち、第1の実験では、各ガスケットI〜VIを、図2に示すサニタリ配管継手構造におけると同様に、フェルール1a,1b間に挟圧保持させた上、検査空間に圧縮空気を供給,封入して、検査空間内の圧力を2.0Kgf/cm2 とし、一定時間経過時における検査空間内の圧力を測定した。この実験は、クランプバンド5の締付トルクを25Kgf・cmとした場合及び100Kgf・cmとした場合について行い、前者の場合は1時間経過時の圧力を測定し、後者の場合には1時間経過時の圧力及び18時間経過時の圧力を夫々測定した。 その結果は表1に示す通りであった。なお、従来ガスケットVIについては、18時間経過時の圧力測定を行い得なかった。これは、18時間経過前において検査空間内圧力が完全に消失したためである。 That is, in the first experiment, each gasket I to VI was clamped and held between the ferrules 1a and 1b as in the sanitary pipe joint structure shown in FIG. Then, the pressure in the inspection space was set to 2.0 kgf / cm 2, and the pressure in the inspection space after a certain period of time was measured. This experiment was performed when the tightening torque of the clamp band 5 was set to 25 Kgf · cm and 100 Kgf · cm. In the former case, the pressure after 1 hour was measured, and in the latter case, 1 hour passed. The pressure at the time and the pressure at the lapse of 18 hours were measured. The results were as shown in Table 1. In addition, about the conventional gasket VI, the pressure measurement after 18 hours could not be performed. This is because the pressure in the examination space completely disappeared before the elapse of 18 hours.

この実験結果から、溶融固化層を形成したガスケットI〜Vについては、締付トルクに拘らず、検査空間内圧力が殆ど降下せず、浸透洩れが効果的に防止されていることが確認された。一方、溶融固化層を形成しない従来ガスケットVIについては、締付トルクに拘らず、時間の経過と共に圧力が大きく降下しており、浸透洩れが生じていることが理解される。したがって、溶融固化層を被密封流体接触部分に形成しておくことによって、多孔質ポリテトラフルオロエチレン製ガスケットのガスシール特性を大幅に向上させ得ることが理解される。   From this experimental result, it was confirmed that the gaskets I to V on which the molten and solidified layers were formed had almost no drop in the pressure in the inspection space regardless of the tightening torque, and the leakage was effectively prevented. . On the other hand, it is understood that the pressure of the conventional gasket VI in which the melt-solidified layer is not formed is greatly reduced with the passage of time regardless of the tightening torque, and that the leakage is caused. Therefore, it is understood that the gas sealing characteristics of the porous polytetrafluoroethylene gasket can be significantly improved by forming the melt-solidified layer in the sealed fluid contact portion.

Figure 2004286220
Figure 2004286220

また、第2の実験では、上記実験装置の検査空間内をバキュームポンプにより−700mmHgの真空状態とした上、各ガスケットI〜VIについて、締付トルクを25Kgf・cmとした場合には1時間経過時の検査空間内圧力を、また締付トルクを100Kgf・cmとした場合には1時間経過時の検査空間内圧力及び2時間経過時の検査空間内圧力を、夫々測定した。その結果は、表2に示す通りであった。なお、従来ガスケットVIについては2時間経過時の測定値が示されていないが、これは2時間経過前に真空状態が完全に解消されてしまったことによる。   In the second experiment, the inside of the inspection space of the experimental apparatus was evacuated to -700 mmHg by a vacuum pump, and 1 hour passed when the tightening torque of each gasket I to VI was 25 kgf · cm. When the pressure in the inspection space at the time was set, and when the tightening torque was 100 kgf · cm, the pressure in the inspection space after one hour and the pressure in the inspection space after two hours were measured, respectively. The results were as shown in Table 2. The measured value of the conventional gasket VI after 2 hours is not shown, but this is because the vacuum state was completely released before the lapse of 2 hours.

この実験結果から、溶融固化層を形成したガスケットI〜Vについては、締付トルクが大きい(100Kgf・cm)場合には完全な気密保持機能を発揮し、浸透洩れを確実に防止しうることが確認された。また、締付トルクが小さい(25Kgf・cm)場合にも、浸透洩れが効果的に防止され、優れた気密保持機能が発揮されることが理解される。一方、従来ガスケットVIについては、締付トルクを大きくしても、気密保持機能が充分に発揮されず、浸透洩れが甚だしいことが理解される。したがって、溶融固化層を被密封流体接触部分に形成しておくことによって、多孔質ポリテトラフルオロエチレン製ガスケットの気密保持特性を大幅に向上させ得ることが理解される。   From this experimental result, it can be seen that the gaskets I to V on which the melt-solidified layers are formed can exhibit a completely airtight function when the tightening torque is large (100 kgf · cm), and can surely prevent permeation leakage. confirmed. In addition, it is understood that even when the tightening torque is small (25 kgf · cm), penetration leakage is effectively prevented, and an excellent airtight maintenance function is exhibited. On the other hand, regarding the conventional gasket VI, it is understood that even if the tightening torque is increased, the function of maintaining the airtightness is not sufficiently exhibited, and the permeation leakage is extremely large. Therefore, it is understood that the hermeticity retention characteristics of the porous polytetrafluoroethylene gasket can be significantly improved by forming the melt-solidified layer in the sealed fluid contact portion.

Figure 2004286220
Figure 2004286220

第3の実験は、ガスケットI〜Vについて、配管2a,2bの蒸気滅菌処理を3回繰り返した後に、上記各実験と同様の圧力測定を行ったものであり、その結果は表3に示す通りであった。   In the third experiment, the gaskets I to V were subjected to the same pressure measurement as in each of the above experiments after repeating the steam sterilization of the pipes 2a and 2b three times. The results are as shown in Table 3. Met.

この実験結果から理解されるように、溶融固化層を形成したガスケットI〜Vについては、このような過酷な条件下においても、優れたガスシール性及び気密保持性を発揮しうるものであることが理解される。したがって、本発明の浸透洩れ防止構造を適用することによって、多孔質ポリテトラフルオロエチレン製ガスケットを、蒸気滅菌処理を行うことが法的に義務付けられているサニタリ配管においても好適に実用できるものとなしうることが理解される。 As understood from the experimental results, the gaskets I to IV having the melt-solidified layer can exhibit excellent gas sealing properties and airtightness even under such severe conditions. Is understood. Therefore, by applying the permeation leakage prevention structure of the present invention, the porous polytetrafluoroethylene gasket can be suitably used even in a sanitary pipe which is legally required to perform steam sterilization. It is understood that it is possible.

Figure 2004286220
Figure 2004286220

また、第4の実験では、ガスケットI〜Vについて、上記実験装置を配管軸線が水平となる状態で水槽中に浸漬させた上、検査空間内に窒素ガスを供給して、該検査空間内を常時一定圧力に保持し、水面上に浮上してくる気泡をメスシリンダにより捕集することによって、気泡量つまりガスケットからの窒素ガス漏洩量を測定した。この実験では、締付トルクを25Kgf・cm及び40Kgf・cmとした場合において、検査空間内圧力を2Kgf/cm2 に保持したときの漏洩量、3Kgf/cm2 に保持したときの漏洩量、及び検査空間内圧力を4Kgf/cm2 に保持したときの漏洩量を夫々測定した。また、ガスケットIII については、締付トルクを100Kgf・cmとし且つ検査空間内圧力を4Kgf/cm2 に保持した場合についても、漏洩量を測定した。さらに、ガスケット IIIのうち、締付トルクを25Kgf・cmとして上記実験を行ったものについては、これを実験後実験装置から回収し、その回収したガスケット(以下「ガスケット iii」という)を、再度、締付トルクを100Kgf・cmとして実験装置に組込み、検査空間内圧力を4Kgf/cm2 に保持したときの漏洩量を、上記同様にして測定した。その結果は、表4に示す通りであった。 Further, in the fourth experiment, the gaskets I to V were immersed in a water tank with the piping axis horizontal, and nitrogen gas was supplied into the inspection space. The amount of air bubbles, that is, the amount of nitrogen gas leaking from the gasket, was measured by constantly maintaining the pressure and collecting air bubbles floating on the water surface using a measuring cylinder. In this experiment, when the tightening torque was 25 Kgf · cm and 40 Kgf · cm, the amount of leakage when the pressure in the inspection space was maintained at 2 Kgf / cm 2 , the amount of leakage when the pressure in the inspection space was maintained at 3 Kgf / cm 2 , and The leakage amount when the pressure in the inspection space was maintained at 4 kgf / cm 2 was measured. For the gasket III, the leakage was also measured when the tightening torque was 100 kgf · cm and the pressure in the inspection space was kept at 4 kgf / cm 2 . Further, among the gaskets III, those for which the above-described experiment was performed with a tightening torque of 25 kgf · cm were collected from the experimental device after the experiment, and the collected gasket (hereinafter, referred to as “gasket iii”) was again It was assembled in an experimental apparatus with a tightening torque of 100 kgf · cm, and the amount of leakage when the pressure in the inspection space was kept at 4 kgf / cm 2 was measured in the same manner as described above. The results were as shown in Table 4.

この実験結果から理解されるように、溶融固化層を形成したガスケットI〜Vについては、締付トルク及び被密封流体圧力に拘らず、浸透洩れを確実に防止できることが更に確認された。また、再使用ガスケット iiiについても、シール機能が充分に発揮されていることが確認され、溶融固化層を形成したことによっては多孔質ポリテトラフルオロエチレン製ガスケット本来の特性である復元性等に何らの悪影響も及ぼさないことが理解される。   As understood from the experimental results, it was further confirmed that the gaskets I to V on which the molten and solidified layers were formed could reliably prevent the leakage of the gasket regardless of the tightening torque and the pressure of the sealed fluid. In addition, the reuse gasket iii was confirmed to have a sufficient sealing function, and depending on the formation of the melt-solidified layer, there was no improvement in the original properties, such as the resilience, of the porous polytetrafluoroethylene gasket. It is understood that no adverse effect is caused.

Figure 2004286220
Figure 2004286220

さらに、溶融固化層を形成したことによるガスケットの柔軟性への影響を調べるために、各ガスケットI〜VIについて、ガスケット硬度を測定した。この硬度測定はASKER社製のデュロメータ硬度計(C型)を使用して、ガスケットにおける半径線上の3箇所について行った。すなわち、溶融固化層が形成されている内周側端部位置(図1に示すA位置)、突条近傍位置(同B位置)及び外周側端部位置(同C位置)の3箇所である。なお、硬度測定に際しては、予め、ガスケットの突条1a,1bをカッタナイフで切除した。   Further, in order to examine the influence of the formation of the melt-solidified layer on the flexibility of the gasket, the gasket hardness of each of the gaskets I to VI was measured. The hardness was measured at three points on the radial line of the gasket using a durometer hardness meter (type C) manufactured by Asker. In other words, there are three locations: an inner peripheral end position where the melt-solidified layer is formed (position A shown in FIG. 1), a position near the ridge (position B) and an outer peripheral end position (position C). . At the time of hardness measurement, the ridges 1a and 1b of the gasket were cut in advance with a cutter knife.

この硬度測定の結果は表5に示す通りであり、溶融固化層を形成すると否とに拘らず、硬度は略同程度であることが確認された。このことから、溶融固化層を形成することによっては、多孔質ポリテトラフルオロエチレン製ガスケット本来の特性である柔軟性を損なうことがないことが理解される。   The results of the hardness measurement are as shown in Table 5, and it was confirmed that the hardness was substantially the same irrespective of whether or not the melt-solidified layer was formed. From this, it is understood that the formation of the melt-solidified layer does not impair the flexibility, which is the original characteristic of the porous polytetrafluoroethylene gasket.

Figure 2004286220
Figure 2004286220

なお、本発明は上記実施例に限定されるものではなく、本発明の基本原理を逸脱しない範囲において適宜に変更,改良することができる。例えば、ガスケット密度は、多孔質ポリテトラフルオロエチレン本来の特性を失わない範囲でシール条件等に応じて適宜に設定しておくことができる。また、浸透洩れ防止構造の製作方法つまり溶融固化層を形成する手法も任意であり、例えば、溶融固化層の形成は、ガスケットの成形時又はガスケット素材(シート素材等)の成形時に同時に行うようにすることも可能である。   It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately changed and improved without departing from the basic principle of the present invention. For example, the gasket density can be appropriately set according to sealing conditions and the like within a range that does not lose the original characteristics of porous polytetrafluoroethylene. Further, a method of manufacturing the permeation leakage prevention structure, that is, a method of forming a melt-solidified layer is also optional. For example, the formation of the melt-solidified layer is performed at the same time as forming a gasket or forming a gasket material (sheet material or the like). It is also possible.

本発明に係るサニタリ配管用ガスケットの一実施例を示す半截の斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a half cut perspective view which shows one Example of the gasket for sanitary piping which concerns on this invention. 同ガスケットを装着したサニタリ配管継手構造を示す縦断側面図である。It is a longitudinal side view which shows the sanitary piping joint structure equipped with the same gasket. 図2の要部を拡大して示す詳細図である。FIG. 3 is an enlarged detail view showing a main part of FIG. 2.

符号の説明Explanation of reference numerals

1…サニタリ配管用ガスケット、1c…ガスケット内周部分、1´c…溶融固化層。   Reference numeral 1 denotes a gasket for sanitary piping, 1c denotes an inner peripheral portion of the gasket, and 1'c denotes a melt-solidified layer.

Claims (5)

多孔質ポリテトラフルオロエチレン製の環状ガスケットであって、被密封流体に直接触れるガスケット内周部分を、ガスケットの厚み方向における中央部分で厚く且つ両端部分で薄くなった無孔質の溶融固化層としたことを特徴とするサニタリ配管用ガスケット。   An annular gasket made of porous polytetrafluoroethylene, wherein an inner peripheral portion of the gasket directly in contact with the sealed fluid has a non-porous melt-solidified layer that is thicker at the center in the thickness direction of the gasket and thinner at both ends. A gasket for sanitary piping characterized by the following. 多孔質ポリテトラフルオロエチレン製の環状ガスケットにおける、被密封流体に直接触れるガスケット内周部分の表面層を、加熱溶融させた上、冷却固化させることによって、無孔質の溶融固化層となすようにしたことを特徴とするサニタリ配管用ガスケットの製作方法。   In the annular gasket made of porous polytetrafluoroethylene, the surface layer of the inner peripheral portion of the gasket that directly contacts the sealed fluid is heated and melted, and then cooled and solidified to form a nonporous molten and solidified layer. A method of manufacturing a gasket for a sanitary pipe, characterized in that: 表面層の溶融固化処理を、420〜460℃で10〜30秒の条件で行うようにしたことを特徴とする請求項2に記載するサニタリ配管用ガスケットの製作方法。   3. The method for manufacturing a gasket for a sanitary pipe according to claim 2, wherein the surface layer is melt-solidified at 420 to 460 [deg.] C. for 10 to 30 seconds. 表面層の加熱溶融処理を、加熱された金属部材を該表面層に全面的に接触させることにより行うようにしたことを特徴とする請求項2又は請求項3に記載するサニタリ配管用ガスケットの製作方法。   4. The manufacturing of a gasket for a sanitary pipe according to claim 2, wherein the heat-melting treatment of the surface layer is performed by bringing a heated metal member into full contact with the surface layer. Method. 表面層の加熱溶融処理を、加熱された円筒状の金属部材に環状ガスケットを外嵌保持させ、ガスケット内周部分を円筒状金属体の外周面へ接触させることにより行なうようにした請求項2、請求項3又は請求項4に記載するサニタリ配管用ガスケットの製作方法。   The heat-melting treatment of the surface layer is performed by externally holding an annular gasket on a heated cylindrical metal member and bringing an inner peripheral portion of the gasket into contact with an outer peripheral surface of the cylindrical metal body. A method for manufacturing a gasket for sanitary piping according to claim 3 or 4.
JP2004141756A 2004-05-12 2004-05-12 Sanitary piping gasket and manufacturing method thereof Expired - Lifetime JP3894928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141756A JP3894928B2 (en) 2004-05-12 2004-05-12 Sanitary piping gasket and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141756A JP3894928B2 (en) 2004-05-12 2004-05-12 Sanitary piping gasket and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25782394A Division JP3576229B2 (en) 1994-10-24 1994-10-24 Gasket for sanitary piping and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004286220A true JP2004286220A (en) 2004-10-14
JP3894928B2 JP3894928B2 (en) 2007-03-22

Family

ID=33297032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141756A Expired - Lifetime JP3894928B2 (en) 2004-05-12 2004-05-12 Sanitary piping gasket and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3894928B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008369A1 (en) * 2007-07-09 2009-01-15 Aram Corporation Packing for food processing plant, pipe joint structure for food processing plant, and o-ring for food processing plant
JP2009154258A (en) * 2007-12-27 2009-07-16 Isuzu Motors Ltd Stamp material for marking torque wrench
JP2013002929A (en) * 2011-06-15 2013-01-07 Nippon Valqua Ind Ltd Method of measuring liquid leakage amount
KR20150119226A (en) * 2013-02-14 2015-10-23 비일리 엔지니어링 비.브이. System for sealingly holding cables which extend through an opening
CN110878836A (en) * 2019-11-25 2020-03-13 苏州宝骅密封科技股份有限公司 Sealing gasket

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008369A1 (en) * 2007-07-09 2009-01-15 Aram Corporation Packing for food processing plant, pipe joint structure for food processing plant, and o-ring for food processing plant
JP2009154258A (en) * 2007-12-27 2009-07-16 Isuzu Motors Ltd Stamp material for marking torque wrench
JP2013002929A (en) * 2011-06-15 2013-01-07 Nippon Valqua Ind Ltd Method of measuring liquid leakage amount
KR20150119226A (en) * 2013-02-14 2015-10-23 비일리 엔지니어링 비.브이. System for sealingly holding cables which extend through an opening
JP2016510588A (en) * 2013-02-14 2016-04-07 ベーレ エンフィネーリンフ ベー.フェー. A system for sealing and holding a cable passing through an opening
KR101953728B1 (en) 2013-02-14 2019-03-05 비일리 엔지니어링 비.브이. System for sealingly holding cables which extend through an opening
CN110878836A (en) * 2019-11-25 2020-03-13 苏州宝骅密封科技股份有限公司 Sealing gasket

Also Published As

Publication number Publication date
JP3894928B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3576229B2 (en) Gasket for sanitary piping and method of manufacturing the same
US7455301B2 (en) Seamless corrugated insert gasket and method of forming the same
JP5015932B2 (en) EPTFE gasket material with low sealing stress
JP2566529B2 (en) Sheet gasket
JP2004286220A (en) Gasket for sanitary piping and method of manufacturing the same
TWI381120B (en) Clamp-type joint for vacuum apparatus
US5971399A (en) Dual density sanitary pipe gasket
ATE431547T1 (en) PRESSURE SEAL WITH ISOLATION MEMBRANE AND METHOD FOR THE PRODUCTION THEREOF
JP3626505B2 (en) Sanitary piping gasket and manufacturing method thereof
JP3208126B2 (en) Gasket made of porous fluorine resin
JP2005532197A (en) Manufacturing method of composite seal
JP2918791B2 (en) Gasket made of porous polytetrafluoroethylene
JP5265119B2 (en) gasket
JP3056482B1 (en) gasket
JP2009066552A (en) Asymmetric film material forming method and its apparatus
CN209738449U (en) PTFE composite sealing base plate
CN209738448U (en) PTFE composite sealing gasket
CN109501424B (en) PTFE composite sealing gasket and preparation process thereof
JP2005003107A (en) Gas sealing back-up ring
JP2004019811A (en) Refrigerant low-permeable compound sealing material and manufacturing method for it
JP2006112521A (en) Gasket covered with fluorocarbon resin coating and its manufacturing method
JP5176735B2 (en) Manufacturing method of seal ring
JPH0220536Y2 (en)
JP2004270773A (en) Expanded graphite seal ring and using method of expanded graphite seal ring
JP2008087183A (en) Welding method of modified polytetrafluoroethylene molded object, modified polytetrafluoroethylene molded object and gasket using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term