JP2004285753A - Bridge - Google Patents

Bridge Download PDF

Info

Publication number
JP2004285753A
JP2004285753A JP2003080805A JP2003080805A JP2004285753A JP 2004285753 A JP2004285753 A JP 2004285753A JP 2003080805 A JP2003080805 A JP 2003080805A JP 2003080805 A JP2003080805 A JP 2003080805A JP 2004285753 A JP2004285753 A JP 2004285753A
Authority
JP
Japan
Prior art keywords
bridge
central
main body
fairing
ventilation opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003080805A
Other languages
Japanese (ja)
Inventor
Koichiro Fumoto
興一郎 麓
Shigeru Hirano
茂 平野
Eiki Kusuhara
栄樹 楠原
Hideki Shimotoi
秀樹 下土居
Yoshimi Odate
圭巳 尾立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONSHU-SHIKOKU BRIDGE AUTHORITY
IHI Corp
Kawasaki Heavy Industries Ltd
Hitachi Zosen Corp
Mitsubishi Heavy Industries Ltd
Mitsui Engineering and Shipbuilding Co Ltd
JFE Engineering Corp
Public Works Research Center
Kawada Industries Inc
National Research and Development Agency Public Works Research Institute
Original Assignee
HONSHU-SHIKOKU BRIDGE AUTHORITY
Public Works Research Institute
IHI Corp
Kawasaki Heavy Industries Ltd
Hitachi Zosen Corp
Mitsubishi Heavy Industries Ltd
Mitsui Engineering and Shipbuilding Co Ltd
JFE Engineering Corp
Public Works Research Center
Kawada Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONSHU-SHIKOKU BRIDGE AUTHORITY, Public Works Research Institute, IHI Corp, Kawasaki Heavy Industries Ltd, Hitachi Zosen Corp, Mitsubishi Heavy Industries Ltd, Mitsui Engineering and Shipbuilding Co Ltd, JFE Engineering Corp, Public Works Research Center, Kawada Industries Inc filed Critical HONSHU-SHIKOKU BRIDGE AUTHORITY
Priority to JP2003080805A priority Critical patent/JP2004285753A/en
Publication of JP2004285753A publication Critical patent/JP2004285753A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a bridge of a box girder bridge type applied to a long suspension bridge, wherein its natural frequency is low so that flatter is liable to occur, and it is not easy to increase the flatter appearance wind speed. <P>SOLUTION: This bridge includes: a flat bridge body 2 of a double box girder bridge type structure extended in the axial direction of the bridge; a central ventilation opening 3 formed in the central area in the cross direction of the bridge body 2 to vertically penetrate and extended in the axial direction of the bridge; a grating structure provided on the top of the central ventilation opening 3 to allow a vehicle to pass thereon; and a central wind shield structure 7 provided in the state of passing the central area in the cross direction of the central ventilation opening 3 and projected on both upper and lower sides of the bridge body 2 (composed of a central protection fence 7a erected on teh top of the bridge body 2 and a vertical board 7b provided downward from the lower end of the fence). Both end parts in the cross direction of the bridge body 2 are provided with a trapezoidal fairing 8 having a pair of upper and lower inclined plates 8a, 8b and a vertical plate 8c connected to the tips of the inclined plates 8a, 8b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、長大吊橋や斜張橋に適用される二箱桁構造の橋梁に関し、橋梁本体の幅方向両端部のフェアリングの形状を三角形状でなく台形状に形成し、フェアリングの付近において橋梁本体の上下両側にガイドベーンを設け、耐フラッター性能を改善したものに関する。
【0002】
【従来の技術】従来、長大吊橋や斜張橋に適用される橋梁は、鉛直曲げや捩じりの固有振動数が低いために、フラッターと呼ばれる激しい発散振動が発現する風速(以下、フラッター発現風速という)が低くなる傾向にある。
このため,前記橋梁の断面形状としては、動的空力特性に優れる平板翼に近い偏平箱桁断面形状が採用されている。しかし、偏平箱桁構造の橋梁であっても、固有振動数が著しく低い場合には、依然フラッター発現風速が低いという課題があり、フラッター発現風速を高める技術として、例えば、特許文献1、特許文献2に記載の技術が提案されている。
【0003】
特許文献1の橋梁では、箱桁の中央部に上下方向の開口部を設け、この開口部の中央部を通って箱桁の上面から箱桁の下面に亘る鉛直の偏流板を設け、この橋梁は、風上側において風の流れを偏流板により偏流させて、風下側において風が箱桁の上・下面に再び付着するのを防止して、自励的空気力を抑制して、フラッター発現風速を高くしている。前記開口部の橋梁全幅に対する比率は約10%程度であり、この開口部の上面には路面として活用できるグレーチングが設けられている。
【0004】
箱桁の両端部分に形成されるフェアリングとして、上傾斜板と下傾斜板とで側方へ尖らせた等辺三角形状のフェアリング、上傾斜板を省略し下傾斜板を箱桁の上面まで延ばした上端張出し状のフェアリング、下傾斜板を省略し上傾斜板を箱桁の下面まで延ばした下端張出し状のフェアリング、上傾斜板とこれよりも広幅の下傾斜板とで側方へ尖らせた不等辺三角形状のフェアリング、断面半円状のフェアリング、などが提案されている。
【0005】
特許文献2の橋梁では、箱桁の上面の中央に通風性のある遮風壁を設け、風の流れの一部を遮風壁を通過させることで、橋梁の上面付近における風速を低減させて、フラッター発現風速を高めている。この橋梁では、前記の不等辺三角形状のフェアリングと同様のフェアリングが採用されている。
しかし、特許文献1の橋梁では、開口部の幅が余り大きくないため、開口部の通風性が低く、耐フラッター性能を高めるのが難しい。特許文献2の橋梁では、フラッター発現風速をある程度高くすることが可能であるものの、未だ十分に高め得るとは言いがたい。
【0006】
このような問題に鑑みて、土木学会第55回年次学術講演会講演概要集I−B59に記載の橋梁(講演発表橋梁)(図10参照)が提案された。図10(a),(b)に示すように、この講演発表橋梁100,101は、二箱桁構造の橋梁であって、その箱桁の中央分離帯部分には、中央開口部102が連続的または離散的に舗装部分を侵すことなく上下に貫通状に形成され、その箱桁の中央上面および両端上面には、前記中央開口部102への風導手段としての中央遮風壁103および端部遮風壁104が夫々設けられ、箱桁の下面には2条の検査車レール105が設けられている。この橋梁100,101では、前記不等辺三角形状のフェアリングと同様のフェアリング106が採用されている。
【0007】
この橋梁100,101においては、端部遮風壁104と検査車レール105の各々の剥離干渉効果により、中央遮風壁103と中央開口部102の制振効果が強調される空気流のパターンをつくり、フラッター発現風速を高めている。
【0008】
【発明が解決しようとする課題】特許文献1には、種々の形状のフェアリングが提案されているものの、フェアリングの形状と耐フラッター性能の関係について十分な検討がなされておらず、フェアリングの形状については、検討の余地が残っている。このことは、特許文献2の橋梁や図10の講演発表橋梁の不等辺三角形状のフェアリングにおいても同様である。
【0009】
しかも、橋梁のフェアリングの基端付近に、路肩防護柵や端部遮風壁を設ける技術は提案されているけれども、空力特性に大きな影響を及ぼす水平なガイドベーンにより、耐フラッター性能を改善する技術は何ら提案されていない。
本発明の目的は、二箱桁構造の橋梁において、フェアリングの形状を台形状にして耐フラッター性能を改善すること、ガイドベーンを活用して耐フラッター性能を改善すること、等である。
【0010】
【課題を解決するための手段】請求項1の橋梁は、二箱桁構造の橋梁において、橋軸方向へ延びる二箱桁構造の偏平な橋梁本体と、この橋梁本体の幅方向中央部分に上下貫通状に形成され橋軸方向へ延びる中央通風開口と、この中央通風開口の上面に設けられ車両が通行可能なグレーチング構造と、前記中央通風開口の幅方向中央上面に立設された中央防護柵とその下端より中央通風開口を挿通する状態に設けられ橋梁本体の下側より突出する鉛直板で構成された中央遮風構造とを備え、前記橋梁本体の幅方向の両端部分に、夫々、上下1対の傾斜板と、これら傾斜板の先端部に連結された立板とを有する台形状フェアリングを設けたものである。
【0011】
橋梁本体のフラッターは、橋梁本体に作用する自励的空気力としての変動揚力と、変動揚力の作用中心位置と橋梁本体の構造中心との離隔によって生ずる変動モーメントにより発生する。二箱桁構造の橋梁本体では、正又は負の小さな迎角をもってほぼ水平方向から吹く風の一部が中央通風開口部を通過して流れるため、橋梁本体に作用する上面と下面の圧力差が緩和されて変動揚力が低減する。また、上流側箱桁とともに下流側箱桁からも空気流が剥離することにより、それぞれの箱桁に作用する変動揚力がバランスし橋梁本体に作用する変動モーメントも低減する。これに対し、橋梁本体の上下両側へ突出する中央遮風構造を設けることにより、中央遮風構造からの空気流の剥離が生ずることによって、変動揚力のバランスは変動モーメントを低減する方向に改善される。さらに、このような二箱桁構造のフェアリングの形状を台形状とすることによって、変動モーメントはより低減することが実験的に確かめられた。こうして、橋梁本体に作用する変動モーメントが低減することによって、フラッター発現風速は高くなる。
【0012】
請求項2の橋梁は、請求項1の発明において、前記橋梁本体の台形状フェアリングの基端付近において、橋梁本体の上下両側に橋梁本体から所定距離離隔し、且つ橋軸方向へ延びる水平なガイドベーンを設けたものである。この水平なガイドベーンより、風が橋梁本体の上面と下面に沿って流れやすくなり、その流れが中央遮風構造による剥離作用を強化するため、橋梁本体に作用する変動モーメントが低減するものと推定される。
【0013】
請求項3の橋梁は、請求項2の発明において、前記ガイドベーンが、橋軸方向に所定間隔おきに位置し且つ橋軸に直交する複数の脚板の上端に固定されたものである。複数の脚板は橋軸に直交しているため、フラッターの発生に対して問題とすべき風向である橋軸に向かってほぼ直角に吹く風の流れに殆ど影響を与えない。
【0014】
【発明の実施の形態】以下、本発明の実施の形態について説明する。
本実施形態の橋梁は、最大支間が2000mを超える長大吊橋に適用されるものであり、図1に示すように、この橋梁1は、左箱桁2aと右箱桁2bの2つの箱桁を有する二箱桁構造の偏平な橋梁であり、図1の紙面直交方向(橋軸方向へ)へ所定長さ(例えば2300m)延びている。橋梁1の長さ×幅は、例えば、2300m×27mである。
【0015】
この橋梁1は、基本的に、橋軸方向へ延びる二箱桁構造の偏平な橋梁本体2と、この橋梁本体2の幅方向中央部分に上下貫通状に形成され橋軸方向へ延びる中央通風開口3と、この中央通風開口3の上面に設けられ車両が通行可能なグレーチング構造4と、中央通風開口3内に設けられ左箱桁2aと右箱桁2bとを連結する上段トラス構造5および下段トラス構造6と、中央通風開口3の幅方向中央上面に立設されて橋梁本体2の上側へ約1.0m位突出する中央防護柵7aとこの中央防護柵7aの下端より中央通風開口3を挿通する状態に設けられ橋梁本体2の下側へ約1.0m位突出する鉛直板7bとで構成された中央遮風構造7と、橋梁本体2の幅方向の両端部分に夫々設けられた台形状フェアリング8と、橋梁本体2の台形状フェアリング8の基端(橋梁1の中央側の端部)付近において橋梁本体2の上下両側に橋梁本体2から約1.0m位離隔し且つ橋軸方向へ延びる水平なガイドベーン9と、橋梁本体2の下面側に設けられ橋軸方向へ延びる2条の検査車レール10とを有する。
【0016】
図示省略したが、左箱桁2aと右箱桁2bの内部には、必要な剛性・強度を確保する為に、橋軸方向に延びる複数のスチフナや橋軸と直交する方向に配置されたリング状スチフナや仕切り壁などが設けられている。前記中央通風開口3を流れる空気流(風)を多くして橋梁本体2に作用する揚力を低減する為に、中央通風開口3の幅は、本実施形態では橋梁1の幅の約1/3になっている。但し、この1/3の値に限定されるものではない。
【0017】
各台形状フェアリング8は、上下1対の傾斜板8a,8bと、これら傾斜板8a,8bの先端部に連結された立板8cとを有し、上下1対の傾斜板8a,8bの間の先端角(図1の仮想頂点Aにおける開角、以下フェアリング先端角という)は約55〜65度であり、立板8cは、傾板8a,8bの基端から仮想頂点Aまでの水平幅を2等分する位置に配置されている。但し、立板8cの上記の位置は一例であり、この位置に限定される訳ではない。ガイドベーン9は、橋軸方向に所定間隔おきに位置し且つ橋軸に直交する複数の脚板9aの上端に固定されている。橋梁本体2の上面側に設けられた左右のガイドベーン9の内側端部の位置には、路肩防護柵11が設けられている。
【0018】
以上説明した橋梁1の作用について説明する。
図2に示すように、例えば、図の左方から風が吹く場合、ガイドベーン9により空気流が橋梁本体2の上面と下面沿った流れに整流され、上面側の空気流の一部は中央通風開口3を通って下面側へ流れ、下面側の空気流の一部は中央通風開口3を通って上面側へ流れる。この中央通風開口3を通過する流れにより、橋梁本体2に発生する上面と下面の圧力差が緩和されて揚力が低減する。中央遮風構造7の上端部(つまり、中央防護柵7a)が橋梁本体2の上面よりも突出しているため、橋梁本体2の上側において、中央遮風構造7から発生する空気流の剥離によって右箱桁2bに作用する変動揚力が左箱桁2aに作用する変動揚力とバランスすることにより変動モーメントが低減する。
【0019】
橋梁本体2の下側においては、上記と同様に、中央遮風構造7の下端部が橋梁本体2の下面よりも突出しているため、橋梁本体2の下側において、中央遮風構造7から発生する空気流の剥離によって右箱桁2bに作用する変動揚力が左箱桁2bに作用する変動揚力とバランスすることにより変動モーメントが低減する。尚、橋梁本体2の下側においては、検査車レール10が橋梁本体2の下面側へ突出しているため、検査車レール10からも剥離が発生するが、検査車レール10を適切な位置に配置することにより耐フラッター性能に殆ど影響を与えないことが実験的に確かめられている。
【0020】
台形フェアリング8の作用に関して、後述の実験結果によれば、台形フェアリング8を設けると、三角形フェアリングを設ける場合と比較して、正又は負の小さな迎角をもってほぼ水平方向から吹く風により橋梁本体2に作用する定常的な揚力に殆ど差が生じないのに対して、定常的なモーメントは大幅に低減する。これは、台形フェアリングによって空気流のパターンに微妙な変化が生じて、橋梁本体2に作用する揚力の作用中心が橋梁本体2の幅中央側へ移動したことによるものと推定され、これと同様にして変動モーメントも低減する。後述の実験結果から分かるように、この橋梁1によれば、耐フラッター性能が改善され、フラッター発現風速が高くなる。
【0021】
次に、上記の橋梁1の橋梁模型をバネ支持した状態および固定支持した状態で風洞実験して得た実験結果について図3〜図7に基づいて説明する。尚、図9は、この実験において比較例として用いた橋梁模型20の断面図であり、この橋梁模型20は、図1に示す橋梁の橋梁模型と比べて、フェアリングを図示のような三角形フェアリング21に変更しただけで、その他の構造は同じである。
【0022】
図3〜図7において、「台形」は、図1に示すような台形フェアリング8を有する橋梁模型を示し、「三角」は図9に示すような三角形フェアリング21を有する比較例の橋梁模型を示す。
【0023】
図3は、ガイドベーン無しの模型について、フェアリングの先端角度を異ならせて、フラッターの発生しにくさの程度を示すk値(形状補正係数)を求めた実験結果を示す。このk値は、k値=実験限界風速/Selberg式で求めた平板翼断面の限界風速である。先端角度55〜65度の範囲で、三角形フェアリングよりも台形フェアリングの方が格段に高いk値が得られ、耐フラッター性能が改善されている。
【0024】
図4は、ガイドベーン無しおよびガイドベーン付きの模型について、フェアリングの先端角度を異ならせて、迎角を−3deg 〜+3deg の範囲で変化させてk値を求めた実験結果を示す。図中の「角度」はフェアリング先端角、「GV」はガイドベーン付きを示す。迎角−3deg では何れの模型も耐フラッター性能が悪化する傾向にあるが、ガイドベーンの付設により耐フラッター性能が格段に改善され、台形フェアリングとガイドベーンの組合せにより、より優れた耐フラッター性能が得られている。中でも、先端角55度の台形フェアリングの模型が、最も優れた耐フラッター性能を示している。
【0025】
図5〜図7は、共通のフェアリング先端角55度を有する台形フェアリングを設けた橋梁模型と三角形フェアリングを設けた橋梁模型について、−15deg 〜+15deg の範囲で迎角を変化させて三分力(定常的な抗力、揚力、空力モーメント)を測定した結果を整理したものである。図5に示すように、台形フェアリングを付けた橋梁模型の抗力係数は、三角形フェアリングを付けた橋梁模型の抗力係数よりも幾分大きくなっているが、図6に示すように揚力係数については両者に殆ど差が生じない。
【0026】
しかし、図7に示すように、6deg 以下の迎角の範囲においては、台形フェアリングを付けた橋梁模型の空力モーメント係数は、三角形フェアリングを付けた橋梁模型のモーメント係数よりも大幅に低減し、例えば迎角0deg では約1/3程度の値となっている。これは、台形フェアリングによって、空気流のパターンに微妙な変化が生じて、橋梁模型に作用する揚力の作用中心の位置が橋梁模型の幅中央側へ移動したことによるものと推定される。長大吊橋の場合、橋梁本体に捩じり変形が生じやすいので、このモーメント係数が低減する特性は長大吊橋にとって非常に有利である。
【0027】
図8は、最大支間2300mの長大吊橋を対象に、前記の2種類の橋梁模型について得られた三分力を用いて、風速を変化させた場合の捩じり変位(支間中央における捩じり変位)を解析的に求めた三次元静的変形解析の結果を示すものである。この図から分かるように、台形フェアリングを有する橋梁の捩じり変位は、三角形フェアリングを有する橋梁の捩じり変位と比較して大幅に減少している。また、この静的な捩じり変位を考慮した三次元フラッター解析結果では、フラッター発現風速は、三角形フェアリングを有する橋梁では約80m/s、台形フェアリングを有する橋梁では約100m/sになる。三角形フェアリングに比べ、台形フェアリングの場合には、フラッター発現風速を約20%程度高めることができるうえ、図8に示すように捩じり変位を格段に低減させることができる。
【0028】
前記実施形態は一例を示すものに過ぎず、橋梁本体2のサイズ(長さと幅と高さ)、中央通風開口3の幅、中央遮風構造7の上下の突出量、ガイドベーン9の高さ位置、台形フェアリング8の立板8cの位置などは、当業者ならば本発明の趣旨を逸脱しない範囲で適宜変更して実施可能である。
【0029】
【発明の効果】請求項1の橋梁によれば、中央通風開口により橋梁本体に作用する変動揚力および変動モーメントを低減できる。橋梁本体の上下両側へ突出した中央遮風構造による剥離作用により、変動揚力のバランスを変動モーメントを低減する方向に改善できる。さらに、台形状フェアリングによっても、変動揚力の作用中心を橋梁本体の幅中央側へ変化させて橋梁本体に作用するモーメントを低減できる。こうして、橋梁本体に作用する変動揚力を低減させると共に変動モーメントを低減させ、フラッター発現風速を高めることができる。
【0030】
請求項2の橋梁によれば、この水平なガイドベーンより、風が橋梁本体の上面と下面に沿って流れやすくなり、その流れにより中央遮風構造による剥離作用が強化され、その結果、橋梁本体に作用する変動モーメントが低減するものと推定される。
【0031】
請求項3の橋梁によれば、ガイドベーンは、橋軸方向に所定間隔おきに位置し且つ橋軸に直交する複数の脚板の上端に固定されたため、フラッターの発生に対して問題とすべき風向である橋軸に向かってほぼ直角に吹く風の流れに殆ど影響を与えない複数の脚板により、ガイドベーンを橋梁本体に支持できる。
【図面の簡単な説明】
【図1】本発明の実施形態の橋梁の断面図である。
【図2】風の流れの挙動を説明する説明図である。
【図3】実験で得たフェアリング先端角度とk値の関係を示す線図である。
【図4】実験で得た迎角とk値の関係を示す線図である。
【図5】実験で得た迎角と抗力係数の関係を示す線図である。
【図6】実験で得た迎角と揚力係数の関係を示す線図である。
【図7】実験で得た迎角とモーメント係数の関係を示す線図である。
【図8】解析で得た風速と捩じれ変位の関係を示す線図である。
【図9】実験に供した比較例の橋梁模型の断面図である。
【図10】(a)は従来技術に係る橋梁の断面図であり、(b)は同じく従来技術に係る橋梁の断面図である。
【符号の説明】
1 橋梁、 2 橋梁本体
3 中央通風開口、 4 グレーチング構造
5 上段トラス構造、 6 下段トラス構造
7 中央遮風構造、 7a 中央防護柵
7b 鉛直板、 8 台形フェアリング
8a,8b 傾斜板、 8c 立板
9 ガイドベーン、 9a 脚板
10 検査車レール 11 路肩防護柵
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-box girder bridge applied to a long suspension bridge or a cable-stayed bridge. The fairing at both ends in the width direction of the bridge body is formed in a trapezoidal shape instead of a triangular shape. Also, the present invention relates to a structure in which guide vanes are provided on the upper and lower sides of a bridge body near a fairing to improve flutter resistance.
[0002]
2. Description of the Related Art Conventionally, a bridge applied to a long suspension bridge or a cable-stayed bridge has a low natural frequency of vertical bending and torsion, so that a wind speed at which intense divergent vibration called flutter appears (hereinafter, flutter occurrence). Wind speed) tends to decrease.
For this reason, as the cross-sectional shape of the bridge, a flat box girder cross-sectional shape close to a flat plate wing having excellent dynamic aerodynamic characteristics is adopted. However, even in the case of a bridge having a flat box girder structure, when the natural frequency is extremely low, there is a problem that the flutter onset wind speed is still low. 2 has been proposed.
[0003]
In the bridge of Patent Document 1, a vertical opening is provided at the center of the box girder, and a vertical drift plate is provided from the upper surface of the box girder to the lower surface of the box girder through the center of the opening. Is to deflect the wind flow on the windward side by the deflector plate, prevent the wind from re-adhering to the upper and lower surfaces of the box girder on the leeward side, suppress the self-excited aerodynamic force, Is higher. The ratio of the opening to the entire width of the bridge is about 10%, and a grating that can be used as a road surface is provided on the upper surface of the opening.
[0004]
As fairings formed at both ends of the box girder, an equilateral triangular fairing sharpened laterally with an upper inclined plate and a lower inclined plate, omitting the upper inclined plate and lowering the lower inclined plate to the top of the box girder Extended upper end overhanging fairing, lower lower end overhanging fairing with lower inclined plate omitted and upper inclined plate extended to the lower surface of box girder, upper inclined plate and lower inclined plate wider than this sideways A sharpened trapezoidal triangular fairing, a semicircular fairing, and the like have been proposed.
[0005]
In the bridge of Patent Literature 2, a ventilation wall having ventilation is provided at the center of the upper surface of the box girder, and a part of the wind flow is passed through the ventilation wall to reduce the wind speed near the upper surface of the bridge. , The flutter expression wind speed is increased. In this bridge, a fairing similar to the above-described scalene triangular fairing is employed.
However, in the bridge of Patent Literature 1, since the width of the opening is not so large, the ventilation of the opening is low, and it is difficult to improve the flutter resistance performance. In the bridge of Patent Document 2, it is possible to increase the flutter expression wind speed to some extent, but it cannot be said that it can still be sufficiently increased.
[0006]
In view of such a problem, a bridge (brief presentation bridge) described in the 55th Annual Meeting of the Japan Society of Civil Engineers Lecture Summary IB59 (see FIG. 10) has been proposed. As shown in FIGS. 10 (a) and 10 (b), the bridges 100 and 101 for presenting lectures are bridges of a two-box girder structure, and a central opening 102 is continuous with a central divider of the box girder. The box girder is formed so as to penetrate vertically or vertically without penetrating the pavement part, and a central wind shield wall 103 and an end are provided on the upper surface at the center and both ends of the box girder as means for guiding air to the central opening 102. Partial wind shield walls 104 are provided, and two inspection vehicle rails 105 are provided on the lower surface of the box girder. In the bridges 100 and 101, a fairing 106 similar to the above-described scalene triangular fairing is employed.
[0007]
In the bridges 100 and 101, the airflow pattern in which the vibration control effect of the central windshield 103 and the central opening 102 is emphasized by the separation interference effect of the end windshield 104 and the inspection car rail 105. Making, increasing the flutter expression wind speed.
[0008]
Patent Literature 1 proposes various types of fairings. However, the relationship between the shape of the fairings and the anti-flutter performance has not been sufficiently studied. There is room for study on the shape of. The same applies to the scalene triangular fairing of the bridge of Patent Literature 2 and the lecture presentation bridge of FIG.
[0009]
In addition, although a technology to provide a shoulder fence or an end windshield near the base end of the bridge fairing has been proposed, the flutter resistance is improved by using a horizontal guide vane that greatly affects aerodynamic characteristics. No technology has been proposed.
An object of the present invention is to improve the anti-flutter performance by making the shape of the fairing trapezoidal in a two-box girder bridge, and to improve the anti-flutter performance by using a guide vane.
[0010]
According to a first aspect of the present invention, there is provided a bridge having a double box girder structure, a flat bridge main body having a double box girder structure extending in the bridge axis direction, and a vertical central portion in the width direction of the bridge main body. A central ventilation opening formed in a penetrating shape and extending in the bridge axis direction, a grating structure provided on an upper surface of the central ventilation opening so that a vehicle can pass therethrough, and a central protective fence erected on a central upper surface in the width direction of the central ventilation opening And a central wind-shielding structure which is provided in a state where the central ventilation opening is inserted from the lower end thereof and is formed of a vertical plate projecting from the lower side of the bridge main body, and at both end portions in the width direction of the bridge main body, A trapezoidal fairing having a pair of inclined plates and a standing plate connected to the tips of these inclined plates is provided.
[0011]
The flutter of the bridge main body is generated by a fluctuating lift acting as a self-excited aerodynamic force acting on the bridge main body, and a fluctuating moment caused by a separation between a center of action of the fluctuating lift and a structural center of the bridge main body. In a two-box girder bridge body, part of the wind blowing from a substantially horizontal direction with a small positive or negative angle of attack flows through the central ventilation opening, so the pressure difference between the upper surface and the lower surface acting on the bridge body Fluctuated lift is reduced to reduce. In addition, since the airflow separates from the downstream box girder together with the upstream box girder, the fluctuating lift acting on each box girder is balanced, and the fluctuating moment acting on the bridge body is reduced. On the other hand, by providing a central windshield structure that protrudes to the upper and lower sides of the bridge body, air flow separates from the central windshield structure, and the balance of the variable lift is improved in the direction of reducing the variable moment. You. Further, it was experimentally confirmed that the fluctuating moment was further reduced by making the shape of the fairing of the double box girder structure trapezoidal. Thus, the fluctuation moment acting on the bridge main body is reduced, so that the fluttering wind speed increases.
[0012]
The bridge according to claim 2 is the invention according to claim 1, wherein a horizontal portion extending near the base end of the trapezoidal fairing of the bridge main body at a predetermined distance from the bridge main body on the upper and lower sides of the bridge main body and extending in the bridge axis direction. Guide vanes are provided. It is presumed that this horizontal guide vane makes it easier for the wind to flow along the upper and lower surfaces of the bridge body, and that the flow strengthens the separation effect of the central windbreak structure, thereby reducing the fluctuation moment acting on the bridge body. Is done.
[0013]
According to a third aspect of the present invention, in the invention of the second aspect, the guide vanes are fixed to upper ends of a plurality of leg plates positioned at predetermined intervals in the bridge axis direction and orthogonal to the bridge axis. Since the plurality of leg plates are orthogonal to the bridge axis, they hardly affect the flow of the wind blowing at a right angle toward the bridge axis, which is a wind direction that should be a problem for the generation of flutter.
[0014]
Embodiments of the present invention will be described below.
The bridge according to the present embodiment is applied to a long suspension bridge having a maximum span of more than 2000 m. As shown in FIG. 1, the bridge 1 includes two box girders, a left box girder 2 a and a right box girder 2 b. This is a flat bridge having a two-box girder structure, and extends a predetermined length (for example, 2300 m) in a direction perpendicular to the paper surface of FIG. 1 (in a bridge axis direction). The length × width of the bridge 1 is, for example, 2300 m × 27 m.
[0015]
The bridge 1 basically has a flat bridge body 2 having a two-box girder structure extending in the bridge axis direction, and a central ventilation opening formed in a central portion in the width direction of the bridge body 2 so as to extend vertically and extend in the bridge axis direction. 3, a grating structure 4 provided on the upper surface of the central ventilation opening 3 and capable of passing vehicles, an upper truss structure 5 provided in the central ventilation opening 3 and connecting the left box girder 2a and the right box girder 2b, and a lower truss structure The truss structure 6, a central protection fence 7 a erected on the upper surface in the width direction center of the central ventilation opening 3 and protruding about 1.0 m above the bridge body 2, and a central ventilation opening 3 from the lower end of the central protection fence 7 a. A central wind shield structure 7 composed of a vertical plate 7b provided so as to be inserted and protruding about 1.0 m below the bridge main body 2, and platforms respectively provided at both ends in the width direction of the bridge main body 2. Shape fairing 8 and trapezoidal fair of bridge body 2 A horizontal guide vane 9 which is spaced apart from the bridge main body 2 by about 1.0 m and extends in the bridge axis direction on both upper and lower sides of the bridge main body 2 near the base end (end on the center side of the bridge 1) of the bridge 8; 2 and two inspection vehicle rails 10 provided on the lower surface side and extending in the bridge axis direction.
[0016]
Although not shown, a plurality of stiffeners extending in the bridge axis direction and rings arranged in a direction perpendicular to the bridge axis are provided inside the left box girder 2a and the right box girder 2b to secure necessary rigidity and strength. A stiffener and a partition wall are provided. In order to increase the airflow (wind) flowing through the central ventilation opening 3 and reduce the lift acting on the bridge main body 2, the width of the central ventilation opening 3 is about 1/3 of the width of the bridge 1 in the present embodiment. It has become. However, the value is not limited to 1/3.
[0017]
Each trapezoidal fairing 8 has a pair of upper and lower inclined plates 8a and 8b, and an upright plate 8c connected to the tips of the inclined plates 8a and 8b. The tip angle between them (the opening angle at the virtual vertex A in FIG. 1; hereinafter, referred to as the fairing tip angle) is about 55 to 65 degrees, and the upright 8c extends from the base ends of the inclined plates 8a and 8b to the virtual vertex A. It is arranged at a position that divides the horizontal width into two equal parts. However, the above position of the standing plate 8c is an example, and is not limited to this position. The guide vanes 9 are fixed at predetermined intervals in the bridge axis direction and are fixed to the upper ends of a plurality of leg plates 9a orthogonal to the bridge axis. A roadside protection fence 11 is provided at the inner end of the left and right guide vanes 9 provided on the upper surface side of the bridge main body 2.
[0018]
The operation of the bridge 1 described above will be described.
As shown in FIG. 2, for example, when the wind blows from the left side of the figure, the air flow is rectified by the guide vanes 9 into the flow along the upper surface and the lower surface of the bridge main body 2, and a part of the air flow on the upper surface side is centered. The air flows through the ventilation opening 3 to the lower surface side, and a part of the air flow on the lower surface side flows through the central ventilation opening 3 to the upper surface side. By the flow passing through the central ventilation opening 3, the pressure difference between the upper surface and the lower surface generated in the bridge main body 2 is reduced, and the lift is reduced. Since the upper end portion of the central wind shield structure 7 (that is, the central protective fence 7a) protrudes from the upper surface of the bridge main body 2, the air flow generated from the central wind shield structure 7 separates right above the bridge main body 2 due to the separation. The fluctuating moment acting on the box girder 2b is reduced by balancing the fluctuating lift acting on the box girder 2b with the fluctuating lift acting on the left box girder 2a.
[0019]
On the lower side of the bridge main body 2, the lower end of the central wind shield structure 7 protrudes from the lower surface of the bridge main body 2 in the same manner as described above. When the fluctuating lift acting on the right box girder 2b is balanced with the fluctuating lift acting on the left box girder 2b due to the separation of the flowing airflow, the fluctuation moment is reduced. In addition, under the bridge main body 2, since the inspection vehicle rail 10 protrudes to the lower surface side of the bridge main body 2, peeling also occurs from the inspection vehicle rail 10, but the inspection vehicle rail 10 is arranged at an appropriate position. It has been experimentally confirmed that the above-mentioned method hardly affects the anti-flutter performance.
[0020]
Regarding the operation of the trapezoidal fairing 8, according to the experimental results described below, when the trapezoidal fairing 8 is provided, compared to the case where the triangular fairing is provided, the wind blows from a substantially horizontal direction with a small positive or negative angle of attack. While there is almost no difference in the steady lift acting on the bridge body 2, the steady moment is greatly reduced. This is presumed to be due to the fact that the trapezoidal fairing caused a subtle change in the airflow pattern and the center of lift acting on the bridge main body 2 moved to the center of the width of the bridge main body 2. To reduce the fluctuating moment. As can be seen from the experimental results described below, according to the bridge 1, the anti-flutter performance is improved, and the wind speed at which flutter occurs is increased.
[0021]
Next, experimental results obtained by performing a wind tunnel test on the bridge model of the bridge 1 in a state where the bridge model is spring-supported and a state where the bridge model is fixedly supported will be described with reference to FIGS. FIG. 9 is a cross-sectional view of a bridge model 20 used as a comparative example in this experiment. This bridge model 20 is different from the bridge model of the bridge shown in FIG. Other structures are the same except for the ring 21.
[0022]
3 to 7, "trapezoid" indicates a bridge model having a trapezoidal fairing 8 as shown in FIG. 1, and "triangle" indicates a bridge model of a comparative example having a triangular fairing 21 as shown in FIG. Is shown.
[0023]
FIG. 3 shows an experimental result of obtaining a k value (shape correction coefficient) indicating a degree of difficulty in generating flutter for a model without guide vanes by changing the tip angle of the fairing. This k value is the k value = experimental limit wind speed / limit wind speed of the flat plate blade section obtained by the Selberg equation. In the range of the tip angle of 55 to 65 degrees, the trapezoidal fairing has a significantly higher k value than the triangular fairing, and the flutter resistance performance is improved.
[0024]
FIG. 4 shows the experimental results for the model without guide vanes and the model with guide vanes, in which the tip angle of the fairing was changed and the angle of attack was changed in the range of -3 deg to +3 deg to determine the k value. "Angle" in the figure indicates the tip angle of the fairing, and "GV" indicates that the guide vane is provided. At an angle of attack of -3 deg, all models tend to have reduced flutter resistance, but the addition of guide vanes significantly improves flutter resistance, and the combination of trapezoidal fairings and guide vanes provides better flutter resistance. Is obtained. Among them, a model of a trapezoidal fairing having a tip angle of 55 degrees shows the most excellent anti-flutter performance.
[0025]
FIGS. 5 to 7 show three models of a bridge model provided with a trapezoidal fairing having a common fairing tip angle of 55 degrees and a bridge model provided with a triangular fairing by changing the angle of attack in the range of −15 deg to +15 deg. This is a summary of the results of measurement of component forces (stationary drag, lift, and aerodynamic moment). As shown in FIG. 5, the drag coefficient of the bridge model with the trapezoidal fairing is somewhat larger than the drag coefficient of the bridge model with the triangular fairing, but as shown in FIG. Has little difference between the two.
[0026]
However, as shown in FIG. 7, in the range of the angle of attack of 6 deg or less, the aerodynamic moment coefficient of the bridge model with the trapezoidal fairing is significantly smaller than that of the bridge model with the triangular fairing. For example, at an attack angle of 0 deg, the value is about 1/3. This is presumably because the trapezoidal fairing caused a subtle change in the airflow pattern, and the center of lift acting on the bridge model moved to the center of the width of the bridge model. In the case of a long suspension bridge, since the torsional deformation is likely to occur in the bridge body, the characteristic that the moment coefficient is reduced is very advantageous for the long suspension bridge.
[0027]
FIG. 8 shows torsional displacement (twist at the center of the span) when the wind speed is changed using the three-component force obtained for the two types of bridge models for a long suspension bridge with a maximum span of 2300 m. 3 shows the results of a three-dimensional static deformation analysis in which the displacement) was obtained analytically. As can be seen from this figure, the torsional displacement of the bridge with the trapezoidal fairing is significantly reduced compared to the torsional displacement of the bridge with the triangular fairing. In addition, according to the results of the three-dimensional flutter analysis in consideration of the static torsional displacement, the fluttering wind velocity is about 80 m / s for a bridge having a triangular fairing and about 100 m / s for a bridge having a trapezoidal fairing. . Compared with the triangular fairing, in the case of the trapezoidal fairing, the fluttering wind speed can be increased by about 20%, and the torsional displacement can be significantly reduced as shown in FIG.
[0028]
The above embodiment is merely an example, and the size (length, width, and height) of the bridge main body 2, the width of the central ventilation opening 3, the amount of vertical protrusion of the central ventilation structure 7, and the height of the guide vanes 9 are shown. The position, the position of the standing plate 8c of the trapezoidal fairing 8 and the like can be appropriately changed by a person skilled in the art without departing from the spirit of the present invention.
[0029]
According to the bridge of the first aspect, the fluctuating lift and the fluctuating moment acting on the bridge body can be reduced by the central ventilation opening. The balance of the variable lift can be improved in the direction of reducing the variable moment by the separation action by the central wind shield structure protruding to the upper and lower sides of the bridge body. Furthermore, even with the trapezoidal fairing, the moment acting on the bridge main body can be reduced by changing the action center of the variable lift toward the center of the width of the bridge main body. In this manner, the fluctuating lift acting on the bridge body can be reduced, and the fluctuating moment can be reduced.
[0030]
According to the bridge of claim 2, the horizontal guide vanes make it easier for the wind to flow along the upper surface and the lower surface of the bridge body, and the flow enhances the peeling action of the central wind shield structure. As a result, the bridge body Is estimated to be reduced.
[0031]
According to the bridge of claim 3, since the guide vanes are located at predetermined intervals in the bridge axis direction and are fixed to the upper ends of the plurality of leg plates orthogonal to the bridge axis, the wind direction which should be a problem with respect to the occurrence of flutter is provided. The guide vanes can be supported on the bridge body by a plurality of leg plates that hardly affect the flow of the wind blowing at a right angle toward the bridge axis.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a bridge according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram illustrating a behavior of a wind flow.
FIG. 3 is a diagram showing a relationship between a fairing tip angle and a k value obtained in an experiment.
FIG. 4 is a diagram showing a relationship between an angle of attack and a k value obtained in an experiment.
FIG. 5 is a diagram showing a relationship between an angle of attack and a drag coefficient obtained in an experiment.
FIG. 6 is a diagram showing a relationship between an angle of attack and a lift coefficient obtained in an experiment.
FIG. 7 is a diagram showing a relationship between an angle of attack and a moment coefficient obtained in an experiment.
FIG. 8 is a diagram showing the relationship between wind speed and torsional displacement obtained by analysis.
FIG. 9 is a cross-sectional view of a bridge model of a comparative example used for an experiment.
10A is a cross-sectional view of a bridge according to the related art, and FIG. 10B is a cross-sectional view of the bridge according to the related art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bridge, 2 Bridge main body 3 Central ventilation opening, 4 Grating structure 5 Upper truss structure, 6 Lower truss structure 7 Central windbreak structure, 7a Central protective fence 7b Vertical plate, 8 Trapezoidal fairings 8a, 8b Inclined plate, 8c Upright plate 9 Guide vane, 9a Leg plate 10 Inspection car rail 11 Road fence

Claims (3)

二箱桁構造の橋梁において、橋軸方向へ延びる二箱桁構造の偏平な橋梁本体と、この橋梁本体の幅方向中央部分に上下貫通状に形成され橋軸方向へ延びる中央通風開口と、この中央通風開口の上面に設けられ車両が通行可能なグレーチング構造と、前記中央通風開口の幅方向中央上面に立設された中央防護柵とその下端より中央通風開口を挿通する状態に設けられ橋梁本体の下側より突出する鉛直板で構成された中央遮風構造とを備え、前記橋梁本体の幅方向の両端部分に、夫々、上下1対の傾斜板と、これら傾斜板の先端部に連結された立板とを有する台形状フェアリングを設けたことを特徴とする橋梁。In a bridge with a two-box girder structure, a flat bridge main body with a two-box girder structure extending in the bridge axis direction, a central ventilation opening formed in the center in the width direction of the bridge main body and extending vertically and extending in the bridge axis direction, A grating structure provided on the upper surface of the central ventilation opening so that vehicles can pass therethrough, a central protective fence erected on the upper surface in the width direction center of the central ventilation opening, and a bridge body provided in a state where the central ventilation opening is inserted from the lower end thereof And a central wind-shield structure composed of a vertical plate projecting from the lower side of the bridge main body. At both ends in the width direction of the bridge main body, a pair of upper and lower inclined plates are respectively connected to the tips of these inclined plates. A bridge comprising a trapezoidal fairing having a standing plate. 前記橋梁本体の台形状フェアリングの基端付近において、橋梁本体の上下両側に橋梁本体から所定距離離隔し且つ橋軸方向へ延びる水平なガイドベーンを設けたことを特徴とする請求項1に記載の橋梁。The horizontal guide vanes which are spaced apart from the bridge main body by a predetermined distance and extend in the bridge axis direction are provided on the upper and lower sides of the bridge main body near the base end of the trapezoidal fairing of the bridge main body. Bridge. 前記ガイドベーンは、橋軸方向に所定間隔おきに位置し且つ橋軸に直交する複数の脚板の上端に固定されたことを特徴とする請求項2に記載の橋梁。The bridge according to claim 2, wherein the guide vanes are located at predetermined intervals in the bridge axis direction and are fixed to upper ends of a plurality of leg plates orthogonal to the bridge axis.
JP2003080805A 2003-03-24 2003-03-24 Bridge Pending JP2004285753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080805A JP2004285753A (en) 2003-03-24 2003-03-24 Bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080805A JP2004285753A (en) 2003-03-24 2003-03-24 Bridge

Publications (1)

Publication Number Publication Date
JP2004285753A true JP2004285753A (en) 2004-10-14

Family

ID=33294564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080805A Pending JP2004285753A (en) 2003-03-24 2003-03-24 Bridge

Country Status (1)

Country Link
JP (1) JP2004285753A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7367075B2 (en) * 2005-07-01 2008-05-06 Industry-Academic Cooperation Foundation Yonsei University Girder bridge protection device using sacrifice member
JP2010180609A (en) * 2009-02-05 2010-08-19 Ihi Corp Parallel bridges
RU2500852C2 (en) * 2011-10-11 2013-12-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Device to reduce transverse oscillations of bridge span caused by wind effect
CN104233945A (en) * 2014-09-17 2014-12-24 上海大学 Girder tuyere for controlling wind-induced vibration of cable bearing bridge
CN106638261A (en) * 2016-12-07 2017-05-10 中铁第四勘察设计院集团有限公司 Railway bridge separated dual-box pre-stressed concrete main girder structure
CN107338720A (en) * 2017-07-05 2017-11-10 中铁二院工程集团有限责任公司 Board-like suspension rod wind resistance guiding device
CN108643019A (en) * 2018-06-22 2018-10-12 同济大学 A kind of Bridge Flutter and whirlpool shake integrated control unit and its control method
CN112900229A (en) * 2021-01-14 2021-06-04 同济大学 Split type case roof beam of adjustable intertroove ventilation rate
CN113235386A (en) * 2021-05-26 2021-08-10 长安大学 Device and method for inhibiting vortex vibration generated by separated double-box-girder section bridge

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7367075B2 (en) * 2005-07-01 2008-05-06 Industry-Academic Cooperation Foundation Yonsei University Girder bridge protection device using sacrifice member
JP2010180609A (en) * 2009-02-05 2010-08-19 Ihi Corp Parallel bridges
RU2500852C2 (en) * 2011-10-11 2013-12-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Device to reduce transverse oscillations of bridge span caused by wind effect
CN104233945A (en) * 2014-09-17 2014-12-24 上海大学 Girder tuyere for controlling wind-induced vibration of cable bearing bridge
CN106638261A (en) * 2016-12-07 2017-05-10 中铁第四勘察设计院集团有限公司 Railway bridge separated dual-box pre-stressed concrete main girder structure
CN107338720A (en) * 2017-07-05 2017-11-10 中铁二院工程集团有限责任公司 Board-like suspension rod wind resistance guiding device
CN107338720B (en) * 2017-07-05 2023-05-16 中铁二院工程集团有限责任公司 Plate-type suspender wind-resistant flow guiding device
CN108643019A (en) * 2018-06-22 2018-10-12 同济大学 A kind of Bridge Flutter and whirlpool shake integrated control unit and its control method
CN108643019B (en) * 2018-06-22 2020-03-27 同济大学 Bridge flutter and vortex vibration integrated control device and control method thereof
CN112900229A (en) * 2021-01-14 2021-06-04 同济大学 Split type case roof beam of adjustable intertroove ventilation rate
CN113235386A (en) * 2021-05-26 2021-08-10 长安大学 Device and method for inhibiting vortex vibration generated by separated double-box-girder section bridge

Similar Documents

Publication Publication Date Title
US11614068B2 (en) Airfoil with a vortex generator pair
Miyata Historical view of long-span bridge aerodynamics
Brancaleoni The construction phase and its aerodynamic issues
Wardlaw The improvement of aerodynamic performance
Tang et al. Aerodynamic optimization for flutter performance of steel truss stiffening girder at large angles of attack
Diana et al. Wind tunnel: a fundamental tool for long-span bridge design
CN112064488B (en) Pneumatic adjusting structure for bridge vortex vibration
JP2004285753A (en) Bridge
JPH0796763B2 (en) Suspension bridge structure with flutter measures
Miyata et al. Aerodynamics of wind effects on the Akashi Kaikyo Bridge
Kubo et al. Improvement of aeroelastic instability of shallow π section
CN114032779A (en) Long-span bridge wind vibration control method with wind energy collection function
CN107765722A (en) Longspan Bridge steel box-girder flutter active air blowing flow control apparatus
Yang et al. Evaluation and improvement of wind environment and vehicle safety on long-span bridge deck under strong crosswind
JP2000008326A (en) Bridge girder structure
Verhaagen Effects of Reynolds number on flow over 76/40-degree double-delta wings
JP3663544B2 (en) Bridge
CN108221642B (en) Pneumatic structure for improving wind vibration performance of H-shaped blunt body structure of bridge
Corriols et al. Computational analysis of VIV observed on existing bridges
Langan et al. Experimental investigation of maneuver performance enhancements on an advanced fighter/attack aircraft
Rinoie et al. Experimental studies of a 70-degree delta wing with vortex flaps
Diana et al. New challenges in the IABSE TG3. 1 benchmark on super long span bridge aerodynamics
Kashitani et al. Study on Busemann Biplane Airfoil in Low-Speed Smoke Wind Tunnel
Nieto et al. CFD aerodynamic assessment of deck alternatives for a cable-stayed bridge
Zhou The Effect of Flexibility on Flapping Wing Aerodynamics

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051216

A521 Written amendment

Effective date: 20051216

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060809

A977 Report on retrieval

Effective date: 20080710

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080716

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080901

A521 Written amendment

Effective date: 20081104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127